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SCHRÖDINGER EQUATION
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DANIEL P. SPIRN

Abstract. In this note, we prove the profile decomposition for
hyperbolic Schrödinger (or mixed signature) equations on R2 in

two cases, one mass-supercritical and one mass-critical. First, as

a warm up, we show that the profile decomposition works for the

Ḣ
1
2 critical problem. Then, we give the derivation of the profile

decomposition in the mass-critical case based on an estimate of
Rogers-Vargas (J. Functional Anal. 241(2) (2006), 212–231).

1. Introduction

We will consider the hyperbolic (or mixed signature) Schrödinger equation
on R2, which is given by

(1.1) i∂tu+ ∂x∂yu= |u|pu, u(x, y,0) = u0(x, y).

In particular, we will focus on the cases p= 4 and p= 2. The case p= 2 arises
naturally in the study of modulation of wave trains in gravity water waves, see,
for instance, [30], [32]; it is also a natural component of the Davey-Stewartson
system [18], [28]. As can be observed quickly from the nature of the dispersion
relation, the linear problem

(1.2) i∂tu+ ∂x∂yu= 0, u(x, y,0) = u0(x, y).

satisfies the same Strichartz estimates and rather similar local smoothing es-
timates1 as its elliptic counterpart, the standard Schrödinger equation. In
particular,

(1.3)
∥∥eit∂x∂yf

∥∥
L4

x,y,t
≤ 2−

1
4 ‖f‖L2

x,y
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(see Appendix A for explanations about the constant). Hence, large data local
in time well-posedness and global existence for small data with p≥ 2 can be
observed using standard methods that can be found in classical texts such
as [3], [28]. For quasilinear problems with mixed signature, some local well-
posedness results have been developed recently, see [14], [22]. Non-existence
of bound states was established in [10] and a class of bound states that are
not in L2 were constructed in [21].

Long time low regularity theory for this equation at large data remains
unknown however. Recently, an approach to global existence for sufficiently
regular solutions was taken in [31], but it is conjectured that (1.1) should have
global well-posedness and scattering for all initial data in L2. Much progress
has been made recently in proving global well-posedness and scattering for
various critical and supercritical dispersive equations by applying concentra-
tion compactness tools, which originated with the works of Lions [19], [20].
One major step in applying modern concentration compactness tools to dis-
persive equations is the profile decomposition, see [13], [16]. The idea is that
given a small data global existence result, one proves that if the large data
result is false then there is a critical value of norm of the initial data at which
for instance, a required integral fails to be finite. Then, the profile decomposi-
tion ensures that failure occurs because of an almost periodic critical element,
which may then be analyzed further and in ideal settings ruled out completely.
See [5], [6] and references therein for applications of this idea in the setting of
focusing and defocusing Schrödinger equations for instance.

A major breakthrough in profile decompositions arose in the works of
Gérard [9], Merle-Vega [23], Bahouri-Gérard [1], Gallagher [8] and Keraani
[15]. Those results have then been used to understand how to prove results
about scattering, blow-up and global well-posedness in many settings, see [16]
for some examples. We also mention the recent work by Fanelli-Visciglia [7],
where they consider profile decompositions in mass super-critical problems for
a variety of operators, including (1.1).

As can be seen in [16, Section 4.4], the profile decomposition follows from re-
fined bilinear Strichartz estimates. Using refined Strichartz estimates from [24]
and bilinear Strichartz estimates, Bourgain [2] proved concentration estimates
and global well-posedness in H3/5+ε for the defocusing, cubic elliptic nonlinear
Schrödinger equation in R2. Building on this work, Merle-Vega [23] proved a
profile decomposition for the mass-critical elliptic nonlinear Schrödinger equa-
tion in two dimensions.

For the hyperbolic NLS, Lee, Vargas and Rogers-Vargas [17], [25], [33] have
provided refined linear and bilinear estimates, drawing on results of Tao [29]
for the elliptic Schrödinger equation. In particular, [25] gives an improved
Strichartz estimate similar to our Proposition 9 and uses it to prove lower
bounds on concentration of mass at blow-up. An improved Strichartz estimate
is also the key element in our profile decomposition, following the standard
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machinery described in [16, Section 4.4]. For completeness, we provide a proof
of Proposition 9, which, although drawing on similar ideas as in [25], outlines
more explicitly the additional orthogonality of rectangles with skewed ratios.

The major issue in following the standard proof of the profile decompo-
sition is that the mixed signature nature of (1.1) means that an essential
bilinear interaction estimate that holds in the elliptic case fails. This is com-
pensated for in [33] by making a required orthogonality assumption for the
refined bilinear Strichartz to hold (see the statement in Lemma 3 below). To
overcome this difficulty, we use a double Whitney decomposition to precisely
identify the right scales, which introduces many different rectangles that are
controlled using the fact that functions with support on two rectangles of dif-
ferent aspect ratios have small bilinear interactions. We note that while we
here focus on analysis in 2 dimensions to keep the technical computations
focused and directed, we expect many of the calculations to be generalizable
to other dimensions as in [16].

The paper is structured as follows: in Section 2, we set up the problem, dis-
cuss some basic symmetries and establish some important bilinear estimates;
in Section 3 we establish the result in the mass-supercritical case using the
extra compactness that comes from the Sobolev embedding; in Section 4, we
establish the main precise Strichartz estimate in the paper and in Section 5,
we obtain the profile decomposition for the mass-critical problem and deduce
the existence of a minimal blow-up solution. Finally, in Appendix A, we prove
that Gaussians give the optimal constant for the Strichartz inequality for (1.2).
The appendix does not rely on the remainder of the manuscript, though it is
a related question and highlights the usefulness of decoupling the coordinates
in this model.

2. Properties of (1.1)

Observe that a solution to

(2.1) i∂tu+ ∂x∂yu= |u|2u, u(x, y, t) = u0(x, y),

has a number of symmetries:

1. Translation: for any (x0, y0) ∈R2,

(2.2) u(x, y, t) �→ u(x− x0, y− y0, t),

2. Modulation: for any θ ∈R,

(2.3) u(x, y, t) �→ eiθu(x, y, t).

3. Scaling: for any λ1, λ2 > 0,

(2.4) u(x, y, t) �→
√
λ1λ2u(λ1x,λ2y,λ1λ2t),

4. Galilean symmetry: for (ξ1, ξ2) ∈R2,

(2.5) u(x, y, t) �→ e−itξ1ξ2ei[xξ1+yξ2]u(x− ξ1t, y− ξ2t, t).
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5. Pseudo-conformal symmetry:

(2.6) u(x, y, t) �→ ei
xy
t

it
u

(
x

t
,
y

t
,
1

t

)
.

These symmetries all preserve the L2
x,y norm. The first two symmetries (2.2)–

(2.3), as well as the scaling symmetry properly redefined, also preserve the

Ḣs
h norm for any s ∈R, where

‖f‖2
Ḣs

h
=
∥∥|∂x| s2 |∂y| s2 f∥∥2L2 .

Note that this norm has similar scaling laws as the more usual Ḣs norm.
Other examples of anisotropic equations have appeared in for instance, [27],

[12]. For example, for the Ḣ1/2—critical problem

(2.7) i∂tu+ ∂x∂yu= |u|4u, u(x, y,0) = u0(x, y),

the symmetries are thus:

1. Translation: for any (x0, y0) ∈R2,

(2.8) u(x, y, t) �→ u(x− x0, y− y0, t),

2. Scaling: for any λ1, λ2 > 0,

(2.9) u(x, y, t) �→ (λ1λ2)
1/4u(λ1x,λ2y,λ1λ2t),

3. Modulation: for any θ ∈R,

(2.10) u(x, y, t) �→ eiθu(x, y, t).

We will treat the profile decomposition for (2.7) as a warm-up, before tackling
the profile decomposition for the mass-critical problem (2.1).

2.1. Notations. Let ϕ be a usual smooth bump function such that ϕ(x) = 1
when |x| ≤ 1 and ϕ(x) = 0 when |x| ≥ 2. We also let

ψ(x) = ϕ(x)−ϕ(2x).

We will often consider various projections in Fourier space. Given a rectan-
gle R=R(c, �x, �y), centered at c= (cx, cy) and with sides parallel to the axis
of length 2�x and 2�y , we define

ϕR(x, y) = ϕ
(
�−1
x (x− cx)

)
ϕ
(
�−1
y (y− cy)

)
.(2.11)

We define the operators

Q̂M,Nf(ξ, η) = ψ
(
M−1ξ

)
ψ
(
N−1η

)
f̂(ξ, η),

P̂Rf(ξ, η) = ϕR(ξ, η)f̂(ξ, η).

The first operator is only sensitive to the scales involved, while the second
also accounts for the location in Fourier space. We also let |R|= 4�x�y denote
its area.
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2.2. Some preliminary estimates. We start with a nonisotropic version
of the Sobolev embedding.

Lemma 1. There holds that

‖f‖Lq
x,y

�
∥∥|∂x| s2 |∂y| s2 f∥∥Lp

x,y

whenever 1< p≤ q <∞, 0≤ s < 1 and

1

q
=

1

p
− s

2

Proof of Lemma 1. The proof, although easy, highlights the need to treat
each direction independently. Using Sobolev embedding in 1d, Minkowski in-
equality and Sobolev again, we obtain that

‖f‖Lq
x(R,L

q
y(R)) �

∥∥|∂x| s2 f∥∥Lq
y(R,L

p
x(R))

�
∥∥|∂x| s2 f∥∥Lp

x(R,L
q
y(R))

�
∥∥|∂y| s2 |∂x| s2 f∥∥Lp

x,y

which is what we wanted. �
We have two basic refinements of (1.3). Note the difference in orthogonality

requirements between Lemma 2 and Lemma 3.

Lemma 2. Assume that f = PR1f and g = PR2g where Ri = R(ci, �x, �y)
and |c1x − c2x|=N ≥ 4�x, and let u (resp. v) be a solution of (1.2) with initial
data f (resp. g). Then

(2.12) ‖uv‖L2
x,y,t

�
(
�x
N

) 1
2

‖f‖L2
x,y

‖g‖L2
x,y

.

Lemma 3. Assume that f = PR1f and g = PR2g where Ri = R(ci, �x, �y),
|c1x − c2x| ≥ 4�x and |c1y − c2y| ≥ 4�y , and let u (resp. v) be a solution of (1.2)
with initial data f (resp. g). Then

‖uv‖Lq
x,y,t

� (�x�y)
1− 2

q ‖f‖L2
x,y

‖g‖L2
x,y

whenever q > 5/3.

Lemma 3 is the main refined bilinear estimate and appears essentially in
[33] when dealing with cubes. The result as stated here follows by scaling
rectangles to cubes.

Proof of Lemma 2. We simply write that

û2(ξ, η, t) = I(ξ, η, t),

I(ξ, η, t) =

∫∫
R

e−itωϕR1(ξ1, η1)ϕR2(ξ − ξ1, η− η1)

× f̂(ξ1, η1)ĝ(ξ − ξ1, η− η1)dξ1 dη1,

ω = ξ1η1 + (ξ − ξ1)(η− η1)
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we may now change variable in the integral

(ξ1, η1) �→ (ξ1, ω), J :=
∂(ξ1, ω)

∂(ξ1, η1)
=

(
1 0

2η1 − η 2ξ1 − ξ

)
(2.13)

and in particular, we remark that

(2.14) |J |=
∣∣(ξ − ξ1)− ξ1

∣∣	N,

so that

I(ξ, η, t) =

∫∫
R

e−itωϕR1(ξ1, η1)ϕR2(ξ − ξ1, η− η1)

× f̂(ξ1, η1)ĝ(ξ − ξ1, η− η1) · J−1 dξ1 dω,

η1 = η1(ξ1, ω; ξ, η).

Taking into consideration the Fourier transform in time and using Plancherel,
followed by Cauchy–Schwarz, we find that∥∥I(ξ, η, ·)∥∥2

L2
t

=

∫
R

∣∣∣∣∫
R

ϕR1(ξ1, η1)ϕR2(ξ − ξ1, η− η1)f̂(ξ1, η1)ĝ(ξ − ξ1, η− η1)

· J−1 dξ1

∣∣∣∣2 dω
≤ sup

ξ,η,η1

∫
R

ϕR1(ξ1, η1)ϕR2(ξ − ξ1, η− η1)dξ1

×
∫
R

∫
R

ϕR1(ξ1, η1)ϕR2(ξ − ξ1, η− η1)
∣∣f̂(ξ1, η1)ĝ(ξ − ξ1, η− η1)

∣∣2
· J−2 dξ1 dω.

Now, we use the fact that R1 has width �x, together with (2.14) to obtain,
after undoing the change of variables, that∥∥I(ξ, η, ·)∥∥2

L2
t
� �x

N

∫
R

∫
R

ϕR1(ξ1, η1)ϕR2(ξ − ξ1, η− η1)

×
∣∣f̂(ξ1, η1)ĝ(ξ − ξ1, η− η1)

∣∣2 · J−1 dξ1 dω

� �x
N

∫
R

∫
R

∣∣f̂(ξ1, η1)ĝ(ξ − ξ1, η− η1)
∣∣2 dξ1 dη1.

Integrating with respect to (ξ, η), we then obtain (2.12). �

We will in fact use the following consequence of Lemma 3.

Lemma 4. Under the assumptions of Lemma 3, it holds that

(2.15) ‖uv‖
L

40
21
x,y,t

� (�x�y)
− 3

20 ‖f̂‖
L

20
11
x,y

‖ĝ‖
L

20
11
x,y

.
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Proof. Indeed, using Lemma 3, we find that∥∥eit∂x∂yf · eit∂x∂yg
∥∥
L

12
7

x,y,t

� (�x�y)
− 1

6 ‖f̂‖L2
x,y

‖ĝ‖L2
x,y

,

while a crude estimate gives that∥∥eit∂x∂yf · eit∂x∂yg
∥∥
L∞

x,y,t
� ‖f̂‖L1

x,y
‖ĝ‖L1

x,y
.

Interpolation gives (2.15). �

Another tool we will need in the profile decomposition is the following local
smoothing result which is essentially equivalent to Lemma 2.

Lemma 5. Let φ ∈ L2
x,y . There holds that

sup
x

∥∥QM,Neit∂x∂yφ(x, ·)
∥∥
L2

y,t
�N− 1

2 ‖φ‖L2
x,y

,

sup
y

∥∥QM,Neit∂x∂yφ(·, y)
∥∥
L2

x,t
�M− 1

2 ‖φ‖L2
x,y

.

Proof. The proof is similar to the one in the elliptic case and follows from
Plancherel after using a change of variable similar to (2.13). An equivalent
statement with proof occurs in [18, Theorem 2.1]. See also [4] for a general
statement of Local Smoothing Estimates for Dispersive Equations. �

3. Mass-supercritical HNLS

In this section, we observe that Ḣs
h has similar improved Sobolev inequal-

ities as the Ḣ1/2 Sobolev norm. A typical example is the following lemma.

Lemma 6. Let f ∈C∞
c (R2). There holds that

‖f‖L6
x,y

�
(
sup
M,N

(MN)−
1
6 ‖QM,Nf‖L∞

) 1
3 ‖f‖

2
3

Ḣ
2
3
h

� ‖f‖
Ḣ

2
3
h

,(3.1)

and consequently,

(3.2) ‖f‖L4
x,y

�
(
sup
M,N

(MN)−
1
4 ‖QM,Nf‖L∞

) 1
6 ‖f‖

5
6

Ḣ
1
2
h

� ‖f‖
Ḣ

1
2
h

.

This is essentially a consequence of the following simple inequalities

‖QM,Nf‖L∞
x,y

�N
1
2 ‖QM,Nf‖L∞

x L2
y
�N

1
2 ‖QM,Nf‖L2

yL
∞
x

� (MN)
1
2 ‖QM,Nf‖L2

x,y
,

(3.3)

and similarly after exchanging the role of x and y.

Proof of Lemma 6. Indeed, we may simply develop

‖f‖6L6
x,y

�
∑

M1,...,M6,
N1,...,N6

∫∫
R×R

QM1,N1f ·QM2,N2f . . .QM6,N6f dxdy
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without loss of generality, we may assume that

M5,M6 � μ2 =max
2

{M1,M2,M3,M4},

N5,N6 � ν2 =max
2

{N1,N2,N3,N4},

where max2(S) denotes the second largest element of the set S, and then
using Hölder’s inequality and summing over M5, M6 and N5, N6, we obtain

‖f‖6L6
x,y

�
(
sup
M,N

(MN)−
1
6 ‖QM,Nf‖L∞

)2

×
∑

M1,...,M4,M5,M6≤μ2
N1,...,N4,N5,N6≤ν2

(M5M6N5N6)
1
6

∫∫
R×R

|QM1,N1f | . . . |QM4,N4f |dxdy

�
(
sup
M,N

(MN)−
1
6 ‖QM,Nf‖L∞

)2

×
∑

M1,...,M4
N1,...,N4

(μ2ν2)
1
3

∫∫
R×R

|QM1,N1f | . . . |QM4,N4f |dxdy.

Now, using (3.3) and estimating the norms corresponding to the two lower
frequencies in each direction in L∞, and the two highest ones in L2, one
quickly finds that∑

M1,...,M4
N1,...,N4

(μ2ν2)
1
3

∫∫
R×R

|QM1,N1f | . . . |QM4,N4f |dxdy � ‖f‖4
Ḣ

2
3
h

,

which finishes the proof. Inequality (3.2) then follows by interpolation. �

At this point, the usual profile decomposition follows easily from the fol-
lowing simple Lemma 7 below.

Lemma 7. There exists δ > 0 such that∥∥eit∂x∂yf
∥∥
L8

x,y,t
�
(

sup
M,N,t,x,y

(MN)−
1
4

∣∣(eit∂x∂yQM,Nf
)
(x, y)

∣∣)δ

‖f‖1−δ

Ḣ
1
2
h

.

Proof of Lemma 7. We use Hölder’s inequality, Sobolev embedding
Lemma 1, Strichartz estimates and (3.2) to get for u= eit∂x∂yf

‖u‖L8
x,y,t

� ‖u‖
3
4

L6
tL

12
x,y

‖u‖
1
4

L∞
t L4

x,y

�
∥∥|∂x| 14 |∂y| 14u∥∥ 3

4

L6
tL

3
x,y

·
(
sup

M,N,t
(MN)−

1
4

∥∥QM,Nu(t)
∥∥
L∞

x,y

) 1
24 ‖f‖

5
24

Ḣ
1
2
h

� ‖f‖
23
24

Ḣ
1
2
h

·
(
sup

M,N,t
(MN)−

1
4

∥∥QM,Nu(t)
∥∥
L∞

x,y

) 1
24

. �
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3.1. The mass-supercritical profile decomposition. Let us take the
group action on functions given by gjn = g(xj

n, y
j
n, λ

j
1,n, λ

j
2,n) such that(

gjn
)−1

f =
(
λj
n,1λ

j
n,2

) 1
4 [f ]

(
λj
n,1x+ xj

n, λ
j
n,2y+ yjn

)
.

We can now state the Ḣ
1
2

h -profile decomposition for (2.7).

Proposition 8. Let ‖un‖
Ḣ

1
2
h

≤A be a sequence that is bounded Ḣ
1
2

h . Then

possibly after passing to a subsequence, for any 1≤ j <∞ there exist φj ∈ Ḣ
1
2

h ,

(tjn, x
j
n, y

j
n) ∈R3, λj

n,1, λ
j
n,2 ∈ (0,∞) such that for any J ,

un =

J∑
j=1

gjne
itjn∂x∂yφj +wJ

n ,(3.4)

lim
J→∞

limsup
n→∞

∥∥eit∂x∂ywJ
n

∥∥
L8

x,y,t
= 0,(3.5)

such that for any 1≤ j ≤ J ,

(3.6) e−itjn∂x∂y
(
gjn

)−1
wJ

n ⇀ 0,

weakly in Ḣ
1
2

h ,

(3.7) lim
n→∞

(
‖un‖2

Ḣ
1
2
h

−
J∑

j=1

∥∥φj
∥∥2
Ḣ

1
2
h

−
∥∥wJ

n

∥∥2
Ḣ

1
2
h

)
= 0,

and for any j 
= k,

limsup
n→∞

[∣∣∣∣ln(λj
n,1

λk
n,1

)∣∣∣∣+ ∣∣∣∣ln(λj
n,2

λk
n,2

)∣∣∣∣+ |xj
n − xk

n|
(λj

n,1λ
k
n,1)

1/2
+

|yjn − ykn|
(λj

n,2λ
k
n,2)

1/2

+
|tjn(λj

n,1λ
j
n,2)− tkn(λ

k
n,1λ

k
n,2)|

(λj
n,1λ

j
n,2λ

k
n,1λ

k
n,2)

1/2

]
=∞.

The proof of Proposition 8 of this follows by simple adaptation of the
techniques in [16, Section 4.4], as originally introduced in [15]. We note that
a similar statement also appears in works of Fanelli-Visciglia [7].

4. Profile decomposition for the mass-critical HLS

In this section, we focus on the mass-critical case. This case is more delicate
for two reasons. First we need to account for the Galilean invariance symmetry
in (2.5) and second, we cannot use a simple Sobolev estimate as in (3.2) to fix
the frequency scales. We follow closely the work in [16, Section 4] with a small
variant in the use of modulation orthogonality and an additional argument
for interactions of rectangles with skewed aspect ratios.
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4.1. A precised Strichartz inequality. The main result in this section is
the following proposition from which it is not hard to obtain a good profile
decomposition. We need to introduce the norm

(4.1) ‖φ‖Xp :=

(∑
R∈R

|R|− p
20 ‖φ1R‖p

L
20
11

) 1
p

where R stands for the collection of all dyadic rectangles. That is, rectangles
with both sides parallel to an axis, of possibly different dyadic size, whose
center is a multiple of the same dyadic numbers, given by the form

R := {Rk,n,p,m : k,n,m,p ∈ Z},
Rk,n,p,m :=

{
(x, y) : n− 1≤ 2−kx≤ n+ 1, m− 1≤ 2−py ≤m+ 1

}
.

(4.2)

Note in particular that these spaces are nested: Xp ⊂Xq whenever p≤ q. The

motivation for the space L
20
11 in (4.1) can be motivated by the Xq

p Strichartz
estimate in Theorem 4.23 from [16].

Proposition 9. Let φ ∈C∞
c (R2), then, there holds that for all p > 2,

(4.3) ‖φ‖Xp �p ‖φ‖L2

and in addition, there exists p > 2 such that

(4.4)
∥∥eit∂x∂yφ

∥∥4
L4

x,y,t
�
(
sup
R

|R|− 1
2 sup
x,y,t

∣∣eit∂x∂y (PRφ)(x, y)
∣∣) 4

21 ‖φ̂‖
80
21

Xp
.

We refer to [25] for a different proof of a slightly stronger estimate. Let us
first recall the Whitney decomposition.

Lemma 10 (Whitney decomposition). There exists a tiling of the plane
minus the diagonal

R2 \D = �I × J, D =
{
(x,x), x ∈R

}
,

made of dyadic intervals such that |I|= |J | and
6|I| ≤ dist(I × J,D)≤ 24|I|.

We will consider two independent Whitney decompositions of R×R:

1{R2×R2\D}(ξ1, η1, ξ2, η2) :=
∑

I1∼I2,J1∼J2

1I1(ξ1)1J1(η1)1I2(ξ2)1J2(η2),(4.5)

where Ii and Jj are dyadic intervals of R and ∼ is an equivalence relation
such that, for each fixed I , there are only finitely many J ’s such that I ∼ J ,
uniformly in I (i.e., equivalence classes have bounded cardinality) and if I ∼ J ,
then |I|= |J | and dist(I, J)	 |I|. We also extend the equivalence relation to
rectangles in the following fashion:

I × J ∼ I ′ × J ′ if and only if I ∼ I ′ and J ∼ J ′.
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We would like to follow the argument in [16] for the profile decomposition
for the elliptic nonlinear Schrödinger equation. However, it is at this point
where we reach the main technical obstruction to doing this. Recall that to
estimate the L2

x,y,t norm of [eitΔf ]2, it was possible to utilize Plancherel’s

theorem, reducing the L2
x,y,t norm to an l2 sum over pairs of Whitney squares.

This was because Plancherel’s theorem in frequency turned the sum over
all pairs of equal area squares to an l2 sum over squares centered at different
points in frequency space, and then Plancherel’s theorem in time separated
out pairs of squares with different area. Because there is only one square with
a given area and center in space, this is enough. However, there are infinitely
many rectangles with the same area and the same center. Thus, to reduce the
L2
x,y,t norm of [eit∂x∂yf ]2 to a l2 sum over pairs of rectangles, that is rectangles

whose sides obey the equivalence relation in both x and y, it is necessary to
deal with the off—diagonal terms, that is terms of the form

(4.6)
∥∥[eit∂x∂yPR1f

][
eit∂x∂yPR2f

][
eit∂x∂yPR′

1
f
][
eit∂x∂yPR′

2
f
]∥∥

L1
x,y,t

,

where R1 ∼R2 and R′
1 ∼R′

2 are Whitney pairs of rectangles which have the
same area, but very different dimensions in x and y. In this case, Lemma 2
gives a clue with regard to how to proceed, since it leads to the generalized
result that

(4.7)
∥∥[eit∂x∂yPR1f

][
eit∂x∂yPR′

1
f
]∥∥

L2
x,y,t


‖PR1f‖L2
x,y

‖PR′
1
f‖L2

x,y
.

Thus, it may be possible to sum the off diagonal terms. We will not use Lemma
2 specifically, but we will use the idea that rectangles of the same area but
very different dimensions have very weak bilinear interactions.

Before we turn to the details, we first present the main orthogonality prop-
erties we will use. For simplicity of notation, given a dyadic rectangle R, let

φ̂R(x, y) := φ̂(x, y)1R(x, y) and uR(x, y, t) :=
(
eit∂x∂yφR

)
(x, y)

and set u = eit∂x∂yφ. Also we will consider rectangles R1 = I1 × J1, R2 =
I2 × J2, R

′
1 = I ′1 × J ′

1, R
′
2 = I ′2 × J ′

2.
Proceeding with the above philosophy in mind, using (4.5), we have that

‖u‖4L4
x,y,t

=
∥∥u2

∥∥2
L2

x,y,t
=

∥∥∥∥ ∑
R1∼R2

uR1 · uR2

∥∥∥∥2
L2

x,y,t

=

∥∥∥∥∑
Ω

∑
R1∼R2,

|R1|=|R2|=Ω

uR1 · uR2

∥∥∥∥2
L2

x,y,t

=

∥∥∥∥∑
Ω

IΩ

∥∥∥∥2
L2

x,y,t

.

Using the polarization identity for a quadratic form,

Q(x1, y1) +Q(x2, y2) =
1

2

[
Q(x1 + x2, y1 + y2) +Q(x1 − x2, y1 − y2)

]
,
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we compute that

ei
t
2 ξη ÎΩ(ξ, η, t)

=
∑

R1∼R2,
|R1|=|R2|=Ω

∫
R4

1R1(ξ1, η1)1R2(ξ2, η2)e
−i t

2 (ξ1−ξ2)(η1−η2)

× f̂(ξ1, η1)f̂(ξ2, η2)δ(ξ − ξ1 − ξ2)δ(η− η1 − η2)dξ1 dξ2 dη1 dη2.

Now we observe that since

|I1|= |I2| 	 dist(I1, I2), |J1|= |J2| 	 dist(J1, J2),

it holds that, on the support of integration,∣∣(ξ1 − ξ2)(η1 − η2)
∣∣	 |I1| · |J1| 	Ω.

Therefore, we have the following orthogonality in time∥∥∥∥∑
Ω

ÎΩ(ξ, η, ·)
∥∥∥∥2
L2

t

=

∥∥∥∥ei t
2 ξη

∑
Ω

ÎΩ(ξ, η, ·)
∥∥∥∥2
L2

t

�
∑
Ω

∥∥ÎΩ(ξ, η, ·)∥∥2L2
t
.

To continue, we need to control IΩ uniformly in Ω. We write that

IΩ =

∥∥∥∥ ∑
R1∼R2,

|R1|=|R2|=Ω

uR1 · uR2

∥∥∥∥2
L2

x,y,t

=
∑

R1∼R2, R
′
1∼R′

2,
|R1|=|R2|=|R′

1|=|R′
2|=Ω

∫
R

3
x,y,t

uR1 · uR2 · uR′
1
· uR′

2
dxdy dt

=
∑

R1∼R2, R
′
1∼R′

2

|R1|=|R2|=|R′
1|=|R′

2|=Ω

IR1∼R2,R′
1∼R′

2
.

To any rectangle R= I × J , we associate its center c= (cx, cy) and its scales
�x(R) = |I| and �y(R) = |J |=Ω/|I|. For 2 rectangles R and R′ of equal area,
we define their relative discrepancy by

δ
(
R,R′)=min

{
�x(R)/�x

(
R′), �y(R)/�y

(
R′)}.

We want to decompose IΩ according to the discrepancy of R1 = I1 × J1 and
R′

1 = I ′1×J ′
1. Using scaling relation (2.9), we may assume that Ω = 1, �x(R1) =

�x(R2) = 1 and that �x(R
′
1)≤ �y(R

′
1), so that R′

1 is a δ× δ−1 rectangle, where
δ = δ(R1,R

′
1).

We first notice that, if IR1∼R2,R′
1∼R′

2

= 0, we must have that∣∣cx(R1)− cx

(
R′

1

)∣∣ � �x(R1) + �x
(
R′

1

)
,∣∣cy(R1)− cy

(
R′

1

)∣∣ � �y(R1) + �y
(
R′

1

)
.

(4.8)
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and therefore, for any fixed R1 and δ � 1, there can be only a bounded number
of choices for R′

1, so that

I1 �
∑

R1∼R2,
|R1|=|R2|=1

‖uR1uR2‖2L2
x,y,t

.

At this stage, we are in a similar position as in the elliptic case and we may
follow the proof in [16, Section 4.4]. From now on, we will focus on the case
δ
 1.

In the case δ
 1, we may in fact strengthen (4.8). Indeed for IR1∼R2,R′
1∼R′

2

to be different from 0, we must have that∣∣cx(R1)− cx
(
R′

1

)∣∣ 	 �x(R1) + �x
(
R′

1

)
,∣∣cy(R1)− cy

(
R′

1

)∣∣ 	 �y(R1) + �y
(
R′

1

)
.

(4.9)

This follows from the fact that (say)

cx(R1) + cx(R2)− cx
(
R′

1

)
− cx

(
R′

2

)
= 2

[
cx(R1)− cx

(
R′

1

)]
−
[
cx(R1)− cx(R2)

]
+
[
cx
(
R′

1

)
− cx

(
R′

2

)]
,

and the last bracket is bounded by 24δ, while the second to last is bounded
below by 6; however, for IR1∼R2,R′

1∼R′
2
to be nonzero, there must exists

(ξ1, ξ2, ξ
′
1, ξ

′
2) ∈R1 ×R2 ×R′

1 ×R′
2 such that

ξ1 + ξ2 − ξ′1 − ξ′2 = 0 and∣∣(ξ1 + ξ2 − ξ′1 − ξ′2
)
−
(
cx(R1) + cx(R2)− cx

(
R′

1

)
− cx

(
R′

2

))∣∣≤ 2 + 2δ.

We will keep note of this by writing R1 	 R′
1 (or sometimes c(R1) 	 c(R′

1))
whenever (4.9) holds for rectangles of equal area.

Recall that R′
1 is a δ× δ−1 rectangle; we can decompose all rectangles into

δ× 1 rectangles. We may then partition

R1 =
δ−1⋃
a=1

I1,a × J1 =
δ−1⋃
a=1

R1,a, R2 =
δ−1⋃
ã=1

I2,ã × J2 =
δ−1⋃
ã=1

R2,ã,

R′
1 =

δ−1⋃
b=1

I ′1 × J ′
1,b =

δ−1⋃
b=1

R′
1,b, R′

2 =

δ−1⋃
b̃=1

I ′2 × J ′
2,b̃

=

δ−1⋃
b̃=1

R′
2,b̃

(4.10)

and by orthogonality, we see that

IR1∼R2,R′
1∼R′

2
=

∑
a∼ã, b∼b̃

IR1,a∼R2,ã,R
′
1,b∼R′

2,b̃

where

a∼ ã if and only if
∣∣cx(R1,a) + cx(R2,ã)− cx

(
R′

1

)
− cx

(
R′

2

)∣∣� δ
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and comparably in y for b∼ b̃. Thus, for fixed R1, R2, R
′
1 R′

2, this gives two
equivalence relations with O(δ−1) equivalence classes of (uniformly) bounded
cardinality.

And proceeding as in (4.9), we can easily see that∣∣cx(R1,a)− cx
(
R′

1,b

)∣∣� 1,
∣∣cy(R1,a)− cy

(
R′

1,b

)∣∣� δ−1,∣∣cx(R2,ã)− cx
(
R′

2,b̃

)∣∣� 1,
∣∣cy(R′

1,ã

)
− cy

(
R′

2,b̃

)∣∣� δ−1.
(4.11)

At this point, we have extracted all the orthogonality we need and we are
ready to proceed with the proof of Proposition 9.

4.2. Proof of (4.4). Using rescaling, we may assume that

(4.12) 1 = sup
R

|R|− 1
2

∥∥eit∂x∂yφR

∥∥
L∞

x,y,t
.

From the considerations above, we obtain the expression∥∥eit∂x∂yφ
∥∥4
L4

x,y,t
�
∑
Ω

∑
R1∼R2,R

′
1∼R′

2,
|R1|=|R2|=|R′

1|=|R′
2|=Ω

IR1∼R2,R′
1∼R′

2
,

(4.13)

where the rectangles satisfy the condition (4.9). In addition, for fixed rectan-
gles R1 ∼R2, R

′
1 ∼R′

2 of equal area Ω, let δ = δ(R1,R
′
1). As explained above,

for fixed δ = δ0 =O(1), we are in a position similar to the elliptic case and we
may follow [16] to get∑

Ω

∑
R1∼R2,R

′
1∼R′

2,
|R1|=|R2|=|R′

1|=|R′
2|=Ω,

δ(R1,R
′
1)=δ0

|IR1∼R2,R′
1∼R′

2
|

�
∑
Ω

∑
R1∼R2,

|R1|=|R2|=Ω

‖uR1uR2‖2L2
x,y,t

�
(
sup
R

|R|− 1
2 ‖uR‖L∞

x,y,t

) 4
21

∑
R1∼R2

|R1|
2
21 ‖uR1uR2‖

40
21

L
40
21
x,y,t

�
∑

R1∼R2

{
|R1|−

1
20 ‖φ̂R1‖

L
20
11
x,y

· |R2|−
1
20 ‖φ̂R2‖

L
20
21
x,y,t

} 40
21 ,

where we have used Cauchy–Schwarz in the first inequality, Hölder’s inequality
in the second and (4.12) together with Lemma 4 in the last inequality. This
gives a bounded contribution as in (4.4) for any p≤ 80/21.

We need to adjust the above scheme when δ
 1. In the following, we let

T�1 :=
∑
δ�1

∑
Ω

∑
R1∼R2,R

′
1∼R′

2,
|R1|=|R2|=|R′

1|=|R′
2|=Ω,

δ(R1,R
′
1)=δ

|IR1∼R2,R′
1∼R′

2
|
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and to conclude the proof of (4.4), we need to prove that, for some p > 2,

(4.14) T�1 � ‖φ‖
80
21

Xp
.

We can now use the finer decomposition (4.10) to write

IR1∼R2,R′
1∼R′

2
=

∑
a∼ã, b∼b̃

IR1,a∼R2,ã,R
′
1,b∼R′

2,b̃

where the new rectangles satisfy (4.11). Using Cauchy–Schwarz, then Hölder’s
inequality with (4.12), we have that

|IR1,a∼R2,ã,R
′
1,b∼R′

2,b̃
|� ‖uR1,a · uR′

1,b
‖L2

x,y,t
· ‖uR2,ã

· uR′
2,b̃
‖L2

x,y,t

� (δΩ)
2
21 ‖uR1,a · uR′

1,b
‖

20
21

L
40
21
x,y,t

· ‖uR2,ã
· uR′

2,b̃
‖

20
21

L
40
21
x,y,t

.

Now, using Lemma 4 with (4.11), we obtain that

|IR1,a∼R2,ã,R
′
1,b∼R′

2,b̃
|

� (δΩ)
2
21 ·

(
δ−1Ω

)− 6
21 ‖φ̂R1,a‖

20
21

L
20
11
x,y

‖φ̂R2,ã
‖

20
21

L
20
11
x,y

‖φ̂R′
1,b
‖

20
21

L
20
11
x,y

‖φ̂R′
2,b̃
‖

20
21

L
20
11
x,y

.

Since 20/11< 40/21 and since for fixed a, there are only a bounded number
ã such that a∼ ã, we can sum over a to get∑

a∼ã

‖φ̂R1,a‖
20
21

L
20
11
x,y

‖φ̂R2,ã
‖

20
21

L
20
11
x,y

� ‖φ̂R1‖
20
21

L
20
11
x,y

‖φ̂R2‖
20
21

L
20
11
x,y

and similarly for b, so that

|IR1∼R2,R′
1∼R′

2
|� δ

8
21Ω− 4

21 ‖φ̂R1‖
20
21

L
20
11
x,y

‖φ̂R2‖
20
21

L
20
11
x,y

‖φ̂R′
1
‖

20
21

L
20
11
x,y

‖φ̂R′
2
‖

20
21

L
20
11
x,y

.(4.15)

In addition, for rectangles of fixed areas and sizes |R1| = |R2| = |R′
1| = |R′

2|,
�x(R1) = �x(R2), �x(R

′
1) = �x(R

′
2) also satisfying (4.9), we may use Cauchy

Schwarz in the summation over the centers to get∑
R1∼R2,
R′

1∼R′
2

‖φ̂R1‖
20
21

L
20
11
x,y

‖φ̂R2‖
20
21

L
20
11
x,y

‖φ̂R′
1
‖

20
21

L
20
11
x,y

‖φ̂R′
2
‖

20
21

L
20
11
x,y

�
∑

R1	R′
1

‖φ̂R1‖
40
21

L
20
11
x,y

‖φ̂R′
1
‖

40
21

L
20
11
x,y

where the sum is taken over all rectangles R1 	R′
1 of the given sizes satisfying

(4.9).

We can now get back to (4.14) and use (4.15) and the inequality above to
get

T�1 �
∑
Ω

∑
A

∑
δ≤1

δ
8
21Ω− 4

21 ·
∑
c1	c′1

‖φ̂R1‖
40
21

L
20
11
x,y

‖φ̂R′
1
‖

40
21

L
20
11
x,y

,

where we have parameterized the lengths of the rectangles by Ω= |R1|= |R′
1|,

A= �x(R1) and δ = �x(R
′
1)/�x(R1), and their centers by c1, c

′
1.
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Now for any p > 2 choose 0< θ(p)< 1 such that

(4.16)
2θ

p
+

1− θ

p
=

21

40

and observe that θ(p)↘ 1
20 as p↘ 2. Then by interpolation,∑

Ω,A,
c1	c′1

Ω− 4
21 ‖φ̂R1‖

40
21

L
20
11
x,y

‖φ̂R′
1
‖

40
21

L
20
11
x,y

�
( ∑

Ω,A,
c1	c′1

Ω− p
10 ‖φ̂R1‖

p

L
20
11
x,y

‖φ̂R′
1
‖p
L

20
11
x,y

) 40
21

1−θ
p

×
( ∑

Ω,A,
c1	c′1

Ω− p
20 ‖φ̂R1‖

p
2

L
20
11
x,y

‖φ̂R′
1
‖

p
2

L
20
11
x,y

) 40
21

2θ
p

.

Now, on the one hand, we observe that for a fixed choice of scales (Ω, A and
δ) and for each fixed c1, there are at most O(δ−1) choices of c′1 satisfying (4.9)
so we obtain that∑

Ω,A,
c1	c′1

Ω− p
20 ‖φ̂R1‖

p
2

L
20
11
x,y

‖φ̂R′
1
‖

p
2

L
20
11
x,y

� δ−1
∑

Ω,A,c1

Ω− p
20 ‖φ̂R1‖

p

L
20
11
x,y(4.17)

and the other sum can be handled in an easier way: using Hölder’s inequality
and forgetting about the relationship c1 	 c′1, we obtain that

(4.18)
∑
Ω

∑
A

∑
c1	c′1

Ω− p
10 ‖φ̂R1‖

p

L
20
11
x,y

‖φ̂R′
1
‖p
L

20
11
x,y

�
∑
Ω

∑
A

(∑
c1

{
Ω− 1

20 ‖φ̂R1‖
L

20
11
x,y

}p
)
·
(∑

c′1

{
Ω− 1

20 ‖φ̂R′
1
‖
L

20
11
x,y

}p
)

�
(∑

R

|R|− p
20 ‖φ̂R‖p

L
20
11
x,y

)2

.

Recall the definition (4.1). Combining (4.17) and (4.18), we obtain

T�1 �
∑
δ≤1

δ
8
21 ·

(
δ−1‖φ̂‖pXp

) 80
21

θ
p
(
‖φ̂‖2pXp

) 40
21

1−θ
p �

∑
δ≤1

δ
8
21 (1− 10θ

p )‖φ̂‖
80
21

Xp

and this is summable in δ for 2< p< 40/17 small enough. The proof of (4.4)
is thus complete and it remains to prove (4.3) which we now turn to.
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4.3. Proof of (4.3). We first state and prove the following simple result we
will need in the proof.

Lemma 11. Let D denote the set of dyadic intervals (on R) and let p > 2.
For any g ∈C∞

c (R), there holds that

(4.19)
∑
I∈D

|I|− p
20 ‖g1I‖p

L
20
11
x

� ‖g‖pL2
x
.

Proof of Lemma 11. We may assume that ‖g‖L2
x
= 1. For fixed A, we let

DA denote the set of dyadic intervals of length A and we decompose

g = g+ + g−, g+(x) = g(x)1
{|g(x)|>A− 1

2 }
, g−(x) = g(x)1

{|g(x)|≤A− 1
2 }
.

On the one hand, using that �
20
11 ⊂ �p,∑

A

∑
I∈DA

|I|− p
20

∥∥g+1I∥∥p
L

20
11
x

�
(∑

A

A− 1
11

∑
I∈DA

∥∥g+1I∥∥ 20
11

L
20
11
x

) 11
20p

�
(∑

A

A− 1
11

∫
R

|g| 2011 1
{|g(x)|>A− 1

2 }
dx

) 11
20p

�
(∫

R

|g| 2011 ·
( ∑

A>|g(x)|−2

A− 1
11

)
dx

) 11
20p

� 1,

while, for the other sum, we use Hölder’s inequality to get∑
A

∑
I∈DA

A− p
20

∥∥g−1I∥∥p
L

20
11
x

�
∑
A

∑
I∈DA

A− p
20

∥∥g−1I∥∥pLp · |I|(
11
20− 1

p )p

�
∫
R

∣∣g(x)∣∣p · ∑
{A<|g(x)|−2}

A
p−2
2 dx

�
∫
R

∣∣g(x)∣∣2 dx� 1

and the proof is complete. �

Now, we proceed to prove (4.3).

Proof of (4.3). Recall D stand for the set of dyadic intervals and DA for
the set of dyadic intervals of length A. We want to prove that∑

I∈D
|I|− p

20

∑
J∈D

|J |− p
20 ‖f1I×J‖p

L
20
11
x,y

� ‖f‖pL2
x,y

.

We claim that, for any fixed interval I ,

(4.20)
∑
J∈D

|J |− p
20 ‖f1I×J‖p

L
20
11
x,y

� ‖f1I×R‖p
L

20
11
x L2

y

.
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Once this is proved, we may simply apply Lemma 11 to the function

g(x) :=
∥∥f(x, ·)∥∥

L2
y

to finish the proof.

From now on I denotes a fixed interval and f is a function supported on
{x ∈ I}, i.e. f = f1I×R. The proof of (4.20) is a small variation on the proof
of Lemma 11. Fix a dyadic number B and let

cB = cB(x) =B− 1
2

∥∥f(x, ·)∥∥
L2

y

and decompose accordingly2

f = f+ + f−, f+ = f1{|f(x,y)|>cB(x)}, f− = f1{|f(x,y)|≤cB(x)}.

We then compute that∑
B

∑
J∈DB

B− p
20

∥∥f+1I×J

∥∥p
L

20
11
x,y

�
(∑

B

∑
J∈DB

B− 1
11

∥∥f+1I×J

∥∥ 20
11

L
20
11
x,y

) 11
20p

�
(∑

B

B− 1
11

∫
Ix

∫
Ry

∣∣f+
∣∣ 20
11 dy dx

) 11
20p

�
(∫

Ix

∫
Ry

∣∣f+
∣∣ 20
11 ·

∑
{B:|f(x,y)|≥cB(x)}

B− 1
11 dy dx

) 11
20p

�
(∫

Ix

∫
Ry

∣∣f(x, y)∣∣ 20
11 ·

(
|f(x, y)|

‖f(x, ·)‖L2
y

) 2
11

dy dx

) 11
20p

�
(∫

Ix

∥∥f(x, ·)∥∥− 2
11

L2
y

∫
Ry

∣∣f(x, y)∣∣2 dy dx) 11
20p

� ‖f‖p
L

20
11
x L2

y

,

in the penultimate line, we note that though there is a negative power of the
L2
y norm, the product of the two quantities is well-defined, especially as we

can assume f ∈ C∞
c . Also, we have used the embedding �1 ⊂ �

11
20p in the first

inequality, the fact that dyadic intervals of a fixed length tile R in the second
inequality, and we have summed a geometric series in the fourth inequality.

2 Note that f(x, y) = 0 whenever ‖f(x, ·)‖L2
y
= 0, so that cB(x)> 0 on the support of f+.
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Now for the second part, we compute that∑
B

∑
J∈DB

B− p
20

∥∥f−1I×J

∥∥p
L

20
11
x,y

�
∑
B

∑
J∈DB

B− p
20Bp( 11

20− 1
p )
∥∥f−1I×J

∥∥p
Lp

y(J:L
20
11
x (I))

�
∑
B

B
p−2
2

∫
Ry

(∫
Ix

∣∣f−(x, y)
∣∣ 20
11 dx

) 11
20p

dy

�
∫
Ry

∑
B

(
B

p−2
2

20
11

1
p

∫
Ix

∣∣f−(x, y)
∣∣ 20
11 dx

) 11
20p

dy

�
∫
Ry

(∫
Ix

∑
B

B
p−2
p

10
11

∣∣f−(x, y)
∣∣ 20
11 dx

) 11
20p

dy,

where we have used Hölder’s inequality in the first line and the inclusion
�1 ⊂ �

11
20p in the fourth line. Now, since f− is supported where

B ≤
(‖f(x, ·)‖L2

y

|f(x, y)|

)2

,

summing in B gives∑
B

∑
J∈DB

B− p
20

∥∥f−1I×J

∥∥p
L

20
11
x,y

�
∫
Ry

(∫
Ix

∥∥f(x, ·)∥∥ 20
11

p−2
p

L2
y

∣∣f−(x, y)
∣∣ 20
11

2
p dx

) 11
20p

dy.

Using Minkowski inequality on the function

h(x, y) =
∥∥f(x, ·)∥∥ 20

11
p−2
p

L2
y

∣∣f−(x, y)
∣∣ 20
11

2
p ,

we obtain ∑
B

∑
J∈DB

B− p
20

∥∥f−1I×J

∥∥p
L

20
11
x,y

�
(∫

Ix

(∫
Ry

h
11
20p dy

) 20
11

1
p

dx

) 11
20p

�
(∫

Ix

(∫
Ry

∣∣f(x, y)∣∣2 dy) 20
11

1
p ∥∥f(x, ·)∥∥ 20

11
p−2
p

L2
y

dx

) 11
20p

�
(∫

Ix

∥∥f(x, ·)∥∥ 20
11

L2
y
dx

) 11
20p

,

which proves (4.20). Thus the proof is complete. �
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5. The profile decomposition and applications

The profile decomposition then follows from Proposition 9 in the usual way

following the techniques in the proof of Theorems 4.25 (the Inverse Strichartz

Inequality) and 4.26 (Mass Critical Profile Decomposition) from [16], for in-

stance. We note that it is the proof of the Inverse Strichartz Inequality that

requires the local smoothing estimates as in Lemma 5 to establish pointwise

a.e. convergence of profiles to an element of L2
x,y through compactness con-

siderations, otherwise the proof follows mutatis mutandis. Once the Inverse

Strichartz Inequality is established, the proof of the Profile Decomposition

follows verbatim.

Suppose gjn = g(xj
n, y

j
n, λ

j
1,n, λ

j
2,n, ξ

j
n) is the group whose action on functions

is given by

(
gjn

)−1
f =

(
λj
n,1λ

j
n,2

)1/2
e−iξjn,1(λ

j
n,1x+xj

n)e−iξjn,2(λ
j
n,2x+yj

n)

× [fn]
(
λj
n,1x+ xj

n, λ
j
n,2y+ yjn

)
.

The profile decomposition gives the following.

Theorem 12. Let ‖un‖L2
x,y(R

2) ≤ A be a sequence that is bounded

L2
x,y(R

2). Then possibly after passing to a subsequence, for any 1 ≤ j < ∞
there exist φj ∈ L2

x,y(R
2), (tjn, x

j
n, y

j
n) ∈R3, ξjn ∈R2, λj

n,1, λ
j
n,2 ∈ (0,∞) such

that for any J ,

un =

J∑
j=1

gjne
itjn∂x∂yφj +wJ

n ,(5.1)

lim
J→∞

limsup
n→∞

∥∥eit∂x∂ywJ
n

∥∥
L4

x,y,t
= 0,(5.2)

such that for any 1≤ j ≤ J ,

(5.3) e−itjn∂x∂y
(
gjn

)−1
wJ

n ⇀ 0,

weakly in L2
x,y(R

2),

(5.4) lim
n→∞

(
‖un‖2L2

x,y
−

J∑
j=1

∥∥φj
∥∥2
L2

x,y
−
∥∥wJ

n

∥∥2
L2

x,y

)
= 0,
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and for any j 
= k,

(5.5) lim
n→∞

[∣∣∣∣ln(λj
n,1

λk
n,1

)∣∣∣∣+ ∣∣∣∣ln(λj
n,2

λk
n,2

)∣∣∣∣+ |tjn(λj
n,1λ

j
n,2)− tkn(λ

k
n,1λ

k
n,2)|

(λj
n,1λ

j
n,2λ

k
n,1λ

k
n,2)

1/2

+
(
λj
n,1λ

k
n,1

)1/2∣∣ξjn,1 − ξkn,1
∣∣+ (

λj
n,2λ

k
n,2

)1/2∣∣ξjn,2 − ξkn,2
∣∣

+
|xj

n − xk
n − 2tjn(λ

j
n,1λ

j
n,2)(ξ

j
n,1 − ξkn,1)|

(λj
n,1λ

k
n,1)

1/2

+
|yjn − ykn − 2tjn(λ

j
n,1λ

j
n,2)(ξ

j
n,2 − ξkn,2)|

(λj
n,2λ

k
n,2)

1/2

]
=∞.

5.1. Minimal mass blow-up solutions. As an application of the profile
decomposition, we turn to a calculation that for instance originated in [15],
[23]. Namely we construct a minimal mass solution to (2.1) which is a solution
u of minimal mass such that there exists a time T ∗ such that∫ T∗

−T∗

∫
R2

x,y

|u|4 dxdy dt=+∞.

In other words, it is a solution of least mass for which the small data global
argument fails.

It turns out that if u is a minimal mass blowup solution to (2.1) then u lies
in a compact subset of L2

x,y(R
2) modulo the symmetry group g; more precisely,

following [16, Chapter 5, Theorem 5.2], we can establish the following theorem.

Theorem 13. Suppose u is a minimal mass blowup solution to (2.1) on a
maximal time interval I that blows up in both time directions. That is, I is
an open interval and for any t0 ∈ I ,

(5.6)

∫∫ sup(I)

t0

∣∣u(x, y, t)∣∣4 dxdy dt, ∫∫ t0

inf(I)

∣∣u(x, y, t)∣∣4 dxdy dt=∞.

Then there exist λ1, λ2 : I → (0,∞), ξ̃ : I →R2, x̃, ỹ : I →R, such that for any
η > 0 there exists C(η)<∞ such that

(5.7)

∫
|x−x̃(t)|> C(η)

λ1(t)

∣∣u(x, y, t)∣∣2 dxdy
+

∫
|y−ỹ(t)|> C(η)

λ2(t)

∣∣u(x, y, t)∣∣2 dxdy
+

∫
|ξ1−ξ̃1(t)|>C(η)λ1(t)

∣∣û(ξ, t)∣∣2 dξ
+

∫
|ξ2−ξ̃2(t)|>C(η)λ2(t)

∣∣û(ξ, t)∣∣2 dξ < η.
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Proof. Take a sequence tn ∈ I . Then conservation of mass implies that after
passing to a subsequence we may make a profile decomposition of u(tn) = un.
If there exists j such that, along a subsequence, tjn →±∞, say tjn →∞, then

(5.8) lim
n→∞

∥∥eit∂x∂y
(
gjne

itjn∂x∂yφj
)∥∥

L4
x,y,t([0,∞)×R2)

= 0,

so combining perturbative arguments, (5.4), and the fact that u is a blowup
solution with minimal mass then u scatters forward in time to a free solution.
Thus, we may assume that for each j, tjn converges to some tj ∈ R. Then

taking eit
j∂x∂yφj to be the new φj , we may assume that each tjn = 0.

Now suppose that

(5.9) sup
j

∥∥φj
∥∥
L2

x,y(R
2)
<
∥∥u(t)∥∥

L2
x,y(R

2)
.

Then if vj is the solution to (2.1) with initial data φj , since ‖u(t)‖L2 is the
minimal mass for blowup to occur, each vj scatters both forward and backward
in time, with

(5.10)
∥∥vj∥∥2

L4
x,y,t(R×R2)

�
∥∥φj

∥∥2
L2

x,y
<∞, uniformly in j.

Then if vjn is the solution to (2.1) with initial data gjnφ
j ,

vjn = gjn(v
j((λj

n,1λ
j
n,2)

−1t)). We note that, for v either a profile v�n or the

remainder wJ
n ,

(5.11)
∥∥vjnvknv∥∥

L
4
3
x,y,t

≤
∥∥vjnvkn∥∥L2

x,y,t
‖v‖L4

x,y,t
.

In addition, ‖v‖L4
x,y,t

remains bounded either by (5.10) (for v�n) or as a con-

sequence of the small data theory and (5.2) (for wJ
n).

By approximation by compactly supported functions, it is easy to see that,
if j 
= k,

(5.12)
∥∥vjnvkn∥∥L2

x,y,t
→ 0

when n→∞ as a consequence of (5.5).
As a result, using simple perturbation theory, we obtain that, for J large

enough, ∥∥∥∥∥u(tn + t)−
J∑

j=1

vjn(t)

∥∥∥∥∥
L4

x,y,t

� 1

and using again (5.11)-(5.12), we obtain that∥∥∥∥∥
J∑

j=1

vjn(t)

∥∥∥∥∥
4

L4
x,y,t

�
J∑

j=1

∥∥vjn∥∥4L4
x,y,t

�
J∑

j=1

∥∥φj
∥∥2
L2

x,y
<∞.

which, together with (5.4) contradicts (5.6).
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Thus, after reordering we should have ‖φ1‖L2
x,y

= ‖u(t)‖L2
x,y

and φj = 0 for

any j ≥ 2. But this holds if and only if u(t) lies in a set GK, where G is the
group generated by gjn and K is a compact set in L2. This completes the proof
of the theorem. �

A. Extremizers for Strichartz estimates for (1.2)

The purpose of this appendix is to study the extremizers for the Strichartz
inequality (1.3). We thus want to find f and C such that

‖f‖L2
x,y

= 1,∥∥eit∂x∂yf
∥∥
L4

x,y,t
=C := sup

{∥∥eit∂x∂yg
∥∥
L4

x,y,t
: ‖g‖L2

x,y
= 1

}
.

(A.1)

We will see that this can be reduced to a similar question about the classical
Schrödinger equation which was already solved in [11]. This gives

Proposition 14. The extremizers of (A.1) are Gaussians, up to scaling,
translations, modulations and pseudo-conformal transformations, i.e. func-
tions of the form

(A.2) f(x, y) =Ae−λ[|x−a1|2+|y−a2|2]+iμxy+b1x+b2y

for some A ∈C, λ > 0, μ ∈R, a ∈R2 and b ∈C2. As a consequence, C = 2−1/4.

In the rest of this appendix, for simplicity of notation, we will denote x=
(x1, x2) the coordinates in R2 (as opposed to (x, y)) and (ξ1, ξ2) their Fourier
conjugates (as opposed to (ξ, η)). We may start from the Fourier transform
of the linear propagator

e−itξ1ξ2 = e−
it
2 [η2

1−η2
2 ], (η1, η2) =

(
ξ1 + ξ2√

2
,
ξ1 − ξ2√

2

)
to obtain an integral formula for solutions, namely

(
eit∂1∂2f

)
(x) =

1

2πt

∫
R2

e
i
2t [(y1−z1)

2−(y2−z2)
2]f#(y1, y2)dy,

with (z1, z2) =

(
x1 + x2√

2
,
x1 − x2√

2

)
,

f#(y1, y2) = f

(
y1 + y2√

2
,
y1 − y2√

2

)
.



316 B. DODSON ET AL.

We may then compute that

∥∥eit∂1∂2f#
∥∥4
L4

x1,x2,t
=

∫
R

∫
R2

∫∫
R8

e
i
2t [|ya−z|2h−|yb−z|2h+|yc−z|2h−|yd−z|2h]

× f(ya)f(yb)f(yc)f(yd)d�y
dzdt

(2πt)4

=

∫
R

∫
R2

∫∫
R8

e
i
2t [|ya|2h−|yb|2h+|yc|2h−|yd|2h]e

i
t 〈ya−yb+yc−yd,z〉h

× f(ya)f(yb)f(yc)f(yd)d�y
dzdt

(2πt)4

where we have used

〈x, y〉h = x1y1 − x2y2, |x|2h = 〈x,x〉h, d�y = dya dyb dyc dyd.

Changing variables z = tk and integrating, we obtain

∥∥eit∂1∂2f#
∥∥4
L4

x1,x2,t

=

∫
R

∫
R2

∫∫
R8

e
i
2t [|ya|2h−|yb|2h+|yc|2h−|yd|2h]ei〈ya−yb+yc−yd,k〉h

× f(ya)f(yb)f(yc)f(yd)d�y
t2dkdt

(2πt)4

=

∫
R

∫∫
R8

e
i
2t [|ya|2h−|yb|2h+|yc|2h−|yd|2h]

× f(ya)f(yb)f(yc)f(yd)(2π)
2δ(ya − yb + yc − yd)d�y

t2 dt

(2πt)4
.

Changing now variables τ = 1/2t, we obtain that

(A.3)
∥∥eit∂1∂2f#

∥∥4
L4

x1,x2,t

=

∫
R

∫∫
R8

eiτ [|ya|2h−|yb|2h+|yc|2h−|yd|2h]

× f(ya)f(yb)f(yc)f(yd)δ(ya − yb + yc − yd)d�y
8π2dτ

(2π)4

=
1

π

∫∫
R8

f(ya)f(yb)f(yc)f(yd)

× δ(ya − yb + yc − yd)δ
(
|ya|2h − |yb|2h + |yc|2h − |yd|2h

)
d�y.
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We may define the operator on L2(R4), K by〈
F,K[G]

〉
=

∫∫
R8

F (ya, yc)G(yb, yd)

× δ(ya + yc − yb − yd)δ
(
|ya|2h + |yc|2h − |yb|2h − |yd|2h

)
d�y

= 〈F,AG〉,

AG(ya, yc) =

∫∫
R4

G(yb, yd)δ(Y − yb − yd)δ
(
N − |yb|2h − |yd|2h

)
dyb dyd,

Y = ya + yc, N = |ya|2h + |yc|2h.

(A.4)

This operator is manifestly formally self-adjoint. We may observe that under
the change of variables

υ :
(
y1a, y

2
a, y

1
c , y

2
c

)
�→

(
y1a, y

2
c , y

1
c , y

2
a

)
the following (three scalar) quantities remain invariant

Y = ya + yc, N = |ya|2h + |yc|2h
and therefore,

AG(ya, yc) =AG(yc, ya).

AG

(
y1a, y

2
a, y

1
c , y

2
c

)
=AG

(
y1a, y

2
c , y

1
c , y

2
a

)
.

(A.5)

The first symmetry is already evident from our choice of F (ya, yc) =
f(ya)f(yc), but one could also have argued as we do below to take care
of this symmetry.

Decompose a L2 function F into

F := F υ + F υ, F υ(y) = F υ
(
υ(y)

)
, F υ(y) =−F υ

(
υ(y)

)
we get an orthogonal decomposition of L2(R4) such that the range of K lies
in the invariant subspace. Using also the self-adjointness, we find that〈

F,K[G]
〉
=
〈
F υ,K

[
Gυ

]〉
, ‖F‖2L2 =

∥∥F υ
∥∥2
L2 +

∥∥F υ
∥∥2
L2 .

We thus see that a maximizer for (A.1), F , has to satisfy both symmetries
from (A.5):

F (ya, yc) = f(ya)f(yc) = f
(
y1a, y

2
a

)
f
(
y1c , y

2
c

)
= f

(
y1a, y

2
c

)
f
(
y1c , y

2
a

)
and this forces3

f(a, b) = φ(a)ψ(b)

for some φ,ψ :R→C.

3 as in the usual Schrödinger equation: one integrates the inequality in yc.
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We may now come back to (A.3) and rewrite it as

π
∥∥eit∂1∂2f#

∥∥4
L4

x1,x2,t

=

∫∫
R8

φ
(
y1a
)
ψ
(
y2a
)
φ
(
y1b
)
ψ
(
y2b
)
φ
(
y1c
)
ψ
(
y2c
)
φ
(
y1d
)
ψ
(
y2d
)

× δ
(
y1a − y1b + y1c − y1d

)
δ
(
y2a − y2b + y2c − y2d

)
× δ

((
y1a
)1

+
(
y2b
)2

+
(
y1c
)2

+
(
y2d
)2 − (

y2a
)2 − (

y1b
)2 − (

y2c
)2 − (

y1d
)2)

d�y

=

∫∫
R8

φ
(
y1a
)
ψ
(
y2b
)
φ
(
y1c
)
ψ
(
y2d
)
· φ

(
y1b
)
ψ
(
y2a
)
φ
(
y1d
)
ψ
(
y2c
)

× δ
(
y1a + y1c − y1b − y1d

)
δ
(
y2b + y2d − y2a − y2c

)
× δ

(∣∣y1a, y2b , y1c , y2d∣∣2E −
∣∣y1b , y2a, y1d, y2c ∣∣2E)d�y

=

∫∫
R4

(f̃ ⊗ f̃)(ζ)(f̃ ⊗ f̃)(η)δ
(
α1 · (η− ζ)

)
δ
(
α2 · (η− ζ)

)
× δ

(
|η|2E − |ζ|2E

)
dζ dη

=Q2(f̃ ⊗ f̃ , f̃ ⊗ f̃)

where

|a, b, c, d|2E = a2 + b2 + c2 + d2, f̃(a, b) = φ(a)ψ(b),

α1 = (1,0,1,0), α2 = (0,1,0,1)

and Q2 is the quadratic form defined in [11, (2.18)]. The analysis in [11], shows

that f̃ is an extremizer for the usual Strichartz inequality and that there exists
A ∈C, λ > 0, μ ∈R, a ∈R2 and b ∈C2 such that

f̃(z1, z2) =Ae(−λ+iμ)|z1−a1|2+b1z1e(−λ−iμ)|z2−a2|2+b2z2

and we finally obtain (A.2).
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[27] M. Sablé-Tougeron, Régularité microlocale pour des problemes aux limites non

linéaires, Ann. Inst. Fourier 36 (1986), no. 1, 39–82. MR 0840713
[28] C. Sulem and P. Sulem, Nonlinear Schrödinger equations, Springer, Berlin, 1999.

MR 1696311
[29] T. Tao, A sharp bilinear restriction estimate for paraboloids, Geom. Funct. Anal. 13

(2003), no. 6, 1359–1384. MR 2033842
[30] N. Totz, A justification of the modulation approximation to the 3D full water wave

problem, Comm. Math. Phys. 335 (2015), no. 1, 369–443. MR 3314508
[31] N. Totz, Global well-posedness of 2D non-focusing Schrodinger equations via rigorous

modulation approximation, J. Differential Equations 261 (2016), no. 4, 2251–2299.
MR 3505191

[32] N. Totz and S. Wu, A rigorous justification of the modulation approximation to the 2D
full water wave problem, Comm. Math. Phys. 310 (2012), no. 3, 817–883. MR 2891875

[33] A. Vargas, Restriction theorems for a surface with negative curvature, Math. Z. 249
(2005), 97–111. MR 2106972

Benjamin Dodson, Mathematics Department, Johns Hopkins University, Balti-

more, MD, USA

E-mail address: dodson@math.jhu.edu

Jeremy L. Marzuola, Mathematics Department, University of North Carolina,

Chapel Hill, NC 27599, USA

E-mail address: marzuola@math.unc.edu

Benoit Pausader, Mathematics Department, Brown University, Providence, RI,

USA

E-mail address: benoit.pausader@math.brown.edu

Daniel P. Spirn, Mathematics Department, University of Minnesota, Minneapo-

lis, MN, USA

E-mail address: spirn@math.umn.edu

http://www.ams.org/mathscinet-getitem?mr=2955206
http://www.ams.org/mathscinet-getitem?mr=1628235
http://www.ams.org/mathscinet-getitem?mr=1413873
http://www.ams.org/mathscinet-getitem?mr=2264250
http://www.ams.org/mathscinet-getitem?mr=2959931
http://www.ams.org/mathscinet-getitem?mr=0840713
http://www.ams.org/mathscinet-getitem?mr=1696311
http://www.ams.org/mathscinet-getitem?mr=2033842
http://www.ams.org/mathscinet-getitem?mr=3314508
http://www.ams.org/mathscinet-getitem?mr=3505191
http://www.ams.org/mathscinet-getitem?mr=2891875
http://www.ams.org/mathscinet-getitem?mr=2106972
mailto:dodson@math.jhu.edu
mailto:marzuola@math.unc.edu
mailto:benoit.pausader@math.brown.edu
mailto:spirn@math.umn.edu

	Introduction
	Properties of (1.1)
	Notations
	Some preliminary estimates

	Mass-supercritical HNLS
	The mass-supercritical proﬁle decomposition

	Proﬁle decomposition for the mass-critical HLS
	A precised Strichartz inequality
	Proof of (4.4)
	Proof of (4.3)

	The proﬁle decomposition and applications
	Minimal mass blow-up solutions

	Extremizers for Strichartz estimates for (1.2)
	Acknowledgments
	References
	Author's Addresses

