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Abstract—This paper explains the use of supervised and
unsupervised dictionary learning approaches on spread spectrum
time domain (SSTDR) data to detect and locate disconnections
in a PV array consisting of five panels. The aim is to decompose
an SSTDR reflection signature into different components where
each component has a physical interpretation, such as noise,
environmental effects, and faults. In the unsupervised dictionary
learning approach, the decomposed components are inspected
to detect and localize faults. The maximum difference between
actual and predicted location of the fault is 0.44 m on a system
with five panels connected to an SSTDR box with a leader cable of
59.13 m and total length of 67.36 m including the effective length
of the panels. In the supervised dictionary learning approach, the
dictionary components are used to classify the SSTDR data to
their respective fault types. Our results show a 97% accuracy
using the supervised learning approach.

Index Terms—Dictionary Learning, Sparse Coding, SSTDR,
K-SVD, Solar Panels, Faults

I. INTRODUCTION AND MOTIVATION

olar arrays consist of solar panels connected in series and
Sparallel configurations. The wires connecting the panels
can be treated as transmission lines. In such a setup, the
transmission line is susceptible to faults, such as line-to-line
faults [[1] and line to ground faults [2]]. Faults in photovoltaics
(PV) include ground faults [3]], arc faults [4], and several other
types of faults [5]], [6]. PV faults often occur due to panel
short circuits, open circuits, degradation, shading, and hotspot
effects [7]. These faults create an impedance discontinuity
and if not quickly corrected, they can impair PV reliability,
durability, and subsequently lead to system breakdown [8].
To detect these faults, protection devices such as ground fault
detection and interruption (GFDI) have been developed, but
they cannot localize faults. Several other methods have been
studied [9].

In this paper, we demonstrate the use of a dictionary
learning algorithm to detect, classify, and locate disconnects in
a solar array with spread spectrum time domain reflectometry
(SSTDR) without no dependence on baseline measurements.

Prior work has shown that reflectometry can be used to ac-
curately locate faults in solar panels and their connecting wires

[6], measure capacitance of PV cells [[10], characterize lumped
elements in the middle of a transmission line [11]], detect
ground faults [[12], detect arc faults [[13], etc. In reflectometry
schemes, an incident signal is sent through the electrical
system. This signal reflects at points of impedance mismatch
and returns to the test point. SSTDR uses a modulated pseudo-
noise (PN) code as the incident signal, which is then correlated
with the reflected PN code. From this correlated signature,
the time delay between the incident and reflected responses
gives the distance to the fault. The magnitude and phase of
the reflection gives the characteristics and strength of the
impedance mismatch [14], [15]. Impedance mismatch could
result from cable connectors, soft faults (such as cable wear),
disconnects, and other kinds of faults. The multiple reflections
from all the possible impedance mismatches in transmission
lines increase the complexity of these schemes and make the
identification of faults difficult to visually distinguish in the
signals.

To reduce the effect of these complexities in the reflected
signals (reflection signature), baseline subtraction is often
used in the fault detection scheme [16], [[17]. The reflection
signature of a healthy transmission line/PV system is stored to
be used as a baseline. The reflection signature of a faulty setup
is then subtracted from the baseline to remove the reflections
from normal parts of the system (connectors, junctions, etc.)
and make the reflections from the faults more clear. A major
challenge with this baseline approach is that PV systems are
subject to diverse environmental conditions, such as stress,
humidity, corrosion, dust, etc. [18]], [19], which can change the
impedance and hence reflection response of the system [20].
This makes the baseline unstable, as the reflection signature
of a healthy system will change over time. This can appear as
noise in the reflection responses and exacerbates the already
complex nature of the reflection signatures, necessitating the
need for more advanced fault detection algorithms. In this
paper, we demonstrate the use of dictionary learning, which
has the following advantages. First, it is robust to noise and
has been used for denoising [21]], [22]], [23]. Secondly, unlike
other learning algorithms, dictionary learning decomposes a



IEEE SENSORS JOURNAL

signal into several components that represent different physical
aspects of the system. Hence, dictionary learning can help
separate the effects of the environment from that of a fault.

The goal of dictionary learning is to learn a low-dimensional
representation of data. Signal reflections from photovoltaics
lie in a high-dimensional space and possess high variability.
Similar high-dimensional data are pervasive in fields such as
machine learning, computer vision, image processing, and pat-
tern recognition. Examples of such data include microarrays,
which measure gene expression [24], images [25], [26l], [27],
and videos [28]]. Inherent in many of these high-dimensional
data is a low-dimensional representation, which contains a
bases that can be used to represent the observed data. Re-
flection signatures can be represented as a linear or affine
combination of the extracted basis signals. However, there
often exist infinitely many combinations of ways in which
such data can be represented as a combination of basis signals.
Hence the representation is not unique.

To mitigate this challenge, a sparse representation of the
data is enforced by dictionary learning. That is, the data is
forced to be represented as a combination of only a few data
points in the dictionary. Sparse representations have been used
in image processing problems, such as image denoising [29]]
and image compression [30Q], but there exists little or no work
that applies this theory to assessing faults in transmission lines
and photovoltaics (PV) other than to predict short-term solar
PV production [31].

In this work, we combine the ability of spread spectrum time
domain reflectometry (SSTDR) to measure impedances on
energized systems with the ability of dictionary learning and
sparse representations, to identify and localize faults in a PV
array. The goal is to learn basis signals that characterize faults,
and environmental conditions while also using the learned
dictionary for classifying new signals for the various kinds
of faults. We consider only open circuits faults (disconnects).
Our results show an overall accuracy of 97% for detecting and
classifying these faults.

The rest of this article is organized as follows. In Section
we give an overview on the theory of sparse coding,
unsupervised and supervised dictionary learning using K-SVD
and DK-SVD, respectively. We describe our experimental
setup in Section In section we discuss the results of
applying these algorithms to detect and locate faults in the
reflection signatures obtained from the experiments. Finally,
in section |V| we give our conclusions and future work.

II. SPARSE CODING AND DICTIONARY LEARNING

Sparse coding allows us to understand the contributions of
different components in our signals, which may be the baseline
or the result of environmental changes. The goal of sparse
coding or a sparse representation is to express a given signal
of dimension N as a linear combination of a small number
of the basis signals stored in a dictionary. These basis signals,
called atoms, are usually of unit norm and are stored column-
wise in a dictionary matrix. We denote the dictionary as D and
the atoms as dy, where k = 1, ..., K and K represents the size
of the dictionary. Hence D € RV*X The dictionary is said
to be overcomplete if K > N and undercomplete otherwise.

Mathematically, we denote the representation as:

Y = DX (1)
N

vi=>_ dpaf )
k=1

where x;, the i*"* column of X, of dimension K, denotes the

sparse coefficients for the 7' data in Y and z¥ is the k'" index
of the vector x;. Hence X € RE*XM and Y € R¥N*M where
M is the number of input signals. Representing Y as a linear
combination of atoms gives infinitely many combinations
when the dictionary is undercomplete. Hence we enforce
sparse constraints on X and relax the requirement of obtaining
an exact representation. The goal is to represent an input signal
y;, the ith column of Y, as a sparse linear combination of the
dictionary atoms with a representation error less than some
threshold &. In other words, we choose atoms (or basis) in the
dictionary that best explain the reflection signature.
Mathematically, the problem formulation is:

3)

where ||-||, denotes the L pseudo-norm and |||, denotes
the Frobenius norm. The solution to (3) is NP-hard (non-
deterministic polynomial-time hard), because the Lo norm
is known to be non-convex. This necessitates the need for
approximation algorithms. There exist several polynomial time
approximation algorithms that iteratively solve for the sparse
vector X in a greedy manner. Examples include matching
pursuit (MP) [32] and orthogonal matching pursuit (OMP)
[33].

There are several algorithms to learn a dictionary from a set
of input signals. Examples include union of orthonormal basis
[34]], maximum a posteriori probability approaches [35]], maxi-
mum likelihood methods [36], K-singular value decomposition
(K-SVD) [37], and the method of optimal directions (MOD)
[38]. Note that the dictionary can be learned in a supervised
or unsupervised way. In this paper, we use discriminative K-
singular value decomposition (DK-SVD) [39], a supervised
learning approach for classification of faults and K-SVD as
an unsupervised technique for explaining the physical inter-
pretation of each dictionary atom.

. 2
min Ixillg st [ly; = Dxillz <§

A. K-SVD Algorithm

To learn the dictionary or low-dimensional signals that the
reflection signatures consist of, we used the K-SVD algorithm.
The problem formulation is:

(4)

The goal is to obtain a dictionary that minimizes the recon-
struction error defined as |'Y — DX||, where |||~ denotes
the Frobenius norm. In this algorithm, as shown in @[), we need
to solve for D, the dictionary and X, the sparse coefficients. To
achieve this, the dictionary update and sparse coding are done
iteratively but treated as disjoint problems. As a result, any
sparse coding algorithm can be used for obtaining the sparse
coefficients, and that choice is independent of the dictionary
learning algorithm. Orthogonal matching pursuit (OMP) was

rgi}r{l Y — DXHzF subject to  ||x;||, < T, Vi
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chosen for our case. First we initialize D with some random
complex matrix and then find X - the matrix of sparse
coefficients. We then proceed to update the dictionary atoms
using singular value decomposition (SVD).

Readers are referred to [37] for a more rigorous detail of
the K-SVD algorithm. In this paper, we use K-SVD as our
dictionary learning algorithm because of its high efficiency.

B. DK-SVD Algorithm

If we have labels for the reflection signatures representing
each type of faults, then a supervised dictionary learning
algorithm will be able to cluster our data as well as
automatically identify faults. The K-SVD algorithm learns
an adaptive dictionary, but it can not be used for supervised
classification. Therefore, we use DK-SVD to learn a
discriminative dictionary and classifier. The classifier is then
used to classify a reflection signature as a reflection during
the daylight, night, and with disconnections at different
locations in the PV setup. This algorithm has a training and
a testing stage.

1) Training Stage: The dictionary D and classifier W are
learned at this stage. The problem formulation is:

Juin [[Y = DX + o [ H - WX s
subject to ||x;]|, < T,Vi
where Y is a matrix of training data, H is a matrix of training
data labels passed as an input to the algorithm, W is the classi-
fier we aim to learn, and « is a regularization parameter. The
variable o controls the trade-off between the reconstruction
error (Y — DX) and classification error (H — WX). First, we
create a matrix of labels H € RE*M  where C is the number
of classes and M is the number of signals. The columns of H
will have a value of 1 in the corresponding index signifying
the class the input (reflection signature) belongs to.
To solve this problem, we create new matrices Y and D:

Y = Y 6
=\ van (6)

D= D 7
=\ yaw @)

we then use K-SVD with Y as input as shown:

D X = arg min HY DXH
DX ®)

subject to [|x;||, < T,Vi.
the dictionary D and classifier W can then be extracted from
D. Where D € RV+OXK D ¢ RN*K and W € ROXK,

After extracting D, and W, we need to normalize them. The
dictionary and classifier are normalized column-wise as:

d, d, d, ]

D= P 9)
ar)l,  [ldz], ],
Wi Wy Wi

= oo Mk 10
[wang AP |w;||J {10
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Fig. 1: SSTDR block diagram.

where d, and W/, are the i*" column of D and W respectively.
This completes the training stage.

2) Testing Stage: The classification of test signals is based
on the dictionary D and classifier W that was learned in
the training stage. To determine what class a test data (test
reflection signature) belongs to, we first obtain its sparse
coefficient x; using OMP. The sparse coefficients are then
multiplied by the classifier we learned in the training stage.

Y

where W € REY*K and x; € RE*! hence ¢; is a vector
of dimension C corresponding to the number of classes. The
index with the largest value is selected as the corresponding
label of the test data.

c; = Wx;

III. EXPERIMENTAL SETUP

SSTDR [40] is based on the reflection of an incident
signal through a transmission line. When a signal is sent
down a transmission line, reflections occur from every point
of impedance mismatch [[15]. SSTDR transmits a modulated
pseudo-noise (PN) spread spectrum signal into a transmission
line and then correlates the reflected and incident signals to
create the reflection response shown in Fig. [41]]. The
SSTDR signal has statistical characteristics that are similar
to Gaussian noise, giving it the advantage that it can be used
on live or energized systems without interference [[15]. This
fault detection technique does not depend on the panel cur-
rent, voltage or maximum power point tracking (MPPT). The
SSTDR hardware from Livewire innovation [42] comes with
different modulation frequencies, which range from 187.5 kHz
to 48.0 MHz. The incident wave is sent down the transmission
line and is reflected at points of impedance mismatch. The

Incident Signal
t o >
Zy(w)
° -
h T(w)

Fig. 2: Transmission line at a load.
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reflected signal is then correlated with the incident signal to
produce the reflection signature. To calculate the distance to
fault, the time domain reflection signature must be multiplied
by the velocity of propagation to convert it to distance [41]].

Figure (2) shows a transmission line with a characteristic
impedance Zy(w) and a load Z,(w). The complex frequency
reflection coefficient at the input is defined as

_ ZL(CU) — Z()((U)
ZL(w) + Zo(w)

When the end of the line is an open circuit, we expect
a perfect reflection with a complex frequency-domain re-
flection coefficient of 1. Similarly, a short circuit gives a
complex frequency-domain reflection coefficient of -1. More
generally, negative reflection coefficients represent loads with
an impedance less than the transmission line characteristic
impedance while positive reflection coefficients signify a load
with higher impedance than the transmission line characteristic
impedance.

To validate the use of dictionary learning, we conducted two
experiments with the exact same setup. The first experiment
was conducted on the 12% of July 2019, while the second
experiment was conducted on the 1% of October 2019. In each
experiment, the SSTDR box was connected to five Renogy
PV panels in series via a 59.13 m AWG 10 PV cable. The
characteristics of the panels are shown in Table [l Two 29.56
m cables were connected using an MC4 connector for the
59.13 m leader cable. Similarly, each panel is connected using
MC4 connectors. The length of the cable connecting one panel
to the other is 0.91 m. These connections are illustrated in
Fig. B3] We have labelled each panel connection for a clear
description and analysis of the experiment. Note that SSTDR
has two test modes — static and intermittent. A static test is
used to test the PV connection at an instant of time while
intermittent tests can be used to monitor the whole system. In
an intermittent test, SSTDR signal is sent at a fixed interval
of time (usually 256 signals a second), and the resulting wire

T(w) (12)

TABLE I: Characteristics of the panel

Solar Panel Characteristics
Module Type RNG-100D
Maximum Power (Pmax) at STC 100 W
Open-circuit Voltage (Voc) 225V
Maximum System Voltage (Vmp) 189V
Optimum Operating Current (Imp) 529 A
Optimum Operating Voltage (Vmp) 189V
Max System Voltage 600 V DC (UL)
Short Circuit Current (Isc) 575 A
Max Series Fuse Rating 15 A
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Fig. 4: (a) Correlation coefficient of all measurements from
the experiment on 12" July 2019 with the first measurement.
(b) Correlation coefficient of all measurements from the ex-
periment on 1°' October 2019 with the first measurement.

scan data is saved for future use. This test mode was used
throughout our experiments.

In the first experiment, the intermittent test was carried
out for two (2) days to observe the changes in the SSTDR
signal during daylight in contrast to the night time. While the
intermittent test was running, we induced open circuit faults
at the locations A+, A-, B+, B-, C+, and C- on different
days during daylight. The respective MC4 connectors were
disconnected for about 1 hour in each case. A data set of
1,732,000 reflection responses was generated for the two days
of the experiment. By taking every 1000" sample, we extract
training data set of 1732 measurements. This data set was
used as the training data set for the DK-SVD algorithm. Each
measurement was stored column-wise to get matrix Y and
labelled accordingly to get matrix H.

Similarly, in the second experiment, the intermittent test
was carried out for six (6) days. While the intermittent test
was running, we induced open circuit faults at the locations
A+, A-, B+, B-, C+ and C- on different days during daylight.
The respective MC4 connectors were disconnected for about
1 hour in each case to give a long run of measurements such
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Fig. 5: (a) Time domain reflection signature of daylight,
nighttime, shading of each and shading of all panels. (b) Time
domain reflection signature of disconnects at locations A, B
and C.

that it will be visible in the plot. We induced full shading on
all panels together and on each of the panels individually at
different times in an attempt to detect a shading condition and
what panel is shaded. Using K-SVD, we could detect that a
panel is shaded but further analysis is needed to locate the
exact panel that is shaded. For this reason, we do not show
the result of shading. For our classification task, we have a
total of 8 classes: daylight, night, disconnect at A+, disconnect
at A-, disconnect at B+, disconnect at B-, disconnect at C+,
disconnect at C-. A data set of 7,642,308 reflection signatures
was generated for the six days of the experiment’s run. Each
reflection signature is stored column-wise in a matrix. Since
the data set is large, all reflection signatures cannot be plotted
in a single plot. We correlated every measurement with the
first SSTDR measurement received. This data set was used as
the test set for both K-SVD and DK-SVD.

Figure [4] shows a minimum correlation of 0.94 between all
measurements and the first measurement. In the correlation
plot in Fig. bl we observe a daily periodic pattern in the
plot. Our investigations revealed the lower valleys represent
the data at night while the regions with a correlation of
approximately one represent the data during the day. The
measurements corresponding to the disconnects and shading
have been marked on the correlation plot.

A. Time-Domain Reflection Signatures

Figure [5] shows the measured time-domain reflection signa-
tures for all classes. Reflection signatures from the day, night,
shading of the panels are shown in Fig. [Pal The reflection
signature from the night is clearly distinguishable and similar
to shading of all panels. We see that the reflection signatures
from shading of single panels overlap and are harder to

distinguish. Similarly, Fig. [5b|shows reflection signatures form
the six possible disconnections. Notice that the reflection from
A+ and A- could be expected to be the same, because at the
same distance on the transmission line, but they are actually
quite different. This is because SSTDR has a filter on its
positive terminal, which reduces the amplitude of reflections.
This also applies to the case of [B+, B-] and [C+, C-] [43].

IV. RESULTS
A. K-SVD

The goal of this paper is to use our dictionary learning
for fault detection, classification and localization. We learned
a dictionary of 30 atoms with a sparsity of 4. Each atom
represents a physical aspect of the system, such as the location
of strong reflection, as will be described below. A sparsity
of 4 means the reflection signature is a linear combination
of 4 of the possible 30 dictionary atoms. We have chosen
a small dictionary size for ease of analysis. In building the
dictionary, we chose 200 as our number of iterations. At the
end of the iterations, the algorithm outputs a dictionary matrix
and corresponding sparse coefficients for the measurements.
Once the dictionary is learned, it is fixed and can be used for
detecting and locating faults.

Figure [6] shows the coefficient map of how the dictionary
atoms are combined across the measurements. The x-axis
shows the 7643 measurements we passed as input to the K-
SVD algorithm, while the y-axis shows the 30 dictionary
atoms numbered from 0 to 29. The coefficient map shows
the magnitude of the coefficients for each measurement. Each
column of the coefficient map shows the contribution of each
atom in representing a measurement. Comparing Fig. 4b] and
Fig. [6] we observe a periodic pattern in the coefficient map.
We observe that the 7 atom corresponds to the dips we see in
Fig. bl These dips represent the data at night time. Similarly,
we observe that the 4" atom conveys information about the
daylight. All measurements are expressed as a combination of
daylight or night time and three other dictionary atoms.

To detect a fault, we inspect the sparse coefficients cor-
responding to each measurement. We refer to the chosen
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Fig. 6: K-SVD dictionary coefficient map showing the major
components of each reflection signature from the experiment
conducted on the I*' of October 2019
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Fig. 7: (a) Reflection signature during daylight. (b) The
decomposition of the daylight reflection signature into several
components

dictionary atoms as the prominent components of a reflection
signature (with 4 major components in this case, since we
chose a sparsity of 4). Each atom is then ranked based on
the weight of the coefficients from highest to lowest. The
atom with the highest coefficient is called the first prominent
component and so on. We observed that the first prominent
component (the atom with the highest magnitude) captures the
baseline of the experimental system setup, while the second
prominent component (the atom with the second highest
magnitude) captured the fault in the system, and the third and
fourth prominent component convey some other information.

We compare the decomposition of data from daylight and
night time. Fig. [7] shows the decomposition of a daylight
data. Observe that atom 4 has the highest coefficient as
shown in the figure. Hence this atom captures the baseline
reflection signature during the day. Atom 8 has the second
highest coefficient and this atom captures information about
the reflection of the SSTDR signal from all the panels in the
setup. Atoms 22 and 27 have very small coefficients, and they
capture noise and environmental conditions.

Similarly, Fig. [8] shows the decomposition of a night time
data, and atom 7 has the highest coefficient as shown in the

Magnitude
o o
o u o

|
.
[

0 20 40 60 80
Distance in meters

(a)

atom 7 [82396]

Magnitude

0 20 40 60 80
Distance in meters

atom 11 [7157]

0.25

0.00

Magnitude

-0.25

0 20 40 60 80
Distance in meters

atom 27 [463]

Magnitude
o o
o N

|
o
N)

0 20 40 60 80
Distance in meters

atom 13 [407]

Magnitude
o
o

0 20 40 60 80
Distance in meters

(b)

Fig. 8: (a) Reflection signature during night time. (b) The
decomposition of night time reflection signature into several
components

figure. This atom captures the baseline reflection signature dur-
ing the night time. Atom 11 again captures information about
the reflection of the SSTDR signal from all the panels in the
setup. We observe there are more variations in the magnitude
of the signal from Om until the end of the signal relative to
atom 8. This shows that the reflection from the panels and
cables changes with the time of day. This is probably because
the panels have cooled down, and their effective impedance is
different than in the day time. Atoms 13 and 27 capture noise
and possibly some other environmental information. K-SVD
was able to learn a separate and representative baseline for a
reflection signature during daylight and at night time.
Similar analysis was done for reflection signatures when
there is a fault. We examine a reflection signature that corre-
sponds to a disconnection at A-. Due to space constraints, we
will show results only for the negative side of the experimental
setup. In Fig. [9] we show the decomposition of the reflection
signature of a disconnect at A-. The strongest component
is atom 4 which corresponds to the baseline signal during
the day. Atom O, the second prominent component, gives
information about the fault in the system. To locate the fault,
we inspect the location of the peak of this signal — 59.13
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Fig. 9: (a) Reflection signature with disconnect at A-. (b)
The decomposition of the reflection signature into several
components

m (194 ft) which is the location of the disconnect as shown
in Fig. 3] This approach was used to inspect measurements
(reflection signatures) that correspond to a disconnection at B-
and C-, and the results are shown in Table [l The maximum
and average difference between the disconnect location and
the estimated location are 3.22 m and 1.8 m respectively.
Note that the difference in localization between disconnects
location and estimated location by the algorithm is due to the
effective length contributed by the panel. We observed that
each panel contributes a length of approximately 1.83 m (6
ft), which means the initial location of disconnects should be

TABLE II: Results of the localization of disconnects

Disconnection Localization

Label Disconnect lo- Corrected Estimated
cation (m) (ca- disconnect location (m)
bles only) location (m)

A- 59.13 59.13 59.33

A+ 59.13 59.13 59.33

B- 60.05 61.87 62.02

B+ 60.05 61.87 62.02

C- 60.96 64.62 64.18

C+ 60.96 64.62 64.18
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Fig. 10: (a) Reflection signature with disconnection at B-.
(b) The decomposition of the reflection signature into several
components

corrected by adding 1.83p to the initial location where p here
is the number of panels before that location. After correcting
the location of the disconnects, the maximum and average
difference between the corrected location of disconnects and
the estimated location drops to 0.44 m and 0.26 m respectively.
By inspecting the peak of the second prominent component,
we can detect and locate disconnections in a PV system.

B. DK-SVD

If we have training data for each fault, then we can utilize
DK-SVD. In this method, as explained in section IVB, we
learn both a dictionary D and a classifier W using the training
measurements from the first experiment and the class labels.
Recall that there are 8 labels in our training data. These are
Day, Night, disconnect at A+, disconnect at A-, disconnect at
B+, disconnect at B-, disconnect at C+, disconnect at C-

1) Training stage: Each measurement from the training
data was normalized by the maximum value of the measure-
ment and stored column-wise to get matrix Y, and the matrix
H was obtained from the corresponding labels. Using matrix
Y and the matrix H as input, a dictionary of 110 atoms with a
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Fig. 11: (a) Reflection signature with disconnection at C-.
(b) The decomposition of the reflection signature into several
components
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Fig. 12: DK-SVD dictionary coefficient map showing the major
components of each reflection signature of the experiments
conducted I*" July,2019

sparsity of 4 was trained. This means a reflection signature is
decomposed as a linear combination of 4 atoms within the
dictionary. For regularization, an o« = 4 was used during
training. In our training, we chose 100 as our number of
iterations.

Figure [12] shows the coefficient map of the training reflec-
tion signatures with respect to how the dictionary atoms were
used. The x-axis shows the 1732 training measurements which
were passed as input to the DK-SVD algorithm, while the y-
axis shows the dictionary atoms numbered from O to 109. The
coefficient map shows the magnitude of the coefficients for
each measurement. Each column of the coefficient map shows
the contribution of each atom in representing a measurement.
Comparing Fig. @ and Fig. we observe that the 4" and
46™ atom corresponds to night time in Figure. @ Also, the
8" and 52" atom are the major components of the daylight
measurements. Similarly, the 11% 24" and 32" atoms are
the major components of the disconnects at A-, B- and C-,
respectively. All measurements are expressed as a combination
of four dictionary atoms.

C. Testing stage:

The data generated in the second experimental setup was
used as the testing data set. Note that the experiment was
conducted 3 months after the first experiment for the training
data. We use the dictionary D and classifier W learned during
the training stage to classify each test data. First, we used
OMP to determine the sparse coefficients of each measurement
with respect to the dictionary atoms we learned during the
training phase. OMP produces a vector of length 110 (size of
the dictionary) with 4 non-zero elements. Each test data was
then classified as explained in section IIB.

Figure [I3] is a confusion matrix that shows the accuracy
of classification into the different kinds of disconnects. The
accuracy of classification of the disconnects at daylight, A+,
B+,B- and C- is 100%. However we see some confusions
between classification of the daylight and nighttime. This is
because there is no proper definition of when the time daylight
begins or when it ends. Also observe that disconnects at C+
and A- were classified as C- and A+ respectively. This is quite
acceptable because as shown in [[I1]], the reflection at either
side of the wire should be the same. Overall, the DK-SVD
algorithm achieved a 97% classification accuracy.

We also tested the DK-SVD algorithm with test data from
shading each panel (a single panel at a time), and all panels.
Note that shading data was not included in the training data.
As a result, the algorithm classified the shading of each panel
as a data from daylight. This is expected since the plots in
Fig. [5a reveal how similar data from shading is to data from
daylight. Also, the data from shading all panels was classified
as nightime which again is expected as revealed in Fig. [5a

V. CONCLUSION AND FUTURE WORK

Spread spectrum time domain reflectometry is a viable
means of locating faults on energized transmission lines. This
work has introduced a supervised and unsupervised learning
algorithm to analyze SSTDR data from a PV array.
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Fig. 13: Classification of test measurements into different
disconnects based on location with DK-SVD

Using K-SVD, we show that we can decompose an SSTDR
reflection signature into several components where each com-
ponent conveys different information. The component with
the highest coefficient represents the baseline, while the com-
ponent with the highest coefficient conveys whether there is
a fault or not. This component was also used to locate the
distance to fault. The predicted location of the fault using
K-SVD closely matches the actual location of the faults.The
maximum and average difference between the corrected loca-
tion of disconnects and the estimated location drops to 0.44 m
and 0.26 m respectively. For the case where labels of the data
are available and used as an input to the algorithm, we were
able to directly classify a reflection signature into the different
classes considered during the training stage. Results show a
97% accuracy for classifying faults to the corresponding faults
types based on the location of disconnect. As a future work,
other faults such as ground and arc faults will be considered.
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