

Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

Global endpoint Strichartz estimates for Schrödinger equations on the cylinder $\mathbb{R} \times \mathbb{T}^{*}$

Alexander Barron ^a, Michael Christ ^b, Benoit Pausader ^{c,*}

- ^a University of Illinois at Urbana-Champaign, United States of America
- ^b University of California, Berkeley, United States of America
- ^c Brown University, United States of America

ARTICLE INFO

ABSTRACT

Article history: Received 1 July 2020 Accepted 12 October 2020 Communicated by Claudio Munoz

Keywords: Strichartz estimates Schrodinger equations Dispersive equations on wave-guides

We prove global in time Strichartz estimates on the semi-periodic cylinder with initial data in L². This extends the local results of Takaoka-Tzvetkov [13] and the global estimates with loss of derivatives of Hani-Pausader [9] and Barron [1]. © 2020 Published by Elsevier Ltd.

1. Long-time, scaling-critical Strichartz estimates on $\mathbb{R} \times \mathbb{T}$

Define the norm on $\mathbb{R} \times \mathbb{R} \times \mathbb{T} = (\mathbb{Z} + [0, 1)) \times \mathbb{R} \times \mathbb{T}$:

$$||u||_{\ell^{a}L^{b}(\mathbb{R},L^{c}(\mathbb{R}\times\mathbb{T}))}^{a} := \sum_{\gamma\in\mathbb{Z}} \left(\int_{s\in[0,1)} \left(\int_{x,y\in\mathbb{R}\times\mathbb{T}} |u(\gamma+s,x,y)|^{c} dx dy \right)^{\frac{b}{c}} ds \right)^{\frac{a}{b}}. \tag{1.1}$$

In this paper, we prove the following global in time Strichartz-type estimate:

Theorem 1.1. There exists $C < \infty$ such that for all $f \in L^2(\mathbb{R} \times \mathbb{T})$,

$$||e^{it\Delta_{\mathbb{R}\times\mathbb{T}}}f||_{\ell^{8}L^{4}(\mathbb{R},L^{4}(\mathbb{R}\times\mathbb{T}))} \le C||f||_{L^{2}(\mathbb{R}\times\mathbb{T})}.$$
(1.2)

This inequality is saturated by two different families of functions of $(x,y) \in \mathbb{R} \times \mathbb{T}$:

$$F_n(x,y) = nG(n\sqrt{x^2 + y^2})\mathbf{1}_{\{n(x^2 + y^2) \le 1\}}, \quad f_n(x,y) = n^{-\frac{1}{2}}G(n^{-1}x), \tag{1.3}$$

The second author was supported in part by NSF, United States of America grant DMS-1901413. The third author was supported in part by NSF, United States of America grant DMS-1700282.

E-mail addresses: aabarron@illinois.edu (A. Barron), mchrist@berkeley.edu (M. Christ), benoit pausader@brown.edu

¹ In the sense that the quotient of both sides converges to a nonzero constant as $n \to \infty$.

where $G(s) = e^{-s^2}$ is a Gaussian. These correspond respectively to saturators for Strichartz estimates in 2d and in 1d [12]. The exponents in (1.2) are optimal in the following sense: (i) on the one hand, since $e^{it\Delta_{\mathbb{R}\times\mathbb{T}}}f_n(x,y)=n^{-\frac{1}{2}}(e^{in^{-2}t\partial_{xx}}G)(n^{-1}x)$ behaves as a (low-frequency) solution of the Schrödinger equation on \mathbb{R} , the exponent 8 in (1.2) cannot be lowered; (ii) on the other hand, since $e^{it\Delta_{\mathbb{R}\times\mathbb{T}}}F_n$ behaves as a (high-frequency) solution of the Schrödinger equation in \mathbb{R}^2 (see e.g. [11, Lemma 4.2] for similar computations), the exponent 4 cannot be changed if the righthand side is measured in L^2 .

Interpolating with the estimate when q = 4 and $p = \infty$,

$$\|e^{it\Delta_{\mathbb{R}\times\mathbb{T}}}P_{\leq N}f\|_{\ell^4L^\infty(\mathbb{R},L^\infty(\mathbb{R}\times\mathbb{T}))}\lesssim N\|f\|_{L^2(\mathbb{R}\times\mathbb{T})},\qquad \mathcal{F}\left\{P_{\leq N}f\right\}(\xi,k)=\varphi(\xi/N)\varphi(k/N)\widehat{f}(\xi,k),$$

where $\varphi \in C_c^{\infty}(\mathbb{R})$ is a smooth bump function, and using boundedness of the square function, we obtain the family of scaling invariant Strichartz estimates on $\mathbb{R} \times \mathbb{T}$:

$$\|e^{it\Delta_{\mathbb{R}\times\mathbb{T}}}f\|_{\ell^q L^p(\mathbb{R}, L^p(\mathbb{R}\times\mathbb{T}))} \lesssim \|f\|_{H^s(\mathbb{R}\times\mathbb{T})}, \quad \frac{2}{q} + \frac{1}{p} = \frac{1}{2}, \quad 4 < q \le 8, \quad s = 1 - \frac{4}{p}. \tag{1.4}$$

Strichartz-type inequalities with mixed norms in the time variable of the form (1.1) were introduced in [9] to study the asymptotic behavior of solutions to critical NLS on product spaces $\mathbb{R}^n \times \mathbb{T}^d$ which are examples of manifolds where the global dimension is smaller than the local dimension. Similar cases were later explored in [6,14,15] and the sharp results when s > 0 was obtained in [1] using results from ℓ^2 -decoupling [4].

However, to study NLS with data in L^2 , estimates with loss of derivatives are useless. This raised the question of whether a Strichartz-type inequality with no loss of derivatives could hold for Schrödinger equations on d-dimensional manifolds smaller at infinity than \mathbb{R}^d . For the torus \mathbb{T}^d , for instance, a lossless inequality like (1.2) does not hold, not even locally in time (that is, with $a = \infty$) as observed in [3]. In fact, for manifolds "smaller" than \mathbb{R}^2 , the only estimate known to the authors is the result from [13] which obtains local version of (1.2) (with $a = \infty$ instead of a = 8). We refer e.g. to [2,5,7] for the study of Strichartz estimates without losses in the presence of trapped geodesic.

As for nonlinear applications of (1.2), one can easily show local well-posedness of the cubic NLS in $L^2(\mathbb{R} \times \mathbb{T})$, recovering the result in [13]. However, the long-time behavior is modified scattering as shown in [10], which requires more information (and stronger control on initial data) than L^2 -Strichartz estimates and it remains a challenging open question as to whether nonlinear solutions satisfy global bounds of the type (1.2).

This leaves open some interesting questions:

(1) Can one extend this result to other semi-periodic settings, i.e., does an estimate like

$$\|e^{it\Delta_{\mathbb{R}^d\times\mathbb{T}^n}}f\|_{\ell^qL^p(\mathbb{R},L^p(\mathbb{R}^d\times\mathbb{T}^n))}\lesssim \|f\|_{L^2(\mathbb{R}^d\times\mathbb{T}^n)},\quad p=\frac{2(n+d+2)}{n+d},\ q=\frac{2(n+d+2)}{d}.$$

hold? This is settled for $n+d \leq 2$, but for higher values, p < 4 and the problem is much more challenging.

- (2) Can one understand and characterize optimizers of (1.2)? In principle, introducing a parameter for the length of the torus (or the local time interval), one may expect that optimizers should vary smoothly between the two families in (1.3).
- (3) Can one obtain a good profile decomposition, i.e., study the defect of compactness of bounded sequences in $L^2(\mathbb{R} \times \mathbb{T})$?

² This follows from variants of classical TT^* estimates as in Ginibre-Velo [8], see [9, Section 3].

2. Proof of Theorem 1.1

Since the analysis is done purely in the frequency space, we pass to the Fourier transform and consider $f \in L^2(\mathbb{R} \times \mathbb{Z})$, which corresponds to the Fourier transform of the function in (1.2). By homogeneity, we may choose f to be of unit L^2 norm and by density we may assume that f is compactly supported so that all integrals below converge absolutely. We let $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$ and we define the Fourier transform on $\mathbb{R} \times \mathbb{Z}$

$$\widehat{f}(x,y) = \sum_{k \in \mathbb{Z}} \int_{\mathbb{R}} f(\xi,k) e^{ix\xi} e^{iky} dx, \qquad \widecheck{g}(\xi,k) = \frac{1}{(2\pi)^2} \int_{\mathbb{R}} \int_{y=0}^{2\pi} g(x,y) e^{-ix\xi} e^{-iky} dy dx.$$

Since we will take Fourier transforms, it will be convenient to replace the integral over [0,1) in (1.1) by an integral over \mathbb{R} . To do this, we introduce a Gaussian cutoff in time and let

$$J_{\gamma} := \|e^{-\frac{1}{4}(t-\gamma)^2} e^{it\Delta_{\mathbb{R}\times\mathbb{T}}} \widehat{f}\|_{L^4_{x,y,t}(\mathbb{R}\times\mathbb{T}\times\mathbb{R})}. \tag{2.1}$$

To prove (1.2), it will suffice to control the ℓ^8 -norm of J_{γ} . For simplicity of presentation, we let

$$\vec{\xi} = (\xi_1, \xi_2, \xi_3, \xi_4), \qquad \vec{k} = (k_1, k_2, k_3, k_4),$$

$$\langle \xi \rangle = \xi_1 - \xi_2 + \xi_3 - \xi_4 = \langle \vec{\xi}, (1, -1, 1, -1) \rangle, \qquad \langle k \rangle = k_1 - k_2 + k_3 - k_4,$$

$$f_j = f(\xi_j, k_j), \ j \in \{1, 3\}, \qquad f_j = \overline{f}(\xi_j, k_j), \ j \in \{2, 4\},$$

$$Q(\xi, k) = |\xi_1|^2 + |\xi_3|^2 - |\xi_2|^2 - |\xi_4|^2 + |k_1|^2 + |k_3|^2 - |k_2|^2 - |k_4|^2.$$

We substitute $t \to t + \gamma$ in (2.1) and expand J_{γ}^4 into

$$\begin{split} J_{\gamma}^4 &= \int_{x,y,t} \left[\sum_{k_1...k_4} \int_{\xi_1...\xi_4} \Pi_{j=1}^4 f_j \cdot e^{-t^2} e^{-i(t+\gamma)Q(\xi,k)} \cdot e^{ix\langle\xi\rangle} e^{iy\langle k\rangle} d\vec{\xi} \right] dx dy dt \\ &= 4\pi^{\frac{5}{2}} \sum_{k_1...k_4} \int_{\xi_1...\xi_4} \Pi_j f_j \cdot e^{-\frac{1}{4}(Q(\xi,k))^2} e^{-i\gamma Q(\xi,k)} \cdot \delta(\langle\xi\rangle) \delta(\langle k\rangle) d\vec{\xi}. \end{split}$$

An argument of Takaoka-Tzevtkov [13] shows that each individual J_{γ}^4 is bounded, but we need to handle the sum in γ . We square J_{γ}^4 and sum over γ to get

$$\mathcal{J} := \sum_{\gamma \in \mathbb{Z}} J_{\gamma}^{8}$$

$$= 16\pi^{5} \sum_{\substack{k_{1} \dots k_{4} \\ k'_{1} \dots k'_{4}}} \int_{\substack{\xi_{1} \dots \xi_{4}, \\ \xi'_{1} \dots \xi'_{4}}} \Pi_{j=1}^{4} f_{j} \overline{\Pi_{l=1}^{4} f'_{l}} \cdot e^{-\frac{1}{4}(Q(\xi,k))^{2}} e^{-\frac{1}{4}(Q(\xi',k'))^{2}} \cdot \sum_{\gamma} e^{-i\gamma \left[Q(\xi,k) - Q(\xi',k')\right]}$$

$$\cdot \delta(\langle \xi \rangle) \delta(\langle \xi' \rangle) \delta(\langle k \rangle) \delta(\langle k' \rangle) d\vec{\xi} d\vec{\xi'}.$$
(2.2)

Using Poisson summation in γ we observe that

$$\sum_{\gamma \in \mathbb{Z}} e^{-i\gamma \left[Q(\xi,k) - Q(\xi',k')\right]} = 2\pi \sum_{\mu \in 2\pi\mathbb{Z}} \delta(\mu - Q(\xi,k) + Q(\xi',k')).$$

Introducing the new notations

$$\begin{split} \Xi &\coloneqq (\xi_1, \xi_3, \xi_2', \xi_4'), \qquad \Xi' \coloneqq (\xi_2, \xi_4, \xi_1', \xi_3'), \\ K &\coloneqq (k_1, k_3, k_2', k_4'), \qquad K' \coloneqq (k_2, k_4, k_1', k_3'), \\ F(\Xi, K) &\coloneqq f(\xi_1, k_1) f(\xi_3, k_3) f(\xi_2', k_2') f(\xi_4', k_4'), \quad F(\Xi', K') \coloneqq f(\xi_2, k_2) f(\xi_4, k_4) f(\xi_1', k_1') f(\xi_3', k_3'), \\ \phi_\mu &\coloneqq \mu - Q(\xi, k) + Q(\xi', k') = \mu - |\Xi|^2 - |K|^2 + |\Xi'|^2 + |K'|^2, \end{split}$$

we arrive at

$$\mathcal{J} = 32\pi^{6} \sum_{K,K' \in \mathbb{Z}^{4}} \int_{\Xi,\Xi'} F(\Xi,K) \overline{F(\Xi',K')} \cdot \mathcal{K}(\Xi,K;\Xi',K') \cdot d\Xi d\Xi'$$

$$\mathcal{K}(\Xi,K;\Xi',K') := e^{-\frac{1}{4} \left[Q(\xi,k)^{2} + Q(\xi',k')^{2} \right]} \cdot \sum_{\mu \in 2\pi\mathbb{Z}} \delta(\phi_{\mu}) \delta(\langle \xi \rangle) \delta(\langle \xi' \rangle) \delta(\langle k \rangle) \delta(\langle k' \rangle).$$

Using the Schur test, the inequality (1.2) follows from the next lemma.

Lemma 2.1. With the notations above,

$$\sup_{(\varXi,K)\in\mathbb{R}^4\times\mathbb{Z}^4}\sum_{K'\in\mathbb{Z}^4}\int\mathcal{K}(\varXi,K;\varXi',K')d\varXi'<\infty.$$

Proof of Lemma 2.1. We need to bound

$$\sum_{\mu \in 2\pi\mathbb{Z}} \sum_{K' \in \mathbb{Z}^4} \int_{\Xi' \in \mathbb{R}^4} e^{-\frac{1}{4} \left[Q(\xi, k)^2 + Q(\xi', k')^2 \right]} \delta(\phi_{\mu}) \delta(\langle \xi \rangle) \delta(\langle \xi' \rangle) \delta(\langle k \rangle) \delta(\langle k' \rangle) d\Xi' \tag{2.3}$$

uniformly in $(\Xi, K) \in \mathbb{R}^4 \times \mathbb{Z}^4$. Below we occasionally write $Q = Q(\xi, k)$ and $Q' = Q(\xi', k')$. Using the polarization identity on the support of $\delta(\mu - Q + Q')$, we can bound

$$e^{-\frac{1}{4}\left[Q^2+(Q')^2\right]}=e^{-\frac{1}{8}\left[Q^2+(Q')^2\right]}e^{-\frac{1}{16}\left[(Q+Q')^2+(Q-Q')^2\right]}\leq e^{-\frac{1}{16}\mu^2}e^{-\frac{1}{8}\left[Q^2+(Q')^2\right]}.$$

Moreover, when $\langle \xi \rangle = 0 = \langle k \rangle$ we can substitute

$$\xi_4 = \xi_1 - \xi_2 + \xi_3$$
 and $k_4 = k_1 - k_2 + k_3$

into Q and then factor to obtain

$$Q(\xi, k) = -2\left[\left|(\xi_2 - c_x, k_2 - c_y)\right|^2 - R^2\right],$$

$$(c_x, c_y) = \left(\frac{\xi_1 + \xi_3}{2}, \frac{k_1 + k_3}{2}\right), \qquad R^2 = \left(\frac{\xi_1 - \xi_3}{2}\right)^2 + \left(\frac{k_1 - k_3}{2}\right)^2.$$

A similar identity holds for Q' when $\langle \xi' \rangle = 0 = \langle k' \rangle$. Indeed, on the support of $\delta(\langle \xi' \rangle) \delta(\langle k' \rangle)$ we can substitute

$$\xi_3' = -\xi_1' + \xi_2' + \xi_4'$$
 and $k_3' = -k_1' + k_2' + k_4'$

into Q' and factor to obtain

$$\begin{split} Q(\xi',k') &= 2 \left[\left| (\xi_1' - c_x', k_1' - c_y') \right|^2 - (R')^2 \right], \\ (c_x',c_y') &= (\frac{\xi_2' + \xi_4'}{2}, \frac{k_2' + k_4'}{2}), \qquad (R')^2 = \left(\frac{\xi_2' - \xi_4'}{2} \right)^2 + \left(\frac{k_2' - k_4'}{2} \right)^2. \end{split}$$

With these substitutions made, notice that

$$\phi_{\mu} = \mu + 2[|(\xi_2 - c_x, k_2 - c_y)|^2 - R^2] + 2[|(\xi_1' - c_x', k_1' - c_y')|^2 - (R')^2]$$

and therefore

$$\delta(\phi_{\mu}) = \frac{1}{2}\delta(\left|\left(\xi_{2} - c_{x}, k_{2} - c_{y}\right)\right|^{2} + \left|\left(\xi_{1}' - c_{x}', k_{1}' - c_{y}'\right)\right|^{2} - A_{\mu}\right), \qquad A_{\mu} = \frac{R^{2} + (R')^{2} - \mu}{2}.$$

Using these observations to estimate (2.3) we arrive at

$$(2.3) \leq \frac{1}{2} \sum_{\mu \in 2\pi\mathbb{Z}} e^{-\frac{1}{16}\mu^2} \sum_{k_2, k_1'} \int_{\mathbb{R}^2} e^{-\frac{1}{2} \left[\left[\left| (\xi_2 - c_x, k_2 - c_y) \right|^2 - R^2 \right]^2 + \left[\left| (\xi_1' - c_x', k_1' - c_y') \right|^2 - (R')^2 \right]^2 \right]} \\ \delta(\left| (\xi_2 - c_x, k_2 - c_y) \right|^2 + \left| (\xi_1' - c_x', k_1' - c_y') \right|^2 - A_\mu) d\xi_2 d\xi_1'$$

with c_x, c_y, c_x', c_y' , and A_μ defined as above. Notice that R and R' only depend on (Ξ, K) , and these variables have been fixed. Since we also have exponential decay in μ it therefore suffices to bound the integral

$$\mathbf{I} := \sum_{\kappa,\kappa'} \int_{\zeta,\zeta'} e^{-\frac{1}{2} \left[||(\zeta,\kappa) - \vec{C}|^2 - R^2|^2 + ||(\zeta',\kappa') - \vec{C}'|^2 - (R')^2|^2 \right]} \delta(|(\zeta,\kappa) - \vec{C}|^2 + |(\zeta',\kappa') - \vec{C}'|^2 - A) d\zeta d\zeta'$$
(2.4)

uniformly in $\vec{C}, \vec{C}' \in \mathbb{R}^2$, $A, R, R' \in \mathbb{R}$. Moreover, since $2c_y$ and $2c_y'$ are both integers we can assume the second components of \vec{C}, \vec{C}' are in $\frac{1}{2}\mathbb{Z}$.

The integral in (2.4) is invariant with respect to translation on $(\mathbb{R} \times \mathbb{Z}) \times (\mathbb{R} \times \mathbb{Z})$, and we may therefore assume that $\vec{C} = (0, c)$, $\vec{C}' = (0, c')$ for $c, c' \in \{0, \frac{1}{2}\}$. To control **I** we introduce sets where the exponential factors behave nicely. When $R \geq 50$, we let

$$S_{0} := \{ |(\zeta, \kappa) - \vec{C}| - R| \le R^{-1} \},$$

$$S_{j} := \{ |(\zeta, \kappa) - \vec{C}| - R| \in R^{-1}[j, j + 1] \}, \qquad 1 \le j \le R^{\frac{1}{2}} + 1,$$

$$S_{\infty} := \{ |(\zeta, \kappa) - \vec{C}| - R| \ge R^{-\frac{1}{2}} \}$$

$$(2.5)$$

and when $R \leq 50$, we let $S_i = \emptyset$ and $S_{\infty} = \mathbb{R} \times \mathbb{Z}$. These satisfy

$$\mathbf{1}_{\mathcal{S}_{j}}(\zeta,\kappa)e^{-\frac{1}{2}\left[||(\zeta,\kappa)-\vec{C}|^{2}-R^{2}|^{2}\right]} \lesssim e^{-\frac{1}{2}j^{2}}\mathbf{1}_{\mathcal{S}_{j}}(\zeta,\kappa), \quad 0 \leq j \leq R^{\frac{1}{2}}+1,$$

$$\mathbf{1}_{\mathcal{S}_{\infty}}(\zeta,\kappa)e^{-\frac{1}{2}\left[||(\zeta,\kappa)-\vec{C}|^{2}-R^{2}|^{2}\right]} \lesssim e^{-\frac{1}{2}|(\zeta,\kappa)-\vec{C}|}\mathbf{1}_{\mathcal{S}_{\infty}}(\zeta,\kappa).$$
(2.6)

Indeed, the estimate on S_j in (2.6) follows by factoring the term in the exponential. To prove the estimate on S_{∞} note that if $(\zeta, \kappa) \in S_{\infty}$ and $R \geq 50$ then

$$||(\zeta,\kappa) - \vec{C}|^2 - R^2|^2 \ge \left[R^{-\frac{1}{2}}(|(\zeta,\kappa) - \vec{C}| + R)\right]^2 \ge |(\zeta,\kappa) - \vec{C}| + R.$$

On the other hand

$$||(\zeta, \kappa) - \vec{C}|^2 - R^2|^2 \ge |(\zeta, \kappa) - \vec{C}| - R - 2,$$

and the estimate in (2.6) in S_{∞} follows if $R \leq 50$.

We first use (2.7) from Lemma 2.2 to control the contribution of \mathcal{S}_{∞} to (2.4). In particular

$$\begin{split} \mathbf{I}_{\infty\infty} &:= \sum_{\kappa,\kappa'} \iint \mathbf{1}_{\mathcal{S}_{\infty}}(\zeta,\kappa) \mathbf{1}_{\mathcal{S}_{\infty}}(\zeta',\kappa') e^{-\frac{1}{2} \left[||(\zeta,\kappa-c)|^2 - R^2|^2 + ||(\zeta',\kappa'-c')|^2 - (R')^2|^2 \right]} \\ & \cdot \delta(|\zeta|^2 + |\kappa-c|^2 + |\zeta'|^2 + |\kappa'-c'|^2 - A) d\zeta d\zeta' \\ & \lesssim \sum_{\kappa,\kappa'} e^{-\frac{1}{2} (|\kappa-c| + |\kappa'-c'|)} \iint \delta(|\zeta|^2 + |\kappa-c|^2 + |\zeta'|^2 + |\kappa'-c'|^2 - A) d\zeta d\zeta' \\ & \lesssim \sup_{B \in \mathbb{R}} \iint \delta(|\zeta|^2 + |\zeta'|^2 - B) d\zeta d\zeta' \lesssim 1. \end{split}$$

Next, we consider

$$\begin{split} \mathbf{I}_{j\infty} &= \sum_{\kappa,\kappa'} \iint \mathbf{1}_{\mathcal{S}_{j}}(\zeta,\kappa) \mathbf{1}_{\mathcal{S}_{\infty}}(\zeta',\kappa') e^{-\frac{1}{2} \left[||(\zeta,\kappa)|^{2} - R^{2}|^{2} + ||(\zeta',\kappa')|^{2} - (R')^{2}|^{2} \right]} \\ & \cdot \delta(|\zeta|^{2} + |\kappa - c|^{2} + |\zeta'|^{2} + |\kappa' - c'|^{2} - A) d\zeta d\zeta' \\ &\lesssim e^{-\frac{1}{2}j^{2}} \sum_{\kappa'} e^{-\frac{1}{2}|\kappa' - c'|} \sup_{B} \sum_{\kappa} \iint e^{-\frac{1}{2}|\zeta'|} \mathbf{1}_{\mathcal{S}_{j}}(\zeta,\kappa) \delta(|\zeta|^{2} + |\kappa - c|^{2} + |\zeta'|^{2} - B) d\zeta d\zeta'. \end{split}$$

We can split the integral above into two regions: (i) when $|\kappa| \in [R-10, R+2]$, the sum is only over a uniformly bounded number of κ and we can use (2.7); and (ii) when $|\kappa| \leq R-10$, in which case we use (2.8) and the rapid decay of $e^{-|\zeta'|}$. In both cases, we obtain a bounded contribution after summing over j.

Finally, by symmetry, it remains to consider:

$$\mathbf{I}_{jp} = \sum_{\kappa,\kappa'} \iint \mathbf{1}_{\mathcal{S}_j}(\zeta,\kappa) \mathbf{1}_{\mathcal{S}_p}(\zeta',\kappa') \mathbf{1}_{\{|\zeta'| \le |\zeta|\}} e^{-\frac{1}{2} \left[||(\zeta,\kappa-c)|^2 - R^2|^2 + ||(\zeta',\kappa'-c')|^2 - (R')^2|^2\right]} \cdot \delta(|(\zeta,\kappa-c,\zeta',\kappa'-c')|^2 - A) d\zeta d\zeta'.$$

Note that we may assume $R, R' \geq 50$ since otherwise S_i or S_p is empty. Using (2.6) we estimate

$$\begin{split} \mathbf{I}_{jp} & \leq 2e^{-\frac{1}{2}(j^{2}+p^{2})} \left[\mathbf{J}_{jp}^{1} + \mathbf{J}_{jp}^{2} \right], \\ \mathbf{J}_{jp}^{1} & = \sum_{R-10 \leq |\kappa|, |\kappa'| \leq R+10} \iint \mathbf{1}_{\mathcal{S}_{j}} \mathbf{1}_{\mathcal{S}_{p}} \delta(|\zeta|^{2} + |\kappa - c|^{2} + |\zeta'|^{2} + |\kappa' - c'|^{2} - A) d\zeta d\zeta', \\ \mathbf{J}_{jp}^{2} & = \sum_{\kappa'} \int_{\zeta'} \mathbf{1}_{\mathcal{S}_{p}} \left(\sum_{|\kappa| \leq R-10} \int_{\zeta} \mathbf{1}_{\mathcal{S}_{j}} \delta(|\zeta|^{2} + |\kappa - c|^{2} + |\zeta'|^{2} + |\kappa' - c'|^{2} - A) d\zeta \right) d\zeta'. \end{split}$$

For \mathbf{J}_{jp}^1 , we observe that the sum is only over a uniformly bounded number of κ, κ' and we can use (2.7). For \mathbf{J}_{jp}^2 , we can use (2.8) followed by Lemma 3.1. Summing over j, p, we obtain an acceptable contribution. \square

In the proof above, we have use two simple bounds that allow us to cancel two integrals.

Lemma 2.2. We have

$$\sup_{A \in \mathbb{R}} \iint_{\mathbb{R}^2} \delta(\zeta^2 + \eta^2 - A) d\zeta d\eta = \pi \tag{2.7}$$

and, for S_i defined as in (2.5) and R > 50,

$$\sup_{A \in \mathbb{R}} \sum_{|\kappa| \le R - 10} \int_{\mathbb{R}} \mathbf{1}_{\mathcal{S}_j}(\zeta, \kappa) \delta(\zeta^2 - A) d\zeta \lesssim 1, \qquad 0 \le j \le R^{\frac{1}{2}} + 1.$$
(2.8)

Proof of Lemma 2.2. The first bound is direct after passing to polar coordinates. To prove (2.8), we may assume $R \ge 50$. We first claim that

$$(\zeta, \kappa) \in \mathcal{S}_j, \quad |\kappa| \le R - 10 \quad \Rightarrow \quad |\zeta| \ge R^{\frac{1}{2}} (R - |\kappa| - 1)^{\frac{1}{2}} \tag{2.9}$$

Indeed, on S_i , we see that $\zeta^2 + (\kappa - c)^2 \ge R^2 - 3\sqrt{R}$ for some $c \in \{0, \frac{1}{2}\}$ and

$$\zeta^2 \ge (R + |\kappa - c|)(R - |\kappa - c|) - 3\sqrt{R} \ge R(R - |\kappa| - 1) + R/2 - 3\sqrt{R}.$$

Eliminating some terms and taking square roots give the result. To prove (2.8) we then apply a change of variables along with (2.9) to estimate

$$\sum_{|\kappa| \leq R-10} \int \mathbf{1}_{\mathcal{S}_j}(\zeta,\kappa) \delta(\zeta^2 - A) d\zeta \lesssim \sum_{|\kappa| \leq R-10} R^{-\frac{1}{2}} \left[R - |\kappa| - 1 \right]^{-\frac{1}{2}} \lesssim 1,$$

which gives (2.8). \square

3. On volumes of annuli in $\mathbb{R} \times \mathbb{Z}$

As we saw in the last section, the contribution of the integral \mathbf{I}_{jp} is controlled by the following geometric lemma which says that the volume of a (large and thin) annulus in $\mathbb{R} \times \mathbb{Z}$ is proportional to its volume in \mathbb{R}^2 . The result is essentially Lemma 2.1 from [13].

Lemma 3.1.

For $0 \le w \le 20 \le R$ and $0 \le |x| \le 1/2$,

$$V(R, w) = |\mathbb{R}_{\zeta} \times \mathbb{Z}_{\kappa} \cap \{R^2 \le \zeta^2 + (\kappa + x)^2 \le (R + w)^2\}| \lesssim \sqrt{Rw} + Rw.$$

As a consequence, for the sets in (2.5) we have $|S_j| \lesssim 1$ for $0 \leq j \leq R^{\frac{1}{2}} + 1$.

Proof of Lemma 3.1. Let

$$\ell(y) = \begin{cases} \sqrt{(R+w)^2 - y^2} & \text{if } R \le |y| \le R + w \\ \sqrt{(R+w)^2 - y^2} - \sqrt{R^2 - y^2} & \text{if } 0 \le |y| \le R \end{cases}$$

be the length of the horizontal segment in the annulus under consideration at ordinate y. This is maximized at |y|=R when it is at most $\sqrt{3Rw}$. In addition, for $2^p \leq ||\kappa+x|-R| \leq 2^{p+1}$ and $32 \leq 2^p \leq R$, we can estimate

$$\ell(\kappa + x) \le \frac{2Rw}{\sqrt{R}\sqrt{R - \kappa - 21}} \le 4R^{\frac{1}{2}}2^{-\frac{p}{2}}w.$$

Summing a bounded number of contributions when $\kappa + x \ge R - 50$ and the above bound otherwise, we conclude that the volume under consideration is at most

$$V \lesssim \sqrt{Rw} + R^{\frac{1}{2}}w \sum_{p} 2^{\frac{p}{2}} \lesssim \sqrt{Rw} + Rw. \quad \Box$$

References

- [1] A. Barron, On global-in-time Strichartz estimates for the semiperiodic Schrödinger equation, analysis and PDE, 2021, arXiv:1901.01663, in press.
- 2 J.M. Bouclet, Strichartz inequalities on surfaces with cusps, Int. Math. Res. Not. IMRN (24) (2015) 13437–13492.
- [3] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations I. Schrödinger equations, Geom. Funct. Anal. 3 (1993) 107–156.
- [4] J. Bourgain, C. Demeter, The proof of the ℓ^2 -decoupling conjecture, Ann. Math. 182 (1) (2015) 351–389.
- [5] N. Burq, C. Guillarmou, A. Hassell, Strichartz estimates without loss on manifolds with hyperbolic trapped geodesics, Geom. Funct. Anal. 20 (2010) 627, https://doi.org/10.1007/s00039-010-0076-5.
- [6] X. Cheng, Z. Guo, Z. Zhao, On scattering for the defocusing quintic nonlinear Schrödinger equation on the two dimensional cylinder, preprint.
- [7] H. Christianson, Near sharp strichartz estimates with loss in the presence of degenerate hyperbolic trapping, Comm. Math. Phys. 324 (3) (2013) 657–693.
- [8] J. Ginibre, G. Velo, Generalized strichartz inequalities for the wave equation, J. Funct. Anal. 133 (1995) 50-68.
- [9] Z. Hani, B. Pausader, On scattering for the quintic defocusing nonlinear Schrödinger equation on $\mathbb{R} \times \mathbb{T}^2$, Comm. Pure Appl. Math. 67 (9) (2014) 1466–1542.
- [10] Z. Hani, B. Pausader, N. Tzvetkov, N. Visciglia, Modified scattering for the cubic Schrödinger equation on product spaces and applications, Forum Math. Pi. 3 (2015) e4.
- [11] A. Ionescu, B. Pausader, Global well-posedness of the energy-critical defocusing NLS on R × T³, Comm. Math. Phys. 312 (3) (2012) 781–831.
- [12] R. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (3) (1977) 705–714.
- [13] H. Takaoka, N. Tzvetkov, On 2D nonlinear Schrödinger equations with data on $\mathbb{R} \times \mathbb{T}$, J. Funct. Anal. 182 (2001) 427–442.
- [14] Z. Zhao, Global well-posedness and scattering for the defocusing cubic Schrödinger equation on waveguide $\mathbb{R}^2 \times \mathbb{T}^2$, J. Hyperbolic Diff. Equations (2021) in press.
- [15] Z. Zhao, On scattering for the defocusing nonlinear Schrödinger equation on waveguide $\mathbb{R}^m \times \mathbb{T}$ (when m=2,3), J. Differ. Equ. 275 (2021) 598–637, http://dx.doi.org/10.1016/j.jde.2020.11.023.