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ABSTRACT
Python has become a popular programming language because of
its excellent programmability. Many modern software packages
utilize Python for high-level algorithm design and depend on na-
tive libraries written in C/C++/Fortran for e�cient computation
kernels. Interaction between Python code and native libraries intro-
duces performance losses because of the abstraction lying on the
boundary of Python and native libraries. On the one side, Python
code, typically run with interpretation, is disjoint from its execution
behavior. On the other side, native libraries do not include program
semantics to understand algorithm defects.

To understand the interaction ine�ciencies, we extensively study
a large collection of Python software packages and categorize them
according to the root causes of ine�ciencies. We extract two in-
e�ciency patterns that are common in interaction ine�ciencies.
Based on these patterns, we develop P��P���, a lightweight pro�ler,
to pinpoint interaction ine�ciencies in Python applications. The
principle of P��P��� is to measure the ine�ciencies in the native
execution and associate ine�ciencies with high-level Python code
to provide a holistic view. Guided by P��P���, we optimize 17 real-
world applications, yielding speedups up to 6.3⇥ on application
level.

CCS CONCEPTS
• General and reference! Performance;Metrics; • Software
and its engineering! Software maintenance tools.

KEYWORDS
Python, pro�ling, PMU, debug register

∗Both authors contributed equally to this research.
†This work is done when Jialiang visits at NCSU.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’21, August 23–28, 2021, Athens, Greece
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8562-6/21/08. . . $15.00
https://doi.org/10.1145/3468264.3468541

ACM Reference Format:
Jialiang Tan, Yu Chen, Zhenming Liu, Bin Ren, Shuaiwen Leon Song, Xipeng
Shen, and Xu Liu. 2021. Toward E�cient Interactions between Python and
Native Libraries. In Proceedings of the 29th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engi-
neering (ESEC/FSE ’21), August 23–28, 2021, Athens, Greece. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3468264.3468541

1 INTRODUCTION
In recent years, Python has become the most prominent program-
ming language for data modeling and library development, espe-
cially in the area of machine learning, thanks to its elegant design
that o�ers high-level abstraction, and its powerful interoperability
with native libraries that delivers heavy numeric computations. De-
coupling data analysis and modeling logics from operation logics is
the singular mechanism guiding the remarkable improvements in
developers’ productivity in the past decade. Python enables small
teams to build sophisticated model [41] that were barely imaginable
a few years ago, and enables large teams of modelers and numeric
developers to seamlessly collaborate and develop highly in�uential
frameworks such as Tensor�ow [1] and Pytorch [47].

While high-level languages to articulate business logics and na-
tive libraries to deliver e�cient computation is not a new paradigm,
downstream developers have not always understood the details of
native libraries, and have implemented algorithms that interacted
poorly with native codes. A well-known example of the interaction
ine�ciency problem occurs when developers, who fail to recognize
that certain matrix operations can be vectorized, write signi�cantly
slower loop-based solutions. MATLAB and Mathematica can alle-
viate the problem since these languages usually are locked with a
�xed set of native libraries over a long time, and developers can es-
tablish simple best practice guidelines to eliminate most interaction
ine�ciencies (MATLAB contains the command, “try to vectorize
whenever possible”).

In the Python ecosystem, native libraries and downstream appli-
cation codes evolve rapidly so they can interact in numerous and
unexpected ways. Therefore, building a list to exhaust all interac-
tion ine�ciencies becomes infeasible. We seek a solution that will
automatically identify the blocks of Python code that lead to inef-
�cient interactions, through closing the knowledge gap between
Python and native code. Existing pro�ling tools cannot address this
issue. Python pro�les [19, 22, 24, 49, 52, 55, 66, 67, 75] cannot step
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in native code so they do not know execution details. Native pro-
�ling tools [2, 9, 15, 44, 54, 62, 71, 72] can identify hotspots, which
o�er insights into problematic code blocks. However, because these
tools do not have knowledge about Python code’s semantics, they
cannot render detailed root cause and thus often make debugging
remarkably challenging.

We propose P��P���, the �rst lightweight, insightful pro�ler to
pinpoint interaction ine�ciencies in Python programs. P��P���
works for production Python software packages running in com-
modity CPU processors without modifying the software stacks. Its
backbones algorithmic module is a recently proposed technique
based on hardware performance monitoring units (PMUs) and de-
bug registers to e�ciently identify redundant memory accesses
(hereafter, referred to as CL-algorithm1 [61, 72]). CL-algorithm in-
telligently chooses a small collection of memory cells and uses
hardware to track accesses to these cells at a �ne granularity. For
example, when the technique detects two consecutive writes of the
same value to the same cell, it determines that the second write
is unnecessary, and �ags the responsible statement/function for
further inspection. The developer can clearly see where a non-opt
memory access occurs and why. The technique already shows its
potential for eliminating ine�ciencies in monolithic codebases that
use one programming language.

P��P��� leverages the CL-algorithm in a substantially more
complex multi-languages environment, in which a dynamic and
(predominantly) interpretation-based language Python is used to
govern the semantics and native libraries compiled from C, C++,
Fortran are used to execute high-performance computation. Do-
ing so requires us to address three major challenges that crosscut
Python and native code.

At the measurement front, we need to suppress false positives
and avoid tracking irrelevant memory operations produced from
Python interpreter and Python-native interactions. For example,
memory accesses performed by Python interpreters may “bait” the
CL-algorithm to waste resources (i.e., debug registers) on irrelevant
variables such as reference counters. At the infrastructure front, we
need to penetrate entire software stacks: it cannot see execution
details (i.e, how memory is accessed) with only Python runtime
information, or cannot understand program semantics with only
native library knowledge. Our main task here is to compactly im-
plement lock-free calling context trees that span both Python code
and native libraries, and retain a large amount of information to
e�ectively correlate redundant memory accesses with ine�cient
interactions. At the memory/safety front, we need to avoid unex-
pected behaviors and errors caused by Python runtime. For example,
Python’s garbage collection (GC) may reclaimmemory that our tool
is tracking. So delicate coordination between P��P��� and Python
interpreter is needed to avoid unexpected behaviors and errors.

We note that while most of the downstream applications we
examined are machine learning related, P��P��� is a generic tool
that can be used in any codebase that requires Python-native library
interactions.

Contributions. We make the following three contributions.

1Chabbi-Liu Algorithm.

• We are the �rst to thoroughly study the interaction inef-
�ciencies between Python codes and native libraries. We
categorize the interaction ine�ciencies by their root causes.

• We design and implement P��P���, the �rst pro�ler to iden-
tify interaction ine�ciencies and provide intuitive optimiza-
tion guidance, by carefully stepping through Python run-
times and native binaries. P��P��� works for production
Python software packages in commodity CPU processors
without modifying the software stacks.

• Following the guidance of P��P���, we examine awide range
of in�uential codebases and identify interaction ine�cien-
cies in 17 real-world applications and optimize them for
nontrivial speedups.

Organization. Section 2 reviews the background and related work.
Section 3 characterizes the interaction ine�ciencies. Section 4 de-
scribes the design and implementation of P��P���. Section 5 ex-
plains the evaluation. Section 6 presents some case studies. Section 7
discusses some threats to validity. Section 8 presents some conclu-
sions.

2 BACKGROUND AND RELATEDWORK
2.1 Python Runtime System
Python basics. Python is an interpreted language with dynamic
features. When running a Python application, the interpreter trans-
lates Python source code into stack-based bytecode and executes
it on the Python virtual machine (PVM), which varies implemen-
tations such as CPython [12], Jython [34], Intel Python [30] and
PyPy [63]. This work focuses on CPython because it is the reference
implementation [21], while the proposed techniques are generally
applicable to other Python implementations as well. The CPython
PVM maintains the execution call stack that consists of a chain of
PyFrame objects known as function frames. Each PyFrame object
includes the executing context of corresponding function call, such
as local variables, last call instruction, source code �le, and current
executing code line, which can be leveraged by performance or
debugging tools.

Python supports multi-threaded programming, where each
Python thread has an individual call stack. Because of the global
interpreter lock (GIL) [20], the concurrent execution of Python
threads is emulated as regular switching threads by the interpreter,
i.e., for one interpreter instance, only one Python thread is allowed
to execute at a time.
Interaction with native libraries. When heavy-lifting computa-
tion is needed, Python applications usually integrate native libraries
written in C/C++/Fortran for computation kernels, as shown in
Figure 1. Such libraries include Numpy [28, 68], Scikit-learn [48],
Tensor�ow [1], and PyTorch [47]. Therefore, modern software pack-
ages enjoy the bene�t from the simplicity and �exibility of Python
and native library performance. When the Python runtime calls a
native function, it passes the PyObject2 or its subclass objects to
the native function. The Python runtime treats the native functions
as blackboxes — the Python code is blocked from execution until
the native function returns.

2
PyObject is the super class of all objects in Python.
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Python Application

Python Runtime

Native Library Abstraction Standard Module

Native Library

Operating System

Hardware

Figure 1: The typical stack of production Python software
packages. Python applications usually rely on native li-
braries for high performance but introduce an abstraction
across the boundary of Python runtime and native libraries.

Figure 1 shows an abstraction across the boundary of Python
runtime and native library, which logically splits the entire software
stack. On the upper level, Python applications are disjoint from
their execution behaviors because Python runtime (e.g., interpreter
and GC) hides most of the execution details. On the lower level,
the native libraries lose most program semantic information. This
knowledge gap leads to interaction ine�ciencies.

2.2 Existing Tools vs. P��P���
This section compares existing tools that analyze ine�ciencies in
Python and native codes to distinguish P��P���.
Python performance analysis tools. PyExZ3 [31], PySym [25],
�ake8 [13], and Frosted [65] analyze Python source code and employ
multiple heuristics to identify code issues statically [27]. XLA [64]
and TVM [10] apply compiler techniques to optimize deep learning
applications. Harp [74] detects ine�ciencies in Tensor�ow and
PyTorch applications based on computation graphs. All of these
approaches, however, ignore Python dynamic behavior, omitting
optimization opportunities.

Dynamic pro�lers are a complementary approach. cPro�le [19]
measures Python code execution, which provides the frequency/-
time executions of speci�c code regions. Guppy [75] employs object-
centric pro�ling, which associates metrics such as allocation fre-
quency, allocation size, and cumulative memory consumption with
each Python object. PyInstrument [55] and Austin [66] capture
Python call stack frames periodically to identify executing/memory
hotspots in Python code. PySpy [22] is able to attach to a Python
process and pinpoint function hotspots in real time. Unlike P��P���,
these pro�lers mainly focus on Python codes, with no insights into
the native libraries.

Closely related to P��P���, Scalene [5] separately attributes
Python/native executing time and memory consumption. However,
it does not distinguish useful/wasteful resources usage as P��P���
does.
Native performance analysis tools. While there are many na-
tive pro�ling tools [2, 15, 54], from which the most related to
Python that can identify performance ine�ciencies are Toddler [44]
that identi�es redundant memory loads across loop iterations, and

LDoctor [57] that reduces Toddler’s overhead by applying dynamic
sampling and static analysis. DeadSpy [9], RedSpy [71], and Load-
Spy [62] analyze dynamic instructions in the entire program ex-
ecution to detect useless computations or data movements. Un-
fortunately, all of them use heavyweight binary instrumentation,
which results in high measurement overhead, and they do not work
directly on Python programs.

2.3 Performance Monitoring Units and
Hardware Debug Registers

Hardware performance monitoring units (PMUs) are widely
equipped on the modern x86 CPU architectures. Software can use
PMUs to count various hardware events like CPU cycles, cache
misses, et cetera. Beside the counting mode that counts the total
number of events, PMUs can be con�gured in sampling, which
periodically sample a hardware event and record event’s detailed
information. PMUs trigger an over�ow interrupt when the sample
number reaches a threshold. The pro�ler runtime captures inter-
rupts as signals and collects samples with their executing contexts.

For memory-related hardware events such as memory load and
store, Precise Event-Based Sampling (PEBS) [14] in Intel processors
provides the e�ective address and the precise instruction pointer
for each sample. Instruction-Based Sampling (IBS) [17] in the AMD
processors and Marked Events (MRK) [58] in PowerPC support
similar functionalities.

Hardware debug registers [33, 39] trap the CPU execution when
the program counter (PC) reaches an address (breakpoint) or an
instruction accesses a designated address (watchpoint). One can
con�gure the trap conditions with di�erent accessing addresses,
widths and types. The number of hardware debug registers is limited
(e.g., the modern x86 processor has four debug registers).

3 INTERACTION INEFFICIENCY
CHARACTERIZATION

This section provides a high-level preview of the key �ndings from
applying P��P��� to an extensive collection of high-pro�le Python
libraries at Github. We speci�cally categorize the interaction ine�-
ciencies according to the root causes and summarize the common
patterns, which serve three purposes: (i) this is the �rst charac-
terization of interaction ine�ciencies based on large scale studies,
thus rendering a more complete landscape of potential code quality
issues that exist in Python codebase for ML and beyond; (ii) we see
a diverse set of ine�ciencies hiding deep in Python-native library
interaction, which justi�es using heavy machineries/pro�ling tools
to automatically identify them; and (iii) these concrete examples
explain the common patterns we use to drive the P��P���’s design.

3.1 Interaction Ine�ciency Categorization
We categorize interaction ine�ciencies into �ve groups. For each
category, we give a real example, analyze the root causes, and
provide a �x.

Slice underutilization. Listing 1 is an example code from Iris-
Data [60], a back-propagation algorithm implementation on Iris
Dataset [18]. A loop iterates two multidimensional arrays ihGrads
and ihWeights with indices i and j for computation. Because
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1 def train(self , trainData , maxEpochs , learnRate):

2 ...

3 for j in range(self.nh):

4 delta = -1.0 * learnRate * ihGrads[i,j]

5 self.ihWeights[i, j] += delta

6 ...

Listing 1: Interaction ine�ciencies in IrisData due to the
iteration on Numpy arrays within a loop.

1 def train(self , trainData , maxEpochs , learnRate):

2 ...

3 self.ihWeights[i, 0:self.nh] += -1.0 * learnRate * ihGrads[i,

0:self.nh]

4 ...

Listing 2: Optimized IrisData code with slice notation.

1 def rotate(self , theta):

2 a = np.cos(theta)

3 b = np.sin(theta)

4 rotate_mtx = np.array ([[a, -b, 0.0], [b, a, 0.0], [0.0, 0.0,

1.0]], float)

5 self._mtx = np.dot(rotate_mtx , self._mtx)

6 ...

Listing 3: Interaction ine�ciencies in Matplotlib due to the
same input theta.

Python arrays are supported by native libraries such as Numpy and
PyTorch/TensorFlow, indexing operations (i.e., []) in a loop trigger
native function calls that repeat boundary and type checks [45].

The so-called vectorization/slicing eliminates repeated “house-
work” and (usually) enables the underlying BLAS [6] library to
perform multi-core computation. Listing 2 shows a simple �x in a
2⇥ speedup for the entire program execution.
Repeated native function calls with the same arguments.
Functions from native libraries typically have no side e�ects, so ap-
plying the same arguments to a native function results in the same
return value, which introduces redundant computations. Listing 3
shows a code from Matplotlib [29], a comprehensive library for
visualization and image manipulation. This code rotates an image
and is often invoked in training neural nets for images.

The argument theta for the rotate function (rotate angle) is
usually the same across consecutive invocations from deep learning
training algorithms because they rotate images in the same batch
in the same way. Here, Pyobjects returned from native functions
np.cos(), np.sin() and np.array() in lines 2-4 have the same
values across images that share the same input theta.

This can be �xed by either a simple caching trick [16, 40], or
refactoring the rotate funcion so that it can take a batch of images.
We gain a 2.8⇥ speedup after the �x.
Ine�cient algorithms. Listing 4 is an example of algorithmic
ine�ciencies from Scikit-learn, a widely used machine learning
package. The code works on X, a two-dimensional Numpy array. It
calls the native function swap from the BLAS library to exchange
two adjacent vectors. In each iteration, swap returns two PyObjects
and Python runtime assigns these two PyObjects to X.T[i] and
X.T[i+1], respectively. The loop uses swap to move the �rst ele-
ment in the range to the end position. Ine�ciencies occur because
it requires multiple iterations to move X.T[i] to the �nal location.

1 def lars_path(X, y, Xy=None , ...):

2 ...

3 for i in range(ii, n_active):

4 X.T[i], X.T[i + 1] = swap(X.T[i], X.T[i + 1])

5 indices[i], indices[i + 1] = indices[i + 1], indices[i]

6 ...

Listing 4: Interaction ine�ciencies in Scikit-learn due to the
ine�cient algorithm.

1 def CEC_4(solution=None , problem_size=None , shift =0):

2 ...

3 for i in range(dim - 1):

4 res += 100 * np.square(x[i]**2-x[i+1]) + np.square(x[i]-1)

5 ...

Listing 5: Interaction ine�ciencies in Metaheuristic [42, 43]
due to the API misuse in native Libraries.

Instead of using swap, we directly move each element to the tar-
get location. We apply a similar optimization to the indices array
as well. Our improvement yields a 6.1⇥ speedup to the lars_path
function.

API misuse in native libraries. Listing 5 is an example of API
misuse from Metaheuristic [42, 43], which implements the-state-
of-the-art meta-heuristic algorithms. The code accumulates the
computation results to res. Since the computation is based on
Numpy arrays, the accumulation operation triggers one native
function call in each iteration, resulting in many ine�ciencies.

In Listing 6 shows our �x (i.e., use the e�cient sum API from
Numpy) which avoids most of the native function invocations by
directly operating on the Numpy arrays. This optimization removes
most of interaction ine�ciencies, and yields a 1.9⇥ speedup to the
entire program.

Loop-invariant computation. Listing 7 is a code snippet from
Deep Dictionary Learning [38], which seeks multiple dictionaries
at di�erent image scales to capture complementary coherent char-
acteristics implemented with TensorFlow. Lines 1-3 indicate the
computation inputs A, D, and X. Lines 4-5 de�ne the main computa-
tion. Lines 6-7 execute the computation with the actual parameters
D_ and X_. The following pseudo-code shows the implementation:

for i 1 to Iter do
� = ⇡ (- � ⇡)�)

where D and X are loop invariants. If we expand the computation,
⇡- and ⇡⇡) can be computed outside the loop and reused among
iterations, shown as pseudo-code:

C1 = ⇡-
C2 = ⇡⇡)

for i 1 to Iter do
� = C1 � C2�

This optimization yields a 3⇥ speedup to the entire program [74].

3.2 Common Patterns in Interaction
Ine�ciencies

We are now ready to explain the common patterns in code that
exhibits interaction e�ciencies, which we use to drive the design
of P��P���. Speci�cally, we �nd that almost all interaction ine�-
ciencies involve (i) repeatedly reading the same PyObjects of the
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1 def CEC_4(solution=None , problem_size=None , shift =0):

2 ...

3 res += np.sum (100 * np.square(x[0:dim -1]**2 - x[1:dim]) + np.

square(x[0:dim -1] - 1))

4 ...

Listing 6: Optimized Metaheuritics code for Listing 5, with
appropriate native library API.

1 A = tf.Variable(tf.zeros(shape =[N, N]), dtype=tf.float32)

2 D = tf.placeholder(shape =[N, N], dtype=tf.float32)

3 X = tf.placeholder(shape =[N, N], dtype=tf.float32)

4 R = tf.matmul(D, tf.subtract(X, tf.matmul(tf.transpose(D), A)))

5 L = tf.assign (A, R)

6 for i in range(Iter):

7 result = sess.run(L, feed_dict ={D: D_, X: X_})

Listing 7: Interaction ine�ciencies in Deep Dictionary
Learning [38] due to loop-invariant computation.

same values, and (ii) repeatedly returning PyObjects of the same
values.

Both observations require developing a tool to identify redun-
dant PyObjects, which is di�cult and costly because it requires
heavyweight Python instrumentation and modi�cation to Python
runtime. Further analysis, however, �nds that PyObject redun-
dancies reveal the following two low-level patterns during the
execution from the hardware perspective.
• Redundant loads: If two adjacent native function calls read the
same value from the same memory location, the second native
function call triggers a redundant (memory) load. Repeatedly
reading PyObject of the same value result in redundant loads.

• Redundant stores: If two adjacent native function calls write the
same value to the same memory location, the second native
function call triggers a redundant (memory) store. Repeatedly
returning PyObject of the same value result in redundant stores.

We use the redundant loads and stores to serve as indicators of
interaction ine�ciencies. Table 1 shows di�erent categories of in-
teraction ine�ciencies, which show up as redundant loads or stores.
Section 4 describes how we use the indicators.

4 DESIGN AND IMPLEMENTATION
4.1 Overview
See Figure 2. Recall that the CL-algorithm controls PMUs and debug
registers to report redundant member accesses of a process. P��P���
interact with Python runtime, native libraries, and the CL-algorithm
through three major components: (i) Safeguard and sandbox. A thin
sandbox is built around Python interpreter and native libraries,

Table 1: Redundant loads and stores detect di�erent cate-
gories of interaction ine�ciencies.

Ine�ciency Pattern Ine�ciency Category

Redundant
Loads

Slice underutilization
Ine�cient algorithms

API misuse in native libraries

Redundant
Stores

Loop-invariant computation
Repeated native function calls with same arguments

Ine�cient algorithms
API misuse in native libraries

Application

native_function_call_2

Python Runtime

Native Libraries

Sandbox

CCT Builder

Measurement

CCT

Hardware

Memory Access Sequence

CL-Algorithm

native_function_call_1

PMU

…M M

PIEPROF Process

Safeguard
DEV

Debug Register

… …

Figure 2: Overview of P��P���’s work�ow.

and a safeguard is implemented inside the sandbox to moderate
communication between Python runtime and the CL-algorithm.
(ii) Measurement. Upon receiving an event from the CL-algorithm,
the measurement component determines whether to notify CCT
(calling context tree) builder to update the CCT, and (iii) CCT Builder.
Upon receiving an update from the measurement component, CCT
builder examines Python runtime and native call stacks to update
CCT. When an interaction ine�ciency is detected, it will report to
the end user (developer).

The measurement component helps to suppress false positive
and avoid tracking irrelevant variables (e.g., reference counters),
the CCT builder continuously update the lock-free CCT, and Safe-
guard/sandbox ensures that the Python application can be executed
without unexpected errors.

We next discuss each component in details.

4.2 Measurement

CL-algorithm. CL-algorithm uses PMUs and debug registers
to identify redundant loads and stores in an instruction stream.
It implements a conceptually simple and elegant process: a se-
quence 01,02, . . . ,0< memory access instructions arrive at the CL-
algorithm in a streaming fashion. Here, 08 refers to the address of
the memory access for the 8-th instruction. Upon seeing a newmem-
ory access instruction 08 (step 1, i.e ∂ in Figure 2), the CL-algorithm
uses PMUs to probabilistically determine whether it needs to be
tracked (step 2), and if so, store the address in a debug register (step
3). If the debug registers are all used, a random one will be freed up.
When a subsequent access to 08 (or any addresses tracked by debug
registers) occurs (step 4), the debug register will trigger an interrupt
so that the CL-algorithm can determine whether the access is re-
dundant (step 5), by using the rules outlined in Section 3.2. Since the
number of debug registers is usually limited, the CL-algorithm uses
a reservoir sampling [69] technique to ensure that each instruction
(and its associated memory accesses) has a uniform probability of
being sampled.
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PyFrame1

PyFrame2

PyFrame3

tstate

Call Stack

Python RuntimeNative Call Path

_PyEval_EvalFrameDefault

#test.py
import numpy as np

def func1():
a = np.random.rand(i)
b = np.random.rand(i)
c = np.zeros(i)
...
c[:] = a[:] + b[:]
...

def func2():
func1()
...

if __name__==“__main__”:
func2()

…

Hybrid Call Path

_PyEval_EvalFrameDefault

_PyEval_EvalFrameDefault

PyRun_SimpleFileExFlags

main

DOUBLE_add

run_binary_simd_add

sse2_binary_add_DOUBLE

c[:] = a[:] + b[:]

func1()

func2()

PyRun_SimpleFileExFlags

main

DOUBLE_add

run_binary_simd_add

sse2_binary_add_DOUBLE

tstate tstate

…
…

…
…

…
…

…
…

Figure 3: Constructing a hybrid call path across Python runtime and native libraries.White arrows in call paths denote a series
of elided call frames in PVM. The red circle in the hybrid call path shows the boundary of Python and native frames, where
interaction ine�ciencies occur.

Improving measurement e�ciencies. First, PMUs sample in-
structions at the hardware level so it cannot distinguish memory
accesses from the Python interpreter from those from the Python ap-
plications. In practice, a large fraction of memory access sequences
are related to updating reference counters for Python objects. There-
fore, most debug registers will be used to track reference counters
if we bluntly use the CL-algorithm, and substantially reduces the
chances of identifying memory access redundancies. Second, it
needs to ignore redundant memory accesses occurring within the
same native function call, or within a code region of P��P��� be-
cause they are not related to interaction ine�ciencies. Note that
tracking redundant memory accesses within the same native func-
tion call is worse than merely producing false positives because it
can bury true instances. For example, two write instructions F1
andF2 of the same value are performed on the same memory from
function �0 , and later function �1 performs a third write instruction
F3 of the same value on the same location. If we track redundant
accesses within the same function, the CL-algorithm says it has
found a redundant pair hF1,F2i, evictsF1 from the debug register.
and never detects the redundant pair hF1,F3i caused by the real
interaction ine�ciencies.

P��P��� performs instruction-based �lter to drop a sample if (i)
its instruction pointer falls in the code region unrelated to native
function calls (e.g., that of P��P���), (ii) its memory access address
belongs to “junky” range, such as the head of PyObject that con-
tains the reference number. In addition, when the CL-algorithm
delivers a redundant memory access pair to P��P���, it checks the
Python runtime states and drops the sample when these two mem-
ory accesses occur inside a same state (corresponding to within the
same native function call).

4.3 Calling Context Trees Builder
This section �rst explains the construction of call paths, and then ex-
plains how they can be used to construct signal-free calling context
trees (CCTs).

Hybrid call path. P��P��� uses libunwind [56] to unwind the
native call path of a Python process to obtain a chain of procedure
frames on the call stack. See the chain of “Native Call Path” on the
left in Figure 3. Here, call stack unwinding is not directly applicable
to Python code because of the abstraction introduced by PVM. The
frames on the stack are from PVM, not Python codes. For example,
the bottom _PyEval_EvalFrameDefault

3 shows up in “Native Call
Path”, but we need the call to correspond to func2() in Python code
(connected through PyFrame1). Thus, P��P��� needs to inspect the
dynamic runtime to map native calls with Python calls on the �y.
1. Mapping PyFrame to Python calls. First, we observe that each
Python thread maintains its call stacks in a thread local object
PyThreadState (i.e., tstates in Figure 3). To obtain Python’s
calling context, P��P��� �rst calls GetThisThreadState()

4 to
get the PyThreadState object of the current thread. Second
P��P��� obtains the bottom PyFrame object (corresponding to
the most recently called function) in the PVM call stack from the
PyThreadState object. All PyFrame objects in the PVM call stack
are organized as a singly linked list so we may obtain the entire
call stack by traversing from the bottom PyFrame. Each PyFrame

object contains rich information about the current Python frame,
such as source code �les and line numbers that P��P��� can use
to correlate a PyFrame to a Python method. In Figure 3, PyFrame1,
PyFrame2, and PyFrame3 are for Python methods main, func2, and
func1, respectively.
2. Extracting PyFrame’s from Native Call Path. Each Python function
call leaves a footprint of _PyEval_EvalFrameDefault in the native
call stack so we need only examine _PyEval_EvalFrameDefault.
Each _PyEval_EvalFrameDefault maps to a unique PyFrame in
the call stack of the active thread in Python Runtime. In addition,

3
_PyEval_EvalFrameDefault is a frame (i.e., a function pointer) in the native call
stack in runtime that corresponds to invocation of a function or a line of code in
Python.
4
GetThisThreadState() is a PVM API to retrieve an object that contains the state of
current thread.
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Figure 4: A calling context tree constructed by P��P���.
Each parent node applies skip-list to organize children.
INode denotes an internal node and LNode denotes a leaf
node. Red box shows searching 0xa46 in the example skip-
list.

the ordering preserves, e.g., the third _PyEval_EvalFrameDefault
in “Native Call Path” corresponds to the third PyFrame in Python’s
call stack. Therefor use standard Python interpreter APIs to obtain
the PyFrame’s and map them back to nodes in the native call path.

CCT from call paths. P��P��� applies a compact CCT [3, 4] to
represent the pro�le. Figure 4 shows the structure of a CCT pro-
duced by P��P���. The internal nodes represent native or Python
function calls, and the leaf nodes represents the sampled memory
loads or stores. Logically, each path from a leaf node to the root
represents a unique call path.

As mentioned, Python is a dynamic typing language, and uses
meta-data to represent calling context (e.g., the function and �le
names in string form); therefore, its call stacks are usually substan-
tially larger (in space) than those in static languages. One solution
is to build a dictionary to map strings to integer ids but the so-
lution must be signal-free because it needs to interact with the
CL-algorithm and PMUs, which is prohibitively complex.

Our crucial observation is that function calls in di�erent threads
near the root of a tree usually repeat so unlike solutions appeared
in [8, 9, 61, 62, 71], which produce a CCT for each thread/process,
P��P��� constructs a single CCT for the entire program execu-
tion. In this way, the same function call appearing in di�erent
threads is compressed into one node and space complexity is re-
duced. P��P��� also implements a lock-free/signal-safe skip-list [50]
to maintain CCT’s edges for fast and thread-safe operations. In the-
ory, Skip-list’s lookup, insert, and delete operations have $ (log=)
time complexity. In practice, Skip-list with more layers has higher
performance but higher memory overhead. In a CCT, the nodes
closer to the root are accessed more frequently. P��P���, how-
ever,proportionally adjusts the number of layers in the skip-lists at
di�erent levels in a CCT to optimize the performance and overhead
tradeo�s. It uses more layers to represent the adjacency lists of

nodes that are close to the root, and fewer layers to represent those
that are close to the leaves.

4.4 Safeguard
P��P��� uses twomechanisms to avoid unexpected errors in Python
runtime. It will hibernate if it enters a block of code, interrupting
which will cause state corruption in PVM, and will block certain
activities from GC if the activities can cause memory issues.
Hibernation at function-level. Upon seeing an event (e.g., an
instruction is sampled or a redundant memory access is detected),
the PMUs or debug registers use interrupt signals to interact with
P��P���, which will pause Python’s runtime. Error could happen
if Python run time is performing certain speci�c tasks when an
interrupt exception is produced. For example, if it is executing
memory management APIs, memory error (e.g., segmentation fault)
could happen, and if Python is loading native library, deadlock could
happen.

P��P��� maintains a list of functions, inside which P��P���
needs to be temporarily turned o� (i.e., in hibernation mode). To
do so, P��P��� maintains a block list of function, and implements
wrappers for each function in the list. Calls to these functions are
redirected to the wrapper. The wrapper turns o� P��P���, executes
the original function, and turns on P��P��� again.
Dropping events vs. hibernation. We sometimes drop an event when
it is unwanted (Section 4.2). Complex logic can be wired to drop an
event at the cost of increased overhead. Here, hibernating P��P���
is preferred to reduce overhead because no event needs to be kept
for a whole block of code.
Blocking garbage collector. When Python GC attempts to deal-
locate the memory that debug registers are tracking, errors could
occur. Here, we uses a simple trick to defer garbage collection ac-
tivities: when P��P��� monitors memory addresses and it is within
a PyObject, it increases the corresponding PyObject’s reference,
and decreases the reference once the address is evicted. This ensures
that memories being tracked will not be deallocated. Converting
addresses to PyObject’s is done through progressively heavier
mechanisms. First, PyObject’s exist only in a certain range of the
memory so we can easily �lter out addresses that do not corre-
spond to PyObject (which will not be deallocated by GC). Second,
we can attempt to perform a dynamic casting on the address and
will succeed if that corresponds to the start of an PytObject. This
handles most of the cases. Finally, we can perform a full search in
the allocator if we still cannot determine whether the address is
within a PyObject.

5 EVALUATION
This section studies the e�ectiveness of P��P��� (e.g., whether it
can indeed identify interaction ine�ciencies) and its overheads.

We evaluate P��P��� on a 14-core Intel Xeon E7-4830 v4 ma-
chine clocked at 2GHz running Linux 3.10. The machine is equipped
with 256 GB of memory and four debug registers. P��P��� is com-
piled with GCC 6.2.0 -O3, and CPython (version 3.6) is built
with –enable-shared �ag. P��P��� subscribes hardware event
MEM_UOPS_RETIRED_ALL_STORES for redundant stores detection
and MEM_UOPS_RETIRED_ALL_LOADS for redundant loads detection,
respectively.
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Table 2: Overview of performance improvement guided by P��P���.AS denotes application-level speedup, FS denotes function-
level speedup, ! refers to redundant loads and ( refers to redundant stores.

Program Information Ine�ciency Optimization
Applications Library Problem Code Category Pattern AS FS

Ta [46] Ta volatily.py(45)/trend.py(536, Slice underutilization ! 1.1⇥ 16.6⇥549, 557, 571, 579)
NumPyCNN [23] Numpy [28, 68] numpycnn.py(161) Loop-invariant computation ( 1.8⇥ 2.04⇥
Census_main NumpyWDL [59] ftrl.py(60) Loop-invariant computation ( 1.03⇥ 1.1⇥

Lasso Scikit-learn [48] least_angle.py(456, 458) Ine�cient algorithms ( 1.2⇥ 6.1⇥
IrisData [60] Numpy nn_backprop.py(222, 228, Slice underutilization &

! 2⇥ 2.02⇥247, 256, 263, 271, 278) API misuse

Network Neural-network- network.py(103-115) Repeated NFC ! 1.03⇥ 1.05⇥from-scratch
Cnn-from-scratch [73] Numpy conv.py(62) Slice underutilization ! 2.5⇥ 3.9⇥

Metaheuristics [42, 43] Numpy

FunctionUtil.py(374) API misuse ! 1.4⇥ 1.9⇥
FunctionUtil.py(270) Slice underutilization ! 6.3⇥ 27.3⇥

FunctionUtil.py(309, 375) Loop-invariant computation ( 1.04⇥ 1.4⇥
FunctionUtil.py(437) Repeated NFC ! 1.02⇥ 1.1⇥

EPO.py(40) Loop-invariant computation ( 1.1⇥ 1.1⇥
LinearRegression [36] LinearRegression LinearRegression.py(49, 50) Repeated NFC ! 1.4⇥ 1.5⇥
Pytorch-examples [32] PyTorch [47] adam.py:loop(66) Loop-invariant computation ! 1.02⇥ 1.07⇥

Cholesky [74] PyTorch cholesky.py(76) Slice underutilization ! 3.2⇥ 3.9⇥
GGNN.pytorch [11] PyTorch model.py(122, 125) Loop-invariant computation ( 1.03⇥ 1.07⇥
Network-sliming [37] Torchvision [53] functional.py(164) Slice underutilization !

1.1⇥ 1.7⇥
Pytorch-sliming [37] 1.04⇥ 1.7⇥

Fourier-Transform [35]
Matplotlib [29] transforms.py(1973) Repeated NFC (

1.02⇥ 2.8⇥
Jax [7] 1.04⇥ 2.8⇥

Autograd [26] 1.05⇥ 2.8⇥

5.1 E�ectiveness
This section assesses the e�ectiveness of P��P���, and the breadth
of the interaction ine�ciencies problem among in�uential Python
packages. The lack of a public benchmark creates two inter-related
challenges: (i) determining the codebases to examine inevitably
involves human intervention, and (ii) most codebases provide a
small number of “hello world” examples, which have limited test
coverage.

We aim to include all “reasonably important” open-source
projects and use only provided sample code for testing. While using
only sample code makes ine�ciency detection more di�cult, this
helps us to treat all libraries as uniformly as possible. For each of
Numpy, Scikit-learn, and Pytorch, we �nd all projects in Github
that import the library, and sort them by popularity, which gives
us three lists of project candidates. Our stopping rule for each list
di�ers and involves human judgement because we �nd that the
popularity of a project may not always re�ect its importance (e.g.,
specialized libraries could be in�uential, but generally have smaller
user bases, and are less popular in Github’s rating system). For ex-
ample, Metaheuristics is important and included in our experiment
but it received only 91 ratings at the time we performed evaluation.
At the end, we evaluated more than 70 read-world applications,
among which there are more projects that import Numpy than the
other two libraries.

Indentifying a total of 19 ine�ciencies is quite surprising because
these projects are mostly written by professionals, and the sample
codes usually have quite low codebase coverage, and are usually
“happy paths” that are highly optimized. The fact that we identify

18 new performance bugs as reported in Table 2, indicates that
interaction ine�ciencies are quite widespreaded.

Table 2 reports that the optimizations following P��P���’s opti-
mization guidance lead to 1.02⇥ to 6.3⇥ application-level speedup
(AS), and 1.05⇥ to 27.3⇥ function-level speedup (FS), respectively.
According to Amdahl’s law, AS approaches FS as the function in-
creasingly dominates the overall execution time. For the �ve ine�-
ciency categories we de�ne in Section 3.1 and which are common
in real applications, P��P���’s superior redundant loads/stores de-
tection proves its e�ectiveness.

5.2 Overhead
This section reports the runtime slowdown and memory bloating
caused by P��P���. We measure runtime slowdown by the ratio of
program execution time with P��P��� enabled over its vanilla exe-
cution time. Memory bloating shares the same measuring method
but with the peak memory usage.

Since Python does not have standard benchmarks, we evalu-
ate the overhead of P��P��� on three popular Python applica-
tions — Scikit-learn, Numexpr [51], and NumpyDL [70] which con-
tain benchmark programs from scienti�c computing, numerical
expression and deep learning domains. We report only the �rst
half of the Scikit-learn benchmark due to space limitations, and
exclude varying-expr.py from Numexpr, cnn-minist.py and
mlp-minist.py from NumpyDL due to large variations in memory
consumption, or the runtime errors of vanilla runs cnn-minist.py
and mlp-minist.py.
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(a) Redundant Stores Detection
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Figure 5: Runtime slowdown of P��P��� on Scikit-learn, Numexpr, and NumpyDL with sampling rates of 500K, 1M, and 5M.
The y-axis denotes slowdown ratio and the x-axis denotes program name.
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Figure 6: Memory bloating of P��P��� on Scikit-learn, Numexpr, and NumpyDL with sampling rates of 500K, 1M, and 5M.
The y-axis denotes slowdown ratio and the x-axis denotes program name.

We run each experiment three times, and report the average
overhead. Furthermore, the overhead of P��P��� is evaluated with
three commonly-used sampling rates, 500K, 1M, and 5M.

Figure 5a shows the runtime slowdown of the redundant stores
detection. The geo-means are 1.09⇥, 1.07⇥, and 1.03⇥ under the
sampling rates of 500K, 1M, and 5M, and the medians are 1.08⇥,
1.05⇥, and 1.03⇥, respectively. Figure 5b shows the runtime slow-
down of the redundant loads detection. The geo-means are 1.22⇥,
1.14⇥, and 1.05⇥, under the sampling rates of 500K, 1M, and 5M,
and the medians are 1.22⇥, 1.11⇥, and 1.04⇥, respectively. The run-
time slowdown drops as sampling rate decreases, because more
PMUs samples incur more frequent pro�ling events, such as in-
specting Python runtime, querying the CCT, and arming/disarming
watchpoints to/from the debug registers. Redundant loads detec-
tion incurs more runtime slowdown compared to redundant stores
detection, because programs usually have more loads than stores.
Another reason is that P��P��� sets RW_TRAP for the debug register
to monitor memory loads (x86 does not provide trap on read-only
facility) which traps on both memory stores and loads. Even though
P��P��� ignores the traps triggered by memory stores, monitoring
memory loads still incurs extra overhead.

Figure 6a shows memory bloating of the redundant stores detec-
tion. The geo-means are 1.25⇥, 1.24⇥, and 1.23⇥ under the sampling
rates of 500K, 1M, and 5M, and the medians are 1.18⇥, 1.18⇥, and
1.16⇥, respectively. Figure 6b reports memory bloating of the redun-
dant loads detection. The geo-means are 1.67⇥, 1.56⇥, and 1.29⇥
under the same sampling rates, and the medians are 1.52⇥, 1.51⇥,
and 1.24⇥, respectively. Memory bloating shows a similar trend to
runtime slowdown with varied sampling rates and between two
kinds of ine�ciency detection. The extra memory consumption is
caused by the larger CCT required for the larger number of unique
call paths. issue36, vmltiming2, and cnnsentence su�er the most
severe memory bloating due to the small memory required by their
vanilla runs. P��P��� consumes a �xed amount of memory because
some static structures are irrelevant to the testing program. Thus,
a program has a higher memory bloating ratio if it requires less
memory for a vanilla run. mlpdigits consumes more memory for
redundant loads detection, because mlpdigits (a deep learning
program) contains a two-level multilayer perceptron (MLP) that
has more memory loads than stores.

Although lower sampling rates reduce overhead, the probability
of missing some subtle ine�ciencies increases. To achieve a better
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1 def backprop(self , d_L_d_out , learn_rate):

2 d_L_d_filters = np.zeros(self.filters.shape)

3 for im_region , i, j in self.iterate_regions(self.last_input):

4 for f in range(self.num_filters):

5 d_L_d_filters[f] += d_L_d_out[i, j, f] * im_region

Listing 8: Interaction ine�ciency in CNN-from-Scratch due
to slice underutilization.

1 def backprop(self , d_L_d_out , learn_rate):

2 d_L_d_filters = np.zeros(self.filters.shape)

3 for im_region , i, j in self.iterate_regions(self.last_input):

4 new_im_region = np.repeat(im_region[np.newaxis ,:,:], 8,

axis = 0)

5 tmp = d_L_d_out[i, j, 0:self.num_filters]

6 d_L_d_filters [0: self.num_filters] += tmp[:,None ,None] *

new_im_region

Listing 9: Optimized code of Listing 8, eliminates
ine�ciencies by performing slice notation.

-------------------------------------------------------------------------------------------
prepare_index numpy/core/_multiarray_umath.so 0x2b728f71ead1
array_subscript numpy/core/_multiarray_umath.so 0x2b728f72094b
d_L_d_filters[f] += d_L_d_out[i, j, f] * im_region conv.py:62
_PyFunction_FastCall libpython3.6m.so.1.0 0x2b7282e99040
call_function libpython3.6m.so.1.0 0x2b7282e9a061
gradient = conv.backprop(gradient, lr) cnn.py:55
_PyEval_EvalCodeWithName libpython3.6m.so.1.0 0x2b7282e99aac
call_function libpython3.6m.so.1.0 0x2b7282e99d74
l, acc = train(im, label)   cnn.py:82
_PyEval_EvalCodeWithName libpython3.6m.so.1.0 0x2b7282e99aac
PyEval_EvalCodeEx libpython3.6m.so.1.0 0x2b7282e9a0be
PyEval_EvalCode libpython3.6m.so.1.0 0x2b7282e9a0eb
PyRun_FileExFlags libpython3.6m.so.1.0 0x2b7282ecf392
PyRun_SimpleFileExFlags libpython3.6m.so.1.0 0x2b7282ecf505
main PieProf/bin/main 0x400bc7
**************************************** killed by ****************************************
prepare_index numpy/core/_multiarray_umath.so 0x2b728f71ead1
array_subscript numpy/core/_multiarray_umath.so 0x2b728f72094b
d_L_d_filters[f] += d_L_d_out[i, j, f] * im_region conv.py:62
_PyFunction_FastCall libpython3.6m.so.1.0 0x2b7282e99040
call_function libpython3.6m.so.1.0 0x2b7282e9a061
gradient = conv.backprop(gradient, lr) cnn.py:55
_PyEval_EvalCodeWithName libpython3.6m.so.1.0 0x2b7282e99aac
call_function libpython3.6m.so.1.0 0x2b7282e99d74
l, acc = train(im, label)   cnn.py:82
_PyEval_EvalCodeWithName libpython3.6m.so.1.0 0x2b7282e99aac
PyEval_EvalCodeEx libpython3.6m.so.1.0 0x2b7282e9a0be
PyEval_EvalCode libpython3.6m.so.1.0 0x2b7282e9a0eb
PyRun_FileExFlags libpython3.6m.so.1.0 0x2b7282ecf392
PyRun_SimpleFileExFlags libpython3.6m.so.1.0 0x2b7282ecf505
main PieProf/bin/main 0x400bc7
-------------------------------------------------------------------------------------------

Figure 7: The redundant load pair reported by P��P��� for
Listing 8.

trade-o� between overhead and detecting ability, we empirically
select 1M as our sampling rate.

6 CASE STUDIES
This section discusses our three heuristic case studies. Our primary
aim is to demonstrate the superior guidance provided by P��P���
for ine�ciency detection and optimization.

6.1 CNN-from-Scratch
CNN-from-Scratch is an educational project that implements a Con-
volutional Neural Network. The code in Listing 8 performs tensor
computation within a two-level nested loop. d_L_d_filters is a
8⇥3⇥3 tensor, d_L_d_out is a 26⇥26⇥8 tensor and im_region is
a 3⇥3 tensor. The inner loop iterates d_L_d_filters by its �rst
dimension, iterates d_L_d_out by its third dimension. In each iter-
ation of inner loop, d_L_d_filters[f] performs as a 3⇥3 tensor,
and d_L_d_out[i, j, f] is a number. The computation in line 5 is
summarized as a 3⇥3 vector cumulatively adding the multiplication
of a number and a 3⇥3 vector.

1 def CEC_10(solution=None , problem_size=None , shift =0):

2 ...

3 for i in range(dim):

4 temp = 1

5 for j in range (32):

6 temp += i * (np.abs(np.power(2, j + 1) * x[i] - round(

np.power(2, j + 1) * x[i]))) / np.power(2, j)

7 A *= np.power(temp , 10 / np.power(dim , 1.2))

8 ...

Listing 10: Interaction ine�ciency in Metaheuristic due to
API misuse and loop-invariant computation.

1 def CEC_10(solution=None , problem_size=None , shift =0):

2 ...

3 tmp_dim = 10 / np.power(dim , 1.2)

4 for i in range(dim):

5 temp = 1

6 for j in range (32):

7 frac , whole = math.modf(np.power(2, j + 1) * x[i])

8 temp += i * np.abs(frac) / np.power(2, j)

9 A *= np.power(temp , tmp_dim)

10 ...

Listing 11: Optimized code of Listing 10, eliminates
ine�ciencies with an appropriate API and memorization
technique.

Figure 7 shows a redundant loads pair reported by P��P���. The
redundant pair is represented as hybrid call path, and the upper
call path is killed by the lower call path. For each native call path,
P��P��� reports the native function name, shared library directory,
and the instruction pointer. For each Python call path, it reports
the problematic code piece and its location in the source �le. In
this case, the call path pair reveals that the interaction ine�ciency
is introduced by line 62 of conv.py (line 5 in Listing 8). The call
path also shows that the ine�ciency caused by native function
call prepare_index(array_subscript), denotes the redundant
[] operations. This ine�ciency belongs to the category of slice
under-utilization.

For optimization, we match the dimension of d_L_d_filters,
d_L_d_out, and im_region by expanding the dimension of
im_region, and use slice notation to replace the inner loop, as
shown in Listing 9. The optimization yields a 3.9⇥ function-level
speedup and 2.5⇥ application-level speedup.

6.2 Metaheuristics
Listing 10 is a code snippet from Metaheuristics. It performs com-
plex numerical computation in a two-level nested loop, where
x is a Numpy array. P��P��� reports a redundant loads on line
6, where the code triggers the redundant native function call
array_multiply and LONG_power. Guided by this, we observe that
np.abs(np.power(2,j+1)*x[i] is calculated twice within every
iteration, because the code aims to get the computation result’s
fraction part. To eliminate the redundant computation, we use
math.modf function to calculate the fraction directly.

This ine�ciency belongs to the category of API misuse in native
libraries. P��P��� also reports redundant stores in line 7 with native
function LONG_power. Upon further investigation, we �nd the result
of np.power(dim, 1.2) does not change among iterations, which
belong to loop-invariant computation. For optimization, we use a
local variable to store the result outside the loop and reuse it among
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1 def adx(self) -> pd.Series:

2 ...

3 adx = np.zeros(len(self._trs))

4 tmp = (self._n - 1)/float(self._n)

5 for i in range(self._n+1, len(adx)):

6 adx[i] = adx[i-1] * tmp + dx[i-1] / float(self._n)

7 ...

Listing 12: Interaction ine�ciency in Ta due to slice
underutilization.

1 def adx(self) -> pd.Series:

2 ...

3 adx = np.zeros(len(self._trs))

4 tmp = (self._n - 1)/float(self._n)

5 for i in range(self._n+1, len(adx)):

6 adx[i] = adx[i-1] * tmp

7 adx[self._n+1:len(adx)] += dx[self._n:(len(adx) -1)] / float(

self._n)

8 ...

Listing 13: Optimized code of Listing 12, eliminates
ine�ciencies by performing slice notation.

iterations. The appropriate usage of API yields 1.4⇥ application-
level speedup and 1.9⇥ function-level speedup, and eliminating
loop invariant computation yields 1.04⇥ application-level speedup
and 1.4⇥ function-level speedup, respectively.

6.3 Technical Analysis
Technical Analysis (Ta) [46] is a technical analysis Python library.
Listing 12 is a problematic code region of Ta, where adx and dx are
two multi-dimension Numpy arrays, and a loop iterates them and
performs numerical calculations.

P��P��� reports redundant loads in line 6 with native function
array_subscript, which denotes the code that su�ers from the
ine�ciency of slice underutilization. Unfortunately, we cannot elim-
inate the loop because adx has computing dependency among the
iterations. Therefor, we optimize the access to dxwith slice notation
shown in Listing 13. Eliminating all similar patterns in Ta yields
1.1 ⇥ application-level speedup and 16.6⇥ function-level speedup.

7 THREATS TO VALIDITY
The threats mainly exist in applying P��P��� for code optimiza-
tion. The same optimization for one Python application may show
di�erent speedups on di�erent computer architectures. Some opti-
mizations are input-sensitive, and a di�erent pro�le may demand a
di�erent optimization. We use either typical inputs or production
inputs of Python applications to ensure that our optimization im-
proves the real execution. As P��P��� pinpoints ine�ciencies and
provides optimization guidance, programmers will need to devise a
safe optimization for any execution.

8 CONCLUSIONS
This paper is the �rst to study the interaction ine�ciencies in
complex Python applications. Initial investigation �nds that the
interaction ine�ciencies occur due to the use of native libraries
in Python code, which disjoins the high-level code semantics with
low-level execution behaviors. By studying a large amount of ap-
plications, we are able to assign the interaction ine�ciencies to
�ve categories based on their root causes. We extract two common

patterns, redundant loads and redundant stores in the execution
behaviors across the categories, and design P��P��� to pinpoint
interaction e�ciencies by leveraging PMUs and debug registers.
P��P��� cooperates with Python runtime to associate the ine�-
ciencies with Python contexts. With the guidance of P��P���, we
optimize 17 Python applications, �x 19 interaction ine�ciencies,
and gain numerous nontrivial speedups.
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