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ABSTRACT

Spectrum access in the next generation wireless networks will
be congested, competitive, and vulnerable to malicious intents of
strong adversaries. This compels us to rethink wireless security for
a cross-layer solution addressing it as a joint problem for encryp-
tion and modulation. We propose a novel neural network gener-
ated cross-layer security algorithm where the trusted transmitter
encodes a secret message using a shared secret key to generate a se-
cured waveform. This encrypted waveform remains undeciphered
by the adversary while the intended receiver can recover the secret.
Cooperative learning is introduced to enable our trusted pair to de-
feat the adversary and learn the encryption and modulation jointly.
The model can encode any modulation order and improves both
reliability and secrecy capacity compared to prior work. Our results
demonstrate that the trusted pair succeeds in achieving secure data
transmission while the adversary can not decipher the received
cipher data.
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1 INTRODUCTION

The growing need for spectrum to support the next generation (xG)
wireless networks can only be satisfied by coexistence of frequency-
agile, cognitive and heterogeneous nodes. In this scenario, securing
mobile networks is an essential requirement to achieve trusted
communication among users. Classical cryptography has always
been an add-on feature for communication as a result of the layered
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Figure 1: Three neural networks trained adversarially to
achieve cross-layer security.

approach to network design. Physical layer security has gained
attention as a technology to secure wireless communication, but
is chosen to complement cryptography, not as a replacement. The
disconnect between higher layer cryptography and physical layer
signal generation is predominantly due to the fact that encryption
algorithm is designed using binary operations with security as the
primary goal, whereas the communication signals are designed
to maximize the spectral efficiency. Cryptography guarantees se-
curity regardless of the signal reception capability of adversary
but under the assumption of constrained computational power of
the adversary. On the other hand, physical layer security finds its
roots in information theory and holds without any restriction of
the adversary’s computation capability, but with the constraint
on adversary’s reception quality. Individually, each one of these
technologies have significant advantages that has been very well
studied in the literature. However, the combination of these two
areas has not been embraced for improving security in a practical
wireless environment.

Recent years have experienced tremendous growth in deep learn-
ing research and its capabilities are leading to breakthroughs [20]
in several domains of science and technology. Data driven deep
neural networks (DNNs) are known to learn complex functions,
may require less computation to approximate certain functions and
operate on real numbers, unlike traditional cryptography. Specifi-
cally, adversarial learning [12] have shown tremendous potential
in generating realistic images, videos, speech, handwritten text
and even used in wireless and medical applications. We leverage
these capabilities of NNs to create a novel cross-layer integrated
cryptography algorithm for use in a ‘zero trust’ electromagnetic
environment.

Cryptography is beyond simple mapping of bits to another do-
main. To ensure secrecy and integrity of information, it is important
that an eavesdropper (Eve) listening to the cipher data (communi-
cation between Alice, the sender, and Bob, the receiver) will not
be able to decipher it without a key. Hence, we design Alice and
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Bob to each have a neural network to learn the encryption algo-
rithm, as shown in Figure 1. It is only possible to obtain higher
levels of secrecy when we can also emulate an adversary, a passive
eavesdropper in our model, and cooperatively train Alice and Bob
to defeat Eve. Hence, we introduce Eve as another neural network
during the training phase that is constantly trying to decipher the
data and the model is trained in an adversarial manner to converge
to a system, where Alice and Bob can defeat Eve. The goals of
both Bob and Eve networks are to recover the message transmitted
by Alice. Alice and Bob are jointly trained such that Eve reaches
maximum uncertainty. The input of the encryption block is in bit

domain, whereas the output is a complex signal; thus creating a

cross-layer encryption technique.

Thus, our contributions in this paper can be listed as:

e We propose a novel neural network generated cross-layer se-
curity algorithm that encrypts messages with a shared secret
key and converts bits directly to secured signal, represented in
complex numbers, through an adversarial learning.

e We utilize the capability of bi-directional recurrent neural net-
work in learning sequences to generate encrypted signal that
depends on both the past and the future output. This improves
both the reliability and secrecy with a shorter key length com-
pared to feature extraction networks.

e We design a neural network architecture, which can be param-
eterized based on the modulation order, such that encrypted
constellation can represent one or multiple bits of plaintext data.

e We have formulated secrecy capacity of our model based on
information-theoretic analysis.

o Our results show that the proposed model succeeds in learn-
ing a secure waveform that remains unrecognizable to Eve and
achieves a higher secrecy level compared to prior work.

2 RELATED WORK

Recent years have experienced increasing use of deep learning
in wireless communication systems. An autoencoder (AE) model
is used in [19] to learn the different modulation orders without
any prior mathematical formulation. NNs have also been used to
learn end-to-end OFDM systems for wireless [24]communications.
In [16], authors use recurrent neural networks (RNNs) to decode
convolutional codes. In [6], authors propose an AE model to learn
a joint source-channel coding algorithm such that optimal codes
can be achieved.

The idea of using adversarial neural network in cryptography
was introduced in [1], where one bit of plain text is encrypted using
adversarial learning to generate a floating point value. However,
representation of one bit with floating point value is not quite useful
for storage purposes or transmission over the air as it increases
the size of the cipher data by N times, where N-bits are used for
floating point representation (in fixed point representation). In [8],
the authors reduce the model complexity used in [1] by using fully
connected layers. Although the results show that Alice and Bob
could exchange confidential data successfully in fewer training
iterations, the model is imperfectly secured due to reduction of
complexity of the encryption algorithm. In [3, 10, 17], the authors
use autoencoder model and train it in a Gaussian wiretap channel
environment to achieve key-less encryption between Alice and Bob.
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However, they assumed that Eve’s channel is worse compared to
the main channel. Moreover, the results show that Eve can decode
the secret if the received SNR at Eve is higher than Bob. We choose
this opportunity to jointly redesign the encryption and wireless
signal generation, such that encrypted floating point cipher data
can be mapped to complex domain for spectrally efficient waveform
generation.

The closest work to ours is [18], where authors introduced a
cooperative learning model for creation of secured modulation. The
model uses three neural networks: a trusted sender (Alice), a trusted
receiver (Bob), and an eavesdropper (Eve). The three networks are
implemented using convolutional neural networks (CNNs), where
the secured modulation is created based on the secret message and a
shared key. A cooperative objective function is introduced between
the trusted pair to learn the encryption algorithm while defeating
Eve. A discrete activation function is also introduced to support
lossy media transmission. Although the results are promising, there
are several issues in this prior work. First, the learning model was
restricted for accepting only one bit of information to be encrypted
(i.e., modulation order m = 1). Second, the encrypted modulation
is restricted to a finite number of levels based on the discrete tanh
function. This reduces the randomness of the secret modulation
and consequently the secrecy level of the transmitted waveform
is reduced. Third, the system was restricted to accept equal size
of message and key in each iteration, which might be impractical
in many scenarios. In this paper, we present a recurrent neural
network based model that is empowered with memory units to
remember prior states. Our work overcomes the limitations of prior
work and enables a practical cross-layer encryption model.

3 SYSTEM MODEL

The wiretap channel is a three-node network model, which involves
three nodes: a trusted sender (Alice), a trusted receiver (Bob), and
an eavesdropper (Eve), as shown in Figure 1. Alice transmits a
confidential message M to Bob in the presence of Eve. In this work,
we consider symmetric key encryption. Thus, Alice encodes M
using a shared secret key K to produce the cipher data C, which
is transformed to a complex vector X, to be sent over a broadcast
channel to Bob. Both Bob and Eve receive complex cipher data Yz,
and Yg,., which are X after passing through the channel. They
recover the real representation of cipher data C’. Bob decodes C’
using K to obtain the predicted plain data Mg,;. However, Eve uses
C’ only to obtain Mgy, which is the predicted output for M. In this
paper, we use the degraded Gaussian wiretap channel. Hence, if
Alice transmits X, the received symbols for both Bob and Eve are
given by:

YBob = X + NBobp. YEve = X + NEye (1)

where Npop, Nege ~ CN (0, 02) are the added complex noise vector
and ¢ depends on the received signal to noise ratio (SNR). Note
that both the channels for Bob and Eve have the same statistical
properties.

Alice, Bob and Eve apply neural networks with parameters 64,
0p and O respectively. Alice’s network is designed to accept M and
K in bits. In other words, M, K € 8B, where 8 = {0, 1}. It also accepts
modulation order, m. Hence, M € 8N XM where N is the width
of the input symbol. Similar to M, K’s inner dimension (mg) can
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Figure 2: Neural Network Architecture

be extended to increase the secrecy of C (i.e., K € 8N*™k). Since
neural networks operate on real data, Alice’s network outputs real
data as cipher, C, via two output channels (i.e., C € RN*?). Thus,
the transmitted cipher symbol X is given by X = C; + jCy, where
C; is the output dimension of the Alice network in real domain.

For practical implementation, we constrain C within the range
(-1,1). Bob’s network is designed to accept the real C’ as well as
K and outputs Mgop € RN*™_On the other hand, Eve’s network
accepts C’ only, and outputs Mgze € RV, At the end of successful
training process, Mg, should converge to B, while Mgqe should
not. Hard decision decoding is performed on both Mpgop and Mgge
to covert them from R to B.

According to Wyner [23], Bob can reliably decode C to obtain M
with a vanishing probability of error (i.e., P, = P, [Mgop # M] = 0),
while Eve can not decode C if the transmission rate R between Alice
and Bob is below or equal to secrecy capacity Cgec, which is given
by:

Csec = mﬁx{I(M; Mgop) — I(M;C)} ()
where I(X;Y) is the mutual information between X and Y. In the
security context, Alice and Bobs’ networks should be optimized
using equation (2). There are challenges in directly using (2) in a
neural network architecture and design of loss functions. First, it is
intractable to estimate the mutual information from data samples.
Secondly, secrecy capacity, Cse, in (2) is derived for key-less encryp-
tion, which is not our goal. This paper implements a shared secret
key based encryption technique, due to which objective functions
need to be derived as an approximation for Csec.

4 NEURAL NETWORK ARCHITECTURE

Neural networks can be classified into two types: feature extraction
and sequential networks. Feature extraction networks are capable of
learning local correlation and dimension reduction. Hence, output
of these networks depends on current input and is given by:

Y, = f(X,0) 3)
where f(.) is the network’s mapping function, X; and Y; are the
input and the output at time instant ¢, while 0 is the network pa-
rameters. Feed forward networks (FFNs) and convolutional neural
networks (CNNs) [11] are the most commonly used networks for
feature extraction. However, these networks are not capable of
learning sequences or track time-domain dependencies. On the
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other hand, sequential networks are capable of learning data se-
quences and capturing the time-domain dependencies of the output
on the current input and the current state of the network, which
depends on the previous inputs’ history. Thus, the output of these
networks can be expressed as:

(Yt,ht) :f(Xt,H, ht—l) (4)

where f(.) is the network mapping function, 6 is the network pa-
rameters, Y; and h; are the network output and the current state
respectively, which depend on the current input X; and the previ-
ous state h;_; that encodes the history of the network. Recurrent
neural networks (RNNs) [5] are the most common type in sequence
learning. However, RNNs can not capture long-term dependencies
and suffer from vanishing gradient problem. Gated Recurrent Units
(GRUs) [4] and Long Short Term Memory networks (LSTMs) [15]
are special kinds of RNNs that are capable of capturing the long-
term dependencies and solving the vanishing gradient problem.
In this work, we consider a bidirectional GRU (BiGRU) as the
base unit for building the neural network for Alice, Bob, and Eve
respectively. BiGRU consists of 2 GRU cells [14]. The first one
processes input sequence in the forward path ht = f(Xt, 0, he1),
while second processes the backward path htb = f(Xt,0, hts1),
where htf R htb are the current states for forward and backward
paths respectively. The output of BiGRU cell can be expressed as:

Y =< h[f, htb > (5)

where < X,Y > is the concatenation output of X and Y. BiGRU’s
structure increases the encrypted symbol’s secrecy level in the
security context since the encrypted symbol depends on the whole
input sequence. Moreover, BiGRU increases the decoding capability
at the receiver side, which improves the communication reliability.

4.1 Neural Network Structure

The learning model consists of three neural networks: Alice (encryp-
tion model), Bob (decryption model), and Eve (adversarial model),
as shown in Figure 2. Alice accepts M and K in bits and output real
cipher data C, while Bob accepts the received real cipher data C’
and K and outputs Mg,},. Eve accepts only C’ and tries to infer the
secret message through M.

Alice’s network starts by two fully connected (FC) layer for both
M € BNX™ and K € 8N*™k where N is the symbol length, while
m and my represents the modulation order per sample for both
M and K respectively. The role of the FC layer to perform initial
permutation for both M and K, then change the domain of M and K
form B to R to increase the mapping space and avoid singularities
(zero mappings). The outputs of the FC layers are concatenated
over the inner dimension. In other words, the output vector of the
concatenation stage has a dimension of N X (m + my) then fed as
an input to the GRU layers.

Two BiGRU layers are used to perform sequence encoding for
the input vector. Unlike convolutional networks, BiGRU guarantees
that each entry of the encoded vector depends on the previous,
current, and future inputs (i.e., each entry of the output vector
is a function of the whole sequence) to increase the randomness
of the encoded vector and improves the reliability at the decoder
side. Moreover, the output of the encoded vector depends on the
system state h;, which depends on the previous input symbols.
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Hence, Alice can increase Cse with smaller K, which guarantees
that the system is robust and is not restricted to learn one-time
pad encryption [21]. The final layer is the FC layer to reduce the
dimension of the learned features to the channel dimension n. In
this work, we assume a single channel (i.e., n = 2); hence the output
real cipher data C consists of two real vectors corresponding to in-
phase (I) and quadrature-phase components (Q). Tanh(x) activation
function is used for both the GRU layers and the final layer to ensure
that the output range between (-1,1) satisfies the power constraint.

Bob’s network is similar to Alice’s with some minor differences.
First, the rule of the GRU layers is to decode the cipher data and
compensate the channel effects to recover the original message.
Second, Sigmoid activation function is used in the last layer to
ensure Mp,), within the range of (0,1). Eve’s network has a similar
structure except for the concatenation layer since Eve predicts the
secret form C’ only. Xavier initializationis used to initialize all the
parameters of the learning model to accelerate the convergence of
the networks and avoid gradients saturation.

4.2 Objective Functions

In this section, we formulate the objective of each entity within
the learning model. Alice encodes M using K, which is shared to
Bob, and outputs C. Bob tries to decode C’ using K to obtain M by
minimizing the error between the predicted output Mg, and M,
while Eve infers M using only C’, by minimizing the error between
M and Mgge. Informally speaking, Alice and Bob cooperate to find
out a secure way of confidential data exchange and defeat Eve
such that Eve can not recover the secret from the received cipher
data. Thus, the three networks should be trained in an adversarial
manner. In the rest of this section, we derive the loss function that
supports the three networks’ adversarial behavior.

We define A(64, M, K, ha), B(0,C’,K, hg), E(0g,C’, hg) are the
mapping functions for Alice, Bob, and Eve respectively where
ha, hp, hg represent the state vectors for the three networks which
depend on the input history of the three networks. In addition, we
define d(M, M) as the L2 norm between M and M. Intuitively, Eve
loss function can be formulated as:

Lg(6k, 04, M, K, hg, ha) = Engc{d(M, Mgoe)}
= Emk{d(M, E(Op, hg, A(6a, MK, ha))}  (6)
where Epx{.} is the expected value over M and K set.
It is noted here that Eve has full access to M during the training

process such that Eve can reach the most adversarial behavior.
Similarly, Bob’s loss function is given by:

L (0B, 04, M, K, hp, ha) = Ep i {d(M, Mpop)}
= Epmx{d(M,B(0p, hp,K,A(04, M,K, ha))} (7)

As shown in (7), L minimizes the distance between M and Mg,
that guarantees the communication reliability between Alice and
Bob. However, Lp is not sufficient to achieve secrecy between Alice
and Bob. Thus, we define a cooperative loss function between Alice
and Bob to guarantee both reliability and secrecy as:

Lap = argming, 9,{Lp(0B, 04, M, K, hp, ha)
_LE(9E5 QA:M’K’ hE) hA)} (8)
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As shown in (8), L4 g minimizes Bob’s loss Lg to achieve com-
munication reliability between Alice and Bob and maximizes Eve’s
loss Lg to achieve secrecy. Moreover, Ly g optimizes the network
parameters of both Alice and Bob only (i.e., 84 and 6p) such that
cooperative learning takes place only between the trusted partners.
Note that, Both Lg and Lg depend on Alice’s network (i.e., 64),
which means that Alice’s network tries to learn a secure pattern
that Bob can recognize this pattern while Eve can not. Thus, during
each epoch in the training process, 64 are frozen during updat-
ing Eve’s parameters (i.e., 0g)) using (6), then Both 64 and 0p are
updated simultaneously based on (8) while 0 are frozen.

The cooperative loss function introduced in (8) is similar to
the min-max optimization problem in GANs [13]. Thus, the coop-
erative loss function needs to be formulated such that it can be
implemented easily. According to the entropy definition introduced
by Shannon [22], Eve reaches the maximum uncertainty if Eve’s
error probability of decoding the received signal equals 0.5. Thus
equation (8) can be reformulated as:

La(04,0p) = argming, o, (Lp(0p, 04, M, K, hp, ha)
+ (0.5 —Lgy (0, 04, M,K, hg, hA))Z) )

where Lg,, is the normalized loss function of Eve.

As shown in (9), the first component minimizes the decoding error
between Alice and Bob to achieve communication reliability, while
the second component minimizes the difference between the nor-
malized error (i.e., probability of error) at Eve and 0.5 to achieve
the maximum uncertainty.

5 INFORMATION THEORETIC ANALYSIS

In this section, we formulate the secrecy capacity Cse. of the learn-
ing model and show that C, increases if we use sequential net-
works (i.e., RNN, LSTM, or GRU) compared to feature extraction
networks (i.e., FFNs, and CNN).

As shown in (2), Csec can be obtained by maximizing I(M; Mg,y,),
while minimizing I(M; C). Starting by the second term I(M;C) can
be given by:

I(M;C) = H(M) — H(M/C) (10)
where H(.) is the binary entropy function.
The conditional joint entropy H(M, K/C) is given by:

H(M,K/C) = H(K/C) + HM/K,C) = H(K/C)  (11)

since H(M/K, C) = 0. Then, the conditional entropy H(M/C) can
be bounded by:

H(M/C) < H(K/C) < H(K) (12)
I(M;C) 2 H(M) = H(K) 2 N(H(Pm) - H(Pk))  (13)
where Py, and Pk are the probability density function of each entry

in M and K respectively.
On the other hand, I(M; Mp,p) is given by:

I(M; Mpop) = H(Mpop) — H(Mpop/M)
= H(Mgop) — H(Mpop/Y)

since Alice’s encoding function is deterministic after the training
process. To infer the second term in (14) (i.e., H(Mp,p/Y)), we use
the concept of typical sequence [9] to calculate the probability of the

(14)

correct decoding (i.e., P(M = Mg,p)). Feature extraction networks
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are one-to-one mapping. Assuming uniform distribution over the
set of transmitted symbols M, the probability of decoding Mg,
from received vector Yg,}, is given as:

P(MBob/YBob) =1/Q
where Q is the number of all possible sequences that Y can take.
On the other hand, if a sequential model is used, which has 2kXNXL
states, then
P(Mgop/Ypop) = 271 /Q

where L is the number of sequential layers of Alice, k is the number
of bits used to represent the value inside each sequential unit, and
the number of units in each layer equals N . Thus I(M; MBob) can
be given by:

I(M; Mpop) = N(H(Pr) = (1/N) log Q + Cofy) (15)

where C,y effective model capacity which can be expressed as:

oo FEN, CNN »
ff 7 kxI, RNN,LSTM, GRU

By maximizing I(M; MBoh) and minimizing I(M; C), Cse. is given:
Csec=N(H(PK)+kXL_(1/N)10gQ) (17)

Consequently, sequential models’ secrecy rate R, can achieve
Csec, which reduces the secrecy-reliability trade-off. Moreover, the
randomness of the transmitted cipher data can be increased due
to the sequential model’s high capability of decoding the received
sequences through learning optimal decoding schemes.

6 PERFORMANCE EVALUATION
6.1 Experimental Setup

We implement our experiments in Tensorflow [2]. In our experi-
ments we choose the symbol length N = 48, such that N is similar
to 64-FFT as in Wi-Fi implementation [7]. In our experiments, the
training set plain data, M, has 20000 symbols. The batch size is 8000,
and the learning rate equals 0.001. We also train the learning model
to accept different modulation order m. We choose the training
signal-to-noise ratio SNR; equals 20 dB and the order of encryption
key my = 1 for the modulation orders m = {1, 2}. On the other
hand, SNR; = {25,30} and my = {2,3} for m = {4, 6}. We maintain
my. to be less than or equal to m. Moreover, we repeat a finite set
of key symbols over the whole plain data set to ensure that the
learned algorithm is robust enough and it is not restricted to learn
one-time pad encryption [21]. The key to data set ratio is 0.005. The
number of training epochs is 2000. The three networks are trained
simultaneously in each epoch such that Eve’s weights and biases
are frozen during updating the weights and biases of both Alice and
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Figure 3: Loss function and data distribution for m = 2 at the training SNR.

Bob based on the cooperative loss function introduced in (9). Alice
and Bob’s weights are frozen while Eve updates her weights and
biases using her objective function introduced in (6). In the testing
phase, we construct a plain data test set consists of 1000 symbols,
then a key test set is constructed, which has the same key to plain
data ratio used for training. The test data set for both M and K are
constructed from different seeds from those used in the training
phase so that we ensure that the system is not data sensitive.

6.2 Evaluation

Figure 3 shows the loss function, the learned cipher constellation
C, and the distribution of the decoded data Mg, for m = 2 after a
successful training process. Figure 3a shows the loss functions for
Alice-Bob and Eve. Both the loss functions decrease at the same rate,
which means that both Bob and Eve can partially decode Alice’s
received pattern. After some time, Alice and Bob succeed in finding
a confidential way for secure data exchange. However, Eve’s loss
increases until she reaches the maximum uncertainty at the end of
the training process. Thus, cooperative learning between Alice and
Bob succeeds in figuring out their way of secure data transmission.
Figure 3b shows the learned cipher constellation, C, transmitted
over an AWGN broadcast channel. The cipher constellation looks
like a Gaussian noise with zero mean and unity variance. Thus,
there is no recognizable pattern that can be detected by Eve. More-
over, we use fanh(x) activation function for power normalization,
which increases the constellation’s randomness. The cipher con-
stellation’s randomness can be observed in figure 3c, which shows
C’s distribution. The distribution has the shape of the Gaussian
distribution with zero mean and unity variance. Thus, C does not
carry any statistical properties of the plain data, M. Furthermore, if
we apply hard decision decoding on the cipher data C, the aggregate
probability of error equals 0.5, which guarantees that C has the
maximum uncertainty property. Figure 3d shows the distribution
of the decoded plain data at Bob, Mgy, which indicates that Bob
can decode the data correctly, and Mg,;’s distribution converges
to the bit values. Hence, Alice and Bob succeed in finding a way
to encrypt/decrypt the confidential data without any information
leakage in C. For the bit error rate (BER) curves presented in this
section, we choose to show Bob’s BER in blue color, while Eve’s
BER in red color.

Effect of number of GRU units: Figure 4 shows the BER and
the corresponding secrecy rate Rs.. for m = 6 to analyze the effect
of reducing the layers of GRU units, L. Figure 4a shows the BER for
m = 6 with two different models (i.e., L = 2 and L = 1). Bob’s BER
for L = 2 is lower than L = 1 indicating increase of communication
reliability with more number of GRU units Also, Eve’s BER (in
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red) for L = 2 is higher than L = 1 indicating higher secrecy with
more GRU units. Thus the secrecy-reliability trade-off decreases by
increasing L. This result is reflected in figure 4b. It is shown that
Rsec for L = 2 is always higher than L = 1. This result verifies the
Csec’s expression derived in (17).

Comparing with prior work: To show the advantage of the
proposed GRU model, we have implemented the CNN model pro-
posed in [18]. Figure 5 shows the BER for the CNN and GRU models
for different modulation orders m. Figure 5a shows that the GRU
model achieves a reliable communication with higher modulation
order (i.e., m = 2) compared to a CNN based model with lower
modulation order (i.e., m = 1). Thus, the GRU model increases the
achievable secrecy rate, Rgec, between the trusted pairs by accepting
higher modulation orders and learning optimal encoding/decoding
algorithms compared to the CNN model. Figure 5b shows the BER
curves for all modulation order for the proposed GRU model. The
figure shows that the GRU model enables us to transmit M with
different values of m. However, the CNN model was restricted to
m = 1 only. Moreover, the GRU model maintains a higher secrecy
level such that Eve (curve in red) can not decode the data even at
higher SNR. Also, the performance degradation between different
modulation orders is relatively small since Rge depends on K and
the number of GRU layers L. Rq.. can be increased by increasing
either the depth of the encryption key, my, or the number of GRU
layers, L, or both.

7 CONCLUSION

This paper shows the power of sequential neural network models
(GRU) to learn a novel cross-layer encryption algorithm. To achieve
a high secrecy level, we train the trusted pair in an adversary’s
presence to maximize both the communication reliability between
the trusted pairs and the error probability at the adversary. The
model ensures practical design constraints where the system ac-
cepts higher order modulation for the data and a relatively short

Hesham Mohammed and Dola Saha

key size. Our results showed that GRU models increase the secrecy
rate compared to the convolutional models as they use higher order
modulation and increases the randomness of the transmitted cipher.
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