
Learning Secured Modulation With

Deep Adversarial Neural Networks

Hesham Mohammed and Dola Saha

Department of Electrical & Computer Engineering

University at Albany, SUNY

{hhussien, dsaha}@albany.edu

Abstract—Growing interest in utilizing the wireless spectrum
by heterogeneous devices compels us to rethink the physical layer
security to protect the transmitted waveform from an eavesdrop-
per. We propose an end-to-end symmetric key neural encryption
and decryption algorithm with a modulation technique, which
remains undeciphered by an eavesdropper, equipped with the
same neural network and trained on the same dataset as the
intended users. We solve encryption and modulation as a joint
problem for which we map the bits to complex analog signals,
without adhering to any particular encryption algorithm or
modulation technique. We train to cooperatively learn encryption
and decryption algorithms between our trusted pair of neural
networks, while eavesdropper’s model is trained adversarially
on the same data to minimize the error. We introduce a discrete
activation layer with a defined gradient to combat noise in a
lossy channel. Our results show that a trusted pair of users can
exchange data bits in both clean and noisy channels, where a
trained adversary cannot decipher the data.

I. INTRODUCTION

As new spectrum (sub-6GHz, mmWave and TeraHertz)

becomes available for communication and coexistence of

frequency-agile cognitive heterogeneous nodes becomes a

norm, we need to rethink physical layer security to provide

maximum secrecy of the waveforms in a broadcast channel.

Recent advances in the use of neural networks for commu-

nication systems intrigue us to investigate whether neural

networks can be trained to simultaneously learn an encryp-

tion/decryption algorithm as well as modulate/demodulate bits

to transmit and receive an analog signal. Neural networks

are applied to accomplish complex tasks with end-to-end

data based training in order to achieve a certain objective or

minimize a certain loss function. These tasks can be generating

images [1], learning complex distributions, classification [2] or

performing autonomous driving [3]. On the other hand, most

of the cryptography algorithm operates on bit manipulation,

whereas neural networks work on continuous signals. Instead

of combating these discrepancies between neural networks and

cryptography, we leverage the efficiency of neural network

in solving complex tasks and its capability of handling con-

tinuous signal to our advantage in bridging the gap between

cryptography and modulation. At the same time, we are

broadening the scope of cryptography beyond the bits domain

and mapping to a much larger complex domain. This ensures

that it becomes computationally more complex to decrypt

using Brute Force attacks. Although Physical layer security

research [4]–[7] takes advantage of the channel impairments

to modify the transmitted signal, it does not ensure a complete

optimized system that can take in bits and convert them to

secured waveforms.

Learning an encryption and decryption algorithm is beyond

just mapping of bits to another domain. To ensure secrecy and

integrity of information, it is important that an eavesdropper

(Eve) listening to the cipher data (communication between

Alice, the sender, and Bob, the receiver) will not be able

to decipher it without a key. Hence, we design Alice and

Bob to each have a neural network to learn the optimized

algorithm. This notion is same as the encryption and de-

cryption algorithms are known is classical cryptography. It

is only possible to obtain higher levels of secrecy when we

can also emulate an adversary, a passive eavesdropper in our

model, and cooperatively train Alice and Bob to defeat Eve.

Hence, we introduce Eve as another neural network during

the training phase that is constantly trying to decipher the

data and the model is trained in an adversarial manner to

converge to a system, where Alice and Bob can defeat Eve.

We also train Eve on the same model and with the same plain

text data as Alice and Bob. This guarantees that the learned

encryption algorithm will be able to beat both a trained as well

as untrained Eve with same neural network structure as Alice

and Bob. This paper aims at combining the cryptography and

modulation using neural networks, which can be extended later

to implement physical layer security in Orthogonal Frequency

Division Multiplexing (OFDM) and Massive Multiple-Input

Multiple-Output (MIMO) systems.

In this paper, three neural networks are trained simulta-

neously to learn a symmetric key based secured modulation

method in presence of a passive eavesdropper. The key con-

tributions of this work can be listed as follows:

1) We propose an end-to-end learning of shared key based

secured modulation technique, where bits are mapped to

real numbers and then converted to complex domain to be

transmitted over a wireless channel. An Eve with same neural

network architecture as Bob cannot decode the cipher without

the key.

2) We introduce a discrete activation layer with a defined

gradient, which is derived to support a practical lossy medium

communication system and finite memory devices. The activa-

tion function guarantees a gradient, when stochastic gradient

descent (SGD) [8] is applied during training.

3) We design our system so that it is able to adapt to both

clear and noisy channels to ensure that secured communication

can be carried out between trusted parties while a passive

eavesdropper is unable to decipher it.

II. RELATED WORK

Deep neural network has been used in physical layer com-

munication [9] to learn optimal constellation points without

prior mathematical formulation. Also, GANs [10] have been

used to train the autoencoder network for practical channel

models. In addition, autoencoders are used to learn advanced

communication schemes, such as orthogonal frequency divi-

sion multiplexing (OFDM), which enables reliable transmis-

sion in wireless channels [11] as well as optical media [12].

The idea of using adversarial neural network in cryptog-

raphy was introduced in [13]. However, the authors restrict

the model to work with floating point domain representation

between (-1,1). This assumption is not feasible since there

are infinite number of points inside this interval, which can

not be supported by low memory devices with limited bit

representation and can not be used for lossy media transmis-

sion. In [14], authors use a similar approach and reduces the

model complexity and the input/output representation in order

to force the model to achieve the XOR behavior between the

data and the key. Although the results show that Alice and Bob

can exchange confidential data successfully in less number

of training iterations, however the model can be classified

as semi linear, since it consists of only two fully connected

layer with a single activation function. Thus, the model is

imperfectly secured due to decreasing the encryption function.

Moreover, the ‘mix and transform’ architecture is absent due

to the absence of convolution layers in the model, which

makes the algorithm easy to be broken. In [15], the authors

used autoencoder model and train it in a wiretap channel

environment to achieve a key-less encryption between Alice

and Bob. However, this approach is SNR dependant as Eve

can decode the data if it has the same capability as Bob. The

results showed that Eve did not reach to the uncertainty and

was able to decode the confidential information partially as

the SNR increases.

III. SYSTEM MODEL

The wiretap channel is an information-theoretic model for

communication in the presence of an eavesdropper, which

involves three nodes: sender (Alice), receiver (Bob) and

eavesdropper (Eve) as shown in figure 1. Alice encodes a

confidential message P using key, K, and outputs cipher

data C, which is transformed to complex representation and

transmitted as a complex vector X to Bob. Both Bob and Eve

receive the complex cipher vector Y , which is X after passing

through the channel. The real representation C ′ is recovered

from Y . Bob decodes C ′ using K to obtain P̂Bob. However,

Eve uses only C ′ to obtain P̂Eve which is Eve’s predicted

output for the confidential message P . In this work, symmetric

key encryption is considered where both Alice and Bob share

the same key (K). Alice, Bob and Eve are all neural networks

with parameters θA, θB and θE respectively. In this paper, we

investigate both clear and fading wiretap channels.

A. Clear wiretap channel

Clear wiretap channel is considered as a no loss transmis-

sion media. This type of encryption algorithm can be used

to represent data for secure storage, and hence is applicable

to confidential data storage in untrusted third party cloud. In

clear channel, if Alice transmits X , the received symbol for

both Bob and Eve is Y , which can be given by:

Y = X (1)

B. Gaussian wiretap channel

Gaussian wiretap channel is defined as the channel with

Additive White Gaussian Noise (AWGN) for both Bob and

Eve. In other words, if Alice transmits X , the received symbol

for both Bob and Eve, Y , is given by:

Y = X +N (2)

where N ∼ CN (0, σ2) is the added complex noise vectors

and σ2 depends on the received signal to noise ratio (SNR).

C. Rayleigh wiretap channel

Similar to Gaussian wiretap channel, Rayeligh wiretap

channel is defined as AWGN in nature, except the channel

gain is not unity. If Alice transmits X , the received symbol

for both Bob and Eve, Y , is given by:

Y = HX +N (3)

where H is the channel matrix between the transmitter and the

receiver. In this work, we only consider flat fading channels,

so H is a diagonal matrix and the diagonal elements have a

unity mean with Rayleigh distribution.

D. Data and Key

Range and Domain: Neural Network of Alice is designed

to accept P and K in bits. In other words P,K ∈ B where

B = {0, 1}, while the cipher data C ∈ R, where R is the set

of real numbers. For practical implementation, we constrain C
within the range (−1, 1). Bob’s network is designed to accept

C ′ as well as K and outputs P̂Bob ∈ R. Similar to Bob, Eve

accepts C ′ and outputs P̂Eve ∈ R. We restrict P̂Bob and P̂Eve

in the range between (0, 1). At the end of a successful training

process, the values of P̂Bob should converge to B, while P̂Eve

should not. P̂Bob and P̂Eve are converted from R to B to

extract the output bits.

Length: The length of the data and key are essential param-

eters for data security. This is because the security introduced

by the encryption algorithm depends on the length of the data

as well as the key. According to Shannon secrecy [16], the

system can be perfectly secure if the key size equals to the

data size such that:

lim
NK→NP

I(C,P) = 0 (4)

where I(C,P) is the mutual information between cipher

data and plain data, and NP and NK are the lengths of

Fig. 1: Neural Network Architecture

the plain data and the key respectively. Thus, one-time pad

encryption [17] is information-theoretic secure because the

lengths of the data and the key are equal (i.e., H(P) ≤ H(K),
where H(.) is the binary entropy function). In this work,

we have trained the network on a finite set of keys (i.e.,

NK < NP) such that the networks are not restricted to learn

only one-time pad encryption. The scope of this paper is

limited to single carrier communication but we have designed

the system parameters in a way that it can be easily adapted to

OFDM systems. Hence, the block sizes of K, P and C equal

to N , where N is double the size of the FFT. The search space

of the cipher symbol S(C) can be given by:

S(C) = 2N (5)

This indicates that larger the size of the FFT, the search space

that it might get mapped to increases, which increases the

secrecy capacity for C. This property is enhanced as we move

from bit-level modifications in traditional higher layer security

to real number domain with C ∈ R.

IV. PROBLEM STATEMENT

In this section, we define the objective of each member

of the network. Alice and Bob try to exchange confidential

information in a secure way such that Eve can not recover

plain data P from the cipher data C ′. On the other side,

Eve tries to reconstruct P from C ′, which can be achieved

by reducing the error between P̂Eve and P . Informally, the

objective of Alice and Bob is to figure out a secure way to

exchange the confidential data as well as defeat Eve to recover

any information from the shared cipher text. Based on these

objectives, the three neural networks should be trained in an

adversarial manner. The loss functions for both Alice and Bob,

as well as Eve, have to be derived to support the adversarial

behavior of Eve.

We define A(θA, P,K), B(θB , C,K) and E(θE , C) as the

output vectors of Alice, Bob and Eve respectively. In addition

d(P, P̂) =
√

∑N

i=1
(Pi − P̂i)2 (i.e d(P, P̂) is the L2 norm in

case of vectors and Frobenius Norm in case of matrices).

Intuitively, the loss function of Eve is derived as:

LE(θA, θE , P,K) = EP,K(d(P, P̂Eve) =

EP,K(d(P,E(θE , A(θA,K, P)))) (6)

It is to be noted here that we train Eve on the same plain data

P as Alice and Bob to minimize the loss function. Similarly,

the loss function of Bob is derived as:

LB(θA, θB , P,K) = EP,K(d(P, P̂Bob))

= EP,K(d(B(A(θA,K, P),K, θB)), P) (7)

From 7, it is inferred that Bob’s Loss function depends on

the cipher data and the shared key as well; however, this is

not sufficient to train the network in an adversarial manner.

Thus, the adversarial Loss function of Bob should minimize

the error between P̂Bob and P as well as maximize the error

between P̂Eve and P . This problem is similar to min-max

optimization in GAN [10]. In order to derive this, we have

to optimize a joint loss function between Alice and Bob to

update their parameters simultaneously and is given by:

LA,B(θA, θB) = argminθA,θB (LB(θA, θB , P,K)

− LE(θA, θE , P,K)) (8)

From (6) and (8), it is inferred that both of them depend

on θA. However, cooperative learning happens only between

Alice and Bob to defeat Eve. So during the training phase,

θA only gets updated jointly with Bob, and they are frozen

during the training of Eve in each epoch. According to the

definition of entropy [18], the receiver reaches the maximum

uncertainty, if the received value of Eve equals to 0.5. Once

that is reached, random guessing is the only way for Eve

to recover the transmitted bits. Accordingly, the uncertainty

property has to be added to equation (8), such that both Alice

and Bob can try to figure out a transmission pattern that

satisfies the maximum uncertainty to Eve. Thus equation (8)

can be reformulated as:

LA,B(θA, θB) = argminθA,θB (LB(θA, θB , P,K)

+ (0.5− LEN
(θA, θE , P,K))2) (9)

where LEN
is the normalized loss function of Eve. As shown

in (9), the first component tends to minimize the error between

Alice and Bob, while the later one enforces the mean loss of

Eve to be 0.5. Thus the received values take the value of 0.5,

which increases the uncertainty at Eve’s side. Recall that we

use hard decision decoding to convert the received data values

to data bits.

V. NEURAL NETWORK DESIGN

A. Neural network structure

Figure 1 shows the neural network architecture used by

the three entities in the system. Alice accepts P and K
representing plaintext and key respectively. Bob accepts K
and C ′, which is the cipher text signal after passing through

the channel. Eve’s input is only C ′. The output of Alice is

the cipher data C, whereas the output of Bob and Eve are

P̂Bob and P̂Eve denoting the predicted P for Bob and Eve

respectively. All the input and output parameters, P , K, C,

C ′, P̂Bob and P̂Eve are vectors of dimension N . We utilize

a ‘mix and transform’ architecture to build the three neural

networks. The network starts with fully connected layers (FC)

without any activation function being introduced. The purpose

of this layer is mixing the key and the data bits so that the

output bits are permuted input bits or a mix between data

and key bits. The network consists of multiple convolutional

layers to enable squeezing data and key bits. The convolutional

layer is described as conv(W,din, dout, s), where W is the

window size, din is the input depth, dout is the output depth

and s is the stride. The stride is defined as the number of steps

the window is shifted. In general, the convolutional layers are

used to extract the features in image classification by neural

networks. Thus, in cryptography applications, convolutional

layers are used to extract the common features between the

data and the key. For Alice, sigmoid activation function is

used after each convolutional layer which is given by:

σ(z) =
1

1 + e−z
(10)

while the final layer, tanh activation function is used to

make the transmitted data a bipolar form. tanh output ranges

between (-1,1) and is given by:

tanh(x) =
ex − e−x

ex + e−x
(11)

On the other hand, we use Relu activation function [19] at the

first layers for Bob and Eve to compensate the channel effect

in the forward path and increase the learning propagation to

Alice layers. Sigmoid activation function has been used so that

the output converges between (0,1) to make the output vectors

achieve the bit values at the end of the training process. A hard

decision decoding is performed to transform P̂Bob and P̂Eve

from R to B.

B. Discrete activation function

Most of the neural network (NN) training algorithms are

based on gradient descent methods. This has moved all the

research related to the NN to use floating point number

representation and smooth activation functions to guarantee

the existing gradient values to the NN parameters to achieve

the cost function convergence during the training [20]. This is

because the updated NN weights during training is given by:

wk+1

i = wk
i − ǫ

∂J

∂wi

(12)

where wi is the NN weight, ǫ is the learning rate, k is the

training epoch and ∂J
∂wi

is the partial derivative of the cost

function J with respect to the NN weight wi.

As shown in (2) and (3), the added corruption in noisy

lossy channel is considered as a continuous random variable.

Hence, X has to be at a discrete level to eliminate the added

corruption at the receiver. In other words, the receiver will

not be able to compensate the channel effect if the minimum

distance between the transmitted constellation points is too

small. In addition, floating point representation is impractical

for limited memory applications. On the other hand, adding

discrete layers in the neural networks causes error in back

propagation, since the gradient of any discrete function is

undefined. Consequently, the total gradient of the network will

vanish, and the cost function will not converge. In this work,

we define a discrete tanh function (i.e. y = tanhD(x)) to be

used to quantify the output of Alice NN into defined levels as

shown in Algorithm (1). In order to use tanhD(x) with the

regular gradient methods, we define a suitable derivative to be

used in the backward path, which is given by:

∂(tanhD(x))

∂x
= 1.0− tanh2 (x) (13)

In this work, we do not perform the quantization on the

input of the activation function. Thus, the output of the

last convolutional layer can take any value in the tanhD(x)
domain (i.e. the firing region of the activation function),

which enables the gradients to propagate to the earlier layers

during the training process. Figure 2 shows the continuous and

discrete tanh functions used for clear and Gaussian wiretap

channels respectively. As the number of levels increases, the

behavior of tanhD(x) tends to be similar to tanh(x). Thus

it is not feasible to use tanhD(x) with a higher number of

levels in transmission over lossy media. On the other hand,

if the number of levels decreases, the back propagation error

increases, which leads to exploding gradient problem [21].

In this work, we trained the system on various values of the

number of levels L to find the optimal number of levels L∗.

We have noticed that the number of levels L is proportional

to the security-reliability trade-off [22], [23]. Consequently, as

the number of levels increases, the learned algorithm is more

secure; however, it is not reliable for lossy media transmission.

C. Modulate and Demodulate

The NN supports real numbers only; however this repre-

sentation is not efficient for carrier transmission as we are not

Algorithm 1: yq = tanhD(x, levels).

Result: yq
y = tanh(x);
ymin = −1;

ymax = 1;

step = (ymax − ymin)/(levels− 1);
yq = ⌊(y − ymin)/step+ 0.5⌋ ∗ step+ ymin

-2 -1 0 1 2

x

-1

-0.5

0

0.5

1

T
a
n
h
(x

)

(a) Continuous tanh.

-2 -1 0 1 2

x

-1

-0.5

0

0.5

1

T
a
n
h

D
(x

)

L=13

(b) Discrete tanh with 13 levels.

Fig. 2: Continuous and discrete tanh activation functions.

utilizing the real and imaginary domains. In this work, we

convert the real representation of the transmitted symbol C
to complex transmitted symbol X to support single or multi-

carrier transmission. Each complex sample x in the complex

vector X can be given by:

xm = ci + jci+1 (14)

where ci is the ith real sample in C, m takes values form

1 to ⌈N
2
⌉ and i ranges from 1 to N . At the receiver side

(i.e. either Bob or Eve), the reverse operation takes place,

such that Y is changed to C ′ at the NN input. The result

of modulation is represented by the cipher data constellation,

as shown in figure 3 with both tanh and tanhD functions.

With clear channel, the signal can take any real value, which

shows the Gaussian distribution of the constellation. In the

presence of noise, as we introduce discrete steps, the resultant

constellation takes the form of QAM signal.

D. Parameter initialization

In this work, we use Xavier initialization [24] to initialize

the total weights and biases. This initialization is used to

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

(a) tanh function followed by
modulation in clear wiretap
channel.

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

(b) Discrete tanh function fol-
lowed by modulation in Gaus-
sian and Rayleigh wiretap chan-
nels.

Fig. 3: Cipher data constellation X .

accelerate the convergence of the neural networks and avoid

gradient saturation. Moreover, we did not restrict the network

to learn a defined function such as XOR; however, we leave

the network to learn the secured modulation waveform such

that it minimizes the cooperative learning loss function.

VI. SIMULATION AND RESULTS

We implemented our experiments in TensorFlow [25]. In

our experiments, we choose N = 96 such that N is double

the number of the transmitted data subcarriers (48) in 64-

pt FFT implementation of Wi-Fi standard [26]. During the

training phase, both the plain data and the key are random

numbers generated from two different seeds, such that every

block consists of different data and key combination. The

training data size consists of 20, 000 symbols each with size

N . The key to data ratio used to train the system is 0.005.

In other words, the same set of keys were repeated during

the training process to ensure that the algorithm is robust

and is not restricted to one-time pad only. The batch size

is 8000. We used Adam optimizer [27] with a learning rate

of 0.001. The number of training epoch is 4000 for clear

wiretap channel, 7000 for Gaussian wiretap channel and 8000
for Rayleigh wiretap channel. The three networks are trained

simultaneously in each epoch such that, the weights of Eve’s

network are frozen while Alice and Bob update their weights

and biases based on the cooperative loss function, then the

weights of Alice and Bob are frozen and Eve updates her

network with the updated weights and biases based on her

loss function. In this work, we choose the number of discrete

levels L = 13 for tanhD(x) activation function in Gaussian

and Rayleigh channels. For testing phase, we use a testing

data set consisting of 1000 symbols, each of size N . The same

key to data ratio is used in testing phase as well. However,

the seeds used for data and key generation are different from

those used in the training phase. For Gaussian and Rayleigh

channels, the SNR range used for testing is from 0 to 40dB.

We trained and tested the system in clear as well as AWGN

and Rayleigh channels.

A. Training Phase

1) Clear wiretap channel: Figure 4 presents the results

during the training phase in clear wiretap channel. Loss

functions of both the networks started from a high value, as

shown in figure 4a. After some time, Alice and Bob succeeded

to infer a way to communicate securely, while Eve can not

decode the confidential data. Thus the cooperative learning

between Alice and Bob succeeds in beating Eve such that they

can exchange the data with perfect secrecy. As a result of that,

the transmitted cipher data distribution (C) has the shape of

Gaussian distribution with zero mean as shown in figure 4b.

Thus the cipher data C do not carry any statistical properties

of the original plain data P . Hence the cipher data has the

maximum uncertainty property. We plot the data distribution

of P̂Bob and P̂Eve in figures 4c and 4d respectively. Within that

distribution, we also differentiate the data points as decoded

correctly or incorrectly. It is evident that distribution of P̂Bob is

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

1.2

Alice Bob Loss

Eve loss

(a) Loss function. (b) C distribution.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5
Error

Correct

(c) P̂Bob distribution.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

Error

Correct

(d) P̂Eve distribution.

Fig. 4: Loss function and data distribution for different entities with tanh function in the last layer.

0 2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

1.2
Alice Bob Loss

Eve loss

(a) Loss function. (b) C distribution.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5
Error

Correct

(c) P̂Bob distribution.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

Error

Correct

(d) P̂Eve distribution.

Fig. 5: Loss function and data distribution for different nodes with Discrete tanh function in Gaussian wiretap channel.

0 2000 4000 6000 8000

0.2

0.4

0.6

0.8

1

1.2
Alice Bob Loss

Eve loss

(a) Loss function. (b) C distribution.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5
Error

Correct

(c) P̂Bob distribution.

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12
Error

Correct

(d) P̂Eve distribution.

Fig. 6: Loss function and data distribution for different nodes with Discrete tanh function in Rayleigh wiretap channel.

not only similar to the distribution of P , but also the decoded

bits are correct. On the other hand, the distribution of P̂Eve is

Gaussian, yielding half of the bits in error. Hence, Eve reaches

to the maximum uncertainty as the probability of error reaches

the value of 0.5.

2) Gaussian wiretap channel: In this section, the results

of using the discrete activation layer are discussed using the

Gaussian wiretap channel and shown in figure 5. The number

of levels chosen for the tanhD function is 13 and the training

SNR is set at 25 dB. The loss functions, as shown in figure 5a,

are similar to that noticed in clear channel. It required more

number of epochs to train the two systems as there is added

noise in the channel and C has discrete levels, as in figure 5b.

Furthermore, Eve’s final loss function is lower in Gaussian

channel than clear channel as the output is discretized partially

sacrificing maximum uncertainty. P̂Bob has only 1s and 0s

and decodes all the bits correctly as well, as in figure 5c. In

contrast, P̂Eve has an almost uniform distribution, with higher

peaks around 0 and 1, as in figure 5d. This leads to 20% of

P̂Eve in error, which still maintains a certain level of security.

3) Rayleigh wiretap channel: In this section, we analyze

the training phase of the system using the Rayleigh wiretap

channel, as shown in figure 6. The training SNR and number

of levels have been chosen to be same as the Gaussian wiretap

channel. The loss function curves, as in figure 6a, are similar

to that of Gaussian channel, indicating that Alice and Bob

succeeded in secure exchange confidential data, whereas, Eve

reaches the uncertainty zone. As we introduce more noise in

the channel, the cipher distribution, C, deviates from Gaussian

distribution as noticed in earlier scenarios. P̂Bob decodes all

the bits correctly, as in figure 6c. On the other hand, P̂Eve has

an almost uniform distribution as noticed in figure 6d, which is

similar to that in Gaussian channel. This yields 16% of P̂Eve

in errorin the training phase.

B. Testing Phase

Once the complete system is trained, we test the resultant

networks and analyze the bit error rate (BER) in different

channels, as shown in figure 7. The source of error in BER

can be of two types: a) channel imperfections as in traditional

communication and b) decryption algorithm, which was unable

to recover all the bits correctly. We define ‘Hard Decision Eve’

as the entity, which makes a hard decision on the received

cipher data (C ′) to map to a bit value. In clear channel,

C ′ = C, where the BER of ‘Hard Decision Eve’ indicates the

Trained

 Bob

Trained

 Eve

Hard Decision

 Eve

0

0.2

0.4

0.6

0.8

1
B

it
 e

rr
o
r

ra
te

Train data

Test data

(a) Clear wiretap channel.

0 10 20 30 40

SNR dB

10-4

10-3

10-2

10-1

100

Bob Gaussian

Eve Gaussian

Bob Rayleigh

Eve Rayleigh

(b) Noisy wiretap channels.

Fig. 7: BER for Clear, Gaussian and Rayleigh channels.

cross-entropy between P and C (i.e., H(P/C)). Similarly, the

BER of trained Eve is a measure of cross-entropy between P
and P̂Eve (i.e., H(P/P̂Eve)).

In clear channel, Bob can decode both training and testing

dataset correctly, as shown in figure 7a. The BER of ‘Hard

Decision Eve’ is ≈ 0.5, indicating encryption algorithm

achieved the maximum value of H(P/C). Trained Eve’s BER

is ≈ 0.4, which is close to the maximum value of H(P/P̂Eve),
which is equivalent to random guessing. Figure 7b shows the

BER of trained Bob and Eve in noisy wiretap channels. Alice

and Bob can securely exchange the data with a small error rate,

which depends on the received SNR. On the other hand, Eve’s

BER remains steady at 0.2 even at higher SNRs. Hence the

learned encryption does not depend on Eve’s SNR to maintain

a higher value for H(P/P̂Eve).

VII. CONCLUSION

In this paper, we have shown that the power of neural

networks can be used to learn end-to-end encrypted com-

munication system. To improve the security of the learned

encryption algorithm, we train the system in presence of

an adversary to minimize the error between Alice and Bob,

while maximizing the error between Alice and Eve. A discrete

activation function is defined for the final modulated output to

support lossy medium transmission. Our results indicate that

a secured communication can be executed in presence of a

trained or untrained Eve with the same neural network model

as the trusted parties. In future, we plan to extend this work

for OFDM systems and channel coding in massive MIMO

wireless networks.

REFERENCES

[1] K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, and D. Wierstra,
“Draw: A recurrent neural network for image generation,” arXiv preprint

arXiv:1502.04623, 2015.
[2] G. Ou and Y. L. Murphey, “Multi-class pattern classification using neural

networks,” Pattern Recognition, vol. 40, no. 1, pp. 4–18, 2007.
[3] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep reinforcement

learning framework for autonomous driving,” Electronic Imaging, vol.
2017, no. 19, pp. 70–76, 2017.

[4] H. V. Poor and R. F. Schaefer, “Wireless physical layer security,”
Proceedings of the National Academy of Sciences, vol. 114, no. 1, pp.
19–26, 2017. [Online]. Available: https://www.pnas.org/content/114/1/19

[5] J. Hamamreh, H. M. Furqan, and H. Arslan, “Classifications and
applications of physical layer security techniques for confidentiality: A
comprehensive survey,” IEEE Communications Surveys and Tutorials,
vol. PP, pp. 1–1, 10 2018.

[6] A. G. Fragkiadakis, E. Z. Tragos, and I. G. Askoxylakis, “A survey on
security threats and detection techniques in cognitive radio networks,”
IEEE Communications Surveys Tutorials, vol. 15, no. 1, pp. 428–445,
First 2013.

[7] R. K. Sharma and D. B. Rawat, “Advances on security threats and
countermeasures for cognitive radio networks: A survey,” IEEE Com-

munications Surveys Tutorials, vol. 17, Secondquarter 2015.

[8] L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” in Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177–
186.

[9] T. O’Shea and J. Hoydis, “An introduction to deep learning for the
physical layer,” IEEE Transactions on Cognitive Communications and

Networking, vol. 3, no. 4, pp. 563–575, 2017.

[10] T. J. O’Shea, T. Roy, N. West, and B. C. Hilburn, “Physical layer
communications system design over-the-air using adversarial networks,”
in 2018 26th European Signal Processing Conference (EUSIPCO).
IEEE, 2018, pp. 529–532.

[11] A. Felix, S. Cammerer, S. Dörner, J. Hoydis, and S. Ten Brink, “Ofdm-
autoencoder for end-to-end learning of communications systems,” in
2018 IEEE 19th International Workshop on Signal Processing Advances

in Wireless Communications (SPAWC). IEEE, 2018, pp. 1–5.

[12] P. G. Pachpande, M. H. Khadr, H. Hussien, H. Elgala, and D. Saha,
“Autoencoder model for ofdm-based optical wireless communication,”
in Signal Processing in Photonic Communications. Optical Society of
America, 2019, pp. SpT2E–3.

[13] M. Abadi and D. G. Andersen, “Learning to protect communications
with adversarial neural cryptography,” arXiv preprint arXiv:1610.06918,
2016.

[14] M. Coutinho, R. de Oliveira Albuquerque, F. Borges, L. Garcı́a Villalba,
and T.-H. Kim, “Learning perfectly secure cryptography to protect
communications with adversarial neural cryptography,” Sensors, vol. 18,
no. 5, p. 1306, 2018.

[15] R. Fritschek, R. F. Schaefer, and G. Wunder, “Deep learning for
the gaussian wiretap channel,” in ICC 2019-2019 IEEE International

Conference on Communications (ICC). IEEE, 2019, pp. 1–6.

[16] C. E. Shannon, “Communication theory of secrecy systems,” Bell system

technical journal, vol. 28, no. 4, pp. 656–715, 1949.

[17] F. Rubin, “One-time pad cryptography,” Cryptologia, vol. 20, no. 4, pp.
359–364, 1996.

[18] C. E. Shannon, “A mathematical theory of communication,” Bell system

technical journal, vol. 27, no. 3, pp. 379–423, 1948.

[19] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[20] S. Baluja, D. Marwood, M. Covell, and N. Johnston, “No multiplication?
no floating point? no problem! training networks for efficient inference,”
arXiv preprint arXiv:1809.09244, 2018.

[21] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in International conference on machine

learning, 2013, pp. 1310–1318.

[22] Y. Zou, X. Wang, W. Shen, and L. Hanzo, “Security versus reliability
analysis of opportunistic relaying,” IEEE Transactions on Vehicular

Technology, vol. 63, no. 6, pp. 2653–2661, 2013.

[23] J. Zhu, Y. Zou, and B. Zheng, “Physical-layer security and reliability
challenges for industrial wireless sensor networks,” IEEE access, vol. 5,
pp. 5313–5320, 2017.

[24] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the thirteenth

international conference on artificial intelligence and statistics, 2010,
pp. 249–256.

[25] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in 12th {USENIX} Symposium on Operating

Systems Design and Implementation ({OSDI} 16), 2016, pp. 265–283.

[26] I. C. S. L. S. Committee et al., “Ieee standard for informa-
tion technology-telecommunications and information exchange between
systems-local and metropolitan area networks-specific requirements part
11: Wireless lan medium access control (mac) and physical layer (phy)
specifications,” IEEE Std 802.11ˆ, 2007.

[27] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

