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THE PROFILE DECOMPOSITION FOR THE HYPERBOLIC
SCHRODINGER EQUATION

BENJAMIN DODSON, JEREMY L. MARZUOLA, BENOIT PAUSADER AND
DANIEL P. SPIRN

ABSTRACT. In this note, we prove the profile decomposition for
hyperbolic Schrédinger (or mixed signature) equations on R? in
two cases, one mass-supercritical and one mass-critical. First, as
a warm up, we show that the profile decomposition works for the
H? critical problem. Then, we give the derivation of the profile

decomposition in the mass-critical case based on an estimate of
Rogers-Vargas (J. Functional Anal. 241(2) (2006), 212-231).

1. Introduction

We will consider the hyperbolic (or mixed signature) Schrodinger equation
on R?, which is given by

(1.1) 10+ 0, 0yu = |[ulPu, u(z,y,0) =uo(z,y).

In particular, we will focus on the cases p = 4 and p = 2. The case p = 2 arises
naturally in the study of modulation of wave trains in gravity water waves, see,
for instance, [30], [32]; it is also a natural component of the Davey-Stewartson
system [18], [28]. As can be observed quickly from the nature of the dispersion
relation, the linear problem

(1.2) 0w+ 0,0,u=0, u(z,y,0)=uo(z,y).
satisfies the same Strichartz estimates and rather similar local smoothing es-

timates® as its elliptic counterpart, the standard Schrédinger equation. In
particular,

(1.3) e £l s, , <274f Nz,
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(see Appendix A for explanations about the constant). Hence, large data local
in time well-posedness and global existence for small data with p > 2 can be
observed using standard methods that can be found in classical texts such
as [3], [28]. For quasilinear problems with mixed signature, some local well-
posedness results have been developed recently, see [14], [22]. Non-existence
of bound states was established in [10] and a class of bound states that are
not in L? were constructed in [21].

Long time low regularity theory for this equation at large data remains
unknown however. Recently, an approach to global existence for sufficiently
regular solutions was taken in [31], but it is conjectured that (1.1) should have
global well-posedness and scattering for all initial data in L?. Much progress
has been made recently in proving global well-posedness and scattering for
various critical and supercritical dispersive equations by applying concentra-
tion compactness tools, which originated with the works of Lions [19], [20].
One major step in applying modern concentration compactness tools to dis-
persive equations is the profile decomposition, see [13], [16]. The idea is that
given a small data global existence result, one proves that if the large data
result is false then there is a critical value of norm of the initial data at which
for instance, a required integral fails to be finite. Then, the profile decomposi-
tion ensures that failure occurs because of an almost periodic critical element,
which may then be analyzed further and in ideal settings ruled out completely.
See [5], [6] and references therein for applications of this idea in the setting of
focusing and defocusing Schrédinger equations for instance.

A major breakthrough in profile decompositions arose in the works of
Gérard [9], Merle-Vega [23], Bahouri-Gérard [1], Gallagher [8] and Keraani
[15]. Those results have then been used to understand how to prove results
about scattering, blow-up and global well-posedness in many settings, see [16]
for some examples. We also mention the recent work by Fanelli-Visciglia [7],
where they consider profile decompositions in mass super-critical problems for
a variety of operators, including (1.1).

As can be seen in [16, Section 4.4], the profile decomposition follows from re-
fined bilinear Strichartz estimates. Using refined Strichartz estimates from [24]
and bilinear Strichartz estimates, Bourgain [2] proved concentration estimates
and global well-posedness in H3/57¢ for the defocusing, cubic elliptic nonlinear
Schrédinger equation in R?. Building on this work, Merle-Vega [23] proved a
profile decomposition for the mass-critical elliptic nonlinear Schrédinger equa-
tion in two dimensions.

For the hyperbolic NLS, Lee, Vargas and Rogers-Vargas [17], [25], [33] have
provided refined linear and bilinear estimates, drawing on results of Tao [29]
for the elliptic Schrodinger equation. In particular, [25] gives an improved
Strichartz estimate similar to our Proposition 9 and uses it to prove lower
bounds on concentration of mass at blow-up. An improved Strichartz estimate
is also the key element in our profile decomposition, following the standard
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machinery described in [16, Section 4.4]. For completeness, we provide a proof
of Proposition 9, which, although drawing on similar ideas as in [25], outlines
more explicitly the additional orthogonality of rectangles with skewed ratios.

The major issue in following the standard proof of the profile decompo-
sition is that the mixed signature nature of (1.1) means that an essential
bilinear interaction estimate that holds in the elliptic case fails. This is com-
pensated for in [33] by making a required orthogonality assumption for the
refined bilinear Strichartz to hold (see the statement in Lemma 3 below). To
overcome this difficulty, we use a double Whitney decomposition to precisely
identify the right scales, which introduces many different rectangles that are
controlled using the fact that functions with support on two rectangles of dif-
ferent aspect ratios have small bilinear interactions. We note that while we
here focus on analysis in 2 dimensions to keep the technical computations
focused and directed, we expect many of the calculations to be generalizable
to other dimensions as in [16].

The paper is structured as follows: in Section 2, we set up the problem, dis-
cuss some basic symmetries and establish some important bilinear estimates;
in Section 3 we establish the result in the mass-supercritical case using the
extra compactness that comes from the Sobolev embedding; in Section 4, we
establish the main precise Strichartz estimate in the paper and in Section 5,
we obtain the profile decomposition for the mass-critical problem and deduce
the existence of a minimal blow-up solution. Finally, in Appendix A, we prove
that Gaussians give the optimal constant for the Strichartz inequality for (1.2).
The appendix does not rely on the remainder of the manuscript, though it is
a related question and highlights the usefulness of decoupling the coordinates
in this model.

2. Properties of (1.1)
Observe that a solution to
(2.1) 10 + 0, 0yu = |ul*u, u(z,y,t)=muo(z,y),
has a number of symmetries:
1. Translation: for any (x¢,0) € R?,

(2.2) u(z,y,t) = u(x — xo,y — Yo, t),
2. Modulation: for any 6 € R,
(2.3) u(z,y,t) — ewu(x,y7t).

3. Scaling: for any A1, Ay > 0,

(2.4) u(w,y,t) = VA1 du( A1, A2y, A1 Azt),

4. Galilean symmetry: for (£1,&2) € R?,

(2.5) w(w,y,t) — e gz eilrltvealy (g g1ty — Eot 1),



296 B. DODSON ET AL.

5. Pseudo-conformal symmetry:
(2.6) oty s (28]
. u(x,y, —ul —, =, - |-
Y it t't't

These symmetries all preserve the Lf/,’y norm. The first two symmetries (2.2)—
(2.3), as well as the scaling symmetry properly redefined, also preserve the
Hj norm for any s € R, where

112, = 11021510, 3 7] .

Note that this norm has similar scaling laws as the more usual H* norm.
Other examples of anisotropic equations have appeared in for instance, [27],
[12]. For example, for the H'/?—critical problem

(2.7) 10y + 0, 0yu = |ul*u, u(z,y,0)=uo(z,y),
the symmetries are thus:

1. Translation: for any (x¢,0) € R?,

(2.8) u(z,y,t) = u(z — zo,y — yo,t),

2. Scaling: for any A1, Az >0,

(2.9) w(z,y,t) — (A A2) Y u( Mz, Mgy, A Aat),
3. Modulation: for any 0 € R,

(2.10) u(x,y,t) — eulz,y,t).

We will treat the profile decomposition for (2.7) as a warm-up, before tackling
the profile decomposition for the mass-critical problem (2.1).

2.1. Notations. Let ¢ be a usual smooth bump function such that ¢(x) =1
when |z| <1 and ¢(z) =0 when |z| > 2. We also let

P(x) = p(x) — p(22).
We will often consider various projections in Fourier space. Given a rectan-
gle R= R(c,{;,1y), centered at ¢ = (¢, ¢y) and with sides parallel to the axis
of length 2¢, and 2¢,, we define

(2.11) er(@,y) = (6 (@ =) (6, (y —cy)).-

We define the operators

~

Quin f(Em) = (M) (N~ ) F(&,m),
Prf(€.n) = or(&n) f(En).

The first operator is only sensitive to the scales involved, while the second
also accounts for the location in Fourier space. We also let |R| = 4¢,¢,, denote
its area.
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2.2. Some preliminary estimates. We start with a nonisotropic version
of the Sobolev embedding.

LEMMA 1. There holds that
£z, < [1021210,12 fIILp

whenever 1 <p<g<oo, 0<s<1 and
1 1 s

g p 2
Proof of Lemma 1. The proof, although easy, highlights the need to treat
each direction independently. Using Sobolev embedding in 1d, Minkowski in-
equality and Sobolev again, we obtain that

£l s .23 ®)) G RLER)) |

5 (R,LY(R))

which is what we wanted. O

We have two basic refinements of (1.3). Note the difference in orthogonality
requirements between Lemma 2 and Lemma 3.

LEMMA 2. Assume that f = Pgr,f and g = Pr,g where R; = R(c%,{;,0,)
and |ck — 2| = N > 44, and let u (resp. v) be a solution of (1.2) with initial
data f (resp. g). Then

(2.12) ||uv|LmN< ) Ifllez  Ngllez -

LEMMA 3. Assume that f = Pg, f and g = Pgr,g where R; = R(c*,{y, 1),
|y — 2| > 4L, and |cy — c| > 4Ly, and let u (resp. v) be a solution of (1.2)
with initial data f (resp. g). Then

whenever ¢ > 5/3.

Lemma 3 is the main refined bilinear estimate and appears essentially in
[33] when dealing with cubes. The result as stated here follows by scaling
rectangles to cubes.

Proof of Lemma 2. We simply write that
w2 (E,m,t) = (&, 1),

§ nv // QOR1 glanl)ngz(g 51777 771)

x F(&,m)G(€ — €1, —m) dér di,
w=&m+(E—&)n—m)
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we may now change variable in the integral

_&w) (1 0
(2.13) (&1,m) = (§1,w), J = oenm) (2771 -n 2§ —5>

and in particular, we remark that

(2.14) T =|(—-&)—&|~N
so that

I(&,n,t) // “or, (E1,M) R, (§ — &1, — 1)

X F(E1,m)G(€ — €1, —m) - T L dEr dw,
= 771(51760;5777)~

Taking into consideration the Fourier transform in time and using Plancherel,
followed by Cauchy—Schwarz, we find that

:/R /]RSOR1(§1’771)90R2(§_51777_771)/\(51,771)/‘9\(5—§1’77_771)

2
SJldg

< sup /9031(51,771)9032(5—fl,n—m)dfl
67777771 R

X//@Rl(fl,ﬁl)%zz(f—flﬂ?—ﬂl)’f(flﬂh)ﬁ(ﬁ—flﬂ?—771)|2
RJR
S J72dE dw.

Now, we use the fact that R; has width ¢,, together with (2.14) to obtain,
after undoing the change of variables, that

l
||I(£’777)||i§5ﬁ//@R1(€17n1)@R2(€_£1an_n1)

x| F(&r,m)aE€ = & —m)|* - TV dy dw

S5 | IR mate - en = desan.

Integrating with respect to (£,7), we then obtain (2.12). O
We will in fact use the following consequence of Lemma 3.
LEMMA 4. Under the assumptions of Lemma 3, it holds that

(2.15) luvll g9 S (Laty)™ |1l 20 191 2

11 11
Lz}y Lgly
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Proof. Indeed, using Lemma 3, we find that
T R [ O Vi PP
z,y,t

while a crude estimate gives that

z,y’

Heitamayf . eitamayg”L:?y)t < HJ?”L;,y H/g\HLiy

Interpolation gives (2.15). O

Another tool we will need in the profile decomposition is the following local
smoothing result which is essentially equivalent to Lemma 2.

LEMMA 5. Let ¢ € Li,y. There holds that

sup|Qar et o (, ||L2 . < N7%||¢|\Li,yv
x

1105 Oy ¢

sup||@ar,ve D2, S MMz,
Yy

Proof. The proof is similar to the one in the elliptic case and follows from
Plancherel after using a change of variable similar to (2.13). An equivalent
statement with proof occurs in [18, Theorem 2.1]. See also [4] for a general
statement of Local Smoothing Estimates for Dispersive Equations. O

3. Mass-supercritical HNLS

In this section, we observe that H i has similar improved Sobolev inequal-
ities as the H'/2 Sobolev norm. A typical example is the following lemma.

LEMMA 6. Let f € C°(R?). There holds that

2
37
h

B0 Iflse, S (oG HiQu Sl ) 151 4 S 151

and consequently,
32 Wi, S (e N ZHQM,Nf||Lm)"||ijI S

This is essentially a consequence of the following simple inequalities
(3.3) 1Qun fllze, SNZQuN fllzzere SN2 1Quun fllra e
S(MN)21Qun fllz,»

and similarly after exchanging the role of x and y.

Proof of Lemma 6. Indeed, we may simply develop

I, s 3 J Quiid - Quaaf - Qe dady
xR

My,...
Nq,.. N5
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without loss of generality, we may assume that
M5,M6 S M2 = mQaX{M1,M2,M37M4}7
N5;N6 § Vo = mgX{N17N23N37N4}7

where maxs(S) denotes the second largest element of the set S, and then
using Holder’s inequality and summing over M5, Mg and N5, Ng, we obtain

2
—1
1712 , < (00 (MN) [ Qur.x fll 2 )

x > (M5MgN5Ng)® // |Qrry Ny Sl [ Qg Ny flda dy
RxR

My,...,Ma,Ms5,Me<pi2
Ni,...,N4,N5,N¢<v2

1 2
< (5up (MN) =8 Qurn fll )
M,N

X Z (/,LQVQ)%//R IR|Q]v11,le|~--\szn;,z\uﬂdﬂb“dy-

My,...,My

Ni,...,Ny
Now, using (3.3) and estimating the norms corresponding to the two lower
frequencies in each direction in L*°, and the two highest ones in L2, one
quickly finds that

S ()} // Qs s £ @t fldzdy S I 5
RxR Hp

My,...,My
Ny,...,Ny

which finishes the proof. Inequality (3.2) then follows by interpolation. ]

At this point, the usual profile decomposition follows easily from the fol-
lowing simple Lemma 7 below.

LEMMA 7. There exists § > 0 such that

. . 0
e fl|,s < ( sup (MN)~%[ ("% Quy n f) (I,y)|) A1
=yt M,N,t,z,y th
Proof of Lemma 7. We use Holder’s inequality, Sobolev embedding
Lemma 1, Strichartz estimates and (3.2) to get for u = e?%% f

3 1
lullss S laldgpe leliess

3 3 5
<oa1410y 2 ul g - (A%)t(MN)*% ||QM,Nu(t)HL;oy) " 171°%
’ ’ ’ h

)

S|

1
at Gt V0@l )™ =

14V
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3.1. The mass-supercritical profile decomposition. Let us take the
group action on functions given by g? = g(z7,y7, )\jlyn, )\én) such that

=1 . . 1
(Q%) f= (Ai,l)‘%,z) * [f](/\ 1x+93j /\] zy+yn)
We can now state the H, é -profile decomposition for (2.7).
PROPOSITION 8. Let HunH 1 < A be a sequence that is bounded H2 Then
h

S
possibly after passing to a subsequence, for any 1 < j < oo there exist ¢/ € H},
(th, 2l yl) € R3, )xn 1s A2 € (0,00) such that for any J,

(34) Zgj eltna Oy ¢J + ’LU
(3.5) lim limsupHe“‘%8 ‘ = 0,
J—=00 nooo LSy
such that for any 1 <j<J,
(3.6) e~ ith0x0y (gf{)_lwi 0,

weakly in Hh%,
(3.7) 7yg;<nunn2 2:H¢JHH2HwJHH2> =0,
and for any j #k,

(250 | (252 bl kot
A Mo/l 7 (A )12

n,1"'n,1

n—oo

lim sup [

It%(Ai;,Mi; 2) — t’“(/\’é,l)\ﬁ,z)l]
(X1 A 22k 1A% )12

n,l

The proof of Proposition 8 of this follows by simple adaptation of the
techniques in [16, Section 4.4], as originally introduced in [15]. We note that
a similar statement also appears in works of Fanelli-Visciglia [7].

4. Profile decomposition for the mass-critical HLS

In this section, we focus on the mass-critical case. This case is more delicate
for two reasons. First we need to account for the Galilean invariance symmetry
in (2.5) and second, we cannot use a simple Sobolev estimate as in (3.2) to fix
the frequency scales. We follow closely the work in [16, Section 4] with a small
variant in the use of modulation orthogonality and an additional argument
for interactions of rectangles with skewed aspect ratios.
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4.1. A precised Strichartz inequality. The main result in this section is
the following proposition from which it is not hard to obtain a good profile
decomposition. We need to introduce the norm

(4.1) lollx, = (X IR loral?y )

ReR

where R stands for the collection of all dyadic rectangles. That is, rectangles
with both sides parallel to an axis, of possibly different dyadic size, whose

center is a multiple of the same dyadic numbers, given by the form
R:={Rknpm : k,n,m,pe L},

4.2

U2 R = (@) n— 122 0 Snb 1, m— 1227y <m+1},

Note in particular that these spaces are nested: X,, C X, whenever p <g. The
motivation for the space LTT in (4.1) can be motivated by the X Strichartz
estimate in Theorem 4.23 from [16].

PROPOSITION 9. Let ¢ € C2°(R?), then, there holds that for all p > 2,

(4.3) 16l x, Sp lI4]l 2
and in addition, there exists p > 2 such that

4
; 4 _1 i 21, ~,, 80
(4.4) ||y, s (s%pIRI 2 SupJB”B”Cay (PR@(J?,?J)D ll%,-

We refer to [25] for a different proof of a slightly stronger estimate. Let us
first recall the Whitney decomposition.

LEMMA 10 (Whitney decomposition). There exists a tiling of the plane
minus the diagonal

R*\ D=WI x J, D ={(z,z),x € R},
made of dyadic intervals such that |I| =|J| and
6] < dist(I x J, D) < 24|I|.
We will consider two independent Whitney decompositions of R x R:
(4.5) Lirexe2\Dy (€171, €2,m2) 1= > (€)1, ()1 (S) 1, (n2),
Ii~Ia,Ji~Js

where I; and J; are dyadic intervals of R and ~ is an equivalence relation
such that, for each fixed I, there are only finitely many J’s such that I ~ J,
uniformly in I (i.e., equivalence classes have bounded cardinality) and if I ~ J,
then |I| = |J| and dist(I,J) ~ |I|. We also extend the equivalence relation to
rectangles in the following fashion:

IxJ~I xJ ifandonlyif I~1I and J~.J'.
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We would like to follow the argument in [16] for the profile decomposition
for the elliptic nonlinear Schrédinger equation. However, it is at this point
where we reach the main technical obstruction to doing this. Recall that to
estimate the L§7y7t norm of [e®? f]?, it was possible to utilize Plancherel’s
theorem, reducing the Li,y’t norm to an [? sum over pairs of Whitney squares.

This was because Plancherel’s theorem in frequency turned the sum over
all pairs of equal area squares to an [?> sum over squares centered at different
points in frequency space, and then Plancherel’s theorem in time separated
out pairs of squares with different area. Because there is only one square with
a given area and center in space, this is enough. However, there are infinitely
many rectangles with the same area and the same center. Thus, to reduce the
L2, ; norm of [¢"%9 f]? to a [* sum over pairs of rectangles, that is rectangles
whose sides obey the equivalence relation in both x and y, it is necessary to
deal with the off—diagonal terms, that is terms of the form

(4.6) | [7%9=% Pp, f] [ Pg, f] [e79+0y Py, f][€0=0 Pp, f]

[P
Lz-,y,t

where Ry ~ Ry and R} ~ R, are Whitney pairs of rectangles which have the
same area, but very different dimensions in x and y. In this case, Lemma 2
gives a clue with regard to how to proceed, since it leads to the generalized
result that

@7)  [|[e"% Pr, f] [P0 Pry f]|| 2 < I1Pr, Fllzz,, [ Pry Sz,

Thus, it may be possible to sum the off diagonal terms. We will not use Lemma
2 specifically, but we will use the idea that rectangles of the same area but
very different dimensions have very weak bilinear interactions.

Before we turn to the details, we first present the main orthogonality prop-
erties we will use. For simplicity of notation, given a dyadic rectangle R, let

or(.y) =@, y)1r(,y) and up(z,y,t):= ("% pp)(z,y)
and set u = eiwwaygb. Also we will consider rectangles Ry = I; X Jy, Ry =
Iy x Jy, Ry =1] x Jj, Ry =1, x Jj.
Proceeding with the above philosophy in mind, using (4.5), we have that

2
2
lulgs, = llwlhs, = D2 wnums
z,Y, x,y,t 2
RlNRQ Lm,y‘t
2 2
S RS ) 37
Q RlNR27 Li,y,t Q Lg,y,t
|R1|=|R2|=2

Using the polarization identity for a quadratic form,

Q(z1,y1) + Q(z2,y2) = %[Q(ﬂﬂl +x2,y1 +y2) + Q21 — 22,1 — y2)},
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we compute that

5T (€, 1)

= Z /4 lRl (517nl)le(527nz)e—i%(gl_éz)(nl_rm)
~R R

PR
X J(&1,m1) f(E2,m2)0(€ — &1 — €2)8(n — my — 1) A€y d dipy dn.
Now we observe that since
|I1| = |I2] ~ dist(11, I2), |J1| = |J2| = dist(Jy, J2),
it holds that, on the support of integration,
(61— &) (m — n2)| ~ | Ia| - | 1| = €.

Therefore, we have the following orthogonality in time
2
> Ia(&n,-) 2> " Io(€,m, ")
Q Q

— 2
S ZHIQ(SJL ')HL%'
L}
To continue, we need to control I uniformly in 2. We write that

2
L?

2
IQ = ‘ E UR, * UR,
R1NR2, Li,y,t
|R1|=|R2|=0
= E / UR, " UR, *UR; - URy, drdydt
3
Ri~Ra, R,~R), Ryt
|R1|=|Rz2|=| R |=|Ry|=0
= E IR ~Ry,R,~R}-

Ri~Ra, R,~R)
|R1|=|Rz2|=|R}|=|R5|=0Q

To any rectangle R =1 x J, we associate its center ¢ = (cz,c,) and its scales
0 (R) =|I| and £,(R) = |J| =Q/|I|. For 2 rectangles R and R’ of equal area,
we define their relative discrepancy by
5(R,R') = min{l,(R) /0, (R)),£,(R)/, (R)}.

We want to decompose Zq according to the discrepancy of Ry =1I; x J; and
R = I{ x J{. Using scaling relation (2.9), we may assume that Q =1, ¢, (R;) =
0,(R2) =1 and that £, (R}) < £,(R}), so that R} is a d x §~! rectangle, where
0=09(Ry,RY).

We first notice that, if Zr, < r,,rj~r; # 0, we must have that
|ca(R1) — o (RY)| S La(R1) + Lo (RY),

(4.8) ley(R1) — ¢y (RY)| S £y(Ry) + 4y (RS).
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and therefore, for any fixed Ry and § 2 1, there can be only a bounded number
of choices for R}, so that

Il S Z ||UR1”LLR2H%2

m,y,t.
Ri~Ra,
|R1|=|Rz|=1

At this stage, we are in a similar position as in the elliptic case and we may
follow the proof in [16, Section 4.4]. From now on, we will focus on the case
ik 1.

In the case § < 1, we may in fact strengthen (4.8). Indeed for Zg, g, rj~ry
to be different from 0, we must have that

|CI(R1) — CI(R/1)| ~ gm(Rl) +€z( /1),
|ey(Ra) — ey (RY)| = £,(Ry) + 6, (RY).
This follows from the fact that (say)
CI(Rl) + Cz(RQ) — Cyp (Rll) — Cyp (R/Q)
=2[cp(R1) — ¢ (RY)] = [ca(R1) — co(R2)] + [ca(RY) — o (RS)],

and the last bracket is bounded by 244§, while the second to last is bounded
below by 6; however, for Zg g, r;~r, to be nonzero, there must exists
(&1,£2,€1,85) € Ry x Ry x R} x R} such that

§1+8 -6 —6=0 and
‘(51 +§2 _61 _gé) - (Ca:(R1> +CZE<R2) _Cw(R/l) - Ca:<R/2))| S 2+26'

We will keep note of this by writing Ry ~ R} (or sometimes ¢(Ry) ~ ¢(R}))
whenever (4.9) holds for rectangles of equal area.

Recall that R is a 6 x 6! rectangle; we can decompose all rectangles into
& x 1 rectangles. We may then partition

(4.9)

51 51 51 51
Ri=Jhaxh=JRia BRe=|Jhaxh={]Rua
(410) a=1 a=1 a=1 a=1

st st st 5t
Ri=JnxJ,={JR, Re={JLxJ;=R,;

b=1 b=1 b=1 b=1
and by orthogonality, we see that

TR, ~Ry,R|~R) = E IRl,a~R2,a,R’1,b~R’2~8
a~a, b~b

where

a~a if and only if |cm(R1’a) +cx(Roa) — co (R'l) —Cy (R'Q)| <0
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and comparably in y for b ~b. Thus, for fixed Ry, Rz, R} R, this gives two
equivalence relations with O(671) equivalence classes of (uniformly) bounded
cardinality.

And proceeding as in (4.9), we can easily see that

|cr(Rl,a) - Cm( /1,b)| 21 |Cy(R1,a) - Cy( /1,b)| 2 5717
|ea(Roa) —ca(RY5)[ 21, [ey(Brg) —ey(R5)| 207

At this point, we have extracted all the orthogonality we need and we are
ready to proceed with the proof of Proposition 9.

(4.11)

4.2. Proof of (4.4). Using rescaling, we may assume that

(4.12) 1zsup|R|_%|‘eita"9y¢3’|Loc .
R x,y,t

From the considerations above, we obtain the expression

Heitaxay(bHii,y,t < Z Z IR1~R2,R5~R'27
Q

Ri~R», R|~R},
|R1|=|Ro|=| Ry |=| Ry =

(4.13)

where the rectangles satisfy the condition (4.9). In addition, for fixed rectan-
gles Ry ~ Ra, R| ~ R}, of equal area Q, let 6 = 6(Ry, R}). As explained above,
for fixed § = §p = O(1), we are in a position similar to the elliptic case and we
may follow [16] to get

> > TRy~ R Ry~ RS |

Q Ri~Ra, R, ~R},
|R1|=|R2|=|R}|=|R5|=0,
6(R1,R/ ):(50

<Z Z HU’RluRZH%iW

Ri~R2,
|R1|=|R2|=%

< (sup 112 unllsz, )

Ml’b

T 2 40
Y B upur, [Py

21
Ri~Rs3 T

~

Yt

_ 1 . T 40
> Bl om0 1Rl ] 3 1,
Ri~R> Y m

where we have used Cauchy—Schwarz in the first inequality, Holder’s inequality
in the second and (4.12) together with Lemma 4 in the last inequality. This
gives a bounded contribution as in (4.4) for any p < 80/21.

We need to adjust the above scheme when § < 1. In the following, we let

T<<1 = Z Z Z |IR1~Rz7R’1~R/2|

s<l Q Ri~Ry, R, ~R),
|R1|=|Rz|=|R}|=|R5|=2,
§(Ry,R))=6
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and to conclude the proof of (4.4), we need to prove that, for some p > 2,

80
21
(4.14) T« S9l%,
We can now use the finer decomposition (4.10) to write
IR ~Ro Ry ~RY = § : IRl,aNRM’R'l,bNR/z,E
aNE,bNZ

where the new rectangles satisfy (4.11). Using Cauchy—Schwarz, then Holder’s
inequality with (4.12), we have that

Thy ot oty ) S ms -y izl o umy o

x,y,t z,y,t
2 20 20
STU L TN [ M (P
x,y,t x,y,t

Now, using Lemma 4 with (4.11), we obtain that

|IR1,aNR2,67R,115NR;‘E |

i)

3 — 20
||¢Rz a” 20 HQSR1 b”LT? H¢R’27 ||Llo :
z,y

20
2

< (892)71 - (6-19)‘ﬁ||¢m,a|| !

Since 20/11 < 40/21 and since for ﬁxed a, there are only a bounded number
a such that a ~ a, we can sum over a to get

20 — 20

21 21 21

> ||¢>R1a\| 20 167an 12 S 1167 1250 1ml1 2L
LI i1 i1

Ls)y =,y Lzy T,y

a~a

and similarly for b, so that

20
(4.15) |TRi~rompomy| SO2TQ72 ||¢R1||2 20 H¢Rz| 20 ||¢R/ H 20 ||¢R' % B
In addition, for rectangles of fixed areas and sizes |R1| = |R2| = |R}| = |R}|,
£:(R1) = £, (R2), £,(R)) ={,(R)) also satisfying (4.9), we may use Cauchy
Schwarz in the summation over the centers to get

Z H(leH 20 ||¢Rz| 2120 ||¢R’| 20 H‘bR’ || LCI) S Z H‘len E ||¢R’ 1% %

1 T
Ri~Ra3, Lzl Lazjy Ri~R] Lay
R|~R),

[\J‘»P

where the sum is taken over all rectangles Ry ~ R/ of the given sizes satisfying
(4.9).

We can now get back to (4.14) and use (4.15) and the inequality above to

get
8 4 40
Tar S D Y ooQe. 3 HdmllP 20 ||¢R1||2%a

Q A <1 c1~ch

where we have parameterized the lengths of the rectangles by Q = |R;| = |R]|,
A=10,(Ry) and § = £, (R})/l.(R1), and their centers by ¢1, ¢}.
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Now for any p > 2 choose 0 < §(p) < 1 such that

20 1-6 21
4.1 Ly Tv =
(4.16) PR

and observe that 6(p) \, 2—10 as p \y 2. Then by interpolation,

10
> ara ||¢R1||220 1671170
Lil, Li},

Q,A, 2,y
012’01
40 1-0
21 p
( dYoah ||¢Rl||p " ||¢R/ 1”5 )
0,A,
01N01
40 26
21 p
(Z 0 b oy o1 ) .
01"’01

Now, on the one hand, we observe that for a fixed choice of scales (2, A and
§) and for each fixed ¢y, there are at most O(§71) choices of ¢ satisfying (4.9)
so we obtain that

> Q_%Hmlll 2 H¢Rf|\2
Q,A

’
c12cy

SO Y A EGa

20
11
I QA('l

(4.17)

and the other sum can be handled in an easier way: using Holder’s inequality
and forgetting about the relationship ¢; ~ ¢}, we obtain that

(418) > Y > w||¢R1||P 2 ||¢R/ 173

Q A ci~dcl

<SS (St i,y ) (St Heml,g )
2
5(Z|R|-2’6||¢>R||p§g) .
R Lzy

Recall the definition (4.1). Combining (4.17) and (4.18), we obtain

H

8 -~ 806 o~ 40 1—6 S 1100y, ~ 80
Ter S 67 (67 MIol%,) P (lel3) = 7 <> a5 gl|3
<1

6<1

and this is summable in ¢ for 2 < p < 40/17 small enough. The proof of (4.4)
is thus complete and it remains to prove (4.3) which we now turn to.
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4.3. Proof of (4.3). We first state and prove the following simple result we
will need in the proof.

LEMMA 11. Let D denote the set of dyadic intervals (on R) and let p > 2.
For any g € C(R), there holds that

(4.19) oM ZWMlﬂV

1eD

<llgliz.

HH‘C

Proof of Lemma 11. We may assume that [|g|z2 = 1. For fixed A, we let
D4 denote the set of dyadic intervals of length A and we decompose

9 () =g(z)1

g=9"+g7, g (x)=g(@n

{lg(z)|>A" 3}’ {lg(z)|<A™ 2}

On the one hand, using that 11 C (7,

S Sl £ (S 5 el )

A I€eDy 1€Dy

20P
S(ZA“/IQ so)fon-3y 9T )
A
20P
s(fut (X a)a) s

A>|g(z)| 2

while, for the other sum, we use Holder’s inequality to get

S Y A E gl g £ X A, D

~:I>—‘

A IeDa A IeDa
/|g . A% dg
{A<\g(w)\ 2}
s [la@) a1
R
and the proof is complete. O

Now, we proceed to prove (4.3).

Proof of (4.3). Recall D stand for the set of dyadic intervals and D4 for
the set of dyadic intervals of length A. We want to prove that

DB | Hflme SIAZ: -
IeD JeD '
We claim that, for any fixed interval I,
(4:20) 2B s g Sl

2
JeD 'L
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Once this is proved, we may simply apply Lemma 11 to the function
= 1
to finish the proof.

From now on I denotes a fixed interval and f is a function supported on
{x €1}, ie. f=firxr. The proof of (4.20) is a small variation on the proof
of Lemma 11. Fix a dyadic number B and let

en =cnla) = B3 (@ ),
and decompose accordingly?

f=1+ 7 P =i@isa@y 7= i@y |<es @)
We then compute that

S X By

B JeDg
20 O\ 2P
(Z Z B~ 11||f+lj><JH1110>
B JeDg Lz

(gt ] [ )"
(L, E )

{B:|f(z,y)|ZcB ()}

</ / el (ujlff( >||)lz>
(el [ el avar)

SIFIP 2
Lt L2

I 0P
dy dx)

1

-

P

g

in the penultimate line, we note that though there is a negative power of the
LZ norm, the product of the two quantities is well-defined, especially as we
can assume f € C2°. Also, we have used the embedding ¢! C (%7 in the first
inequality, the fact that dyadic intervals of a fixed length tile R in the second
inequality, and we have summed a geometric series in the fourth inequality.

2 Note that f(z,y) = 0 whenever ||f(z,-)|| 2 =0, so that cg(z) > 0 on the support of f.
y
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Now for the second part, we compute that

S Bl
B JeDp

<Z Z B~#%BrE—3) /- lI><J|| B

B JeDp
0P
dx) dy

SZB:BT/RK/IIU(I,@/H%
</ Z( —‘f%/x|f(:c7y>ﬁ?dx) " ay
AV :

20
B ()| ™ d:r) dy,
where we have used Holder’s inequality in the first line and the inclusion
¢! C (%P in the fourth line. Now, since f~ is supported where

) 2
5o (Hf(x, >||L§) |
f(,y)|
summing in B gives

>3 Ay

B JeDp

<[ (L1l 71 el )

Using Minkowski inequality on the function

-
-

I8
o

=

-

|

z B

11 202
hz,y) = £z T )|
we obtain
> Bl y
Lay
B JEDg '
201 Qp
1 i1 p 20
<(f ([ pran) " a)
I, \JR,
9 %% 20 p %p
S(f (L1l a) sl w)
I, \/R,

20 %p
([ Il ac)

which proves (4.20). Thus the proof is complete. O
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5. The profile decomposition and applications

The profile decomposition then follows from Proposition 9 in the usual way
following the techniques in the proof of Theorems 4.25 (the Inverse Strichartz
Inequality) and 4.26 (Mass Critical Profile Decomposition) from [16], for in-
stance. We note that it is the proof of the Inverse Strichartz Inequality that
requires the local smoothing estimates as in Lemma 5 to establish pointwise
a.e. convergence of profiles to an element of Li)y through compactness con-
siderations, otherwise the proof follows mutatis mutandis. Once the Inverse
Strichartz Inequality is established, the proof of the Profile Decomposition
follows verbatim.

Suppose g = g(x),, y, )\{'7”, A%7n, €J) is the group whose action on functions
is given by

(¢) " f= (N N o) P aatl) —ih o (N patu)
X [fnl (/\ZLJI + 1’%7 )‘i,zy + ygv)

The profile decomposition gives the following.

THEOREM 12. Let |[unllrz (r2) < A be a sequence that is bounded
Liyy(R2). Then possibly after passing to a subsequence, for any 1< j < oo
there exist ¢ € L2 (R?), (t],,2],,y]) e R?, & e R?, X, |, N, , € (0,00) such
that for any J,

J .
(5.1) unZZgﬁle”zlamayW +w!,
j=1

(5.2) lim limsupl| et0:9

J —
J—=00 nooo ywnHLi‘y,t _07

such that for any 1 <j <J,
(5.3) ¢392y (gﬁ%)flw;{ —0,

weakly in L2  (R?),

2
=0
Li,y> )

J
. 112
(5.4) Tim. (nunn;’z;y —ZIHWII% = [Jw]
=
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and for any j #k,
hl(xz;,l) . ’m(’\)‘ [t (N0 Ah2) — th (AR A o)
)‘ﬁ,l )‘ﬁ2 ()\j 1/\j 2)‘k 1)‘k,2)1/2
i k \1/2) .5 k: 1/2

A ) 6 = Gl + (2hnn) Tl —

|x3 _55 —2t] (AJ 1)\ )( nl 7]31)|
(A, Ak )12

|y¥z - yfl - 2%()‘3;,1)‘%,2)( %,2 - ’22)|]
(An 2% 2) 12

(5.5) lim [

n— oo

_|_

5.1. Minimal mass blow-up solutions. As an application of the profile
decomposition, we turn to a calculation that for instance originated in [15],
[23]. Namely we construct a minimal mass solution to (2.1) which is a solution
u of minimal mass such that there exists a time 7™ such that

/ / |u|* dx dy dt = 4-o00.
_T= R?:,y

In other words, it is a solution of least mass for which the small data global
argument fails.

It turns out that if w is a minimal mass blowup solution to (2.1) then u lies
in a compact subset of L2 (RQ) modulo the symmetry group g; more precisely,
following [16, Chapter 5, Theorem 5.2], we can establish the following theorem.

THEOREM 13. Suppose u is a minimal mass blowup solution to (2.1) on a
mazimal time interval I that blows up in both time directions. That is, I is
an open interval and for any tg € I,

sup(I)
(5.6) // |u(:c,y,t)|4d:cdydt7 // u(x,y,t | dx dy dt = oo
to inf (I

Then there exist A1, Ay : I — (0,00), f I - R?, z,7: 1 =R, such that for any
n >0 there exists C(n) < oo such that

(5.7) /
2= (t)|> 5
C(n) ‘
(t

Y
(1> £

N 2
+/ . (€, )| d¢
[£1=E1(8)[>C(m)A1(2)

N 2
+/ . (&, 1)|" dg <.
€2 —&2(1)|>C(ma 1)

u(x,y,t)|2dxdy

(z,y,0)|* dady
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Proof. Take a sequence t,, € I. Then conservation of mass implies that after
passing to a subsequence we may make a profile decomposition of u(t,) = uy,.
If there exists j such that, along a subsequence, tJ, — +o00, say tJ, — oo, then

n n
(5.8) lim ||e/*%0 (g7 ™02 7|,

n—00 +.5,¢([0,00)xR2)

:0’

so combining perturbative arguments, (5.4), and the fact that u is a blowup
solution with minimal mass then u scatters forward in time to a free solution.
Thus, we may assume that for each j, tJ converges to some t/ € R. Then
taking e'’%9% @7 to be the new ¢/, we may assume that each tJ = 0.

Now suppose that

(5.9) S‘;pH@ijLg,y(R% < ||u(t)||L§,y(R2)'

Then if v7 is the solution to (2.1) with initial data ¢’ since ||u(t)||z2 is the
minimal mass for blowup to occur, each v’ scatters both forward and backward
in time, with

(5.10) ijHif;y,t(Rsz) < HWHigw < 00, uniformly in j.

Then if wj, is the solution to (2.1) with initial data g,
vl = gl (VI (A, 1 X, 5) ). We note that, for v either a profile v or the
remainder w;!,

6a) loiwkoll,g < lehekll, lollos

rv

z,y,t’

In addition, [|v||zs , remains bounded either by (5.10) (for v!) or as a con-

sequence of the small data theory and (5.2) (for w;)).
By approximation by compactly supported functions, it is easy to see that,

if j £,
(5.12) [vivr|l,.  —0
when n — 0o as a consequence of (5.5).

As a result, using simple perturbation theory, we obtain that, for J large
enough,

<1

T,y,t

and using again (5.11)-(5.12), we obtain that

J . 4 J .4 7 12
Soa® <Dl Sl <oo
j=1 Jj=1 J=1

which, together with (5.4) contradicts (5.6).

L4

z,y,t
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Thus, after reordering we should have ||¢'|| .2 , = llu@)llrz , and ¢’ =0 for
any j > 2. But this holds if and only if w(¢) lies in a set GK, where G is the
group generated by g/ and K is a compact set in L2. This completes the proof
of the theorem. O

A. Extremizers for Strichartz estimates for (1.2)

The purpose of this appendix is to study the extremizers for the Strichartz
inequality (1.3). We thus want to find f and C such that

A1) 1fllzz, =1,
’ ||6itazayf”Li’y,t :65: Sup{HeitazangLi’y,t : Hg”Li,y = 1}

We will see that this can be reduced to a similar question about the classical
Schrodinger equation which was already solved in [11]. This gives

PROPOSITION 14. The extremizers of (A.1) are Gaussians, up to scaling,
translations, modulations and pseudo-conformal transformations, i.e. func-
tions of the form

(A2) F(a,y) = A M= ly=az " tinzy hiatbay

for some AcC,\>0, n€R, a € R? andbe C2. As a consequence, C =2~ 1/4,

In the rest of this appendix, for simplicity of notation, we will denote x =
(71,22) the coordinates in R? (as opposed to (z,y)) and (£1,&) their Fourier
conjugates (as opposed to (£,1)). We may start from the Fourier transform
of the linear propagator

e &8 — e—%[ﬁf—ngh (01, 1) = (fl +& & — fg)

V2 V2
to obtain an integral formula for solutions, namely

1

(eit6182f) (z) = 5 /Rz 62%[(y17z1)27(y2fz2)2]f#(yhyz)dy,

. T1+ Ty T1— T2
with (z1,292) = ( , ,
V2
<y1 +Y2 Y1 — Y2
V2 V2

>

f#(ylayQ) = f

N———
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We may then compute that

ertonez £ |2, :// // o3 1va—=l3 ~lyo— =[5 +lye—= 13 ~lya—=13]
z1,T2,t R JR2 RS
dzdt
< f(ya)f (v )f(yc)f(yd)dy(2 i

e i Yalin—lwlh +lyelh —lyali] o (Va—yb+ye—va,2)n
r2 J JRS

_ - L, dzdt
X f(ya)f(yb)f(yc)f(yd)dy(%—t)4
where we have used
(T,y)h = T19y1 — T2Y2, =[5 = (z, 2)n, dy = dyq dyp dy. dyg.

Changing variables z =tk and integrating, we obtain

e 4|

z1,29,t

:// // o3 [19a = 1w 2+ w3 —val3] i (Vo —vo-+ve—va k)
R JR2 RS

2
< 10 ) (00T () 7 s

2 2 2 2
/// o a2 = yo 2 +ye 2 —val?]
]R8

f 7 L t2dt
< f(Ya) F (o) f (ye) F (ya) (27)? (ya — Yo + Ye — ya) dyw.
Changing now variables 7 = 1/2t, we obtain that
(A.3) H zt8182f#‘
zl xg,t
= / // i lyalh—lys 7 +1yeln —yali]
RJJRS
8m2dr

X f(Wa) F(yn) f(We) F(Ya)d(ya — yb + ye — yd)dy( o
/ £ ) ) £ (5e) F )

X 6(Ya — s + Ye — ¥a)d (|vali — lwolh + yeli — lyal7) 4y
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We may define the operator on L?(R%), K by

// (Ya, Ye)G (Yb, Ya)

X 6(Ya +Ye — yo — Ya)O ([val? + |vel? — ||} — |yal?) dg
(A.4) = (F, Ag),

¢ Ya»ye) / Gy, ya)0(Y — v — ya)§ (N — |ysl7 — |yal?) dyb dya,

Y:ya+yca :|ya|h+|yc‘h-

This operator is manifestly formally self-adjoint. We may observe that under
the change of variables

Ut (Yo Yas Ve Vo) = (Yas Ve Ve Va)
the following (three scalar) quantities remain invariant
Y=ys+y  N=lyals + el
and therefore,
A5) Ac(Yarye) = Ac(Yes Ya)-
AG (Yar var ver v2) = Ac (Yar Ye Ve Ya)-

The first symmetry is already evident from our choice of F(yq,y.) =
f(Ya)f(ye), but one could also have argued as we do below to take care
of this symmetry.

Decompose a L? function F into
F=F'+F  F'(y)=F"(v(y), Fy)=-F"(v(y))

we get an orthogonal decomposition of L?(R*) such that the range of K lies
in the invariant subspace. Using also the self-adjointness, we find that

(F,K[G)) =(F*,K[G"]),  |[F|%=|F"|

7=+ 1F2];

12
We thus see that a maximizer for (A.1), F, has to satisfy both symmetries
from (A.5):

F(yarye) = FWa) FYe) = f(Yarva) f (We-v2) = F(yarve) f(ve vz)

and this forces®

f(a,b) = ¢(a)y(b)
for some ¢, : R — C.

3 as in the usual Schrodinger equation: one integrates the inequality in yc.
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We may now come back to (A.3) and rewrite it as

Ztal 82 f# ‘

7|le
‘”1 xg,t

R T AT AT

X 6 (yh — b+t — b8 (2 — R + 2 —vd)

()" )"+ (1) 02)° — (02)° — ()" = (42)" — (o)) g
= [ R0 ()0 0R) - ST (22T v 2)

X 0 (Yo +Ye — Yy —va)0 (Vi + i —va —v2)

(R e (R R RV W ¥y
= [ (Fo HOGFS Hs(ar-(r=)(oz- (1)
x 6(Inl% — ICI%) dCdn
=Q(fef,fof)
where
la,b,c,d|% =a® + 02+ +d®,  f(a,b) = d(a)i(b),
041:(1’0’170)7 042:(0,1,0,1)

and Q2 is the quadratic form defined in [11, (2.18)]. The analysis in [11], shows

that fis an extremizer for the usual Strichartz inequality and that there exists
AeC, A>0, t€R, a €R? and b C? such that

f(21722) — Ae(—A+iu)|z1—a1|2+b1z1e(—k—iu)|zz—a2|2+b222
and we finally obtain (A.2).
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