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ABSTRACT

Python has become a popular programming language because of
its excellent programmability. Many modern software packages
utilize Python for high-level algorithm design and depend on na-
tive libraries written in C/C++/Fortran for efficient computation
kernels. Interaction between Python code and native libraries intro-
duces performance losses because of the abstraction lying on the
boundary of Python and native libraries. On the one side, Python
code, typically run with interpretation, is disjoint from its execution
behavior. On the other side, native libraries do not include program
semantics to understand algorithm defects.

To understand the interaction inefficiencies, we extensively study
a large collection of Python software packages and categorize them
according to the root causes of inefficiencies. We extract two in-
efficiency patterns that are common in interaction inefficiencies.
Based on these patterns, we develop PIEPROF, a lightweight profiler,
to pinpoint interaction inefficiencies in Python applications. The
principle of PIEPROF is to measure the inefficiencies in the native
execution and associate inefficiencies with high-level Python code
to provide a holistic view. Guided by PIEPROF, we optimize 17 real-
world applications, yielding speedups up to 6.3X on application
level.
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1 INTRODUCTION

In recent years, Python has become the most prominent program-
ming language for data modeling and library development, espe-
cially in the area of machine learning, thanks to its elegant design
that offers high-level abstraction, and its powerful interoperability
with native libraries that delivers heavy numeric computations. De-
coupling data analysis and modeling logics from operation logics is
the singular mechanism guiding the remarkable improvements in
developers’ productivity in the past decade. Python enables small
teams to build sophisticated model [41] that were barely imaginable
a few years ago, and enables large teams of modelers and numeric
developers to seamlessly collaborate and develop highly influential
frameworks such as Tensorflow [1] and Pytorch [47].

While high-level languages to articulate business logics and na-
tive libraries to deliver efficient computation is not a new paradigm,
downstream developers have not always understood the details of
native libraries, and have implemented algorithms that interacted
poorly with native codes. A well-known example of the interaction
inefficiency problem occurs when developers, who fail to recognize
that certain matrix operations can be vectorized, write significantly
slower loop-based solutions. MATLAB and Mathematica can alle-
viate the problem since these languages usually are locked with a
fixed set of native libraries over a long time, and developers can es-
tablish simple best practice guidelines to eliminate most interaction
inefficiencies (MATLAB contains the command, “try to vectorize
whenever possible”).

In the Python ecosystem, native libraries and downstream appli-
cation codes evolve rapidly so they can interact in numerous and
unexpected ways. Therefore, building a list to exhaust all interac-
tion inefficiencies becomes infeasible. We seek a solution that will
automatically identify the blocks of Python code that lead to inef-
ficient interactions, through closing the knowledge gap between
Python and native code. Existing profiling tools cannot address this
issue. Python profiles [19, 22, 24, 49, 52, 55, 66, 67, 75] cannot step
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in native code so they do not know execution details. Native pro-
filing tools [2, 9, 15, 44, 54, 62, 71, 72] can identify hotspots, which
offer insights into problematic code blocks. However, because these
tools do not have knowledge about Python code’s semantics, they
cannot render detailed root cause and thus often make debugging
remarkably challenging.

We propose PIEPROF, the first lightweight, insightful profiler to
pinpoint interaction inefficiencies in Python programs. PIEPROF
works for production Python software packages running in com-
modity CPU processors without modifying the software stacks. Its
backbones algorithmic module is a recently proposed technique
based on hardware performance monitoring units (PMUs) and de-
bug registers to efficiently identify redundant memory accesses
(hereafter, referred to as CL-algorithm! [61, 72]). CL-algorithm in-
telligently chooses a small collection of memory cells and uses
hardware to track accesses to these cells at a fine granularity. For
example, when the technique detects two consecutive writes of the
same value to the same cell, it determines that the second write
is unnecessary, and flags the responsible statement/function for
further inspection. The developer can clearly see where a non-opt
memory access occurs and why. The technique already shows its
potential for eliminating inefficiencies in monolithic codebases that
use one programming language.

PIEPROF leverages the CL-algorithm in a substantially more
complex multi-languages environment, in which a dynamic and
(predominantly) interpretation-based language Python is used to
govern the semantics and native libraries compiled from C, C++,
Fortran are used to execute high-performance computation. Do-
ing so requires us to address three major challenges that crosscut
Python and native code.

At the measurement front, we need to suppress false positives
and avoid tracking irrelevant memory operations produced from
Python interpreter and Python-native interactions. For example,
memory accesses performed by Python interpreters may “bait” the
CL-algorithm to waste resources (i.e., debug registers) on irrelevant
variables such as reference counters. At the infrastructure front, we
need to penetrate entire software stacks: it cannot see execution
details (i.e, how memory is accessed) with only Python runtime
information, or cannot understand program semantics with only
native library knowledge. Our main task here is to compactly im-
plement lock-free calling context trees that span both Python code
and native libraries, and retain a large amount of information to
effectively correlate redundant memory accesses with inefficient
interactions. At the memory/safety front, we need to avoid unex-
pected behaviors and errors caused by Python runtime. For example,
Python’s garbage collection (GC) may reclaim memory that our tool
is tracking. So delicate coordination between P1EPROF and Python
interpreter is needed to avoid unexpected behaviors and errors.

We note that while most of the downstream applications we
examined are machine learning related, PIEPROF is a generic tool
that can be used in any codebase that requires Python-native library
interactions.

Contributions. We make the following three contributions.

1Chabbi-Liu Algorithm.
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e We are the first to thoroughly study the interaction inef-
ficiencies between Python codes and native libraries. We
categorize the interaction inefficiencies by their root causes.
We design and implement P1EPROF, the first profiler to iden-
tify interaction inefficiencies and provide intuitive optimiza-
tion guidance, by carefully stepping through Python run-
times and native binaries. PIEPROF works for production
Python software packages in commodity CPU processors
without modifying the software stacks.

Following the guidance of PIEPROF, we examine a wide range
of influential codebases and identify interaction inefficien-
cies in 17 real-world applications and optimize them for
nontrivial speedups.

Organization. Section 2 reviews the background and related work.
Section 3 characterizes the interaction inefficiencies. Section 4 de-
scribes the design and implementation of PIEPROF. Section 5 ex-
plains the evaluation. Section 6 presents some case studies. Section 7
discusses some threats to validity. Section 8 presents some conclu-
sions.

2 BACKGROUND AND RELATED WORK
2.1 Python Runtime System

Python basics. Python is an interpreted language with dynamic
features. When running a Python application, the interpreter trans-
lates Python source code into stack-based bytecode and executes
it on the Python virtual machine (PVM), which varies implemen-
tations such as CPython [12], Jython [34], Intel Python [30] and
PyPy [63]. This work focuses on CPython because it is the reference
implementation [21], while the proposed techniques are generally
applicable to other Python implementations as well. The CPython
PVM maintains the execution call stack that consists of a chain of
PyFrame objects known as function frames. Each PyFrame object
includes the executing context of corresponding function call, such
as local variables, last call instruction, source code file, and current
executing code line, which can be leveraged by performance or
debugging tools.

Python supports multi-threaded programming, where each
Python thread has an individual call stack. Because of the global
interpreter lock (GIL) [20], the concurrent execution of Python
threads is emulated as regular switching threads by the interpreter,
i.e., for one interpreter instance, only one Python thread is allowed
to execute at a time.

Interaction with native libraries. When heavy-lifting computa-
tion is needed, Python applications usually integrate native libraries
written in C/C++/Fortran for computation kernels, as shown in
Figure 1. Such libraries include Numpy [28, 68], Scikit-learn [48],
Tensorflow [1], and PyTorch [47]. Therefore, modern software pack-
ages enjoy the benefit from the simplicity and flexibility of Python
and native library performance. When the Python runtime calls a
native function, it passes the PyObject? or its subclass objects to
the native function. The Python runtime treats the native functions
as blackboxes — the Python code is blocked from execution until
the native function returns.

2pyObject is the super class of all objects in Python.
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Python Application

Native Library Abstraction Standard Module

Python Runtime

Native Library

Operating System

Hardware

Figure 1: The typical stack of production Python software
packages. Python applications usually rely on native li-
braries for high performance but introduce an abstraction
across the boundary of Python runtime and native libraries.

Figure 1 shows an abstraction across the boundary of Python
runtime and native library, which logically splits the entire software
stack. On the upper level, Python applications are disjoint from
their execution behaviors because Python runtime (e.g., interpreter
and GC) hides most of the execution details. On the lower level,
the native libraries lose most program semantic information. This
knowledge gap leads to interaction inefficiencies.

2.2 Existing Tools vs. PIEPROF

This section compares existing tools that analyze inefficiencies in
Python and native codes to distinguish PIEPROF.

Python performance analysis tools. PyExZ3 [31], PySym [25],
flake8 [13], and Frosted [65] analyze Python source code and employ
multiple heuristics to identify code issues statically [27]. XLA [64]
and TVM [10] apply compiler techniques to optimize deep learning
applications. Harp [74] detects inefficiencies in Tensorflow and
PyTorch applications based on computation graphs. All of these
approaches, however, ignore Python dynamic behavior, omitting
optimization opportunities.

Dynamic profilers are a complementary approach. cProfile [19]
measures Python code execution, which provides the frequency/-
time executions of specific code regions. Guppy [75] employs object-
centric profiling, which associates metrics such as allocation fre-
quency, allocation size, and cumulative memory consumption with
each Python object. PyInstrument [55] and Austin [66] capture
Python call stack frames periodically to identify executing/memory
hotspots in Python code. PySpy [22] is able to attach to a Python
process and pinpoint function hotspots in real time. Unlike PIEPROF,
these profilers mainly focus on Python codes, with no insights into
the native libraries.

Closely related to PIEPROF, Scalene [5] separately attributes
Python/native executing time and memory consumption. However,
it does not distinguish useful/wasteful resources usage as PIEPROF
does.

Native performance analysis tools. While there are many na-
tive profiling tools [2, 15, 54], from which the most related to
Python that can identify performance inefficiencies are Toddler [44]
that identifies redundant memory loads across loop iterations, and
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LDoctor [57] that reduces Toddler’s overhead by applying dynamic
sampling and static analysis. DeadSpy [9], RedSpy [71], and Load-
Spy [62] analyze dynamic instructions in the entire program ex-
ecution to detect useless computations or data movements. Un-
fortunately, all of them use heavyweight binary instrumentation,
which results in high measurement overhead, and they do not work
directly on Python programs.

2.3 Performance Monitoring Units and
Hardware Debug Registers

Hardware performance monitoring units (PMUs) are widely
equipped on the modern x86 CPU architectures. Software can use
PMUs to count various hardware events like CPU cycles, cache
misses, et cetera. Beside the counting mode that counts the total
number of events, PMUs can be configured in sampling, which
periodically sample a hardware event and record event’s detailed
information. PMUs trigger an overflow interrupt when the sample
number reaches a threshold. The profiler runtime captures inter-
rupts as signals and collects samples with their executing contexts.

For memory-related hardware events such as memory load and
store, Precise Event-Based Sampling (PEBS) [14] in Intel processors
provides the effective address and the precise instruction pointer
for each sample. Instruction-Based Sampling (IBS) [17] in the AMD
processors and Marked Events (MRK) [58] in PowerPC support
similar functionalities.

Hardware debug registers [33, 39] trap the CPU execution when
the program counter (PC) reaches an address (breakpoint) or an
instruction accesses a designated address (watchpoint). One can
configure the trap conditions with different accessing addresses,
widths and types. The number of hardware debug registers is limited
(e.g., the modern x86 processor has four debug registers).

3 INTERACTION INEFFICIENCY
CHARACTERIZATION

This section provides a high-level preview of the key findings from
applying PIEPROF to an extensive collection of high-profile Python
libraries at Github. We specifically categorize the interaction ineffi-
ciencies according to the root causes and summarize the common
patterns, which serve three purposes: (i) this is the first charac-
terization of interaction inefficiencies based on large scale studies,
thus rendering a more complete landscape of potential code quality
issues that exist in Python codebase for ML and beyond; (ii) we see
a diverse set of inefficiencies hiding deep in Python-native library
interaction, which justifies using heavy machineries/profiling tools
to automatically identify them; and (iii) these concrete examples
explain the common patterns we use to drive the PIEPROF’s design.

3.1 Interaction Inefficiency Categorization

We categorize interaction inefficiencies into five groups. For each
category, we give a real example, analyze the root causes, and
provide a fix.

Slice underutilization. Listing 1 is an example code from Iris-
Data [60], a back-propagation algorithm implementation on Iris
Dataset [18]. A loop iterates two multidimensional arrays ihGrads
and ihWeights with indices i and j for computation. Because
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def train(self, trainData, maxEpochs, learnRate):
for j in range(self.nh):
delta -1.0 * learnRate * ihGrads[i,j]

self.ihWeights[i, j] += delta

1
2
3
4
5
6

Listing 1: Interaction inefficiencies in IrisData due to the
iteration on Numpy arrays within a loop.

1 def train(self,
2
3

trainData, maxEpochs, learnRate):

self.ihWeights[i, 0@:self.nh] += -1.0 % learnRate * ihGrads[i,
0:self.nh]

4

Listing 2: Optimized IrisData code with slice notation.

def rotate(self, theta):
a = np.cos(theta)
b = np.sin(theta)
rotate_mtx = np.array([[a,
1.01], float)
self._mtx = np.dot(rotate_mtx, self._mtx)

1
2
3
4 -b, @.0], [b, a, 0.0], [0.0, 0.0,

5
6

Listing 3: Interaction inefficiencies in Matplotlib due to the
same input theta.

Python arrays are supported by native libraries such as Numpy and
PyTorch/TensorFlow, indexing operations (i.e., []) in a loop trigger
native function calls that repeat boundary and type checks [45].

The so-called vectorization/slicing eliminates repeated “house-
work” and (usually) enables the underlying BLAS [6] library to
perform multi-core computation. Listing 2 shows a simple fix in a
2x speedup for the entire program execution.

Repeated native function calls with the same arguments.
Functions from native libraries typically have no side effects, so ap-
plying the same arguments to a native function results in the same
return value, which introduces redundant computations. Listing 3
shows a code from Matplotlib [29], a comprehensive library for
visualization and image manipulation. This code rotates an image
and is often invoked in training neural nets for images.

The argument theta for the rotate function (rotate angle) is
usually the same across consecutive invocations from deep learning
training algorithms because they rotate images in the same batch
in the same way. Here, Pyobjects returned from native functions
np.cos(), np.sin() and np.array() in lines 2-4 have the same
values across images that share the same input theta.

This can be fixed by either a simple caching trick [16, 40], or
refactoring the rotate funcion so that it can take a batch of images.
We gain a 2.8X speedup after the fix.

Inefficient algorithms. Listing 4 is an example of algorithmic
inefficiencies from Scikit-learn, a widely used machine learning
package. The code works on X, a two-dimensional Numpy array. It
calls the native function swap from the BLAS library to exchange
two adjacent vectors. In each iteration, swap returns two PyObjects
and Python runtime assigns these two PyObjects to X.T[i] and
X.TLi+1], respectively. The loop uses swap to move the first ele-
ment in the range to the end position. Inefficiencies occur because
it requires multiple iterations to move X.T[i] to the final location.

1120

1 def lars_path(X, y, Xy=None, ...):

2 P

3 for i in range(ii, n_active):

4 X.TCil, X.T[i + 11 = swap(X.T[il, X.T[i + 11)

5 indices[i], indices[i + 1] = indices[i + 1], indices[i]
6

Listing 4: Interaction inefficiencies in Scikit-learn due to the
inefficient algorithm.

1 def CEC_4(solution=None, problem_size=None, shift=0)

for i in range(dim - 1):
res += 100 * np.square(x[iJ**2-x[i+1]) + np.square(x[i]-1)

2
3
4
5

Listing 5: Interaction inefficiencies in Metaheuristic [42, 43]
due to the API misuse in native Libraries.

Instead of using swap, we directly move each element to the tar-
get location. We apply a similar optimization to the indices array
as well. Our improvement yields a 6.1x speedup to the lars_path
function.

API misuse in native libraries. Listing 5 is an example of API
misuse from Metaheuristic [42, 43], which implements the-state-
of-the-art meta-heuristic algorithms. The code accumulates the
computation results to res. Since the computation is based on
Numpy arrays, the accumulation operation triggers one native
function call in each iteration, resulting in many inefficiencies.

In Listing 6 shows our fix (i.e., use the efficient sum API from
Numpy) which avoids most of the native function invocations by
directly operating on the Numpy arrays. This optimization removes
most of interaction inefficiencies, and yields a 1.9X speedup to the
entire program.

Loop-invariant computation. Listing 7 is a code snippet from
Deep Dictionary Learning [38], which seeks multiple dictionaries
at different image scales to capture complementary coherent char-
acteristics implemented with TensorFlow. Lines 1-3 indicate the
computation inputs A, D, and X. Lines 4-5 define the main computa-
tion. Lines 6-7 execute the computation with the actual parameters
D_ and X_. The following pseudo-code shows the implementation:
for i« 1to Iter do
A=D(X-DTA)

where D and X are loop invariants. If we expand the computation,
DX and DDT can be computed outside the loop and reused among
iterations, shown as pseudo-code:

t1 = DX

tp = DDT

for i« 1to Iter do
A=t —bhA

This optimization yields a 3x speedup to the entire program [74].

3.2 Common Patterns in Interaction
Inefficiencies

We are now ready to explain the common patterns in code that

exhibits interaction efficiencies, which we use to drive the design

of P1EPROF. Specifically, we find that almost all interaction ineffi-
ciencies involve (i) repeatedly reading the same PyObjects of the
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1 def CEC_4(solution=None, problem_size=None, shift=0):
2
3 res += np.sum(100 * np.square(x[0:dim-1]xx2 -

square(x[0:dim-1] - 1))

x[1:dim]) + np.
4

Listing 6: Optimized Metaheuritics code for Listing 5, with
appropriate native library APL

1A = tf.Variable(tf.zeros(shape=[N, N]), dtype=tf.float32)

2D = tf.placeholder(shape=[N, N], dtype=tf.float32)

3X = tf.placeholder(shape=[N, N], dtype=tf.float32)

4R = tf.matmul(D, tf.subtract(X, tf.matmul(tf.transpose(D), A)))
5L = tf.assign (A, R)

6 for i in range(Iter):

result = sess.run(L, feed_dict={D: D_, X: X_3})
Listing 7: Interaction inefficiencies in Deep Dictionary

Learning [38] due to loop-invariant computation.

same values, and (ii) repeatedly returning PyObjects of the same
values.

Both observations require developing a tool to identify redun-
dant PyObjects, which is difficult and costly because it requires
heavyweight Python instrumentation and modification to Python
runtime. Further analysis, however, finds that PyObject redun-
dancies reveal the following two low-level patterns during the
execution from the hardware perspective.

e Redundant loads: If two adjacent native function calls read the
same value from the same memory location, the second native
function call triggers a redundant (memory) load. Repeatedly
reading PyObject of the same value result in redundant loads.

o Redundant stores: If two adjacent native function calls write the
same value to the same memory location, the second native
function call triggers a redundant (memory) store. Repeatedly
returning PyObject of the same value result in redundant stores.

We use the redundant loads and stores to serve as indicators of

interaction inefficiencies. Table 1 shows different categories of in-

teraction inefficiencies, which show up as redundant loads or stores.

Section 4 describes how we use the indicators.

4 DESIGN AND IMPLEMENTATION

4.1 Overview

See Figure 2. Recall that the CL-algorithm controls PMUs and debug
registers to report redundant member accesses of a process. PIEPROF
interact with Python runtime, native libraries, and the CL-algorithm
through three major components: (i) Safeguard and sandbox. A thin
sandbox is built around Python interpreter and native libraries,

Table 1: Redundant loads and stores detect different cate-
gories of interaction inefficiencies.

[ Inefficiency Pattern | Inefficiency Category

Slice underutilization
Redundant , -
Load Inefficient algorithms
oads API misuse in native libraries
Loop-invariant computation
Redundant Repeated native function calls with same arguments
Stores Inefficient algorithms
API misuse in native libraries
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Figure 2: Overview of PIEPROF’s workflow.

and a safeguard is implemented inside the sandbox to moderate
communication between Python runtime and the CL-algorithm.
(ii) Measurement. Upon receiving an event from the CL-algorithm,
the measurement component determines whether to notify CCT
(calling context tree) builder to update the CCT, and (iii) CCT Builder.
Upon receiving an update from the measurement component, CCT
builder examines Python runtime and native call stacks to update
CCT. When an interaction inefficiency is detected, it will report to
the end user (developer).

The measurement component helps to suppress false positive
and avoid tracking irrelevant variables (e.g., reference counters),
the CCT builder continuously update the lock-free CCT, and Safe-
guard/sandbox ensures that the Python application can be executed
without unexpected errors.

We next discuss each component in details.

4.2 Measurement

CL-algorithm. CL-algorithm uses PMUs and debug registers
to identify redundant loads and stores in an instruction stream.
It implements a conceptually simple and elegant process: a se-
quence ai, ay, . .., d;, memory access instructions arrive at the CL-
algorithm in a streaming fashion. Here, a; refers to the address of
the memory access for the i-th instruction. Upon seeing a new mem-
ory access instruction a; (step 1, i.e @ in Figure 2), the CL-algorithm
uses PMUs to probabilistically determine whether it needs to be
tracked (step 2), and if so, store the address in a debug register (step
3). If the debug registers are all used, a random one will be freed up.
When a subsequent access to a; (or any addresses tracked by debug
registers) occurs (step 4), the debug register will trigger an interrupt
so that the CL-algorithm can determine whether the access is re-
dundant (step 5), by using the rules outlined in Section 3.2. Since the
number of debug registers is usually limited, the CL-algorithm uses
a reservoir sampling [69] technique to ensure that each instruction
(and its associated memory accesses) has a uniform probability of
being sampled.
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Hybrid Call Path

[ sse2_binary_add_DOUBLE |

| run_binary_simd_add |
*

np.random. rand(i)

T Qo
o

np.random. rand(i) |

: DOUBLE_add |
np.zeros(i)

| PyRun_SimpleFileExFlags |
L] | tstate

| main |

| PyRun_SimpleFileExFlags |
tstate t

| main |

Figure 3: Constructing a hybrid call path across Python runtime and native libraries. White arrows in call paths denote a series
of elided call frames in PVM. The red circle in the hybrid call path shows the boundary of Python and native frames, where

interaction inefficiencies occur.

Improving measurement efficiencies. First, PMUs sample in-
structions at the hardware level so it cannot distinguish memory
accesses from the Python interpreter from those from the Python ap-
plications. In practice, a large fraction of memory access sequences
are related to updating reference counters for Python objects. There-
fore, most debug registers will be used to track reference counters
if we bluntly use the CL-algorithm, and substantially reduces the
chances of identifying memory access redundancies. Second, it
needs to ignore redundant memory accesses occurring within the
same native function call, or within a code region of PIEPROF be-
cause they are not related to interaction inefficiencies. Note that
tracking redundant memory accesses within the same native func-
tion call is worse than merely producing false positives because it
can bury true instances. For example, two write instructions w;
and wy of the same value are performed on the same memory from
function Fy, and later function F, performs a third write instruction
ws of the same value on the same location. If we track redundant
accesses within the same function, the CL-algorithm says it has
found a redundant pair (wy, wg), evicts wy from the debug register.
and never detects the redundant pair (w1, w3) caused by the real
interaction inefficiencies.

PIEPROF performs instruction-based filter to drop a sample if (i)
its instruction pointer falls in the code region unrelated to native
function calls (e.g., that of PIEPROF), (ii) its memory access address
belongs to “junky” range, such as the head of PyObject that con-
tains the reference number. In addition, when the CL-algorithm
delivers a redundant memory access pair to PIEPROF, it checks the
Python runtime states and drops the sample when these two mem-
ory accesses occur inside a same state (corresponding to within the
same native function call).

4.3 Calling Context Trees Builder

This section first explains the construction of call paths, and then ex-
plains how they can be used to construct signal-free calling context
trees (CCTs).

Hybrid call path. P1ePror uses libunwind [56] to unwind the
native call path of a Python process to obtain a chain of procedure
frames on the call stack. See the chain of “Native Call Path” on the
left in Figure 3. Here, call stack unwinding is not directly applicable
to Python code because of the abstraction introduced by PVM. The
frames on the stack are from PVM, not Python codes. For example,
the bottom _PyEval_EvalFrameDefault? shows up in “Native Call
Path”, but we need the call to correspond to func2() in Python code
(connected through PyFrame1). Thus, PIEPROF needs to inspect the
dynamic runtime to map native calls with Python calls on the fly.
1. Mapping PyFrame to Python calls. First, we observe that each
Python thread maintains its call stacks in a thread local object
PyThreadState (i.e., tstates in Figure 3). To obtain Python’s
calling context, PIEPROF first calls GetThisTh readState()* to
get the PyThreadState object of the current thread. Second
PIEPROF obtains the bottom PyFrame object (corresponding to
the most recently called function) in the PVM call stack from the
PyThreadState object. All PyFrame objects in the PVM call stack
are organized as a singly linked list so we may obtain the entire
call stack by traversing from the bottom PyFrame. Each PyFrame
object contains rich information about the current Python frame,
such as source code files and line numbers that PIEPROF can use
to correlate a PyFrame to a Python method. In Figure 3, PyFrame1,
PyFrame2, and PyFrame3 are for Python methods main, func2, and
func1, respectively.

2. Extracting PyFrame’s from Native Call Path. Each Python function
call leaves a footprint of _PyEval_EvalFrameDefault in the native
call stack so we need only examine _PyEval_EvalFrameDefault.
Each _PyEval_EvalFrameDefault maps to a unique PyFrame in
the call stack of the active thread in Python Runtime. In addition,

3_PyEval_EvalFrameDefault is a frame (i.e., a function pointer) in the native call
stack in runtime that corresponds to invocation of a function or a line of code in
Python.

4GetThisThreadState() is a PVM API to retrieve an object that contains the state of
current thread.
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Figure 4: A calling context tree constructed by PIEPROF.
Each parent node applies skip-list to organize children.
INode denotes an internal node and LNode denotes a leaf
node. Red box shows searching 0xa46 in the example skip-
list.

the ordering preserves, e.g., the third _PyEval_EvalFrameDefault
in “Native Call Path” corresponds to the third PyFrame in Python’s
call stack. Therefor use standard Python interpreter APIs to obtain
the PyFrame’s and map them back to nodes in the native call path.

CCT from call paths. P1ePror applies a compact CCT [3, 4] to
represent the profile. Figure 4 shows the structure of a CCT pro-
duced by P1EPRroF. The internal nodes represent native or Python
function calls, and the leaf nodes represents the sampled memory
loads or stores. Logically, each path from a leaf node to the root
represents a unique call path.

As mentioned, Python is a dynamic typing language, and uses
meta-data to represent calling context (e.g., the function and file
names in string form); therefore, its call stacks are usually substan-
tially larger (in space) than those in static languages. One solution
is to build a dictionary to map strings to integer ids but the so-
lution must be signal-free because it needs to interact with the
CL-algorithm and PMUs, which is prohibitively complex.

Our crucial observation is that function calls in different threads
near the root of a tree usually repeat so unlike solutions appeared
in [8, 9, 61, 62, 71], which produce a CCT for each thread/process,
P1EPROF constructs a single CCT for the entire program execu-
tion. In this way, the same function call appearing in different
threads is compressed into one node and space complexity is re-
duced. PIEPROF also implements a lock-free/signal-safe skip-list [50]
to maintain CCT’s edges for fast and thread-safe operations. In the-
ory, Skip-list’s lookup, insert, and delete operations have O(log n)
time complexity. In practice, Skip-list with more layers has higher
performance but higher memory overhead. In a CCT, the nodes
closer to the root are accessed more frequently. PIEPROF, how-
ever,proportionally adjusts the number of layers in the skip-lists at
different levels in a CCT to optimize the performance and overhead
tradeoffs. It uses more layers to represent the adjacency lists of
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nodes that are close to the root, and fewer layers to represent those
that are close to the leaves.

4.4 Safeguard

PIEPROF uses two mechanisms to avoid unexpected errors in Python
runtime. It will hibernate if it enters a block of code, interrupting
which will cause state corruption in PVM, and will block certain
activities from GC if the activities can cause memory issues.

Hibernation at function-level. Upon seeing an event (e.g., an
instruction is sampled or a redundant memory access is detected),
the PMUs or debug registers use interrupt signals to interact with
P1EPROF, which will pause Python’s runtime. Error could happen
if Python run time is performing certain specific tasks when an
interrupt exception is produced. For example, if it is executing
memory management APIs, memory error (e.g., segmentation fault)
could happen, and if Python is loading native library, deadlock could
happen.

P1eEPROF maintains a list of functions, inside which PIEPROF

needs to be temporarily turned off (i.e., in hibernation mode). To
do so, PIEPROF maintains a block list of function, and implements
wrappers for each function in the list. Calls to these functions are
redirected to the wrapper. The wrapper turns off PIEPROF, executes
the original function, and turns on PIEPROF again.
Dropping events vs. hibernation. We sometimes drop an event when
it is unwanted (Section 4.2). Complex logic can be wired to drop an
event at the cost of increased overhead. Here, hibernating PIEPROF
is preferred to reduce overhead because no event needs to be kept
for a whole block of code.

Blocking garbage collector. When Python GC attempts to deal-
locate the memory that debug registers are tracking, errors could
occur. Here, we uses a simple trick to defer garbage collection ac-
tivities: when PIEPROF monitors memory addresses and it is within
a PyObject, it increases the corresponding PyObject’s reference,
and decreases the reference once the address is evicted. This ensures
that memories being tracked will not be deallocated. Converting
addresses to PyObject’s is done through progressively heavier
mechanisms. First, PyObject’s exist only in a certain range of the
memory so we can easily filter out addresses that do not corre-
spond to PyObject (which will not be deallocated by GC). Second,
we can attempt to perform a dynamic casting on the address and
will succeed if that corresponds to the start of an PytObject. This
handles most of the cases. Finally, we can perform a full search in
the allocator if we still cannot determine whether the address is
within a PyObject.

5 EVALUATION

This section studies the effectiveness of PIEPROF (e.g., whether it
can indeed identify interaction inefficiencies) and its overheads.

We evaluate PIEPROF on a 14-core Intel Xeon E7-4830 v4 ma-
chine clocked at 2GHz running Linux 3.10. The machine is equipped
with 256 GB of memory and four debug registers. PIEPROF is com-
piled with GCC 6.2.0 -03, and CPython (version 3.6) is built
with —enable-shared flag. PIEPROF subscribes hardware event
MEM_UOPS_RETIRED_ALL_STORES for redundant stores detection
and MEM_UOPS_RETIRED_ALL_LOADS for redundant loads detection,
respectively.
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Table 2: Overview of performance improvement guided by PIEPROF. AS denotes application-level speedup, FS denotes function-

Jialiang Tan, Yu Chen, Zhenming Liu, Bin Ren, Shuaiwen Leon Song, Xipeng Shen, and Xu Liu

level speedup, L refers to redundant loads and S refers to redundant stores.

Program Information Inefficiency Optimization
Applications Library | Problem Code Category | Pattern AS FS
Ta [46] Ta VOlatlleg?};(:i )gt; ;t,ll;i’}[;?(S%, Slice underutilization L 1.1X 16.6X
NumPyCNN [23] Numpy [28, 68] numpycnn.py(161) Loop-invariant computation S 1.8X 2.04X
Census_main NumpyWDL [59] ftrl.py(60) Loop-invariant computation S 1.03X 1.1X
Lasso Scikit-learn [48] least_angle.py(456, 458) Inefficient algorithms S 1.2X 6.1X
. nn_backprop.py(222, 228, Slice underutilization &
IrisData [60] Numpy 247, 255, 216)31,)};(71, 278) API misuse L 2 2.02x
Network Neural-network- network.py(103-115) Repeated NFC L 1.03X 1.05X
from-scratch

Cnn-from-scratch [73] Numpy conv.py(62) Slice underutilization L 2.5X 3.9%X
FunctionUtil.py(374) API misuse L 1.4X 1.9%

FunctionUtil.py(270) Slice underutilization L 6.3X 27.3X

Metaheuristics [42, 43] Numpy FunctionUtil.py(309, 375) Loop-invariant computation S 1.04X 1.4X
FunctionUtil.py(437) Repeated NFC L 1.02X 1.1X

EPO.py(40) Loop-invariant computation S 1.1X 1.1X

LinearRegression [36] LinearRegression LinearRegression.py(49, 50) Repeated NFC L 1.4X 1.5X
Pytorch-examples [32] PyTorch [47] adam.py:loop(66) Loop-invariant computation L 1.02X 1.07X
Cholesky [74] PyTorch cholesky.py(76) Slice underutilization L 3.2X 3.9%
GGNN.pytorch [11] PyTorch model.py(122, 125) Loop-invariant computation S 1.03X 1.07X
I;I);ttzvfclf:__ssllllmmlﬁlgg [[3377]] Torchvision [53] functional.py(164) Slice underutilization L 110141 1;?
Fourier-Transform [35] 1.02X 2.8X
Jax [7] Matplotlib [29] transforms.py(1973) Repeated NFC S 1.04X 2.8X
Autograd [26] 1.05X 2.8X

5.1 Effectiveness

This section assesses the effectiveness of PIEPROF, and the breadth
of the interaction inefficiencies problem among influential Python
packages. The lack of a public benchmark creates two inter-related
challenges: (i) determining the codebases to examine inevitably
involves human intervention, and (ii) most codebases provide a
small number of “hello world” examples, which have limited test
coverage.

We aim to include all “reasonably important” open-source
projects and use only provided sample code for testing. While using
only sample code makes inefficiency detection more difficult, this
helps us to treat all libraries as uniformly as possible. For each of
Numpy, Scikit-learn, and Pytorch, we find all projects in Github
that import the library, and sort them by popularity, which gives
us three lists of project candidates. Our stopping rule for each list
differs and involves human judgement because we find that the
popularity of a project may not always reflect its importance (e.g.,
specialized libraries could be influential, but generally have smaller
user bases, and are less popular in Github’s rating system). For ex-
ample, Metaheuristics is important and included in our experiment
but it received only 91 ratings at the time we performed evaluation.
At the end, we evaluated more than 70 read-world applications,
among which there are more projects that import Numpy than the
other two libraries.

Indentifying a total of 19 inefficiencies is quite surprising because
these projects are mostly written by professionals, and the sample
codes usually have quite low codebase coverage, and are usually
“happy paths” that are highly optimized. The fact that we identify
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18 new performance bugs as reported in Table 2, indicates that
interaction inefficiencies are quite widespreaded.

Table 2 reports that the optimizations following PIEPROF’s opti-
mization guidance lead to 1.02X to 6.3X application-level speedup
(AS), and 1.05x to 27.3% function-level speedup (FS), respectively.
According to Amdahl’s law, AS approaches FS as the function in-
creasingly dominates the overall execution time. For the five ineffi-
ciency categories we define in Section 3.1 and which are common
in real applications, PIEPROF’s superior redundant loads/stores de-
tection proves its effectiveness.

5.2 Overhead

This section reports the runtime slowdown and memory bloating
caused by PIEPROF. We measure runtime slowdown by the ratio of
program execution time with PIEPROF enabled over its vanilla exe-
cution time. Memory bloating shares the same measuring method
but with the peak memory usage.

Since Python does not have standard benchmarks, we evalu-
ate the overhead of PIEPROF on three popular Python applica-
tions — Scikit-learn, Numexpr [51], and NumpyDL [70] which con-
tain benchmark programs from scientific computing, numerical
expression and deep learning domains. We report only the first
half of the Scikit-learn benchmark due to space limitations, and
exclude varying-expr.py from Numexpr, cnn-minist.py and
mlp-minist.py from NumpyDL due to large variations in memory
consumption, or the runtime errors of vanilla runs cnn-minist.py
and mlp-minist.py.
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Figure 6: Memory bloating of PIEPROF on Scikit-learn, Numexpr, and NumpyDL with sampling rates of 500K, 1M, and 5M.
The y-axis denotes slowdown ratio and the x-axis denotes program name.

We run each experiment three times, and report the average
overhead. Furthermore, the overhead of PIEPROF is evaluated with
three commonly-used sampling rates, 500K, 1M, and 5M.

Figure 5a shows the runtime slowdown of the redundant stores
detection. The geo-means are 1.09X, 1.07X, and 1.03X under the
sampling rates of 500K, 1M, and 5M, and the medians are 1.08X,
1.05%, and 1.03X, respectively. Figure 5b shows the runtime slow-
down of the redundant loads detection. The geo-means are 1.22X,
1.14x, and 1.05X, under the sampling rates of 500K, 1M, and 5M,
and the medians are 1.22%, 1.11X, and 1.04X, respectively. The run-
time slowdown drops as sampling rate decreases, because more
PMUs samples incur more frequent profiling events, such as in-
specting Python runtime, querying the CCT, and arming/disarming
watchpoints to/from the debug registers. Redundant loads detec-
tion incurs more runtime slowdown compared to redundant stores
detection, because programs usually have more loads than stores.
Another reason is that PIEPROF sets RW_TRAP for the debug register
to monitor memory loads (x86 does not provide trap on read-only
facility) which traps on both memory stores and loads. Even though
P1EPROF ignores the traps triggered by memory stores, monitoring
memory loads still incurs extra overhead.
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Figure 6a shows memory bloating of the redundant stores detec-
tion. The geo-means are 1.25%, 1.24x%, and 1.23X under the sampling
rates of 500K, 1M, and 5M, and the medians are 1.18%, 1.18x, and
1.16X, respectively. Figure 6b reports memory bloating of the redun-
dant loads detection. The geo-means are 1.67%, 1.56%, and 1.29X
under the same sampling rates, and the medians are 1.52%, 1.51X,
and 1.24X, respectively. Memory bloating shows a similar trend to
runtime slowdown with varied sampling rates and between two
kinds of inefficiency detection. The extra memory consumption is
caused by the larger CCT required for the larger number of unique
call paths. issue36, vmltiming2, and cnnsentence suffer the most
severe memory bloating due to the small memory required by their
vanilla runs. PIEPROF consumes a fixed amount of memory because
some static structures are irrelevant to the testing program. Thus,
a program has a higher memory bloating ratio if it requires less
memory for a vanilla run. mlpdigits consumes more memory for
redundant loads detection, because mlpdigits (a deep learning
program) contains a two-level multilayer perceptron (MLP) that
has more memory loads than stores.

Although lower sampling rates reduce overhead, the probability
of missing some subtle inefficiencies increases. To achieve a better
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def backprop(self, d_L_d_out, learn_rate):

d_L_d_filters np.zeros(self.filters.shape)

for im_region, i, j in self.iterate_regions(self
for f in range(self.num_filters):

d_L_d_filters[f] += d_L_d_out[i,

1
2
3 .last_input):
4
5

j, f1 x im_region
Listing 8: Interaction inefficiency in CNN-from-Scratch due
to slice underutilization.

1 def backprop(self, d_L_d_out, learn_rate):

2 d_L_d_filters = np.zeros(self.filters.shape)

3 for im_region, i, j in self.iterate_regions(self.last_input):

4 new_im_region = np.repeat(im_region[np.newaxis,:,:], 8,

axis = 0)
5 tmp = d_L_d_out[i, j, @:self.num_filters]
6 d_L_d_filters[@:self.num_filters] += tmp[:,None,None] *
new_im_region

Listing 9: Optimized code of Listing 8, eliminates
inefficiencies by performing slice notation.
prepare_index numpy/core/_multiarray_umath.so 0x2b728f71eadl
array_subscript numpy/core/_multiarray_umath.so 0x2b728f72094b
d_L_d_filters[f] += d_L_d_out[i, j, f] * im_region conv.py:62
_PyFunction_FastCall libpython3.6m.so.1.0 0x2b7282€99040
call_function libpython3.6m.s0.1.0 0x2b7282€9a061
gradient = conv.backprop(gradient, 1r) cnn.py:55
_PyEval_EvalCodeWithName libpython3.6m.so0.1.0 0x2b7282e99aac
call_function libpython3.6m.s0.1.0 0x2b7282€99d74
1, acc = train(im, label) cnn.py:82
_PyEval_EvalCodeWithName libpython3.6m.s0.1.0 0x2b7282e99aac
PyEval_EvalCodeEx libpython3.6m.so.1.0 0x2b7282e9a0be
PyEval_EvalCode libpython3.6m.s0.1.0 0x2b7282e9a0eb
PyRun_FileExFlags libpython3.6m.so.1.0 0x2b7282ecf392
PyRun_SimpleFileExFlags libpython3.6m.s0.1.0 0x2b7282ecf505
main PieProf/bin/main 0x400bc7

killed by
prepare_index numpy/core/_multiarray_umath.so 0x2b728f71eadl
array_subscript numpy/core/_multiarray_umath.so 0x2b728f72094b
d_L_d_filters[f] += d_L_d_out[i, j, f] * im_region conv.py:62
_PyFunction_FastCall libpython3.ém.so.1.0 0x2b7282€99040
call_function libpython3.6m.s0.1.0 0x2b7282e9a061
gradient = conv.backprop(gradient, 1r) cnn.py:55
_PyEval_EvalCodeWithName libpython3.6m.s0.1.0 0x2b7282e99aac
call_function libpython3.6m.s0.1.0 0x2b7282e99d74
1, acc = train(im, label) cnn.py:82
_PyEval_EvalCodeWithName libpython3.6m.so.1.0 0x2b7282e99aac
PyEval_EvalCodeEx libpython3.6m.s0.1.0 0x2b7282e9a0be
PyEval_EvalCode libpython3.6m.so0.1.0 0x2b7282e9a0eb
PyRun_FileExFlags libpython3.6m.s0.1.0 0x2b7282ecf392
PyRun_SimpleFileExFlags libpython3.6m.s0.1.0 0x2b7282ecf505
PieProf/bin/main 0x400bc7?

main

Figure 7: The redundant load pair reported by P1EPRoF for
Listing 8.

trade-off between overhead and detecting ability, we empirically
select 1M as our sampling rate.

6 CASE STUDIES

This section discusses our three heuristic case studies. Our primary
aim is to demonstrate the superior guidance provided by PIEPROF
for inefficiency detection and optimization.

6.1 CNN-from-Scratch

CNN-from-Scratch is an educational project that implements a Con-
volutional Neural Network. The code in Listing 8 performs tensor
computation within a two-level nested loop. d_L_d_filtersisa
8x3x3 tensor, d_L_d_out is a 26xX26%8 tensor and im_region is
a 3x3 tensor. The inner loop iterates d_L_d_filters by its first
dimension, iterates d_L_d_out by its third dimension. In each iter-
ation of inner loop, d_L_d_filters[f] performs as a 3X3 tensor,
andd_L_d_out[i, j, f]isanumber. The computation in line 5 is

summarized as a 3X3 vector cumulatively adding the multiplication
of a number and a 3x3 vector.

—
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1 def CEC_10(solution=None, problem_size=None, shift=0):

2 P

3 for i in range(dim):

4 temp = 1

5 for j in range(32):

6 temp += i x (np.abs(np.power(2, j + 1) * x[i] - round(
np.power(2, j + 1) * x[il))) / np.power(2, j)

7 A *= np.power(temp, 10 / np.power(dim, 1.2))

8

Listing 10: Interaction inefficiency in Metaheuristic due to
API misuse and loop-invariant computation.

A *= np.power (temp, tmp_dim)

1 def CEC_10(solution=None, problem_size=None, shift=0):

2 e

3 tmp_dim = 1@ / np.power(dim, 1.2)

4 for i in range(dim):

5 temp = 1

6 for j in range(32):

7 frac, whole = math.modf(np.power(2, j + 1) x x[i])
8 temp += i * np.abs(frac) / np.power(2, j)

9

0

Listing 11: Optimized code of Listing 10, eliminates
inefficiencies with an appropriate API and memorization
technique.

Figure 7 shows a redundant loads pair reported by PIEPRrOF. The
redundant pair is represented as hybrid call path, and the upper
call path is killed by the lower call path. For each native call path,
PIEPROF reports the native function name, shared library directory,
and the instruction pointer. For each Python call path, it reports
the problematic code piece and its location in the source file. In
this case, the call path pair reveals that the interaction inefficiency
is introduced by line 62 of conv.py (line 5 in Listing 8). The call
path also shows that the inefficiency caused by native function
call prepare_index(array_subscript), denotes the redundant
[] operations. This inefficiency belongs to the category of slice
under-utilization.

For optimization, we match the dimension of d_L_d_filters,
d_L_d_out, and im_region by expanding the dimension of
im_region, and use slice notation to replace the inner loop, as
shown in Listing 9. The optimization yields a 3.9x function-level
speedup and 2.5X application-level speedup.

6.2 Metaheuristics

Listing 10 is a code snippet from Metaheuristics. It performs com-
plex numerical computation in a two-level nested loop, where
x is a Numpy array. PIEPROF reports a redundant loads on line
6, where the code triggers the redundant native function call
array_multiply and LONG_power. Guided by this, we observe that
np.abs(np.power(2,j+1)*x[1i] is calculated twice within every
iteration, because the code aims to get the computation result’s
fraction part. To eliminate the redundant computation, we use
math.modf function to calculate the fraction directly.

This inefficiency belongs to the category of API misuse in native
libraries. PIEPROF also reports redundant stores in line 7 with native
function LONG_power. Upon further investigation, we find the result
of np.power(dim, 1.2) does not change among iterations, which
belong to loop-invariant computation. For optimization, we use a
local variable to store the result outside the loop and reuse it among
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adx[i]

adx[i-1] * tmp + dx[i-1] / float(self._n)

1 def adx(self) -> pd.Series:

2

3 adx = np.zeros(len(self._trs))

4 tmp = (self._n - 1)/float(self._n)
5 for i in range(self._n+1, len(adx)):
6

7

Listing 12: Interaction inefficiency in Ta due to slice
underutilization.

adx[i] adx[i-1] * tmp
adx[self._n+1:1len(adx)] += dx[self._n:(len(adx)-1)]1 / float(

self._n)

1 def adx(self) -> pd.Series:

2

3 adx = np.zeros(len(self._trs))

4 tmp = (self._n - 1)/float(self._n)
5 for i in range(self._n+1, len(adx)):
6

7

8
Listing 13: Optimized code of Listing 12, eliminates
inefficiencies by performing slice notation.

iterations. The appropriate usage of API yields 1.4x application-
level speedup and 1.9x function-level speedup, and eliminating
loop invariant computation yields 1.04x application-level speedup
and 1.4 function-level speedup, respectively.

6.3 Technical Analysis

Technical Analysis (Ta) [46] is a technical analysis Python library.
Listing 12 is a problematic code region of Ta, where adx and dx are
two multi-dimension Numpy arrays, and a loop iterates them and
performs numerical calculations.

PIEPROF reports redundant loads in line 6 with native function
array_subscript, which denotes the code that suffers from the
inefficiency of slice underutilization. Unfortunately, we cannot elim-
inate the loop because adx has computing dependency among the
iterations. Therefor, we optimize the access to dx with slice notation
shown in Listing 13. Eliminating all similar patterns in Ta yields
1.1 X application-level speedup and 16.6x function-level speedup.

7 THREATS TO VALIDITY

The threats mainly exist in applying P1EPROF for code optimiza-
tion. The same optimization for one Python application may show
different speedups on different computer architectures. Some opti-
mizations are input-sensitive, and a different profile may demand a
different optimization. We use either typical inputs or production
inputs of Python applications to ensure that our optimization im-
proves the real execution. As PIEPROF pinpoints inefficiencies and
provides optimization guidance, programmers will need to devise a
safe optimization for any execution.

8 CONCLUSIONS

This paper is the first to study the interaction inefficiencies in
complex Python applications. Initial investigation finds that the
interaction inefficiencies occur due to the use of native libraries
in Python code, which disjoins the high-level code semantics with
low-level execution behaviors. By studying a large amount of ap-
plications, we are able to assign the interaction inefficiencies to
five categories based on their root causes. We extract two common
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patterns, redundant loads and redundant stores in the execution
behaviors across the categories, and design PIEPROF to pinpoint
interaction efficiencies by leveraging PMUs and debug registers.
PIEPROF cooperates with Python runtime to associate the ineffi-
ciencies with Python contexts. With the guidance of PIEPROF, we
optimize 17 Python applications, fix 19 interaction inefficiencies,
and gain numerous nontrivial speedups.
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