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1. Long-time, scaling-critical Strichartz estimates on R X T

Define the norm on RxRx T = (Z+[0,1)) x R x T:
%

b
ol premy = ([ ([ sy as) (1)
ez €[0,1) \Jz,yeRxT

S

In this paper, we prove the following global in time Strichartz-type estimate:

Theorem 1.1. There exists C < oo such that for all f € L*(R x T),
”eitARXTfH€8L4(R,L4(R><T)) < Cfll2@xr)- (1.2)
This inequality is saturated' by two different families of functions of (z,y) € R x T:

Fn(x7y) = TLG(H \% z? + y2)l{n(w2+y2)§1}a fn(x7y) = n_%G(n_lm), (13)
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where G(s) = e=" is a Gaussian. These correspond respectively to saturators for Strichartz estimates in
2d and in 1d [12]. The exponents in (1.2) are optimal in the following sense: (i) on the one hand, since
eARXT f, (1, y) = n=3 (em*%am G)(n~1x) behaves as a (low-frequency) solution of the Schrédinger equation
on R, the exponent 8 in (1.2) cannot be lowered; (ii) on the other hand, since e®*“&xT I, behaves as a (high-
frequency) solution of the Schrédinger equation in R? (see e.g. [11, Lemma 4.2] for similar computations),
the exponent 4 cannot be changed if the righthand side is measured in L?.

Interpolating with the estimate® when ¢ =4 and p = oo,

~

HeitARXTPSNfHE4L°°(]R,L°°(]R><’]1')) S NHf”L?(]RxT)a FAP<nf} (&, k) = @(§/N)p(k/N)f(&, k),

where ¢ € C°(R) is a smooth bump function, and using boundedness of the square function, we obtain the
family of scaling invariant Strichartz estimates on R x T:

. 2 1 1
€8T £l pa o r, Loty S |l as®xT)s 7 + P 4<g<8 s=1- > (1.4)

Strichartz-type inequalities with mixed norms in the time variable of the form (1.1) were introduced in [9]
to study the asymptotic behavior of solutions to critical NLS on product spaces R™ x T¢ which are examples
of manifolds where the global dimension is smaller than the local dimension. Similar cases were later explored
in [6,14,15] and the sharp results when s > 0 was obtained in [1] using results from ¢2-decoupling [4].

However, to study NLS with data in L2, estimates with loss of derivatives are useless. This raised the
question of whether a Strichartz-type inequality with no loss of derivatives could hold for Schrédinger
equations on d-dimensional manifolds smaller at infinity than R?. For the torus T¢, for instance, a lossless
inequality like (1.2) does not hold, not even locally in time (that is, with a = o) as observed in [3]. In
fact, for manifolds “smaller” than R?, the only estimate known to the authors is the result from [13] which
obtains local version of (1.2) (with a = oo instead of a = 8). We refer e.g. to [2,5,7] for the study of Strichartz
estimates without losses in the presence of trapped geodesic.

As for nonlinear applications of (1.2), one can easily show local well-posedness of the cubic NLS in
L?(R x T), recovering the result in [13]. However, the long-time behavior is modified scattering as shown
in [10], which requires more information (and stronger control on initial data) than L?-Strichartz estimates
and it remains a challenging open question as to whether nonlinear solutions satisfy global bounds of the
type (1.2).

This leaves open some interesting questions:

(1) Can one extend this result to other semi-periodic settings, i.e., does an estimate like

" 2(n+d+2) 2(n+d+2)
T f”equ(R,Lp(Rden)) S Hf”LQ(]Rden): b= n+d y 4= d .

hold? This is settled for n + d < 2, but for higher values, p < 4 and the problem is much more
challenging.

(2) Can one understand and characterize optimizers of (1.2)? In principle, introducing a parameter for the
length of the torus (or the local time interval), one may expect that optimizers should vary smoothly
between the two families in (1.3).

(3) Can one obtain a good profile decomposition, i.e., study the defect of compactness of bounded sequences
in L2(R x T)?

2 This follows from variants of classical TT* estimates as in Ginibre-Velo [8], see [9, Section 3].

2



A. Barron, M. Christ and B. Pausader Nonlinear Analysis 206 (2021) 112172

2. Proof of Theorem 1.1

Since the analysis is done purely in the frequency space, we pass to the Fourier transform and consider
f € L*(R x Z), which corresponds to the Fourier transform of the function in (1.2). By homogeneity, we
may choose f to be of unit L? norm and by density we may assume that f is compactly supported so that
all integrals below converge absolutely. We let T = R/27Z and we define the Fourier transform on R x Z

27
flaw) =3 [ femetetarn,  gen =g [ /  gle)e ey

kEZ

Since we will take Fourier transforms, it will be convenient to replace the integral over [0,1) in (1.1) by an
integral over R. To do this, we introduce a Gaussian cutoff in time and let

2 . ~
Jy = (e X GHARTF 4 ). (2.1)
z,Y,
To prove (1.2), it will suffice to control the ¢*-norm of .J,. For simplicity of presentation, we let

£=(&1,62,83,6), = (k1, k2, ks, ka),
() =& & +& -4 =(1,-1,1,-1)), (k) = k1 — ko + k3 — Ky,
fj = f(gjakj)7 j € {173}3 fj :?(fjﬂkJ% j € {274}7

Q& k) = & + &) — |&f” — [&af” + [k |* + ks |” — [ka|* — [a]*.

We substitute ¢ — ¢+~ in (2.1) and expand .J3 into
3 / I,y - e UmRER | i@ v g | dudyar
ky /€184

4 __
Jy 7/
Tyt kq...

g /gg ;- e~ 3 QRN TemQER . 5((€))5((k))de.

k1...ka

K
3

An argument, of Takaoka-Tzevtkov [13] shows that each individual J3 is bounded, but we need to handle
the sum in v. We square ij and sum over v to get

J:szJis

YEZ
4 a7~ HQER)? - QU K)? —i ) —Q(€ K
— 167° Z e Iy fTIE f] - e 3(QER)"—1(QENKD) 'Ze 7[Q(E k) —Q(& k)] (2.2)
ki...k / /
k’i..,kz R !

HO((€N)IENI((k))O((K))dEdE
Using Poisson summation in v we observe that
S RER-QE ] Zar 37 64— Qe k) + QELK).
YEZL HE2TZ
Introducing the new notations
g = (517637§éa£4/1)7 E/ = (52’§47€i7£é)7
KZ: (kl,kgnké,ka), K/ = (k27k4,k/1,/€§)7
F(55 K) = f(€17 kl)f(EBa k3)f(§é7 kl?)f(gé/la k:;), F(E/a Kl) = f(£27 kQ)f(€4a k4)f(£iv kll)f(gév ké)a

b= 1= QUER) + QLK) = p— 2P = K + |2 + K,
3
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we arrive at

J=3m5 % F(E,K)F(E, K -K(5,K; 2, K') - d5d=’
K, K'eza’ 55
K(2,K; 5 K') = e 1[QEN +QE M E: 5(u)d((€))0((E7))((k))I((K)).
HE2TL

Using the Schur test, the inequality (1.2) follows from the next lemma.

Lemma 2.1. With the notations above,

swp >0 [ Kz Kz

(2,K)eRXZ4 7
Proof of Lemma 2.1. We need to bound

>3 [ e e 56, )(1€)8 (€S )I(K )z (2:3)

= 4
peznz grezh ” 5 ER

uniformly in (5, K) € R* x Z*. Below we occasionally write Q = Q(£,k) and Q' = Q(¢', K').
Using the polarization identity on the support of é(u — Q + Q'), we can bound

e~ 1Q7H@D] = —3[Q* Q)] - H[(Q+Q)7+(@Q-Q)] < o~ 151 o~ §[Q7 Q)]
Moreover, when () = 0 = (k) we can substitute

=86 —-&+& and kyi=k —ky+ ks
into (@ and then factor to obtain

QR = =2[I(& = carkr — )| — B2 .

(coycy) = (§1+§3’]€1+/€3)7 Rz_(§1§3)2+<k12k3>2

2 2 2

A similar identity holds for @’ when (') = 0 = (k’). Indeed, on the support of §({£'))d({k’)) we can substitute
G=-G+&+8& and ky=—k+k+k
into @’ and factor to obtain
QK =2 [|(¢1 — ki — )P = (R)?]
() = (S B (52 2 @) ( 2 k)

With these substitutions made, notice that

b = 1+ 2[|(E2 — o k2 — ¢,) P — B2+ 2[|(&] — &, ki — €)= (R)?]
and therefore

1 R2 + R’ 2 —u
60) = 200162 — couka — )P +1(6 — ki — ) — 4,0, 4, = EHE
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Using these observations to estimate (2.3) we arrive at

-1 —cg,ko—c 2_p2)? A ,klfc/ 2_(R"? 2i|
(2.3)§% > e~ ToH’ E’/e 2{[‘(52 a—ey) P =R+ [|(€] —chp ki — )12 —(R)?]
R2

Hne2rZ ko k)

2
0(1(62 = carka = &))" +1(&1 = ki = &))" = Ap)déads;
with ¢, ¢y, c;,, ¢, and A, defined as above. Notice that R and R’ only depend on (Z, K), and these variables
have been fixed. Since we also have exponential decay in p it therefore suffices to bound the integral

I= Z/ 6_% [||(C,H)—é\2_R2|2+H({’7,@’)—6’|2—(R’)2|2] 6(|(C,l‘i) _ 6|2 + |(C/’K1) _ 6/|2 _ A)dCdCI
(2.4)

uniformly in 6, ¢ e R2, A, R, R’ € R. Moreover, since 2¢y and 20’y are both integers we can assume the
second components of 6, C" are in %Z.

The integral in (2.4) is invariant with respect to translation on (R x Z) x (R x Z), and we may therefore
assume that C' = (0,¢), ¢' = (0,¢) for ¢, ¢ € {0, 1}. To control I we introduce sets where the exponential
factors behave nicely. When R > 50, we let

So={|(¢,k) = C| — R < R™'},
S;={l(¢,r) = C| =Rl € R '[j,j+1]}, 1<j<R3+1, (2.5)
Sw == {|(¢,x) = C| - R| > R™%}

and when R < 50, we let S; = ) and S = R x Z. These satisfy

1, (¢ m)e B IIEm=CP-R] < =47 (), 0<j<RY 41,

1 512 p2i2 = (2'6)
16,0 (¢ w2 @M =CP=REE] < —diem=Cly (¢ ).

N

Indeed, the estimate on S; in (2.6) follows by factoring the term in the exponential. To prove the estimate
on S note that if (¢, k) € Soo and R > 50 then

1(¢,8) = G = R?)> > [R73(|(¢, ) — €| + B)]* > |(¢,v) — C| + R.
On the other hand
1(¢,w) — G2 = R*? > |(¢.w) — C| — R -2,

and the estimate in (2.6) in Sy, follows if R < 50.
We first use (2.7) from Lemma 2.2 to control the contribution of Sy to (2.4). In particular

| Z//lsoo(c,/@)lsw(c’,n’)e—%[|\<<,n—c)\2—R2|2+\\(c’,n’—c’n?—(R’)?F]

K,k

S(CP |k =P+ [P+ K =P = A)dcdd
S 3 emallmelrn = / / SIS + |k — e + |¢'] + |6 — & — A)dcdc!

K,k

< 2 /2_ I <
N;g%//éud LICP - BYdcdc! < 1.
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Next, we consider
Ljco = Z//ls (¢, k)1 (1Yo B IGmP=RPPHIC W) 2= (R P]
o0 7 b) o0 b

(P + = e 1T+ | = ¢ = Aydcad
1.2 L= L1 2 2 n2 /
Sere e ) | [ enE s, (GmACE + b = e +ICT - Bjdcdc
We can split the integral above into two regions: (i) when || € [R — 10, R + 2], the sum is only over a
uniformly bounded number of  and we can use (2.7); and (i) when |x| < R—10, in which case we use (2.8)

and the rapid decay of ¢~1¢'l. In both cases, we obtain a bounded contribution after summing over j.
Finally, by symmetry, it remains to consider:

1 w—c)2—R2|2 12— (R2)2
ij:Z//lsj(c,H)lsp(C’m’)lﬂcwqu (1GNP (R

0(/(¢,m = e, ¢ K = )P — A)dgdd.
Note that we may assume R, R’ > 50 since otherwise S; or S, is empty. Using (2.6) we estimate
. 2
L, < 2e 20D [3), 432 ]

I, = > //1s‘jlgp5(|<|2+ k= >+ ¢ + | = &) = A)d¢dc,

R—10<|x],|x'|<R+10

2 2 2 2
2= [as | X [ 06 e e w107+ ¢ - A | e
K lk|<R—10"7¢
For J}p, we observe that the sum is only over a uniformly bounded number of %, k" and we can use (2.7). For
J?p, we can use (2.8) followed by Lemma 3.1. Summing over j, p, we obtain an acceptable contribution. [J

In the proof above, we have use two simple bounds that allow us to cancel two integrals.

Lemma 2.2. We have

sup / 5(C 4 n? — A)dCdn =7 (2.7)
A€eR J JR2
and, for S; defined as in (2.5) and R > 50,
su 15 (C,R)0(C2— A)dC <1,  0<j<R?+1
s Y / 5, (C.R)S(C? — A)dC j (2.8)

|| <R—10
Proof of Lemma 2.2. The first bound is direct after passing to polar coordinates. To prove (2.8), we may
assume R > 50. We first claim that

(C.w) €S, [K<R-10 = [¢|>RE(R—|s|—1)2 (2.9)
Indeed, on S;, we see that (2 + (k — ¢)? > R? — 3V/R for some c € {0, 1} and

>R+ k—c)(R-|k—c|]) —3VR>R(R—|s| — 1) + R/2 — 3VR.

Eliminating some terms and taking square roots give the result. To prove (2.8) we then apply a change of
variables along with (2.9) to estimate

_1
3 /1sj<<,m>6<c2—A>d<,s S RAR-|k -1,
|k|<R—10 |k|<R—10
which gives (2.8). O



A. Barron, M. Christ and B. Pausader Nonlinear Analysis 206 (2021) 112172

3. On volumes of annuli in R X Z

As we saw in the last section, the contribution of the integral I;, is controlled by the following geometric
lemma which says that the volume of a (large and thin) annulus in R X Z is proportional to its volume in
R?. The result is essentially Lemma 2.1 from [13].

Lemma 3.1.
For0<w<20< Rand0<|z| <1/2,
V(R,w) = |R¢ x Zy N{R* < > + (k + 2)* < (R+w)?*}| £ VRw + Rw.

As a consequence, for the sets in (2.5) we have |S;| S1 for 0 <j < R% 41.

Proof of Lemma 3.1. Let
(R+w)? —y? ifR<|y<R+w
VR+w)?—y?—/R2—y? i0<[|y| <R
be the length of the horizontal segment in the annulus under consideration at ordinate y. This is maximized

at |y| = R when it is at most v3Rw. In addition, for 27 < ||k + 2| — R| < 2P*! and 32 < 2P < R, we can
estimate

Uy) =

2Rw
VRVE — k — 21

Summing a bounded number of contributions when « + > R — 50 and the above bound otherwise, we

Uk + 1) < <4R22"Zuw.

conclude that the volume under consideration is at most

VS VRw+RwY 28 SVRw+ Rw. O
p

References

[1] A. Barron, On global-in-time Strichartz estimates for the semiperiodic Schrodinger equation, analysis and PDE, 2021,
arXiv:1901.01663, in press.

[2] J.M. Bouclet, Strichartz inequalities on surfaces with cusps, Int. Math. Res. Not. IMRN (24) (2015) 13437-13492.

[3] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution
equations I. Schrodinger equations, Geom. Funct. Anal. 3 (1993) 107-156.

[4] J. Bourgain, C. Demeter, The proof of the £?-decoupling conjecture, Ann. Math. 182 (1) (2015) 351-389.

[5] N. Burg, C. Guillarmou, A. Hassell, Strichartz estimates without loss on manifolds with hyperbolic trapped geodesics,
Geom. Funct. Anal. 20 (2010) 627, https://doi.org/10.1007/s00039-010-0076-5.

6] X. Cheng, Z. Guo, Z. Zhao, On scattering for the defocusing quintic nonlinear Schrédinger equation on the two
dimensional cylinder, preprint.

[7] H. Christianson, Near sharp strichartz estimates with loss in the presence of degenerate hyperbolic trapping, Comm.
Math. Phys. 324 (3) (2013) 657-693.

[8] J. Ginibre, G. Velo, Generalized strichartz inequalities for the wave equation, J. Funct. Anal. 133 (1995) 50-68.

[9] Z. Hani, B. Pausader, On scattering for the quintic defocusing nonlinear Schrédinger equation on R x T2, Comm. Pure
Appl. Math. 67 (9) (2014) 1466-1542.

[10] Z. Hani, B. Pausader, N. Tzvetkov, N. Visciglia, Modified scattering for the cubic Schrédinger equation on product
spaces and applications, Forum Math. Pi. 3 (2015) e4.

[11] A. Tonescu, B. Pausader, Global well-posedness of the energy-critical defocusing NLS on R x T3, Comm. Math. Phys.
312 (3) (2012) 781-831.

[12] R. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke
Math. J. 44 (3) (1977) 705-714.

[13] H. Takaoka, N. Tzvetkov, On 2D nonlinear Schrodinger equations with data on R x T, J. Funct. Anal. 182 (2001)
427-442.

[14] Z. Zhao, Global well-posedness and scattering for the defocusing cubic Schrédinger equation on waveguide R? x T2, J.
Hyperbolic Diff. Equations (2021) in press.

[15] Z. Zhao, On scattering for the defocusing nonlinear Schrodinger equation on waveguide R™ x T (when m = 2,3), J.
Differ. Equ. 275 (2021) 598-637, http://dx.doi.org/10.1016/j.jde.2020.11.023.


http://arxiv.org/abs/1901.01663
http://arxiv.org/abs/1901.01663
http://arxiv.org/abs/1901.01663
http://arxiv.org/abs/1901.01663
http://arxiv.org/abs/1901.01663
http://arxiv.org/abs/1901.01663
http://arxiv.org/abs/1901.01663
http://arxiv.org/abs/1901.01663
http://arxiv.org/abs/1901.01663
http://arxiv.org/abs/1901.01663
http://arxiv.org/abs/1901.01663
http://arxiv.org/abs/1901.01663
http://arxiv.org/abs/1901.01663
http://arxiv.org/abs/1901.01663
http://arxiv.org/abs/1901.01663
http://arxiv.org/abs/1901.01663
http://refhub.elsevier.com/S0362-546X(20)30321-7/sb2
http://refhub.elsevier.com/S0362-546X(20)30321-7/sb3
http://refhub.elsevier.com/S0362-546X(20)30321-7/sb3
http://refhub.elsevier.com/S0362-546X(20)30321-7/sb3
http://refhub.elsevier.com/S0362-546X(20)30321-7/sb4
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
https://doi.org/10.1007/s00039-010-0076-5
http://refhub.elsevier.com/S0362-546X(20)30321-7/sb7
http://refhub.elsevier.com/S0362-546X(20)30321-7/sb7
http://refhub.elsevier.com/S0362-546X(20)30321-7/sb7
http://refhub.elsevier.com/S0362-546X(20)30321-7/sb8
http://refhub.elsevier.com/S0362-546X(20)30321-7/sb9
http://refhub.elsevier.com/S0362-546X(20)30321-7/sb9
http://refhub.elsevier.com/S0362-546X(20)30321-7/sb9
http://refhub.elsevier.com/S0362-546X(20)30321-7/sb10
http://refhub.elsevier.com/S0362-546X(20)30321-7/sb10
http://refhub.elsevier.com/S0362-546X(20)30321-7/sb10
http://refhub.elsevier.com/S0362-546X(20)30321-7/sb11
http://refhub.elsevier.com/S0362-546X(20)30321-7/sb11
http://refhub.elsevier.com/S0362-546X(20)30321-7/sb11
http://refhub.elsevier.com/S0362-546X(20)30321-7/sb12
http://refhub.elsevier.com/S0362-546X(20)30321-7/sb12
http://refhub.elsevier.com/S0362-546X(20)30321-7/sb12
http://refhub.elsevier.com/S0362-546X(20)30321-7/sb13
http://refhub.elsevier.com/S0362-546X(20)30321-7/sb13
http://refhub.elsevier.com/S0362-546X(20)30321-7/sb13
http://refhub.elsevier.com/S0362-546X(20)30321-7/sb14
http://refhub.elsevier.com/S0362-546X(20)30321-7/sb14
http://refhub.elsevier.com/S0362-546X(20)30321-7/sb14
http://dx.doi.org/10.1016/j.jde.2020.11.023

	Global endpoint Strichartz estimates for Schrodinger equations on the cylinder R ×T
	Long-time, scaling-critical Strichartz estimates on RT
	Proof of thm1.1
	On volumes of annuli in RZ
	References


