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Abstract. In this article we consider the Einstein field equations of General Rela-

tivity for self-gravitating massive scalar fields (the Einstein-Klein-Gordon system). Our

goal is to review the main results and ideas in our work [The Einstein-Klein-Gordon

coupled system: Global stability of the Minkowski solution, preprint (2019)] on the global

regularity, modified scattering, and asymptotic analysis of solutions of this system with

initial data in a small neighborhood of the Minkowski space-time.
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1. Introduction. The Einstein field equations of General Relativity are a covariant

geometric system that connect the Ricci tensor of a Lorentzian metric g on a manifold

M to the energy-momentum tensor of the matter fields in the space-time, according to

the equation

Gαβ = 8πTαβ . (1.1)
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278 ALEXANDRU D. IONESCU AND BENOIT PAUSADER

Here Gαβ = Rαβ − (1/2)Rgαβ is the Einstein tensor, where Rαβ is the Ricci tensor, R is

the scalar curvature, and Tαβ is the energy-momentum tensor of the matter in the space.

In this article we are concerned with the Einstein-Klein-Gordon coupled system, which

describes the coupled evolution of an unknown Lorentzian metric g and a massive scalar

field ψ. In this case the associated energy-momentum tensor Tαβ is given by

Tαβ := DαψDβψ − (1/2)gαβ
(
DμψD

μψ + ψ2
)
, (1.2)

where D denotes covariant derivatives.

Our goal is to outline the main results of our work [31], which can be summarized as

follows:

(1) a proof of global regularity (in wave coordinates) of solutions of the Einstein-Klein-

Gordon coupled system, in the case of small, smooth, and localized perturbations of the

stationary Minkowski solution (g, ψ) = (m, 0);

(2) precise asymptotics of the metric components and the Klein-Gordon field as the

time goes to infinity, including the construction of modified (nonlinear) scattering profiles

and quantitative bounds for convergence;

(3) classical estimates on the solutions at null and timelike infinity, such as bounds

on the metric components, peeling estimates of the Riemann curvature tensor, ADM

and Bondi mass identities and estimates, and asymptotic description of null and timelike

geodesics.

Our goal here is to present the main theorems in [31], together with some of the main

ideas and ingredients in the proofs. We do not aim to present formal proofs, but we

prefer instead to discuss and motivate the main concepts and constructions.

The general plan is to work in a standard gauge (in this case the classical wave

coordinates) and transform the geometric Einstein-Klein-Gordon system (1.1)–(1.2) into

a coupled system of quasilinear wave and Klein-Gordon equations. We then analyze this

system in a framework inspired by the recent advances in the global existence theory for

quasilinear dispersive models, such as plasma models and water waves.

More precisely, we rely on a combination of energy estimates and Fourier analysis. At

a very general level one should think that energy estimates are used, in combination with

vector-fields, to control high regularity norms of the solutions, while the Fourier analysis

is used, mostly in connection with normal forms, analysis of resonant sets, and a special

“designer” norm, to prove dispersion and decay in lower regularity norms.

A key advantage of our method over the classical physical space methods is the ability

to easily identify and dispose of nonresonant nonlinear interactions, using integration by

parts arguments in the Fourier space. This is very useful both for wave and Klein-Gordon

evolutions, as well as for many other dispersive or hyperbolic evolutions.

1.1. Elements of Lorentzian geometry. We start by recalling some of the basic defini-

tions and formulas of Lorentzian geometry.1 Assume g is a sufficiently smooth Lorentzian

metric in a 4 dimensional open set O. We assume that we are working in a system of

coordinates x0, x1, x2, x3 in O. We define the connection coefficients Γ and the covariant

1At this stage, all the formulas are completely analogous to the Riemannian case, hold in any dimen-
sion, and the computations can be performed in local coordinates. A standard reference is the book of
Wald [59].
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GLOBAL SOLUTIONS OF THE EINSTEIN-KLEIN-GORDON SYSTEM 279

derivative D by

Γμαβ := g(∂μ,D∂β
∂α) =

1

2
(∂αgβμ + ∂βgαμ − ∂μgαβ), (1.3)

where ∂μ := ∂xμ , μ ∈ {0, 1, 2, 3}. Thus

D∂α
∂β = D∂β

∂α = Γν
αβ∂ν , Γν

αβ := gμνΓμαβ , (1.4)

where gαβ is the inverse of the matrix gαβ , i.e., g
αβgμβ = δαμ . For μ, ν ∈ {0, 1, 2, 3} let

Γν := gαβΓν
αβ = gαβgμν(∂αgβμ − 1

2
∂μgαβ) = −∂αg

αν − 1

2
gμνgαβ∂μgαβ ,

Γμ := gμνΓ
ν = gαβ∂αgβμ − 1

2
gαβ∂μgαβ .

(1.5)

We record also the useful general identity

∂αg
μν = −gμρgνλ∂αgρλ, (1.6)

and the Jacobi formula

∂α(log |g|) = gμν∂αgμν , α ∈ {0, 1, 2, 3}, (1.7)

where |g| denotes the determinant of the matrix gαβ in local coordinates.

Covariant derivatives can be calculated in local coordinates according to the general

formula

DαTβ1...βn
= ∂αTβ1...βn

−
n∑

j=1

Γν
αβj

Tβ1...ν...βn
(1.8)

for any covariant tensor T . In particular, for any scalar function f

�gf = gαβDαDβf = �̃gf − Γν∂νf, (1.9)

where �̃g := gαβ∂α∂β denotes the reduced wave operator.

The Riemann curvature tensor measures commutation of covariant derivatives accord-

ing to the covariant formula

DαDβωμ −DβDαωμ = R ν
αβμ ων (1.10)

for any form ω. The Riemann tensor R satisfies the symmetry properties

Rαβμν = −Rβαμν = −Rαβνμ = Rμναβ,

Rαβμν +Rβμαν +Rμαβν = 0,
(1.11)

and the Bianchi identities

DρRαβμν +DαRβρμν +DβRραμν = 0. (1.12)

Its components can be calculated in local coordinates in terms of the connection coeffi-

cients according to the formula

R ρ
αβμ = −∂αΓ

ρ
βμ + ∂βΓ

ρ
αμ − Γρ

ανΓ
ν
βμ + Γρ

βνΓ
ν
αμ. (1.13)

Therefore, the Ricci tensor Rαμ = gβρRαβμρ is given by the formula

Rαμ = −∂αΓ
ρ
ρμ + ∂ρΓ

ρ
αμ − Γρ

ναΓ
ν
ρμ + Γρ

ρνΓ
ν
αμ.
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280 ALEXANDRU D. IONESCU AND BENOIT PAUSADER

Simple calculations using the formulas (1.3) and (1.5) show that the Ricci tensor is given

by

2Rαμ = −�̃ggαμ + ∂αΓμ + ∂μΓα + F≥2
αμ (g, ∂g), (1.14)

where F≥2
αβ (g, ∂g) is a quadratic semilinear expression,

F≥2
αβ (g, ∂g) =

1

2
gρμgνλ

{
∂νgρμ∂βgαλ + ∂νgρμ∂αgβλ − ∂νgρμ∂λgαβ

}
+ gρμgνλ

{
− ∂ρgμλ∂αgβν − ∂ρgμλ∂βgαν + ∂ρgμλ∂νgαβ + ∂αgρλ∂μgβν + ∂βgρλ∂μgαν

}
− 1

2
gρμgνλ(∂αgνμ + ∂νgαμ − ∂μgαν)(∂βgρλ + ∂ρgβλ − ∂λgβρ).

(1.15)

1.2. The Einstein-Klein-Gordon system. We consider the Einstein field equations for

an unknown space-time(M, g),2

Gαβ := Rαβ − 1

2
Rgαβ = Tαβ , (1.16)

where Tαβ is the energy-momentum of a massive scalar field ψ : M → R,

Tαβ := DαψDβψ − 1

2
gαβ

(
DμψD

μψ + ψ2
)
. (1.17)

The covariant Bianchi identities DαGαβ = 0 can be used to derive an evolution equa-

tion for the massive scalar field ψ. The equation is

�gψ − ψ = 0. (1.18)

Therefore the main unknowns in the problem are the metric tensor g and the scalar field

ψ, which satisfy the covariant coupled system (1.16)–(1.18).

To construct solutions we need to fix a system of coordinates and transform the prob-

lem into a PDE problem. We work in wave coordinates, which is the condition

Γα = −�gx
α ≡ 0 for α ∈ {0, 1, 2, 3}. (1.19)

Our construction of global solutions of the Einstein-Klein-Gordon system is based on the

following reduction.

Proposition 1.1. Assume g is a Lorentzian metric in a 4 dimensional open set O, with

induced covariant derivative D and Ricci curvature R, and ψ : O → R is a scalar. Let

x0, x1, x2, x3 denote a system of coordinates in O and let

Γν := gαβΓν
αβ = −�gx

ν = −∂αg
αν − 1

2
gμνgαβ∂μgαβ , ν ∈ {0, 1, 2, 3}. (1.20)

Let �̃g denote the reduced wave operator

�̃g := gαβ∂α∂β. (1.21)

(i) Assume that (g, ψ) satisfy the Einstein-Klein-Gordon system

Rαβ −DαψDβψ − ψ2

2
gαβ = 0,

�gψ − ψ = 0,
(1.22)

2For simplicity, we drop the factor of 8π from the energy-momentum tensor; compare with (1.1).
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in O. Assume also that Γμ ≡ 0 in O, μ ∈ {0, 1, 2, 3} (the harmonic gauge condition).

Then

�̃ggαβ + 2∂αψ∂βψ + ψ2gαβ − F≥2
αβ (g, ∂g) = 0,

�̃gψ − ψ = 0,
(1.23)

where the quadratic semilinear terms F≥2
αβ (g, ∂g) are defined in (1.15).

(ii) Conversely, assume that the equations (1.23) (the reduced Einstein-Klein-Gordon

system) hold in O. Then

Rαβ − ∂αψ∂βψ − ψ2

2
gαβ − 1

2
(∂αΓβ + ∂βΓα) = 0,

�gψ − ψ + Γμ∂μψ = 0,
(1.24)

and the functions Γβ = gβνΓ
ν satisfy the reduced wave equations

�̃gΓβ = 2Γν∂νψ∂βψ + gρα[Γν
ρα(∂νΓβ + ∂βΓν) + Γν

ρβ(∂αΓν + ∂νΓα)] + ∂μΓν∂βg
μν .

(1.25)

In particular, the pair (g, ψ) solves the Einstein-Klein-Gordon system (1.22) if Γμ ≡ 0 in

O.

The proposition can be proved by straightforward calculations: the identities (1.22)

are easily seen to be equivalent to the system (1.16)–(1.17), the identities (1.23) follow

from (1.22) and (1.14), while the identities (1.24) follow from (1.23) and (1.14).

The identities (1.25) are needed to prove the consistency of the wave coordinates

condition (1.19), namely that it is propagated by the Einstein-Klein-Gordon flow provided

that it is verified at the initial time. To prove them we start from the (covariant) Bianchi

identity DαGαβ = 0. In coordinates, using also the formula (1.8), this gives

0 = gραDρRαβ − 1

2
DβR = gρα[∂ρRαβ − Γν

ραRνβ − Γν
ρβRαν ]−

1

2
∂β(g

μνRμν). (1.26)

The desired identities (1.25) follow using also the identities (1.24) and the definitions.

Our basic strategy to construct global solutions of the Einstein-Klein-Gordon system

is to use Proposition 1.1(ii). We construct first the pair (g, ψ) by solving the reduced

Einstein-Klein-Gordon system (1.23) (regarded as a quasilinear wave-Klein-Gordon sys-

tem) in the domain R3 × [0,∞). In addition, we arrange that Γμ, ∂tΓμ vanish on the

initial hypersurface, so they vanish in the entire open domain, as a consequence of the

wave equations (1.25). Therefore the pair (g, ψ) solves the Einstein-Klein-Gordon system

as desired.

In other words, the problem is reduced to constructing global solutions of the quasi-

linear system (1.23) for initial data compatible with the wave coordinates condition.

1.2.1. Initial data sets. To implement the strategy described above and use Proposi-

tion 1.1(ii) we need to prescribe suitable initial data. Let Σ0 = {x ∈ O : t = x0 = 0}.
We assume that g, k are given symmetric tensors on Σ0, such that g is a Riemannian

metric on Σ0. We assume also that ψ0, ψ1 : Σ0 → R are given initial data for the scalar

field ψ.
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282 ALEXANDRU D. IONESCU AND BENOIT PAUSADER

We start by prescribing the metric components3 on Σ0

gij = gij , g0i = gi0 = 0, g00 = −1.

We also prescribe the time derivative of the metric tensor

∂tgij = −2kij ,

in such a way that k is the second fundamental form of the surface Σ0, k(X,Y ) =

−g(DXn, Y ), where n = ∂0 is the future-oriented unit normal vector-field on Σ0. The

condition Γ0 = 0 gives

0 = gαβ∂αg0β − 1

2
gαβ∂0gαβ = g00∂0g00 −

1

2
gij∂0gij −

1

2
g00∂0g00 = −1

2
∂0g00 + gijkij ,

where gij is the inverse of the matrix gij , while the conditions Γn = 0, n ∈ {1, 2, 3}, give

0 = gαβ∂αgnβ − 1

2
gαβ∂ngαβ = g00∂0gn0 + gij∂ignj −

1

2
gij∂ngij .

Therefore the full initial data for the pair (g, ψ) on the hypersurface Σ0 is given by

gij = gij , g0i = gi0 = 0, g00 = −1,

∂tgij = −2kij , ∂tg00 = 2gijkij , ∂tgn0 = gij∂igjn − 1

2
gij∂ngij ,

ψ = ψ0, ∂tψ = ψ1.

(1.27)

The remaining restrictions ∂0Γα = 0 lead to the constraint equations. In view of

(1.24) the constraint equations are equivalent to the conditions

Rα0 − (1/2)Rgα0 = Tα0, α ∈ {0, 1, 2, 3}, (1.28)

where Tαβ is as in (1.17). These identities can be analyzed by considering the cases

α = n ∈ {1, 2, 3} and α = 0 and using the definitions. This leads to four constraint

equations

∇n(g
ijkij)− gij∇jkin = ψ1∇nψ0, n ∈ {1, 2, 3},

R + gijgmn(kijkmn − kimkjn) = ψ2
1 + gij∇iψ0∇jψ0 + ψ2

0 ,
(1.29)

where ∇ denotes the covariant derivative induced by the metric g on Σ0, and R is the

scalar curvature of the metric g on Σ0.

1.3. The main global regularity theorem. Our first main theorem concerns the global

regularity of the system (1.23) for small initial data (gij , kij , ψ0, ψ1). To state it precisely

we need to introduce several Banach spaces of functions on R3.

Definition 1.2. For a ≥ 0 let Ha denote the usual Sobolev spaces of index a on R3.

We define also the Banach spaces Ha,b
Ω , a, b ∈ Z+, by the norms

‖f‖Ha,b
Ω

:=
∑
|α|≤b

‖Ωαf‖Ha . (1.30)

3The conditions g00 = −1 and g0i = 0 hold only on the initial hypersurface and are not propagated
by the flow. They are imposed mostly for convenience and do not play a significant role in the analysis.
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We also define the weighted Sobolev spaces Ha,b
S,wa and Ha,b

S,kg by the norms

‖f‖Ha,b
S,wa

:=
∑

|β′|≤|β|≤b

‖xβ′
∂βf‖Ha , ‖f‖Ha,b

S,kg
:=

∑
|β|,|β′|≤b

‖xβ′
∂βf‖Ha , (1.31)

where xβ′
= x

β′
1

1 x
β′
2

2 x
β′
3

3 and ∂β := ∂β1

1 ∂β2

2 ∂β3

3 . Notice that Ha,b
S,kg ↪→ Ha,b

S,wa ↪→ Ha,b
Ω ↪→

Ha.

We are now ready to state our first main theorem.

Theorem 1.3. Let Σ0 := {(x, t) ∈ R4 : t = 0} and assume that we are given an

initial data set (gij , kij , ψ0, ψ1) on Σ0 satisfying the constraint equations (1.29) and the

smallness conditions
3∑

n=0

3∑
i,j=1

{∥∥ |∇|1/2+δ/4(gij − δij)
∥∥
H

N(n),n
S,wa

+ ‖ |∇|−1/2+δ/4kij‖HN(n),n
S,wa

}

+
3∑

n=0

{
‖〈∇〉ψ0‖HN(n),n

S,kg

+ ‖ψ1‖HN(n),n
S,kg

}
≤ ε0 ≤ ε.

(1.32)

Here N0 := 40, d := 10, δ := 10−10, N(0) := N0 +16d, N(n) = N0 − nd for n ≥ 1, and ε

is a sufficiently small constant.

(i) Then the reduced Einstein-Klein-Gordon system

�̃ggαβ + 2∂αψ∂βψ + ψ2gαβ − F≥2
αβ (g, ∂g) = 0,

�̃gψ − ψ = 0,
(1.33)

admits a unique global solution (g, ψ) in M := {(x, t) ∈ R4 : t ≥ 0}, with initial data

(gij , kij , ψ0, ψ1) on Σ0 (as described in (1.27)). Here F≥2
αβ (g, ∂g) are as in (2.5) and

�̃g = gμν∂μ∂ν . The solution satisfies the harmonic gauge conditions

0 = Γμ = gαβ∂αgβμ − 1

2
gαβ∂μgαβ , μ ∈ {0, 1, 2, 3} (1.34)

in R3 × [0,∞). Moreover, the metric g stays close and converges as t → ∞ to the

Minkowski metric and ψ stays small and converges to 0 as t → ∞ (in suitable norms).

(ii) In view of Proposition 1.1, the pair (g, ψ) is a global4 solution in M of the Einstein-

Klein-Gordon coupled system

Rαβ −DαψDβψ − ψ2

2
gαβ = 0, �gψ − ψ = 0. (1.35)

The system (1.33) is a quasilinear system of hyperbolic and dispersive equations. One

of the key difficulties in the analysis comes from the fact that we have a genuine system in

the sense that the linear evolution admits different speeds of propagation, corresponding

to wave and Klein-Gordon propagation. As a result the set of “characteristics” is more

involved and one has a more limited set of geometric symmetries (vector-fields).

The proof of Theorem 1.3 is based on a complex bootstrap argument, involving energy

estimates, vector-fields, Fourier analysis, and nonlinear scattering. We outline some of

the main elements of this argument in section 2 below.

4In our geometric context, globality means that all future directed timelike and null geodesics starting
from points in M extend forever with respect to their affine parametrization.
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284 ALEXANDRU D. IONESCU AND BENOIT PAUSADER

1.4. Remarks. We conclude this section with some additional comments and refer-

ences.

(1). Small data global regularity theorems. A classical question in evolution PDEs

is the question of global stability of physical solutions of hyperbolic and dispersive sys-

tems. Several important techniques have been developed over the years in the study of

such problems, starting with seminal contributions of John, Klainerman, Shatah, Simon,

Christodoulou, Alinhac, and Delort [1,2,10,11,13,14,34,35,39–42,56,57]. These include

the vector-field method, the normal form method, and the isolation of null structures.

In the last few years new methods have emerged in the study of global solutions of

quasilinear evolutions, inspired mainly by the advances in semilinear theory. The basic

idea is to combine the classical energy and vector-fields methods with refined analysis of

the Duhamel formula, using the Fourier transform. This is the essence of the “method of

space-time resonances” of Germain-Masmoudi-Shatah [22,23] and Gustafson-Nakanishi-

Tsai [26], and the refinements by the authors and their collaborators in [15,16,24,25,28,

29, 32, 33, 38], using atomic decompositions and more sophisticated norms.

According to this general philosophy, to prove Theorem 1.3 we work both in the

physical space and the Fourier space. Our goal is to prove simultaneously high order

energy estimates (including vector-fields), modified scattering, and decay of the solutions

over time.

(2). Vector-fields. In the proof of Theorem 1.3 we use the Lorentz vector-fields Γa

and the rotation vector-fields Ωab

Γa := xa∂t + t∂a, Ωab := xa∂b − xb∂a, (1.36)

for a, b ∈ {1, 2, 3}. These vector-fields commute with both the wave operator and the

Klein-Gordon operator in the flat Minkowski space (thus with the linear part of the

system (1.33)). For any α = (α1, α2, α3) ∈ (Z+)
3 we define

∂α := ∂α1
1 ∂α2

2 ∂α3
3 , Ωα := Ωα1

23Ω
α2
31Ω

α3
12 , Γα := Γα1

1 Γα2
2 Γα3

3 . (1.37)

For any n, q ∈ Z+ we define Vq
n as the set of differential operators of the form

Vq
n :=

{
L = ΓaΩb : |a|+ |b| ≤ n, q(L) := |a| ≤ q

}
. (1.38)

Here q(L) denotes the number of vector-fields transversal to the surfaces Σa := {(x, t) ∈
R3×R : t = a}. We remark that in our proof we distinguish between the Lorentz vector-

fields Γ (which are transversal to the surfaces Σa and lead to slightly faster growth rates;

see the definition (2.37)) and the rotational vector-fields Ω.

We also point out an important difference that appears when one considers a massive

scalar field in that the scaling vector-field, S = t∂t + x · ∇x no longer satisfies nice

commutation properties with the linearized system. Thus in this case, one has fewer

vector-fields, which leads to weaker estimates and makes a method purely based on an

energy estimate for vector-fields very challenging.

(3). Stability results in General Relativity. Global stability of physical solutions is

an important topic in General Relativity. For example, the global nonlinear stability of

the Minkowski space-time among solutions of the Einstein-vacuum equation is a central

theorem in the field, due to Christodoulou-Klainerman [11]. See also the more recent
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GLOBAL SOLUTIONS OF THE EINSTEIN-KLEIN-GORDON SYSTEM 285

proofs and extensions of Klainerman-Nicolò [43], Lindblad-Rodnianski [53], Bieri-Zipser

[5], and Speck [58].

More recently, small data global regularity theorems have also been proved for other

coupled Einstein field equations. For example, for the Einstein-Vlasov system this was

done in recent work by Fajman-Joudioux-Smulevici [17] and Lindblad-Taylor [55], at least

for certain classes of “restricted data” (see the remark below for a longer discussion).

The Einstein-Klein-Gordon system was also considered recently by LeFloch-Ma [49],

who proved small data global regularity for restricted data, which agrees with a Schwarzs-

child solution with small mass outside a compact set. A similar result was announced by

Wang [61].

Our main goals in this paper are (1) to work with general unrestricted small initial

data, and (2) develop the full asymptotic analysis of the space-time. A similar global

regularity result for general small data was announced recently by LeFloch-Ma [50].

In a different direction, one can also raise the question of linear and nonlinear stability

of other physical solutions of the Einstein equations. Stability of the Kerr family of

solutions has been under intense study in recent years, first at the linearized level (see

for example [12] and the references therein) and more recently at the full nonlinear level

(see [27] and [45]). In the case of the Einstein-Klein-Gordon system, we refer to [8,9,60]

for recent results on stability of other space-times.

(4). Restricted initial data. In some cases one can simplify considerably the global

analysis of wave and Klein-Gordon equations by considering initial data of compact

support. The point is that the solutions have the finite speed of propagation, therefore

they remain supported inside a light cone, and one can use the hyperbolic foliation

method to analyze the evolution. See [47] for a recent account of this method and its

refinements.

To implement this method one needs to first have control of the solution on an initial

hyperboloid, and then propagate this control to the interior region. As a result, this

approach is restricted to the case when one can establish such good control on an initial

hyperboloid. Due to the finite speed of propagation, this is possible in the case of

compactly supported data (in the case of systems of wave or Klein-Gordon equations),

or data that agrees with the Schwarzschild solution Sm outside a compact set (in the

case of the Einstein equations).

The use of “restricted initial data”, sometimes coupled with the hyperbolic foliation

method, leads to significant simplifications of the global analysis, particularly at the level

of proving decay. In the context of the Einstein equations these ideas have been used

by many authors, such as Friedrich [19], Lindblad-Rodnianski [53], Fajman-Joudioux-

Smulevici [17], Lindblad-Taylor [55], LeFloch-Ma [49], Wang [61], and Klainerman-Szeftel

[45].

(5). Simplified wave-Klein-Gordon models. The system (1.33) is complicated, but one

can gain intuition by looking at simpler models. For example, to understand the nonlinear

coupling of wave and Klein-Gordon fields, one can consider the simplified system

−�u = Aαβ∂αv∂βv +Dv2,

(−� + 1)v = uBαβ∂α∂βv + Euv,
(1.39)
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286 ALEXANDRU D. IONESCU AND BENOIT PAUSADER

where u, v are real-valued functions, and Aαβ , Bαβ , D, and E are real constants. Without

loss of generality one may assume that Aαβ = Aβα and Bαβ = Bβα, α, β ∈ {0, 1, 2, 3}.
The system (1.39) was derived by LeFloch-Ma [48] as a model for the full Einstein-

Klein-Gordon system (1.33). Intuitively, the deviation of the Lorentzian metric g from

the Minkowski metric is replaced by a scalar function u, and the massive scalar field

ψ is replaced by v. The system (1.39) keeps the same linear structure as the reduced

Einstein-Klein-Gordon system (1.33), but only keeps, schematically, quadratic interac-

tions that involve the massive scalar field (the semilinear terms in the first equation and

the quasilinear terms in the second equation coming from the reduced wave operator).

Small data global regularity for the system (1.39) was proved by LeFloch-Ma [48]

in the case of compactly supported initial data (the restricted data case), using the

hyperbolic foliation method. For general small initial data, global regularity was proved

by the authors [30].

A similar system, the massive Maxwell-Klein-Gordon system, was analyzed recently by

Klainerman–Wang–Yang [46], who also proved global regularity for general small initial

data, using a different method.

(6). Initial data assumptions. The precise form of the smallness assumptions (1.32)

on the metric initial data gij and kij is important. Indeed, in view of the positive mass

theorem, one expects the metric components gij−δij to decay like M/〈x〉 and the second

fundamental form k to decay like M/〈x〉2, where M � 1 is the ADM mass. Capturing

this type of decay, using L2 based norms, is precisely the role of the homogeneous multi-

pliers |∇|1/2+δ/4 and |∇|−1/2+δ/4 in (1.32). Notice that these multipliers are essentially

sharp, up to the δ/4 power.

Our assumptions on the metric are essentially of the type

gij = δij + ε0O(〈x〉−1+δ/4), kij = ε0O(〈x〉−2+δ/4), (1.40)

at time t = 0. These are less restrictive than the assumptions used sometimes even in

the vacuum case ψ ≡ 0, see for example [11], [43], or [54], in the sense that the initial

data is not assumed to agree with the Schwarzschild initial data up to lower order terms.

They are more restrictive, however, than the assumptions of Bieri [5] in the case the

initial time slice is maximal, but we are able to prove more precise asymptotic bounds

on the metric and the Riemann curvature tensor (see section 3), and make no additional

assumption on the immersion Σ0 ↪→ M .

We remark also that our assumptions (1.32) allow for anisotropic initial data, possibly

with different “masses” in different directions. For the vacuum case, initial data of this

type, satisfying the constraint equations, have been constructed recently by Carlotto-

Schoen [7].

(7). The mini-bosons. A general obstruction to small data global stability theorems is

the presence of nondecaying “small” solutions, such as small solitons. A remarkable fact

is that there are such small nondecaying solutions for the Einstein-Klein-Gordon system,

namely the so-called mini-boson stars. These are time-periodic (therefore nondecaying)

and spherically symmetric exact solutions of the Einstein-Klein-Gordon system. They

were discovered numerically by physicists, such as Friedberg–Lee–Pang [18] (see also

[51]), and then constructed rigorously by Bizoń–Wasserman [6].
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These mini-bosons can be thought of as arbitrarily small (hence the name) in certain

topologies, as explained in [6]. However, these solutions (in particular the Klein-Gordon

component) are not small in the stronger topology we use here, as described by (1.32),

so we can avoid them in our analysis.

2. Global dynamics and modified scattering. The global regularity conclusion

of Theorem 1.3 is essentially a qualitative statement. To prove it we need to make it

precise and quantitative. For this we need several ingredients: a Hodge decomposition

of the metric tensor, the definition of linear profiles, suitable weighted norms and a

special Z-norm, nonlinear phase corrections, and nonlinear profiles. We summarize these

constructions in this section, and provide a more precise version of the main theorem.

2.1. Decomposition of the metric tensor. Let m denote the Minkowski metric and

write

gαβ = mαβ + hαβ , gαβ = mαβ + gαβ≥1. (2.1)

It follows from (1.33) that for α, β ∈ {0, 1, 2, 3} we have

(∂2
0 −Δ)hαβ = N h

αβ := KGαβ + gμν≥1∂μ∂νhαβ − F≥2
αβ (g, ∂g), (2.2)

where F≥2
αβ (g, ∂g) are as in (2.5) and

KGαβ := 2∂αψ∂βψ + ψ2(mαβ + hαβ). (2.3)

Moreover

(∂2
0 −Δ+ 1)ψ = Nψ := gμν≥1∂μ∂νψ. (2.4)

For global analysis we need to understand well the terms F≥2
αβ (g, ∂g), which contain

the semilinear wave interactions. These terms can be simplified and decomposed into

classical null forms (most terms) and a small number of terms that only obey a weaker

form of null structure. This structure is important in the global analysis of the wave

equations for the metric components, as it is well known that semilinear quadratic terms

that have no structure could lead to finite time blowup of solutions in 3D. The precise

statement is the following.

Lemma 2.1. In wave coordinates Γμ = 0 we have

F≥2
αβ (g, ∂g) = Qαβ + Pαβ , (2.5)

where

Qαβ = gρρ
′
gλλ

′
(∂αhρ′λ′∂ρhβλ − ∂ρhρ′λ′∂αhβλ) + gρρ

′
gλλ

′
(∂βhρ′λ′∂ρhαλ − ∂ρhρ′λ′∂βhαλ)

+
1

2
gρρ

′
gλλ

′
(∂λ′hρρ′∂βhαλ−∂βhρρ′∂λ′hαλ)+

1

2
gρρ

′
gλλ

′
(∂λ′hρρ′∂αhβλ−∂αhρρ′∂λ′hβλ)

− gρρ
′
gλλ

′
(∂λhαρ′∂ρhβλ′ − ∂ρhαρ′∂λhβλ′) + gρρ

′
gλλ

′
∂ρ′hαλ′∂ρhβλ

(2.6)

and

Pαβ = −1

2
gρρ

′
gλλ

′
∂αhρ′λ′∂βhρλ +

1

4
gρρ

′
gλλ

′
∂αhρρ′∂βhλλ′ . (2.7)

Notice that the quadratic part of Qαβ , obtained by replacing gab with mab everywhere,

is a sum of classical null forms in the variables hμν .
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The different components of the tensor hαβ evolve differently as t → ∞, due to the

weak null structure of the system (2.2). To identify and take advantage of this weak null

structure we need to decompose the tensor hαβ.

A standard way to decompose the metric tensor in General Relativity is based on

the use of null frames (see for instance [11] or [53]). Here we use a different decompo-

sition of the metric tensor, reminiscent of the div − curl decomposition of vector-fields

in fluid models, which has the advantage of being more compatible with commutation

with the vector-fields ∂j , Γj , Ωj . This decomposition is connected to the classical work

of Arnowitt–Deser–Misner [3] on the Hamiltonian formulation of General Relativity.

More precisely, let Rj = |∇|−1∂j , j ∈ {1, 2, 3} denote the Riesz transforms on R3, and

notice that δjkRjRk = −I. We use a double Hodge decomposition for the metric tensor.

Let

F := (1/2)[h00 +RjRkhjk],

F := (1/2)[h00 −RjRkhjk],

ρ := Rjh0j ,

ωj :=∈jkl Rkh0l,

Ωj :=∈jkl RkRmhlm,

ϑjk :=∈jmp∈knq RmRnhpq.

(2.8)

Notice that ω and Ω are divergence-free vector-fields,

Rjωj = 0, RjΩj = 0, (2.9)

and ϑ is a symmetric and divergence-free tensor-field,

ϑjk = ϑkj , Rjϑjk = 0, Rkϑjk = 0. (2.10)

Moreover, using the general formula ∈mnk∈pqk= δmpδnq − δmqδnp one can recover the

tensor h according to the formulas

h00 = F + F ,

h0j = −Rjρ+ ∈jkl Rkωl,

hjk = RjRk(F − F )− (∈klm Rj+ ∈jlm Rk)RlΩm+ ∈jpm∈kqn RpRqϑmn.

(2.11)

We define also the associated nonlinearities

NF := (1/2)[N h
00 +RjRkN h

jk],

NF := (1/2)[N h
00 −RjRkN h

jk],

N ρ := RjN h
0j ,

Nω
j :=∈jkl RkN h

0l,

NΩ
j :=∈jkl RkRmN h

lm,

Nϑ
jk :=∈jmp∈knq RmRnN h

pq,

(2.12)

compare with the definitions (2.8), and notice that

(∂2
0 −Δ)G = NG for any G ∈ {F, F , ρ, ωj ,Ωj , ϑjk}. (2.13)
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As a consequence of the harmonic gauge condition, the main dynamical variables are

F, F , ωj and the traceless part of ϑjk, while the variables ρ and Ωj can be expressed

elliptically in terms of these main variables, up to quadratic remainders (see Lemma 2.2

below).

More precisely, the harmonic gauge condition (1.34) gives

mαβ∂αhβμ − 1

2
mαβ∂μhαβ = E≥2

μ := −gαβ≥1∂αhβμ +
1

2
gαβ≥1∂μhαβ . (2.14)

Let R0 := |∇|−1∂t and

τ := (1/2)[δjkhjk +RjRkhjk] = −(1/2)δjkϑjk, N τ := −(1/2)δjkNϑ
jk. (2.15)

Lemma 2.2. With the definitions (2.8), the variables ρ,Ωj satisfy the elliptic-type iden-

tities

ρ = R0F + R0τ + |∇|−1E≥2
0 ,

Ωj = R0ωj + |∇|−1 ∈jlk RlE
≥2
k .

(2.16)

Moreover, the variable τ is quadratic, i.e.,

2|∇|2τ = ∂0E
≥2
0 + ∂kE

≥2
k +NF +N τ ,

2|∇|∂0τ = −|∇|E≥2
0 +Rk∂0E

≥2
k +N ρ.

(2.17)

The identities in the lemma follow easily from the definitions (2.8) and (2.14). These

identities are important in identifying the weak null structures of the metric nonlinearities

NG defined in (2.12), arising from the terms Pαβ in (2.7).

2.2. Linear and nonlinear profiles. Much of our analysis is based on proving estimates

on the linear profiles of the solutions. Profiles at time t are constructed by going forward

in time up to time t according to the nonlinear evolution equations (2.2) and (2.4), and

then going back in time using the linear flow. Therefore the linear profiles at time t

measure the cumulative effect of the nonlinearities over the interval [0, t].

More precisely, we define the normalized solutions Uhαβ , UF , UF , Uρ, Uωa , UΩa ,

Uϑab , Uψ and their associated linear profiles V hαβ , V F , V F , V ρ, V ωa , V Ωa , V ϑab , V ψ,

α, β ∈ {0, 1, 2, 3}, a, b ∈ {1, 2, 3}, by
UG(t) := ∂tG(t)− iΛwaG(t), V G(t) := eitΛwaUG(t), G ∈ {hαβ, F, F , ρ, ωa,Ωa, ϑab},
Uψ(t) := ∂tψ(t)− iΛkgψ(t), V ψ(t) := eitΛkgUψ(t),

(2.18)

where Λwa = |∇| and Λkg =
√
1 + |∇|2. More generally, for L ∈ V3

3 (see definition

(1.38)) we define the weighted linear profiles

ULhαβ (t) := (∂t − iΛwa)(Lhαβ)(t), V Lhαβ (t) := eitΛwaULhαβ (t),

ULψ(t) := (∂t − iΛkg)(Lψ)(t), V Lψ(t) := eitΛkgULψ(t).
(2.19)

Notice that we only apply the differential operators L to the metric components hαβ ,

but not to the variables F, F , ρ, ωa,Ωa, ϑab. Also, for ∗ ∈ {F, F , ρ, ωa,Ωa, ϑab,Lhαβ,Lψ},
L ∈ V3

3 , we define

U∗,+ := U∗, U∗,− := U∗, V ∗,+ := V ∗, V ∗,− := V ∗. (2.20)
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The functions Lhαβ,Lψ, F, F , ρ, ωa,Ωa, ϑab, can be recovered linearly from the nor-

malized variables UF , UF , Uρ, Uωa , UΩa , Uϑab , ULhαβ , ULψ by the formulas

∂0G = (UG + UG)/2, ΛwaG = i(UG − UG)/2, G ∈ {F, F , ρ, ωa,Ωa, ϑab,Lhαβ},

∂0Lψ = (ULψ + ULψ)/2, ΛkgLψ = i(ULψ − ULψ)/2.

(2.21)

2.2.1. Renormalization and nonlinear profiles. The linear profiles defined above are

accurate enough for most estimates, but fail to converge as t → ∞. For our proof it

is important to understand this issue. We need to introduce an additional nonlinear

correction, define nonlinear profiles, and prove modified scattering.

We start from the equation ∂tV
hαβ = eitΛwaN h

αβ for the profile V hαβ , which follows

from (2.2) and the definitions. To extract the nonlinear phase correction we need to

examine only the quasilinear quadratic part of the nonlinearity, which is

Q2
αβ := {−h00Δ+ 2h0j∂0∂j − hjk∂j∂k}hαβ . (2.22)

Using the definitions, in the Fourier space this becomes

eitΛwa(ξ)Q̂2
αβ(ξ, t)

=
1

(2π)3

∑
±

∫
R3

ieitΛwa(ξ)e∓itΛwa(ξ−η)V̂ hαβ ,±(ξ − η, t)qwa,±(ξ − η, η, t) dη
(2.23)

where

qwa,±(ρ, η, t) := ±ĥ00(η, t)
Λwa(ρ)

2
+ ĥ0j(η, t)ρj ± ĥjk(η, t)

ρjρk
2Λwa(ρ)

. (2.24)

The main contribution comes from low frequencies η and be approximated, heuristically,

by

1

(2π)3

∫
|η|�〈t〉−1/2

ieitΛwa(ξ)e−itΛwa(ξ−η)V̂ hαβ ,+(ξ − η, t)qwa,+(ξ − η, η, t) dη

≈ i
V̂ hαβ ,+(ξ, t)

(2π)3

∫
|η|�〈t〉−1/2

eitη·∇Λwa(ξ)
{
ĥ00(η, t)

Λwa(ξ)

2

+ ĥ0j(η, t)ξj + ĥjk(η, t)
ξjξk

2Λwa(ξ)

}
dη

≈ iV̂ hαβ (ξ, t)
{
hlow
00 (tξ/Λwa(ξ), t)

Λwa(ξ)

2

+ hlow
0j (tξ/Λwa(ξ), t)ξj + hlow

jk (tξ/Λwa(ξ), t)
ξjξk

2Λwa(ξ)

}
where hlow

αβ are suitable low frequency components of hαβ .

We can now define precisely our nonlinear phase correction and nonlinear profiles. Let

ĥlow
αβ (ρ, s) := ϕ≤0(〈s〉p0ρ)ĥαβ(ρ, s), p0 := 0.68. (2.25)
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The choice of p0, slightly bigger than 2/3, is important in the proof to justify these

approximations rigorously. Then we define the wave phase correction

Θwa(ξ, t) :=

∫ t

0

{
hlow
00 (sξ/Λwa(ξ), s)

Λwa(ξ)

2

+ hlow
0j (sξ/Λwa(ξ), s)ξj + hlow

jk (sξ/Λwa(ξ), s)
ξjξk

2Λwa(ξ)

}
ds

(2.26)

and the nonlinear (modified) metric profiles V G
∗ , G ∈ {hαβ, F, ωa, ϑab} by

V̂ G
∗ (ξ, t) := e−iΘwa(ξ,t)V̂ G(ξ, t). (2.27)

The construction is similar in the case of the Klein-Gordon field, so we define

Θkg(ξ, t) :=

∫ t

0

{
hlow
00 (sξ/Λkg(ξ), s)

Λkg(ξ)

2

+ hlow
0j (sξ/Λkg(ξ), s)ξj + hlow

jk (sξ/Λkg(ξ), s)
ξjξk

2Λkg(ξ)

}
ds

(2.28)

and the nonlinear (modified) Klein-Gordon profile V ψ
∗

V̂ ψ
∗ (ξ, t) := e−iΘkg(ξ,t)V̂ ψ(ξ, t). (2.29)

Geometrically, the two phase corrections Θwa and Θkg are obtained by integrating

suitable low frequency components of the metric tensor along the characteristics of the

wave and the Klein-Gordon linear flows. The nonlinear profiles are obtained by multi-

plying, in the Fourier space, the linear profiles by the oscillatory factors e−iΘwa(ξ,t) and

e−iΘkg(ξ,t) (which are bounded since the phases Θwa and Θkg are real-valued).

The point of this construction is that the new nonlinear profiles V F
∗ , V ωa

∗ , V ϑab∗ , and

V ψ
∗ converge as the time goes to infinity to the nonlinear scattering data (see Theorem

2.4(ii)).

2.3. Quantitative version of the main theorem. To state a precise version of our main

theorem we need a few parameters

N0 := 40, d := 10, κ := 10−3, δ := 10−10, δ′ := 2000δ, γ := δ/4. (2.30)

We define also the numbers N(n) (which measure the number of Sobolev derivatives

under control at the level of n vector-fields),

N(0) := N0 + 16d, N(n) := N0 − dn for n ∈ {1, 2, 3}. (2.31)

Let |ξ|≤1 denote a smooth increasing radial function on R3 equal to |ξ| if |ξ| ≤ 1/2 and

equal to 1 if |ξ| ≥ 2. Let |∇|θ≤1 denote the associated operator defined by the multiplier

ξ → |ξ|θ≤1.

We are now ready to define the main Z-norms.

Definition 2.3. For any x ∈ R let x+ = max(x, 0) and x− = min(x, 0). We define

the spaces Zwa and Zkg by the norms

‖f‖Zwa
:= sup

k∈Z

2N0k
+

2k
−(1+κ)‖P̂kf‖L∞ (2.32)
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and

‖f‖Zkg
:= sup

k∈Z

2N0k
+

2k
−(1/2−κ)‖P̂kf‖L∞ , (2.33)

where Pk denote Littlewood-Paley projections to frequencies of order 2k on R3.

Finally, we are ready to state our main quantitative result in [31].

Theorem 2.4. Assume that (g, ψ) is a global solution of the Einstein-Klein-Gordon

system (1.33)-(1.34) as in Theorem 1.3.

(i) Define UG, ULhαβ , ULψ as in (2.18)–(2.19) and recall the definitions (1.38). Then,

sup
n≤3,L∈Vq

n

〈t〉−H(q,n)δ
{
‖(〈t〉|∇|≤1)

γ |∇|−1/2ULhαβ (t)‖HN(n) + ‖ULψ(t)‖HN(n)

}
� ε0,

(2.34)

sup
n≤2,L∈Vq

n

sup
k∈Z, l∈{1,2,3}

2N(n+1)k+〈t〉−H(q+1,n+1)δ

{
2k/2(2k

−〈t〉)γ‖Pk(xlV
Lhαβ )(t)‖L2 + 2k

+‖Pk(xlV
Lψ)(t)‖L2

}
� ε0,

(2.35)

and

‖V F (t)‖Zwa
+ ‖V ωa(t)‖Zwa

+ ‖V ϑab(t)‖Zwa
+ 〈t〉−δ‖V hαβ (t)‖Zwa

+ ‖V ψ(t)‖Zkg
� ε0
(2.36)

for any t ∈ [0,∞), α, β ∈ {0, 1, 2, 3}, and a, b ∈ {1, 2, 3}. Here 〈t〉 :=
√
1 + t2 and

H(q, n) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if q = 0 and n = 0,

60(n− 1) + 20 if q = 0 and n ≥ 1,

200(n− 1) + 30 if q = 1 and n ≥ 1,

100(q + 1)(n− 1) if q ≥ 2.

(2.37)

(ii) There are functions V F
∞ , V ωa

∞ , V ϑab∞ ∈ Zwa, and V ψ
∗ ∈ Zkg such that, for any t ≥ 0,

‖V F
∗ (t)− V F

∞‖Zwa
+

3∑
a=1

‖V ωa
∗ (t)− V ωa

∞ ‖Zwa
+

3∑
a,b=1

‖V ϑab
∗ (t)− V ϑab

∞ ‖Zwa
� ε0〈t〉−δ/2,

‖V ψ
∗ (t)− V ψ

∞‖Zkg
� ε0〈t〉−δ/2.

(2.38)

Notice that our main theorem provides information on the solution (h, ψ) mostly in

the Fourier space. In the next section we will show how to use this information to extract

precise bounds on the metric g and the field ψ in the physical space, and prove some of

the classical geometric conclusions, such as peeling estimates and Bondi mass estimates.

2.4. Remarks. We conclude this section with some discussion of the main theorem.

(1). The proof of Theorem 2.4 in [31] is based on a complex bootstrap argument, in

which we assume slightly weaker control of the quantities in (2.34)–(2.36), and improve

the bounds using the nonlinear equations.

A closer examination shows that we aim to control, simultaneously, three types of

norms: (i) energy norms involving up to 3 vector-fields Γa and Ωab, measured in Sobolev

spaces, (ii) weighted norms on the linear profiles V Lhαβ and V Lψ, and (iii) the Z-norms

on the undifferentiated profiles. We discuss each one of these norms in more detail below.
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(2). The norms described in (2.34) are our main high order energy norms, using up

to 3 vector-fields Γa and Ωab and measured in suitable Sobolev spaces. We notice that

all of these energy norms are allowed to grow slowly in time. The energy bounds also

have an important low frequency component, involving the operator |∇|−1/2+γ , which is

related to the low frequency assumption on the initial data in (1.32) and the expected

M/〈x〉 decay of the metric tensor as explained in the subsection 1.4.

(3). The function H defined in (2.37) is important, as it establishes a hierarchy of

growth of the various energy norms. At the conceptual level this is needed because we

define the weighted vector-fields Γa,Ωa in terms of the coordinate functions xj and t,

thus we expect (at least logarithmic) losses as we apply more of these vector-fields.

At the technical level, the growth function H satisfies superlinear inequalities of the

form

H(q1, n1) +H(q2, n2) ≤ H(q1 + q2, n1 + n2)− 40,

when n1, n2 ≥ 1 and n1 + n2 ≤ 3, and more refined versions. These inequalities are

helpful when estimating nonlinear interactions when the vector-fields Γa and Ωa split

among the different components.

(4). We notice also that we treat the two types of weighted vector-fields Γa and Ωab

differently, in the sense that the application of the nontangential vector-fields Γa leads

to more loss in terms of time growth than the application of the tangential vector-fields

Ωab (for example H(0, 1) = 20 < H(1, 1) = 30 and similar inequalities hold for higher

number of vector-fields). This is a subtle technical point to keep in mind, connected to

a more general difficulty of estimating the effect of nontangential vector-fields.

(5). The change over time of the linear profiles V Lhαβ and V Lψ measures the accumu-

lated effect of the nonlinearities. The weighted profile norms in (2.35) are an important

component of our bootstrap argument. They imply pointwise decay estimates on solu-

tions, of the form

‖PkU
Lh(t)‖L∞ � ε1〈t〉−1+δ′2k

−
2−N(n+1)k++2k+

min{1, 〈t〉2k−}1−δ, (2.39)

and

‖PkU
Lψ(t)‖L∞ � ε1〈t〉−1+δ′2k

−/22−N(n+1)k++2k+

min{1, 22k−〈t〉} (2.40)

for any k ∈ Z, t ≥ 0, h ∈
{
hαβ : α, β ∈ {0, 1, 2, 3}

}
, and L ∈ Vq

n, n ≤ 2. These pointwise

bounds and refined versions are useful in nonlinear estimates.

We emphasize, however, that weighted estimates on linear profiles are a lot stronger

than pointwise decay estimates on solutions, and serve many other purposes. For ex-

ample, space localization of the linear profiles gives us the main ingredient we need to

decompose the various nonlinear contributions both in frequency and space.

(6). The Z-norm bounds in (2.36) provide the last piece of information needed to

close the bootstrap argument. The Z-norm estimates are weaker than both the energy

estimates (2.34) and the weighted estimates (2.35) in almost every way, except for one:

the Z-norm estimates of some of the components are uniform and do not grow slowly in

time.

We notice that the Z-norms are applied only to the undifferentiated profiles, without

any of the weighted vector-fields Γa and Ωab. This is consistent with our intuition that
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application of the weighted vector-fields has to lose small powers of 〈t〉 because these

vector-fields are defined using the Minkowski coordinate functions x and t.

(7). The nonlinear profiles V G
∗ are important to understand the global dynamics of

the problem. Thankfully, in our case they are not too far from the linear profiles V G,

and can be obtained from these linear profiles simply by multiplication in the Fourier

space (see (2.27) and (2.29)). The nonlinear phases Θwa and Θkg defined in (2.26) and

(2.28) may grow slowly in time as integrals along the characteristic flow.

As a result, the nonlinear profiles V G
∗ satisfy similar bounds to the bounds (2.34)–

(2.36) satisfied by the linear profiles V G, possibly with additional 〈t〉Cδ-type losses.

3. Asymptotic geometry. The results presented in this section are consequences

of the global control on the solutions in Theorem 2.4 and in particular are not used in

the proof of the main bootstrap argument. As a result, we can afford to be less careful

with regularity and decay.

For the sake of clarity, we will always work up to a loss of 〈t〉κ, instead of the more

precise hierarchy of losses in the previous section (see (2.37)). We also simplify the

statements of some of the main theorems. See [31] for more precise results and a longer

discussion.

We introduce some vector fields and projections

L = ∂t + ∂r, L = ∂t − ∂r, Π0α = Πα0 = 0, Πjk = δjk − xjxk

|x|2 ,

and we have a first completeness property

mαβ = −1

2

{
LαLβ + LαLβ

}
+Παβ. (3.1)

Given a vector-field we associate the (flat) derivative operator ∂V = V α∂α. A key role

will be played by the set of vector-fields which are tangential to the (Minkowski) light

cone and we set

T = {L, ej =∈jk Πkα}.

3.1. Improved pointwise decay of the metric. We first observe that the metric compo-

nents hαβ have almost 〈t〉−1 decay, and the “good” derivatives of the metric components

have almost 〈t〉−2 decay. In addition, it was observed in [53] that the harmonic gauge

condition could be used to replace “bad” derivatives of some components with “good”

derivatives.

Proposition 3.1. Assume that (g, ψ) is a global solution of the Einstein-Klein-Gordon

system given by Theorem 2.4 and let r := |x|.
(i) The metric components have almost integrable decay, that is, if h ∈ {V2

2hαβ}, then

|h(x, t)| � ε0〈t+ r〉κ−1.

(ii) If h ∈ {hαβ}, then

|x||∂Lh|+ |Ωjh| � ε0|x|〈t+ r〉κ−2, |∇x,th| � ε0〈t+ r〉κ−1〈t− r〉−1, (3.2)

Licensed to Brown Univ. Prepared on Mon Sep 27 18:56:37 EDT 2021 for download from IP 128.148.231.34.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



GLOBAL SOLUTIONS OF THE EINSTEIN-KLEIN-GORDON SYSTEM 295

and some components of the metric also have favorable decay

|(∇x,th)L,T | � ε0〈t+ r〉κ−2, T ∈ T . (3.3)

(iii) The scalar field decays slightly faster but with limited improvement: for φ ∈ V1
1ψ

we have

|φ(x, t)|+ |∂tφ(x, t)| � ε0〈t+ r〉κ−1〈r〉−1/2,

|∇xφ(x, t)| � ε0〈t+ r〉κ−3/2.

The estimate of the scalar field and metric and their first derivative follows from

pointwise bounds such as (2.39)-(2.40) applied to various combinations of the vector-

fields, together with the observation that L has a favorable structure:

(∂t + ∂r)h = �
{
(1 + i

xj

|x|Rj)U

}
.

The control of derivatives of some components follows from the harmonic gauge condition

(1.34), which, expressed in the basis (3.1) gives

1

2
Lβ∂Lhβμ − 1

2
∂μhαβL

αLβ +
1

2
Παβ∂μhαβ = ε0O(〈t+ r〉κ−2). (3.4)

Contracting with the basis (3.1) quickly leads to (3.3).

3.2. Geodesics. We now introduce a natural decomposition of the space-time into

interior, null, and exterior regions. Given f(t) = t1/10 = o(t) a sublinear function, we

define

I := {(x, t) ∈ M : |x| ≤ t− f(t),

C := {(x, t) ∈ M : t− f(t) ≤ |x| ≤ t+ f(t)},
E := {(x, t) ∈ M : |x| ≥ t+ f(t)}.

(3.5)

The main dynamical relevance of this decomposition is contained in the following

result.

Proposition 3.2. Let γ(s) = xα(s) be an affinely parameterized causal geodesic (i.e.,

timelike or null); then there exists υ ∈ [0,∞) and θ ∈ S2 such that

xj(s) = υθj · x0(s) +O(|x|κ), |x0(s)| → ∞ as s → ∞
where 0 ≤ υ < 1 for timelike geodesics and υ = 1 for null geodesics. In particular, any

timelike geodesic γt eventually lies in I and every null geodesic γ eventually lies in C.
Finally, geodesics extend to infinite affine parameter.

We also refer to [55] for a detailed study of timelike geodesics in a slightly different

setting and when the metric is a perturbation of Schwarzschild at spatial infinity (in our

case when we do not have an explicit form of the nonintegrable component of the metric).

The main ingredient of the proof hinges on the fact that if Z is a Killing field, we have

that g(Z, γ̇) remains constant along a geodesic γ. In our case, we have no exact Killing

field, but we will use this with the Minkowski Killing fields given by the Lorentz boosts

Γj . Assuming for simplicity that |γ(0)| � 1, we can rewrite the geodesic equation as

0 =
d

ds

{
gαβ ẋ

β
}
− 1

2

{
ẋ0ẋ0∂αh00 + 2ẋ0ẋj∂αh0j + ẋjẋk∂αhjk

}
. (3.6)
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Using this, we see that, for any vector-field V α, there holds that

d

ds

{
V αgαβ ẋ

β
}
= V̇ αgαβ ẋ

β +
1

2
∂V hαβ ẋ

αẋβ . (3.7)

Since the right hand side is almost integrable in time O(〈t〉κ−1), while the coefficients of

V increase linearly in time, this forces the coordinates of ẋ in the “basis” {S,Γ1,Γ2,Γ3},
Sα = xα to be well behaved. In order to pass from arclength parameterization to time

parameterization, we estimate the acceleration of the curve using the following interesting

bounds which follow as in the proof of Proposition 3.1:

|Γ0αβx
αxβ | � ε0〈t+ r〉κ, |xjΓjαβx

αxβ| � ε0r〈t+ r〉κ, (3.8)

and correspond to gains of 1/t over trivial estimates.

3.3. Almost optical functions and improved vector-fields. In order to get precise infor-

mation on the asymptotic behavior of the metric in physical space, we need to understand

the bending of the light cones caused by the long-range effect of the nonlinearity (i.e., the

modified scattering). In Minkowski space, the outgoing light cones correspond to level

sets of u0 = r−t, thus, we look for an almost optical function u close to r−t. Once again,

the situation is simplified in the case of “restricted-like” data which are perturbations of

Schwarzschild (see [52]), where one can choose

u(x, t) = r∗ − t = |x| − t+M ln |x|.

However, the metrics we consider have slower decay at infinity, see (1.40), and we expect a

deviation that is both larger and not radially isotropic. In our setting, the almost-optical

function is related to the functions Θwa from (2.26).

Lemma 3.3. There exists an almost optical function

u(x, t) = |x| − t+ ucor(x, t), gαβ∂αu∂βu = ε0O(〈r〉−2〈t+ r〉κ) (3.9)

with

ucor, Ωucor = ε0O(〈t+ r〉κ),
∂tu

cor, ∂ru
cor = ε0O(〈t+ r〉κ−1), ∇x,tL

α∂αu
cor = ε0O(〈t+ r〉κ−2).

(3.10)

In addition, ucor is close to Θwa close to the light cone:∣∣∣∣ucor(x, t)− Θwa(x, t)

|x|

∣∣∣∣χC(x, t) = ε0O
(
〈t〉−1/100

)
when |t− |x|| ≤ 〈t〉 1

10 . (3.11)

Linearizing the Eikonal equation around u0(x, t) = |x| − t, we get

gαβ∂αu∂βu =
{
2(∂t + ∂r)u

cor + gαβ∂αu
0∂βu

0
}
+ 2gαβ≥1∂αu

0∂βu
cor + gαβ∂αu

cor∂βu
cor.

In order to integrate the term in the bracket, we let

HL := −1

2
gαβ≥1∂αu

0∂βu
0 =

1

2
LαLβhαβ,

γx,t(s) := x+ (s− t)
x

|x| , F
{
Π−

s f
}
(ξ) := ϕ≤0(〈s〉p0ξ)f̂(ξ),

H+
L (x, t; s) := (1−Π−

s )HL(γx,t(s), s) +
{
Π−

s HL(γx,t(s), s)− Π−
s HL(sx/|x|, s)

}
.
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Then we define, for |x| ≤ t (similar formulas apply to the case |x| ≥ t)

ucor(x, t) :=

∫ t

0

Π−
s HL(sx/|x|, s) ds−

∫ ∞

t

H+
L (x, t; s) ds.

This informally integrates the low frequencies from the initial time slice and the high

frequencies from ∞. Note that, close to the light cone, the low frequency contribution is

close to the formula in (2.26).

Remark 3.4. The level sets of the almost optical function u define our proxy for the

outgoing light cones and as such are important in order to properly define the Friedlander

field and the Bondi mass.

We can now look to improve on (3.1) with a frame adapted to g. The crux is to find

an improved version of the null outgoing vector, L = ∇(r − t). Thus it makes sense to

introduce the vector-fields

Lα := gαβ∂βu, Lα := (1 +
1

2
∂Lu

cor)Lα +
1

4
gLLL

α. (3.12)

3.3.1. Friedlander fields and description of the metric at null infinity. The main aspect

of the asymptotic behavior of h at null infinity is related to its H1-scattering through

the Friedlander field defined below.

We define the asymptotic field to be

AG(u, ω) =
−i

4π2

∫ ∞

ρ=0

eiρuV̂ G
∞(ρω)ρdρ, G ∈ {F, ωj ,Ωjk, ϑab}, (3.13)

and we observe that∫
u∈R

∫
ω∈S2

|AG(u, ω)|2dudω = C

∫
R3

|V̂ G
∞(ξ)|2dξ,∫

{a≤u(x,t)≤b}
|AG(u(x, t),

x

|x| )|
2 dx

|x|2 =

∫
a≤u≤b

∫
θ∈S2

|AG(u, θ)|2dudθ.
(3.14)

We can then describe the main order term of the metric and of the scalar field.

Lemma 3.5. Assume that (g, ψ) is the solution from the Einstein-Klein-Gordon as in

Theorem 1.3. We have the asymptotic description:

UG(x, t) =
1

|x|AG(u(x, t),
x

|x| )χC(x, t) + UG
rem(x, t), G ∈ {F, ωj ,Ωjk, ϑab},

Uψ(x, t) = C

∣∣∣∣∂νkg∂x
(x, t)

∣∣∣∣
1
2

eiΦkg(x,νkg ,t)V̂ ψ
∞(νkg(x, t))χI(x, t) + Uψ

rem(x, t),

(3.15)

where the remainders satisfy

‖UG
rem(t)‖L2

x
+ ‖Uψ

rem(t)‖L2
x

� ε0〈t〉−δ.

Here, χC and χI are cut-off functions to the regions C and I as in (3.5) and νkg(x, t)

is the stationary point of v �→ Φkg(x, v, t) where:

Φkg(x, v, t) :=
√
1 + |v|2

{
−t+

1

2

∫ t

s=1

Hkg(s∇Λkg(v), s)ds

}
+ 〈x, v〉,

Hkg(x, t) :=
1

2
hlow
αβ (x, t)nαv n

β
v , n0v = 1, njv = ∇jΛkg(v).
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Lemma 3.5 is essentially an application of the stationary phase analysis to extract the

main contribution of each term.

3.4. Scattering of the mass. We define the local density of mass to be

m := ∂k {∂jgjk − ∂kgjj} = −2Δτ,

where τ = −ϑjj/2 is defined in (2.15). The standard definition of the ADM mass of the

time slice Σt is then (up to a multiplicative constant):

MADM (t) = lim
R→∞

∫
{|x|=R}

(∂jhij(t)− ∂ihjj(t)) ·
xi

|x|dS;

see, e.g., [3, 4]. Using the Stokes theorem and the definition (2.15), one can therefore

recast the ADM mass as an integral of Δτ . We will see that in fact various integrals

of Δτ on appropriate regions are nonnegative and obey suitable conditions. The key

observation is the following which refines one of the estimates in Lemma 2.2 from the

harmonic gauge condition (1.34).

Lemma 3.6. Assume that (g, ψ) satisfies the conclusion of Theorem 2.4, then, with the

definitions in (2.15) and (2.18), there holds that

−2Δτ =
1

4

∑
m,n

|Uϑmn |2 + |Uψ|2 + ∂jFj + E ,

‖E(t)‖L1
x
= O(〈t〉−κ), ‖F(t)‖

L
3
2
x

= O(〈t〉−κ).

In addition, there holds that

Δ∂tτ = ΔF ′, ‖F ′(t)‖
L

3
2
= O(〈t〉−κ). (3.16)

The last assertion which implies that the ADM mass is constant in time is in fact a

direct consequence of the equality (compare with (2.16))

0 = Δ
{
2∂tτ + gαβ≥1(∂thαβ − 2∂αhβ0) + 2(∂tF − |∇|ρ)

}
.

The various mass loss properties are then easy consequences of Lemmas 3.5 and 3.6.

Theorem 3.7. (i) The ADM mass of a time-slice can be defined in terms of the Hodge

decomposition:

MADM (t) = −
∫
R3

2Δτdx = −2 lim
R→∞

∫
R3

(χRΔτ )dx, (3.17)

where χR(x) = χ(R−1x) and χ ∈ C∞
c is equal to 1 in a neighborhood of 0. There holds

that MADM (t) is finite and, in fact independent of time (and of the defining function χ).

In addition, MADM (t) ≥ 0 and it vanishes only in case the space-time is the Minkowski

space and the scalar field is 0. In fact, the mass is a quadratic form on the scattering

data:5

MADM =

∫
R3

{
1

4
|∇x,tϑ

∞|2 + |∇x,tψ
∞|2 + |ψ∞|2

}
dx. (3.18)

5Note that one can replace ϑ by ϑ, its traceless part.
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(ii) Given a number ū ∈ R, we define the null Bondi mass Mnull
B (ū) to be

Mnull
B (u) = lim

t→∞

∫
{u(x,t)≤u}

−2Δτ + ∂jYj dx,

where ∂jYj is a suitable quadratic divergence (which can be defined covariantly; see

Section 6.2 in [31] for details). The function Mnull
B is well defined, continuous and

nondecreasing for −∞ < ū < ∞. In fact, for ū1 < ū2, we have that

Mnull
B (ū1)−Mnull

B (ū2) =
1

4

∫ ū2

u=ū1

∫
ω∈S2

∑
a,b

|Aϑa,b
(u, ω)|2dudω,

lim
ū→∞

Mnull
B (ū) = MADM , lim

ū→−∞
Mnull

B (ū) = ‖ψ∞‖2L2 + ‖∇x,tψ
∞‖2L2 .

(iii) For any R > 0, define the timelike Bondi mass to be

MI
B(R) = lim

t→∞

∫
{|νkg(x,t)|≤R}

−2Δτ + ∂jYj dx.

Then, the limit exists, M(R) is increasing in R and besides, we have an explicit formula

through the scattering map:

MI
B(R) :=

∫
{|ξ|≤R}

|V̂ ψ
∞(ξ)|2dξ.

In particular, we see that

lim
R→∞

MI
B(R) = ‖∇x,tψ∞‖2L2 + ‖ψ∞‖2L2 , lim

R→0
MI

B(R) = 0,

and all the ADM -mass is accounted for:

MADM := lim
u→∞

Mnull
B (u)− lim

u→∞
Mnull

B (u) + lim
R→∞

MI
B(R)− lim

r→0
MI

B(r).

3.5. Peeling estimates for the curvature. The (weak) peeling estimates we prove here

assert that certain components of the Riemann curvature tensor have improved decay

property compared to the trivial estimate R = ε0O(〈t+ r〉κ−1〈t− r〉−2). We will decom-

pose R using the basis (3.1); more precisely, we define

αpq := RaβbρΠ
apΠbqLβLρ, αpq := RaβbρΠ

apΠbqLβLρ,

βp := RaβμρΠ
apLβLμLρ, βp := RaβμρΠ

apLβLμLρ,

� := RαβμρL
αLβLμLρ, σ := RαβμρM

αβLμLρ, Mαβ = ΠαθΠβγ ∈θγ .

(3.19)

This decomposition is slightly different from other decompositions such as the one

in [43], most notably because of the lack of normalization and because it is done with

respect to a frame which is only adapted to the Minkowski metric. However, the normal-

ization factors would be bounded above and below in our case, and switching to adapted

frame would not improve the decay in our case (with the exception of one component of

signature 0 which is not listed in (3.19); see Section 6.2 in [31] for details).
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Theorem 3.8. For r ≥ t/10 and t ≥ 1 we have

αjk = O(rκ−1〈t− r〉−2),

βj = O(rκ−2〈t− r〉−1),

|σ|+ |αjk|+ |βj |+ |�| = O(rκ−3).

Remark 3.9. In view of the Einstein equations (1.22), we notice that the Ricci com-

ponents

Rαβ ≈ O(ψ,∇x,tψ)
2 � O(〈t〉−3).

As a result we do not expect uniform estimates of order better than cubic for any com-

ponents of the Riemann curvature tensor, so the weak peeling estimates in Theorem 3.8

seem to be optimal, at least up to rκ losses.

The almost cubic decay for the null components α, β, σ, � is also formally consistent

with the weak peeling estimates of Klainerman–Nicolò [44, Theorem 1.2 (b)] in the setting

of our more general metrics (one would need to formally take γ = −1/2− and δ = 2+

with the notation in [44], to match our decay assumptions (1.40), even though this range

of parameters is not allowed in [44]).

The estimates in Theorem 3.8 follow from the formulas (3.19), precise bounds on first

and second order derivatives of hαβ , and the general identity

Rαβμρ = −∂αΓρβμ + ∂βΓραμ + gθλΓθβμΓλρα − gθλΓθαμΓλρβ

after carefully estimating each term.
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