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ABSTRACT

In multi-server queueing systems where there is no central queue
holding all incoming jobs, job dispatching policies are used to as-
sign incoming jobs to the queue at one of the servers. Classic job
dispatching policies such as join-the-shortest-queue and shortest
expected delay assume that the service rates and queue lengths of
the servers are known to the dispatcher. In this work, we tackle the
problem of job dispatching without the knowledge of service rates
and queue lengths, where the dispatcher can only obtain noisy esti-
mates of the service rates by observing job departures. This problem
presents a novel exploration-exploitation trade-off between sending
jobs to all the servers to estimate their service rates, and exploit-
ing the currently known fastest servers to minimize the expected
queueing delay. We propose a bandit-based exploration policy that
learns the service rates from observed job departures. Unlike the
standard multi-armed bandit problem where only one out of a finite
set of actions is optimal, here the optimal policy requires identify-
ing the optimal fraction of incoming jobs to be sent to each server.
We present a regret analysis and simulations to demonstrate the
effectiveness of the proposed bandit-based exploration policy.

CCS CONCEPTS

» Mathematics of computing — Queueing theory; - Networks
— Network performance analysis.

ACM Reference Format:

Tuhinangshu Choudhury, Gauri Joshi, Weina Wang, and Sanjay Shakkottai.
2021. Job Dispatching Policies for Queueing Systems with Unknown Service
Rates. In The Twenty-second International Symposium on Theory, Algorithmic
Foundations, and Protocol Design for Mobile Networks and Mobile Computing
(MobiHoc °21), July 26-29, 2021, Shanghai, China. ACM, New York, NY, USA,
10 pages. https:/doi.org/10.1145/3466772.3467047

1 INTRODUCTION

Traditional queueing models [11, 22] such as M/M/1, M/G/k, G/G/k
consist of a single central queue holding incoming jobs and one
or more servers that are used to serve those jobs. However, in
many applications such as supermarket or airport queues, it is more
practical for each server to maintain a separate queue consisting
of jobs that are assigned to it. This paradigm calls for the design
of job dispatching policies such as join-the-shortest queue (JSQ),
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shortest expected delay (SED) and least-work-left (LWL) that seek
to emulate the delay performance of systems with a single central
queue by making the most efficient assignments of jobs to server
queues. For example, the JSQ dispatching policy polls the queue
lengths at the servers and assigns each job to the shortest queue.
In large-scale systems such as computing clusters with tens of
thousands of servers, an important consideration is that it can be
practically infeasible to poll and maintain status information of all
the queues. Therefore, alternatives to join-the-shortest-queue such
as the power-of-d-choices (Pod) policy [19, 20, 25] obtain queue
length information of only a randomly chosen subset of servers in
order to reduce the communication and memory cost.

A common assumption in all the the policies described above
is that the service rates at which jobs assigned to each server are
served are known to the job dispatcher, or are to be homogeneous
across servers, which precludes the need for the dispatcher to
know them. In emerging applications such as cloud computing
and crowd-sourcing, the servers may not be dedicated to jobs as-
signed by the dispatcher and may encounter interruptions and
service slowdown due to background workload. Therefore, the ser-
vice rate experienced by the assigned jobs can be unknown, highly
variable across servers, and also changing over time. Traditional
service-rate-agnostic policies are not effective in such systems and
service-rate-aware policies such as join-the-fastest-shortest-queue
(JFSQ) cannot be used due to the service rates being unknown.

1.1 Main Contributions and Organization

In this paper, we propose a job dispatching policy that learns the
unknown service rates of the servers, while simultaneously seeking
to minimize the queueing delay experienced by jobs. This problem
is at the intersection of queueing systems and online learning. It
sheds light on a novel exploration-exploitation trade-off where the
job dispatching policy needs to strike a balance between assigning
jobs to all servers in order to better estimate their service rates
(exploration) and preferentially sending jobs to the faster servers
to minimize the queueing delay experienced by jobs (exploitation).

Unlike classic multi-armed bandits (MABs) where only one of
the actions is optimal, in the queueing setting considered in this
paper, an optimal policy would typically use several fast servers.
Therefore, it is necessary to perform exploration in order to identify
the subset of servers that should continue receiving jobs asymp-
totically. However, more importantly, only identifying this optimal
subset of servers is not enough for learning an optimal job dispatch-
ing policy. We need to also accurately estimate the service rates of
servers in this subset. Interestingly, we are able to achieve this by
virtue of some special properties of queueing systems. In particular,
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after we identify the optimal subset of servers, we exploit by dis-
patching jobs only to this subset of servers. But meanwhile, since
we keep obtaining service time samples from the jobs dispatched
to these servers, we also continue to improve the learning accuracy
of the service rates. Therefore, exploitation and improvement in
estimation are taking place simultaneously in this queueing system.

The rest of the paper is organized as follows. In Section 2 we
describe the system model and formulate the problem concretely.
In Section 3, we find the optimal weighted random routing policy,
which serves as the performance baseline. In Section 4 we propose
a bandit-based €;-exploration algorithm. The distinction between
multi-armed bandits and our queueing setting leads to very different
regret analysis, presented in Section 5. In Section 6 we demonstrate
the effectiveness of the proposed policy via simulations. Due to
lack of space, we mainly present proof sketches here, and provide
the full proofs in the technical report [6] available online.

1.2 Related Work

Bandits have had a rich history, both from an optimal control per-
spective (see [18] for a survey) and a finite-time regret perspective
(see [16] for a survey). Our paper focuses on bandits in queueing
settings — while this intersection has had a rich history (starting
from the Klimov’s model [12] focusing on optimal control), our
focus is on a finite-time regret formulation. At a high-level, the
regret perspective formulates queueing problems with unknown
statistics (e.g., of the service or arrival processes), with the goal of
characterizing the loss/regret in performance of a resource alloca-
tion (with learning) algorithm with respect to a genie-policy that
has access to the complete statistics. Such regret formulations have
recently been introduced both in the adversarial setting [26] and the
stochastic setting [14]. Walton [26] has shown that in an adversar-
ial setting, the queue regret (difference between the queue-length
induced by a learning algorithm with respect to a static optimal
policy) increases at most sublinearly in time. On the other hand, in
a stochastic setting, Krishnasamy et al. [14] have shown that the
expected regret in fact decreases with time (roughly as O(1/t)).

Starting from the above studies, there has been increasing in-
terest in the regret of algorithms in various queueing settings
[5, 9, 13, 17, 23]. Krishnasamy et al. [13] studied the problem of
scheduling jobs using the cy rule with unknown service rates and
showed that the cumulative queue regret (i.e., sums of queue regret
over time) is O(1). Liu et al. [17] studied the problem of distributing
different job classes across servers with unknown rewards for each
job class-server pair and proves a reward regret of O(Vr). Bandits
problems of similar flavour are also studied in the communication
system settings, where Cayci and Eryilmaz [5] studied channel
allocation in wireless downlink systems with unknown channel sta-
tistics, with an objective to identify the optimal number of channels
to activate and proposed an UCB-based index policy that achieves
O(Int) regret. The task of selecting the optimal channel in a wire-
less system with a single transmitter/receiver and multiple channels
was studied by Stahlbuhk et al. [23], and they derived queue length
based policies that achieve O(1) cumulative queue regret by exploit-
ing samples acquired during the idle time of queues. Finally, Fatale
et al. [9] studied regret from an age of information viewpoint.
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Figure 1: Our system model with job arrival rate A and K
servers with service rates yj,...,ug respectively. The dis-
patching policy # assigns each job to one of K queues. The

service rates and queue lengths are unknown to the dis-
patcher; it only observes the service times of departed jobs.

" . .

Unlike these studies, our setting is one where the queues are not
centrally located at the dispatcher. Instead, jobs are dispatched to
individual queues based on partial information; this setting requires
both learning a discrete support set and dispatch weights.

2 PROBLEM FORMULATION
2.1 System Model, Arrivals and Departures

We consider a multi-server discrete-time! queueing system con-
sisting of K servers, with one queue at each server storing the
unfinished jobs that are dispatched to it, as illustrated in Fig. 1. Jobs
arrive into the system according to a Bernoulli process with arrival
rate A, where 0 < A < 1. Specifically, let A(t) denote the number
of job arrivals at the beginning of time slot ¢. Then A(t) = 1 with
probability A and A(t) = 0 with probability 1 — A. Incoming jobs are
dispatched to one of the the K servers according to a scheduling
policy . Once dispatched, the job joins a first-come-first-served
queue with an infinite buffer size at that server. The K servers have
geometrically distributed service times with parameter ;. That is,
after a job reaches the head of the queue at server i, it departs at the
end of the next time slot with probability y;. With the arrival rate A
and the service of the i-th server being y;, the system is stable only
if A < Zﬁ 1 Mi» a condition that we assume to be true.

Let A;(t) and D;(t) denote the number of arrivals to queue i and
the number of departures from queue i respectively during time
slot t. Let Q;(t) represent the length of queue i at the beginning of
slot ¢, including the job that is currently in service. We assume that
the system starts with empty queues, i.e., Q;(0) = 0, for all i. Then
the queue evolution process is given by

Qi(t+1) = Qi(t) + Ai(t) — D;(t). (0

We use Xj, to denote the service time of the n-th job that de-
parts from server i. It is the time since the job reaches the head
of its queue and starts service until it departs from the system.
Xi n is geometrically distributed with success probability y;, that is,
Pr(Xijn=x) = (1 — ;)" 'y forx € {1,2,...}.

! Although we use the discrete-time assumption for the regret analysis presented in
this paper, the proposed policy can be used in continuous time systems. We conjecture
that the regret analysis is extendable to continuous time systems as well, but this
extension is beyond the scope of this paper and is left for future work.
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2.2 Information Available to the Dispatcher

Service Rates and Queue Lengths are Unknown. Job dispatch-
ing policies for the multi-server setting described above have been
extensively studied in previous literature [11, 22]. However, most
prior works assume that the dispatcher knows the service rates
{1, - - ., Pk, and it also has either full or partial information about
the queue lengths Q;(t). For example, for homogeneous systems
where 1 = --- = pg = p, the join-the-shortest-queue (JSQ) policy
has full queue information and sends each incoming job to the
server i* € arg min Q;(t), i.e., the shortest queue, with ties broken
at random. Power-of-d-choice (Pod) policies [19, 20, 25] reduce the
cost of querying queue lengths by sampling d queues uniformly at
random and dispatching the incoming job to the shortest queue. For
heterogeneous service rates, JSQ can be generalized to the join-the-
shortest-fastest-queue (JSFQ) [8, 27, 28], which breaks ties in favor
for the queue with the fastest server. Other policies for systems
with heterogeneous servers such as shortest expected delay (SED)
[3, 10] also use some form of queue length information to make job
dispatch decisions. In contrast, in this work, we consider that the
service rates pi1, pi2, ..., ug of the K servers are heterogeneous and
unknown to the dispatcher. Similarly, the queue lengths Q;(t) for
i=1,...,K are also unknown to the dispatcher.

Dispatcher Observes Service Times of Departed Jobs. In lieu
of service rates and queue lengths, we consider that the dispatcher
observes service times Xj1, ... Xjn; (¢) of the N;(t) jobs that depart
from server i by time ¢. In practice, this information can be made
available to the dispatcher by having the server send the dispatcher
a notification when a job reaches the head of its queue and begins
service and another notification when it departs. The dispatching
policy P can use this information to estimate the service rates i,
...pig. For example, it can estimate the service rate vector fi(t) =
(1 (1), fi2(2), - - - , i (¢)) at time ¢, where f1;(¢) is given by
Ni(t)

Ni(t) ’
L Xij

f(t) = @)
and use it to dispatch jobs. For instance, it can dispatch a larger
fraction of jobs to server with a higher service rate estimate.

2.3 Weighted Random Routing Policies

The service rate estimate [i;(¢) can be used by the dispatcher in
a variety of ways to make job dispatch decisions. Among all the
possible scheduling policies, we focus on the class of weighted
random routing policies, which are defined as follows.

Definition 1 (Weighted Random Routing ). In time slot ¢, the
dispatcher associates a probability p; (¢) with server i, where p;(t)’s
satisfy the property 25{: 1 Dj(t) = 1. We call the probability vec-
tor p(t) = (p1(¢), p2(t),- -, px (¢)) the routing vector. A job that
arrives at time ¢ is dispatched to server i with probability p;(t),
independent of other jobs. The routing vector p(t) = f(A, (1)),
where f : [0,1]5*1 — [0, 1]¥ is a fixed, deterministic function.

The uniform random routing policy corresponds to setting p(t) =
(1/K, -+ ,1/K). Since the routing vector p(¢) is a fixed, predeter-
mined function of j3;(¢), policies such as round-robin dispatching
that retain a memory of where past jobs were dispatched are not
included in this class of weighted random routing policies.
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Optimal Weighted Random Routing. Consider a genie system
where the dispatcher knows the service rates yy, ..., ux. Then the
optimal weighted routing policy £* is defined as the policy that
chooses the optimal p* = f(A, p), that minimizes the expected
steady-state queue length E[Zf(: 1 Qi(e0)], which is equivalent to
minimizing the mean response time experienced by incoming jobs.
We will derive p* in Section 3.

2.4 Measuring Performance in terms of Regret

We seek to design a weighted random routing policy # that starts
with no knowledge of the service rates and converges to the optimal
random routing policy £*. To evaluate the transient performance
of P in terms of how quickly it learns P*, we define a performance
metric Ypp-(t), referred to as the regret of . In Section 5, we
analyze the performance of our proposed dispatching policy in
terms of the expected regret E[¥pp« (1)].

Definition 2 (Regret of a Dispatching Policy). The regret ¥p p-
of a dispatching policy P with respect to the optimal baseline £* is

t

Ypp- (1) = Z

=11

K

(Qi(0) = Qj (1)), ®)
=1
where Q7 (t) represents the queue length at server i at time ¢ when
following policy P*.

The ¥Ypp-(t) represents the cost of using policy P instead of
P* in terms of cumulative queue length till time ¢. Note that the
cumulative queue length is the total time spent by all jobs that
arrived before time ¢, including the jobs that have departed. Hence,
regret represents the additional time jobs stayed in the system when
using policy P instead of P*. It is the penalty the policy # has to
pay for the lack of knowledge the service rates system.

Difference from the Regret used in Multi-armed Bandits. Al-
though similar, the regret considered in this paper and its analysis
is fundamentally different from the multi-armed bandit setting
[4, 15, 16]. In the multi-armed bandit setting with K arms, asymp-
totically optimal algorithms pull the best arm (with the highest
mean reward) O(t) times and pull all the K — 1 sub-optimal arms
O(log t) times. In our queueing setting, the optimal random routing
policy generally sends O(t) jobs to all servers with p; > 0 and not
just the fastest server with the highest service rate y;. We seek fast
convergence of the routing vector p(t) to the optimal p* so as to
dispatch the optimal fraction p; of incoming jobs to each server i.

2.5 Justification for Focusing on Weighted
Random Routing Policies

In this section, we justify why we choose to focus on the class of
weighted random routing policies. First, we explain why service
rates and queue lengths are unknown in the large-scale systems en-
visioned in this work. Furthermore, we show that even if partial or
delayed queue length information is available, using it and perform-
ing join-the-shortest-queue (JSQ) or join-the-fast-shortest-queue
(JFSQ) dispatching does not give a large performance improvement
over weighted random routing.

Why the Service Rates are Unknown. Traditionally, multi-server
queueing systems consisted of dedicated servers and a single source
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of incoming jobs. However, in modern applications such as cloud
data centers, a server may be receiving jobs from several different
applications. For instance, it may be running background workload
such as check-pointing and garbage collection, or higher priority
jobs coming from other sources [7]. As a result, the effective service
rate y; of server i as seen by the dispatcher of any one application
depends on the external workload. Due to privacy constraints and
communication delays, it is infeasible for each dispatcher to know
and keep track of the external workload at each server. Therefore,
we consider that service rates yi; are unknown to the dispatcher.?

Why Queue Lengths are Unknown. In large-scale systems with
multiple job sources, each server’s queue receives jobs from many
dispatchers. In this setting, it is difficult to obtain queue length
information due to two reasons: 1) privacy concerns — if a server
reveals its total queue length Q;(t) to one of the dispatcher, it
may compromise the privacy of other dispatchers by revealing
information about how many jobs they sent to that queue and 2)
even if privacy is not a concern, due to large communication delays
incurred when a dispatcher queries the queue length of a server,
the queue length information may become stale by the time the job
is dispatched. Therefore, we consider that the queue lengths Q;(¢)
are unknown to the dispatcher.

Limited Utility of Partial or Delayed Queue Length Informa-
tion. In Fig. 2, we consider a system of 6 servers with service rates
i such that g; = 2771y, and Z?:l ui = 0.99. We show a comparison
of the mean response times (waiting time in queue plus service
time) for optimal weighted random (OWR) routing, which knows
the service rates p; but does not use queue length information, with
JSQ and JFSQ, which use queue length information to make job dis-
patching decisions. Our goal is to demonstrate that when the queue
length information is partial or delayed, a queue-length-agnostic
policy such as OWR performs nearly as well as JSQ and JFSQ.

To model partial and delayed queue length information, we con-
sider that apart from the rate A job arrivals at the dispatcher, server
i has external Poisson arrivals at rate A{* ! that are not visible to
the dispatcher. For Fig. 2al and Fig. 2b1, we choose A$** = p;/2,
while for Fig. 2a2 and Fig. 2b2, we choose Af” =4y;/5. In Fig. 2a,
we consider that due to privacy concerns, the dispatcher only has
queue length information about the jobs that it sent to each queue,
but not about the external arrivals. In Fig. 2b, we consider the case
of delayed queue lengths, where the dispatcher receives updated
queue length information (including both its jobs and the external
arrivals) with probability 1/3. For OWR, we assumed that the pol-
icy does not know y; or A¢*! but knows the difference (y; — A$*")
and uses the routing vector f(A, g — A*?) to dispatch jobs. All of
the simulations are averaged over 40 trials of 107 job departures
each. For both these cases, observe in Fig. 2 that in the low to mod-
erate load regimes (load = (A + Z{(zl Af”)/zl{il i), the optimal
weighted random routing (OWR) policy is comparable to JESQ and
better than JSQ in terms of the mean response time. Moreover,
observe that as the external arrival rate /1[?’” increased from p; /2
to 4p;/5, the load beyond which OWR performs worse than JESQ

2In practice, the effective service rates may vary over time depending on the external
workload. For tractability of the analysis, we do not consider time-varying service
rates y1;. However, the estimates in (2) can be modified to discount older service time
observations in order to account for time-varying service rates.
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Figure 2: OWR performs better than JSQ and similar to JFSQ
in the middle and low traffic regime. In the heavy traffic
regime, both JSQ and JFSQ performs better than OWR. OWR
performs better as the external workload increases.

shifted from 0.8 to 0.9 roughly. This is because at heavy load, the
cost of a sub-optimal allocation of jobs using a partial or delayed
information is more than using no information at all. We conjecture
that OWR becomes more useful as the cross traffic load increases.
As a result of these observations, we choose to focus on the
class of weighted random routing policies that do not take into
account queue lengths when making job dispatching decisions, and
seek to design a dispatching policy that can learn unknown service
rates while simultaneously minimizing the regret (see Definition 2).
Another reason is that for this class of policies, the optimal policy
P* that minimizes the steady-state cumulative queue length is
clearly defined, as we show in Section 3 below. In contrast, the
optimal policy is not known in the case where queue lengths are
considered for job assignment decisions. Although policies such
as JSQ and JFSQ perform well in practice and in the heavy-traffic
regime, it is unclear which policy is optimal in other regimes.

3 OPTIMAL WEIGHTED RANDOM ROUTING
POLICY FOR KNOWN SERVICE RATES

We define optimal weighted random routing (OWR) policy as the
weighted random routing policy that minimizes the mean response
time of jobs in steady state or equivalently, the policy that minimizes
the cumulative steady-state queue length E[Zfi 1 Qi(e0)]. Let p* =
(p7sp3s - -+ » Px) be the routing vector corresponding to the optimal
weighted routing policy as a function of arrival rate and the service
rates and we will refer to it as the optimal routing vector.
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For a Geo/Geo/1 queueing system with arrival rate A’ and de-
parture rate y’, the expected steady-state queue length, E [Q(o0)],
is given by (see [22] Chapter 3 for the derivation)
A=)

— @

E[Q(e0)] =
Now, for our system with arrival rate A and service rates y;’s, if
every incoming job is assigned to server i with probability p;, the
system can be viewed as K Geo/Geo/1 queues each with arrival
rate p;A and service rate y; respectively. Hence, the steady state
queue length of the system is given by

K
E|Y Qi(w) ZE [Qi(e0)] =
i=1

Hence, the optimal routing vector would be the solution to the
following optimization problem:

S Pir(1= p)

Hi — Api ©)

i=1

K
min pir(1 — pi) ©)
pupapk o pi = Ap;
K
D=1 ()
i=1
pi >0, pid <p Vi, ®)

where the constraint p;4 < p; ensures stability of the queue i
and the remaining constraints ensure that p forms a valid routing
vector. We show in [6] that the optimal routing vector is given by

p* = f(A w). where f : [0,1]%*" — [0,1]% is a function given by
FA (@)
Hi \//11(1—_ﬂI) ZJES(/L”) Hj .
. -1), ifieSAp),
-1 2jeS(Apm) Vi (1—p5) ( A ) it i ()
> ifig SO p).
)

where S(4, p) is a subset of servers which we refer to as the optimal
support set such that i € S (4, p) if and only if p} > 0.

In [6] , we formally prove that if p; > pj, then p} > p;f. Therefore,
only the slowest servers are excluded from the support set S(A, u),
and the support set has to be [1,...,i] for some i € {1,2,...K}. To
find the optimal set S(A, p) and the optimal routing vector p* we
can use the iterative algorithm given below.

(i) Initialize the support set S(A, p) ={1,2,...,K}.
(ii) Calculate p} according to (9).
(iii) If p; < Oforanyi e {1,...,K} or p; = 0foranyi € S(A, p),
then remove the slowest server arg min;e g4, ) pi from the
support set and repeat from Steps (ii) and (iii).

The proof of the correctness of this algorithm is given in [6].

4 PROPOSED JOB DISPATCHING POLICY FOR
UNKNOWN SERVICE RATES

Recall that we consider a dispatcher who does not know the service
rate vector g = (1, . . ., pg) and thus relies on the estimated service
rate vector fi(t) = (f1(t),...,fix(t)). Our goal is to design a dis-
patching policy # that minimizes the expected regret E [¥pp- ()]
with respect to the optimal weighted random routing policy P*.
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Figure 3: An illustration of the optimal weighted random
routing policy. The job arrival rate is 1 is split and there are
4 servers with service rates y1, ..., ji4 respectively such that
H1 2 fi2 2 3 2 4.

In order to asymptotically converge to £*, it is important for
the dispatching policy to correctly identify the optimal support
set S(4, p) for which p} > 0. If a server with p} > 0 is excluded
from the estimated support set, then the dispatcher will not send
any jobs to it and hence cannot converge to the optimal policy P*.
In this section we first demonstrate that it is necessary to explore
(that is, send jobs to all K servers) infinitely often for achieving
a reasonable regret in Section 4.1. We then present our policy in
Section 4.2.

4.1 The Necessity of Exploration

It is well-known that for stochastic multi-armed bandits problems,
it is necessary to explore infinitely often to achieve an optimal re-
gret. Interestingly, there are recent results showing that no explicit
exploration is needed for achieving an optimal regret in some queue-
ing systems with unknown parameters [13]. There the exploration
comes for free when running a stabilizing policy. However, for the
job dispatching problem we consider in this paper, we demonstrate
below that infinitely often exploration is still necessary.

A naive dispatching policy may dedicate a constant amount of
time at the beginning to exploration to obtain a good estimate of
the service rate vector. Then after the initial exploration phase, the
policy uses the estimate fi(t) at every time slot ¢ to compute the
routing vector and dispatches arriving jobs accordingly, while keep-
ing updating the estimate fi(t) using the service times of completed
jobs. We will construct an example to demonstrate that this can
lead to a situation where a server in the optimal support set S(A, u)
is forever excluded from the estimated optimal set, which will incur
a linear regret.

Consider a two-server system with A = 0.2 and g = (0.45,0.55).
One can verify that the optimal routing vector is (0.25,0.75). Sup-
pose for the first n time slots, the dispatching policy assigns an
arriving job to one of the two servers chosen uniformly at random.
We consider an event & defined by the scenario below.

Suppose that there are k job arrivals during the first n time slots
to server 1. Let ¢’ be the earliest time by which all the k jobs that are
assigned to server 1 have departed. Then we consider the scenario
where the estimated service rates satisfy that fi; (t) < 0.05 for all
time ¢t with ¢ < ¢" and fip(t) > 0.25 for all time ¢.

We first argue that under the event &, the regret scales linearly
with time. Note that under &, for any time ¢ with t < ¢’, the routing
vector is (0, 1) since i1 () < 0.05and fiz(t) > 0.25. Attime t = t'+1,
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Algorithm 1 An e;-Exploration Policy for Learning Optimal
Weighted Random Routing

1: while t > 0 do

2 if a job arrives then

3: x(t) «a Bernoulli sample with mean min { 1, @}

4 if y(t) = 1 then > Explore
5: Dispatch to one of the servers uniformly at random
6: else > Exploit
7: Compute routing vector p(t) = f(A, fi(t))

8: Dispatch to server i with probability p;(t)

9: end if

10: end if

11: fori=12---Kdo

12: if a job departs from server i then
13: Update f;(t) using (2)

14: end if

15: end for

16: end while

we still have that /i1 (t) < 0.05 since no new job is sent to server 1
and that /i () > 0.25 by the definition of event &, which makes
the routing vector remain (0, 1). Repeating this argument for all
the time slots after ' + 1 we can see that for rest of the time no
job will be sent to server 1 at all. Now the expected steady-state
queue length when using only server 2 is 9/35, while the expected
steady-state queue length using the optimal routing vector is 19/80.
Thus the regret scales roughly as 11¢/560, which is linear in ¢.

We next show that the event & happens with a strictly positive
probability:

P(&) = (Zn:

n k n—k all k jobs to server 1
(k) (0'5/1) (1 N 0'5/1) P (have service time > 20))
k=1

(N7 {A2(t) > 0.25}) (10)
> (1 - ZP(ﬁz(t) < 0.25))
=1
,; (Z)(o.sA)k(l — 051"k ((0.45)2°)k 11)
09]; (:)(O.SA)k(l —0.50)"k ((045)20)](, (12)

which is strictly positive, where (12) is due to Chernoff bound.

4.2 An ¢;-Exploration Policy

As demonstrated in Section 4.1, exploring for a fixed amount of time
can lead to a linear regret. To ensure enough exploration, we pro-
pose an €;-exploration policy, which explores with probability €; =
Klnt ln L at each time slot t. When not exploring, the policy treats the
est1mated service rates as if they were the actual service rates and
calculates the optimal routing probabilities based on them; i.e., when
not exploring, the policy uses p(t) = (p1(2), p2(¢),- -, px(t)) to
make a routing decision at time t. The pseudo-code is presented
in Algorithm 1.
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5 REGRET ANALYSIS

In this section, we prove an upper bound on the expected regret
E [¥Ypp-(t)] of the e;-exploration policy.

To state our upper bound, we first define a quantity A g that we
refer to as the tolerance gap, which is analogous to the suboptimality
gap for multi-armed bandits. Specifically, let

Ag=sup{§>0:S(Ap')=S(\p)
vp'st. |l - p| < 8,Yi},

where recall that S(A, p) is the optimal support set computed from
arrival rate A and service rate vector p.

The tolerance gap A g quantifies how much error in the service
rates can be tolerated without incurring a discrepancy in the sup-
port set. We can think of the p” in (13) as the estimated service
rate vector. If Ag = 0, then even a slight imprecision in the esti-
mated service rates would make the estimated support set deviate
from the optimal support set, indicating hardness of the problem.
Therefore, we make the assumption that Ag > 0 in our upper
bound. We comment that from a practical perspective, this is a
very mild assumption since only a small set (with zero measure) in
the parameter space {(A, ) e RE+: 3 < Z{il ,ui} will violate this
assumption.

(13)

Theorem 1 (Upper Bound on Expected Regret). Consider a system
with arrival rate A and service rate vector g and assume that Ag > 0.
Then there exists a constant kq and a tg such that for all t > o,
the e;-exploration policy (Algorithm 1) has an expected regret
E [¥pp-(t)] that admits the following upper bound:

-1

E [¥pp-(1)]
< Z 66k1 Int /lnr Z 1321n T +0(1), (4)

7=t \i:p;>0 Ti

where r; is the residual capacity of server i under the optimal
weighted random routing given by r; = y; — Ap;.

In the regret upper bound in Theorem 1 above, the first summand

ZT_tO Zipi>0 66k121n e In7 i< the dominant term and it comes from

the estimation error in the estimated routing probablllty vector

132In’ ¢
T

Pp(t), and the second summand ZT t Z results from the

exploration used by the €;-exploration pohc;/, We note that this
regret bound becomes smaller in low to moderate traffic regimes
where the residual capacities r;’s are large and the size of the optimal
support set S (A, p) = {i: p;." >0,i=1,2,...,K} is small.

In the following subsections, we first couple our system with the
system that runs the the optimal weighted random routing policy in
Section 5.1 to facilitate the regret analysis. We then prove Theorem 1
in Section 5.2, using several lemmas whose proof sketches are given
in Section 5.3.

5.1 Coupling with the Optimal Weighted
Random Routing

Consider the system that runs the optimal weighted random rout-

ing policy P*, which we refer to as the optimal system. We will

annotate quantities in the optimal system with the superscript *,

e.g., A*(t) denotes the total number of job arrivals at time ¢ to the
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optimal system, and Q7 (t) denotes the length of queue i under $*.
Correspondingly, recall that the regret at time ¢ is defined as

-1

Ypp- (1) = Z

=11

K
(Qi(7) - Qj (7).
=

We assume that the optimal system also starts from empty queues,
ie, Q7 (0) =0 forall i.

We couple the system that runs our proposed e;-exploration
policy with the optimal system in the following way.

Arrivals. We couple arrivals such that A(¢) = A*(¢) for all time ¢.

Service. For each server i,let S; (¢) fort = 0, 1,2,... beii.d. Bernoulli
random variables that take the value 1 with probability p;. We will

refer to S; () as the service offered by server i at t. If Q; (¢)+A; () > 0,

we let D;(t) = S;(t), where recall that D; (t) is the number of depar-
tures from queue i at ¢; otherwise it is clear that D; (¢) = 0. Similarly,

let S7(¢) denote the corresponding service offered in the optimal

system. We couple the service processes such that S;(t) = S} (¢) for

all server i and all time ¢.

Assignment process. Recall that in the e;-exploration policy, for
each time slot ¢, with probability K ltn ! we explore and otherwise
we dispatch the arriving job according to the routing vector p(¢).
We couple the dispatching decision generated from p(t) with the
dispatching decision generated from the optimal routing vector p*
in the optimal system as follows.

For simplicity, we can assume that for each time slot ¢, we gen-
erate a dispatching decision from p(¢), although this dispatching
decision is needed only when there is a job arrival at ¢ and the €;-
exploration policy chooses to exploit. Let the dispatching decision
generated from p(t) be represented by the server that an arriving
job will be dispatched to, denoted as o(t). Then o(t)’s probability
mass function (pmf) is p(t). Similarly, let o*(¢) be the dispatching
decision in the optimal system, and then ¢*(¢)’s pmf is p*. Then
we couple o(t) and o™ (t) such that they have the following joint
pmf:

P(o(t) =i.0"(t) = )
min{p;(t), p; }
= (eo)-min{pu(0).p;)) (p; () -min 5, 21,05}
v BOp)

ifi=j,
(15)

ifi # J,

where dry (p(t), p*) is the total variation distance between p(t)

and p* and is given by d7v (p(1). p*) = £K | (p;%(t) — min {pj(t),p;}).

This coupling is known as the maximal coupling (see, e.g., [21]) and
it guarantees that P(o(t) # o*(¢)) = drv (p(¢), p*).

With this coupling, we can quantify the probability for a mis-
matched dispatching decision between our system and the optimal
system. In our system, recall that A;(¢) denotes the number of jobs
dispatched to server i at time t. We now make a finer distinction
between jobs dispatched through exploration and through exploita-
tion under the €;-exploration policy. Let AEE) (t) and A;O) (t) de-
note the numbers of jobs dispatched to server i through exploration
and exploitation, respectively. Then A;(t) = AI(E) (t) + AEO) (1).
Lemma 1 below upper-bounds the probability for the mismatch
that AEO) (t) = 1, A7 (¢) = 0 with the distance ‘ﬁi(t) - p:‘| implying
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that once the estimates p;(t)’s are close to p}’s, the probability of
such a mismatch is small.

Lemma 1. For any time slot t and any server i,

p Afo)(t) =LA (H) =0 |p,~(t)] < |pi(t) - p;

Proof of the lemma is given in [6].

5.2 Proof of Regret Bound (Theorem 1)

In this section we prove the upper bound in Theorem 1 on the ex-
pectedregret E [Ypp-(t)] = E [Z;;} Zﬁl (Qi(r) - Q;‘(T))] based
on several lemmas. Proof sketches of these lemmas will be given in
Section 5.3, and the detailed proofs are presented in [6].

We first note that the difference between Q;(t) and Q7 (¢) can
be written in the following recursive form for any ¢ and 7 < t:

Qi(t) - Q; (1) = Qi(7r) - Q; (v)
-1

+ > (Aie) = Di(0) - (4] (€) = D} (1)) .
=1

In this proof, we will consider a specific 7 that is the last time queue i
is empty. In particular, define B;(t) as the length of the current busy
cycle period as seen at time ¢, i.e.,

Bi(t) = min{s > 0: Q;(t — s) = 0} . (16)

Then it is easy to see that for 7 = t — B;(t), we have Q;(r) = 0
and Q7 (r) 2 0. In addition, for any ¢ with 7 < £ < t — 1, we have
D;(¢) = Si(¢) since Q;(¢) > 0. Based on this choice of z, the queue
length difference can be bounded as follows:

Qi(1)=0; (t) = Qi(t — Bi (1)) — Q; (t — Bi(1))+

t—1
(Ai(6) = Di(e) - (A () = D} (0)))
¢=t-B; (1)
t—1 t—1
< (Ai(0) — AX(0)) + Z (D} (¢) - Di(0))
¢=t—B;(t) ¢=t—B;(t)
t—1
< (48 @)+ 417 (0) - a3 (0))
¢=t—B;(t)
t—1
(ST -si0) 17)
t=t—-B;(t)
t—1 t—1
= > APo+ Y (Ago)(f)—A;“(r)) (18)
t=t—B;(t) t=t—B;(t)
t—1 (E) t—-1
< Z A7 (0 + Z 1{A§O’(f)=1,A;(f)=o}’
t=t—B;(t) t=t—B;(t)
(19)

where (17) uses the facts that A;(f) = A;E) (¢) + Ago) (6), Di (¢) <
S;(£), and D;(¢) = S;(¢); (18) is due to our coupling S;(¢) = S} (¢£).

In the upper bound (19) on the queue length difference, the first
summand comes from exploration. Since we know that by our €;-
exploration, we have ]E[AEE) 0] = W, this summand can be
properly bounded if we obtain a suitable upper bound on B;(t).
The second summand in (19) comes from exploitation, and it can be



MobiHoc ’21, July 26-29, 2021, Shanghai, China

Quick learning period (Lemma 5)

Heavy exploration p7fiod Busy period hounl(g (Lemma 3)
L
r T
0 w(®) N v i
2

Heavy exploitation period, Estimation error bound (Lemma 4)

f*U

Figure 4: Time structure of lemmas in proof of Theorem 1.

bounded with the estimation error through Lemma 1. To formalize
the above intuition, we define the following events:

E1(t) := {Bj(t) < vi(t),Yi}, where v;(t) = w and
r2

i

(20)

E(t) == {|ﬁi(r) — p}| < ki min {w/ pl} Vre [é +1, t],w},

(21)
where ki is a properly chosen constant. Utilizing these two events,
Lemma 2 below establishes an upper bound on the expected queue
length difference, which enables us to further bound the regret by

analyzing the busy period and the estimation error in service rates.

Lemma 2. There exists a ty such that for any time ¢ > ty, the total
expected queue length difference can be bounded as

K
ZE[Qi(t)—
+ > klo,(t),/ + 1P ((E1(1)°) +26P ((E2(1)°) . (22)

ip;>0

20i(t)Int

K .
Q] < ), =

i=1

With Lemma 2, to bound the expected regret, now it suffices to
bound the probabilities P ((E1(¢))€) and P ((E2(¢))€), which are
established in Lemmas 3 and 4 below. We demonstrate the time
structure of the lemmas in Figure 4.

Lemma 3 (Busy Period Bound). There exist a constant k and a #
such that for any t > to, the event &; () defined in (20) satisfies

ko +1 1)

P((&1(1)°) < 41((%7 + 3 4 (23)

Lemma 4 (Estimation Error Bound). There exist a constant ks and
a to such that for any t > ty, the event () defined in (21) satisfies

P ((&2(1)°) < K(% . kzt;- 1)
2
+ Z (—+teXp( piAt )+t6Xp(—%t)). (24)
i:p7>0

Finally, we choose a common ¢ty for Lemmas 2-4 and a common
ko for Lemmas 3 and 4, and put Lemmas 2-4 together to get

E[¥pp-(1)]
t—1 K t—-1 K

= > B[00 -0 (0] + )] D E[Qi(n) - 0} (7)]
=1 i=1 7=ty i=1
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<t0+22201(‘[)1n‘[ Z Z yvi () n‘f

=ty i= =y i:p;>0
t-1 t-1
4 4k2 +4 4 1 ko +1
+ 7-K +— |+ 21-K|—=+
z (522 5 ) (ﬂ -
T=ly =l
= 1 JAT rizf
+ 27 - — +trexp|- + Texp T (25)
7=ty i:p;>0 ’

K 2 t—1
132In° 7 66kiInt [Int
_ .2 1
BRI e e U N
13

7=t i:p;>0 i

5 Z i+1’2€X —p?AT +TzeX
) 72 P\ 728 P

=k i:p;>0

Z 66k11nr [ln_r_'_iwzlnzr
: T 4 rir

i:p;>0 i i=1

rizT
- @

+0(1),

-
which completes the proof of Theorem 1. O

Remark. Our proof techniques used the absolute difference in the
routing probabilities to analyze the difference in queue lengths.
We comment that it might be possible for one to prove a tighter
regret upper bound by considering the actual difference in routing
probabilities, but the analysis will become much more challenging.
Specifically, inaccurate routing probabilities can actually instanta-
neously benefit the queues whose p;(¢) is smaller than the optimal
p; . This is a phenomenon not seen in multi-armed bandit problems,
and it is worth further investigation.

5.3 Proof Sketches of Lemmas 2-4

The detailed proofs of Lemmas 2, 3, 4 and 5 are presented in [6].

Lemma 2 can be proven using a series of conditioning on event
&E1(t), event E2(t) and also the estimated p(t). Then the construc-
tion of &1(t) gives an upper bound on the busy period, Lemma 1
helps translate the number of mismatches into the error in esti-
mation, and finally the construction of &;(t) upper bounds the
estimation error.

Next for Lemmas 3 and 4, we will just highlight a key lemma
used in their proofs, presented as Lemma 5. Lemma 5 below states
that for any large enough time t, the estimated optimal support
set, S (A, fi(t)), is correct (i.e., equal to the true optimal support set
S (A, p)) for a period of time [w(¢), t] with high probability, where

w(t) =
the rate at which we dispatch jobs to each server i lies between
Ap; /2 and p; —1;/2; i.e., the arrival rate to each server is no smaller
than half of the rate under the optimal weighted random routing,
but still leaves at least half of residual capacity under the optimal
weighted random routing. We call the period of time [w(?), ] the
quick learning period since we have “locked” the correct support
set and spend all exploitation jobs on learning the service rates of
servers in the correct support set. This time structure of Lemma 5
is also illustrated in Figure 4.

2exp (@ (Vln t)) Moreover, during this period of time,
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Figure 5: Regret vs time for various policies. The shaded region represent +2¢ boundary of the mean regret. TS and UCB
performs well in load load regime, while K/t-greedy exploration policy performs well in higher traffic regimes. Our policy
moderately in very low load regime and performs well in higher traffic regimes.

Lemma 5 (Quick Learning Period). Define the event E3(¢) as
Es(t) = E31(t) N E32(t), where (27)

E31(t) ={S (A (7)) = S(A p), V7 € [w(t) + 1, t]},
Ap;
E3a(t) = {Tl

Then there exist a constant ky and f( such that for all ¢ > £,

P ((&5(1)°) < K (%7 N kzt: 1) .

Based on Lemma 5, Lemmas 3 and 4 can be proven through
the following outline. The bound on the busy period in Lemma 3
relies on the property that E (A;(7) | pi(7)) < pi — % in the event
E32(t)(t), which leads to a negative drift in the queue length. For
the bound on the estimation error in Lemma 4, the property that
E (Ai(7) | pi(7) = % in the event E32(t) guarantees that the
expected number of jobs we dispatch to each server in the optimal
support set is at least linear in time, resulting in enough samples
for estimating the service rates of these servers. For servers outside
of the optimal support set, event Es1(t) ensures that we do not
dispatch exploitation jobs to those servers.

6 SIMULATION RESULTS

In this section we compare the expected regret of our proposed
K In t/t-exploration policy with three other policies that are also

<E(Ai(r) | pi(r)) < pi — %,Vi,‘v’r € [w(t) +1, t]}
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based on multi-armed bandits: (i) an ¢;-exploration with a faster
decaying exploration probability €; = K/t, (ii) a variant of the upper
confidence bound (UCB) policy [2], and (iii) a variant of Thompson
sampling [1, 24], described in more detail below. Our simulation set-
up consists of a system of 6 servers with service rates y; such that
pi =271y, and Z?:l 1i = 0.99. We consider 5 different job arrival
rates A = 0.1,0.2,0.4,0.5 and 0.7. To compute the regret, we find
the cumulative queue length Z;zl Zfil Qi(r) for t € [0,2 x 107]
for each of the policies and the optimal weighted random routing
policy. The regret ¥pp-(t) = Z;zl Zfil(Qi(r) - Q7(7)) is then
averaged over 20000 simulation runs. We compare the regret of our
proposed policy with that of the three other policies in Fig. 5.

K/t-exploration: Instead of the ¢; = K Int/t probability of explo-
ration used in our proposed policy, this policy sets €; = K/t, which
decays much faster. Because of the aggressive exploitation, this
policy can exclude servers from the optimal support set, similar
to the situation described in Section 4.1. As a result, we observe
linearly increasing regret in Fig. 5 and it is clearly outperformed by
our proposed K In t/t-exploration policy, especially for small A. For
larger A, only a small amount of exploration is required to ensure
that none of the servers in the optimal support set is excluded and
hence the performance of the policy improves.

Upper Confidence Bound (UCB) variant: This is a variant of the
UCB policy [2], where in each time slot, we compute the routing
probability vector f(A, pUCB(t)) using optimistic estimates of the
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1

’l‘),

service rates ,ulUCB(t) =a;(t) + where Nj(t) is the number

of jobs that have departed from server i till time ¢. Using optimistic
service rate estimates induces more exploration of slower servers
by including them in the support set more often. As a result, UCB
explores more aggressively than our proposed K In ¢ /t-exploration
policy and therefore, UCB performs well for small 1. However, as A
increases, the additional exploration results in a higher regret.

Thompson Sampling (TS) variant: This is a variant of the Thomp-
son sampling [1, 24]. At each time slot, we compute the rout-
ing probability vector f(A, u7(t)) by sampling the service rates
pl.TS(t) from a Beta distribution with parameters fi; (#)N;(¢) + 1 and
(1—f3(¢))N;(t) + 1. The variance of the Beta distribution is roughly
O(1/N;(t)). The exploration in this policy comes from the fact
,ul.TS(t) lies within j;(t) = O(1/4/N;(t)) region. While similar to
UCB, TS performs less exploration of slow servers because ,ul.Ts(t)
can be lower than the optimistic estimates fi;(t). Thus, we observe
in Fig. 5 that the regret of TS is similar to, but better than UCB.

A common trend in these results is that we need more explo-
ration in the low A regime and less exploration for larger A. In the
low A regime, the optimal weighted random routing usually sends
the job to the fastest server, which essentially reduces to a typi-
cal MAB setting. Hence, UCB and TS perform well in very low A
regime. However, their performance worsens as A increases due to
over-exploration. Unlike traditional MAB problems where the user
either explores or exploits at each time, in queueing bandits every
exploitation also acts as an exploration. As long as the servers in
the optimal support set has a non-zero probability of assignment
associated with it, there would be a steady flow of jobs to those
servers which in turn will improve their service rate estimates.

7 CONCLUDING REMARKS

In this paper, we study the problem of job dispatching policies in
a system with unknown service rates and unknown queue length
information. We propose a bandit-based K In t/t-exploration policy,
which uses online estimate of the service rates to dispatch jobs, and
asymptotically converges to the optimal weighted random (OWR)
routing policy. We characterize the finite-time regret of this policy
and present simulation results to demonstrate that it performs well
in all load regimes.

There are substantial open directions for future work. An imme-
diate open challenge is to prove a matching lower bound on the
regret. Unlike typical bandit problem where every wrong decision
incurs a penalty, characterization of this penalty is difficult in our
queueing setting. Another open direction is extending the work
to characterize of regret for classes of policies that has access to
the queue length information like JSQ, SED etc. The analysis of
these policies is far more complicated than random routing policies,
where the difference in the queue length can be characterized by
the difference in the routing probabilities.
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