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Abstract

Environmental effects are a significant challenge in guided wave structural health monitoring systems. These effects
distort signals and increase the likelihood of false alarms. Many research papers have studied mitigation strategies for
common variations in guided wave datasets reproducible in a lab, such as temperature and stress. There are fewer
studies and strategies for detecting damage under more unpredictable outdoor conditions. This paper proposes a
long short-term PCA reconstruction method to detect synthetic damage under highly variational environments, like
precipitation, freeze, and other conditions. The method does not require any temperature or other compensation
methods and is tested by approximately seven million guided wave measurements collected over two years. Results
show that our method achieves an AUC score of near 0.95 when detecting synthetic damage under highly variable

environmental conditions.
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Introduction

Ultrasonic guided waves are widely studied for structural
health monitoring due to their ability to travel long
distances with little attenuation'l. They are also sensitive
to structural changes, such as those arising from damage
or defects®®. Yet, ultrasonic guided waves are not only
sensitive to structural variations but are also easily affected
by benign changes in the environment and operation of
the structure®®. To process large SHM data sets, these
variations need to be identified. Research strategies have
primarily addressed relatively small variations, such as
temperature 710, Less work has focused on large variations
from freezing conditions, rain, surface wetting, and other
variations. Detecting these conditions is not straightforward.
Weather reports are not reliable due to spatial variability
in weather. Local measurements of temperature, humidity,
and brightness cannot identify all conditions, such as surface
wetting from precipitation. If not considered, these effects
can cause false alarms and corrupt data used to train machine
learning systems.

We divide these variations into four types based on
their severity and duration. These four types are (1) small,
transient variations, (2) large, transient variations, (3) small,
permanent variations, and (4) large, permanent variations.

Four Types of Variations in Guided Wave Data

Type-1 variations (small, transient) generally represent mild
or gradual environmental and/or operational changes. For
example, a mild environmental variation, like tempera-
ture 212 o humidity 13 or a mild operational variation, like
pressure and flow rate®, can change the shape of ultrasonic
guided waves and cause false alarms when detecting real
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damage or defects on the structure. The effect is transient
because when a variation, like a temperature, returns to
a reference value, the guided ultrasonic wave’s shape will
return close to the corresponding baseline guided wave.
There has been an abundance of work on understanding and
eliminating the influence of type-1 variations from ultrasonic
guided waves. Much of this work has focused on addressing
temperature variations. Several methods, such as optimal
baseline selection®! baseline signal stretch (BSS)7H10,
physics-based modeling'Z, and other data-driven models
citefendzi2016data, Zoubi2021-at,Mariani2020-ih have been
created to compensate for temperature variations. Other
researchers have used principal component analysis (PCA)~,
genetic algorithms'®, ensemble classification”, Gaussian
mixture models®, neural network?Y, and other machine
learning approaches to detect damage directly under tem-
perature variations. However, compensating for other envi-
ronmental factors (e.g., humidity, brightness, pressure) or
detecting damage under these conditions is less commonly
addressed since they are less well understood.
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Type-2 variations (large, transient) represent dramatic
environmental and operational changes, such as caused by
heavy rain flooding a railway“!, strong winds blowing a
bridge?2, overloaded trucks running on a bridge?, or ice
accumulating on a wind blade?®. Since type-2 variations
change guided waves dramatically, they are often difficult
to be distinguished from permanent variations (e.g., damage
or defects) over periods ranging from hours (e.g., rain) to
weeks (e.g., snow and ice). This leads to false alarms in
damage detection algorithms. Papers?*2> have investigated
guided wave changes to detect the existence of ice. However,
due to their complexity, there are fewer studies on most other
type-2 variations in guided wave data.

Type-3 variations (small, permanent) and type-4 variations
(large, permanent) represent damage or defects on a
structure, or irreversible changes on a structural health
monitoring SHM system. The severity of damage or
defects distinguishes the two variations. Type-3 variations
represent small structural variations, like microcracks or
fatigue in a bridge cable that cannot be readily identified,
or small irreversible changes on an SHM system, like
hardening of adhesive. These variations may grow gradually
over time and become type-4 variations. Type-4 variations
represent large, critical cracks or a crash of an SHM
system, like a severe degradation of sensors. Vibration-based
damage identification methods® use natural frequencies,
phase, mode shapes, and mode curvature to identify
variations corresponding to damage in a structure. Due to
the rapid development of computation resources and the
accumulation of huge datasets, many data-driven methods,
such as neural networks®!“2 evolutionary algorithms"?,
ensemble learning”, and statistical methods“#*> have also
been applied to damage detection. Some existing damage
detection work identifies damage in the presence of variable
temperature®?8U2 Joading 1440, traffic flow=/+%, and wind
conditions*. Many structural health monitoring papers
focus on detecting type-4 variations since they can be
identified in a controlled laboratory environment. Type-3
variations are still difficult to detect since they generally
appear in the early stages of damage, change guided
waves slightly, and are easily hidden by type-1 and type-2
environmental and operational variations.

Distinguishing Type-2 and Type-3/4 Variations

This paper distinguishes type-2 and type-3/4 variations in
realistic, highly variable environments. We assume:

1. Type-1 variations are weak in amplitude and correlated
over short periods of time (e.g., an hour).

2. Type-2 variations are strong in amplitude but weakly
correlated over time due to noisy behavior.

3. The type-3/4 (damage/flaws) variations can be weak or
strong in amplitude but are highly correlated over long
periods of time (e.g., days, weeks, months).

Leveraging these assumptions, we design a long short-term
principal component analysis reconstruction methodology
to detect, classify, and distinguish type-2 and type-3/4
variations in the presence of type-1 variations.

Existing papers in the literature®*#4! have used principal
component analysis (PCA) to map damage variations (type-
3/4 variations) to principal components. These principal
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components are usually extracted from all of the data
in a guided wave data set. This is impractical for three
reasons. First, these methods often assume specific damage
knowledge, such as the principal component containing
damage information or the pattern (i.e., a step function)
created by the damage in the data.

Second, these methods are not robust to type-2 variations.
Type-2 variations will distort guided waves and cause
false alarms and be mistaken for damage. Thus, we need
to automatically detect and remove type-2 variations?* to
reduce false alarms. Third, this requires a huge amount
of processing and computation time for large, multi-years
datasets.

Our approach makes two important changes relative to
existing strategies. First, rather than finding components with
type-3/4 variations, we focus on reconstructing data. This
removes the need for prior damage information. Second, we
consider principal components over local regions of time
(e.g., from hours to weeks). This reduces the computational
costs and allows us to highlight differences across time
scales. In short-term and long-term periods, type-1 variations
will be reconstructed. In the short-term and long-term time
periods, type-2 variations (which are noisy and highly
variable) will not be effectively reconstructed. Type-3/4
variations will be reconstructed effectively in short-term
periods but poorly reconstructed in long-term periods. This
is because the weak, but long-term, changes from damage
are not well observed in short time windows. Hence, we will
distinguish type-3/4 variations from type-2 variations by the
difference in long-term and short-term PCA reconstructions.
We refer to this as long short-term PCA.

We apply our approach to guided wave data collected
continuously at the University of Utah from over two years.
This includes data from every season and weather conditions
in that region. Guided waves along with temperature,
humidity, and brightness have been collected from March
2018 to March 2020 in a natural outdoor environment.
Temperature ranges from —11.4°C to 52.9°C. Humidity
ranges from 0.7% to 100%. The unit of brightness is lux
and the log base 10 of brightness ranges from —3.5 to 6.6
(after taking the log base 10 to the original brightness).
Results demonstrate that reconstruction coefficients can be
used to both identify and separate regions with synthetically
generated damage from regions with type-2 variations.

Methodology: PCA Based Reconstruction

This paper applies a long short-term principal component
analysis (PCA) reconstruction method to classify highly
variational environments (type-2 variations) and irreversible
changes (type-3/4 variations), like damage from natural
environments (type-1 variations). The foundation of our
method assumes that the first several principal components
can linearly reconstruct guided waves from type-1 variations.

We use the first several principal components from
PCA to reconstruct a period of guided waves and then
calculate correlation coefficients between the original and
reconstructed guided waves. We refer to this process as a
temporally local PCA algorithm in the paper. The algorithm
is shown in Fig. [T} We refer to these correlation coefficients
as reconstruction coefficients to distinguish our approach



from damage detection methods that compute the correlation
coefficient between the data and a baseline signal.

Periods of time with only type-1 variations will have
reconstruction coefficients close to 1. For a short-term
window (e.g., across several hours), type-2 variations
should have low reconstruction coefficients while type-
3/4 variations should have high reconstruction coefficients.
For a long-term window (e.g., across several days), type-
2 and type-3/4 variations should have low reconstruction
coefficients. Based on these differences, we can classify
type-1, type-2, and type-3/4 variations, illustrated in Table[T]

Temporally Local Short-Term PCA Algorithm

In this paper, vectors are represented by lower case bold
letters such as x. Matrices are represented by uppercase bold
letters, such as X. All vectors in the paper are column vectors
and ()T stands for the transpose of a vector or a matrix. For
example, x is a column vector and is a xT row vector.

To perform our algorithm, we consider an ultrasonic
guided wave dataset X containing N measurements. Each
measurement contains M samples. We can represent this

Table 1. The classification of Type-1, Type-2, and Type-3/4
Variations Based on Long Short-Term PCA Reconstruction.

Short-term reconstruction

High Low

Type-1

. None
variation

High

Type-3/4
variation

Type-2

Low o
variation

Long-term
reconstruction
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Figure 1. The temporally local PCA algorithm diagram for
reconstruction coefficient calculation. In this illustration, we
assume the short-batch size is 2 days and the stride 2-days
(hence, there is no overlap between the 50-th batch data X0
and the 51-th batch data X51). The diagram is calculating the
reconstruction coefficients of the 50-th (the 101 and 102 day)
guided waves Xso.
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dataset as a matrix

X = [Xl X9 ]T

) ey

XN

where X; = [m“ Tio T; M] r represents a single
measurement. We separate the data into local batches, or time
windows, of L measurements, as shown in Fig.|1} There is no
overlap in measurements between batches. Hence, the N X
M data matrix X (containing about 700-days measurements)
is divided into roughly 350 data batches if the batch size/time
window L is 2 days. Batch ¢ of the guided wave dataset X
with a batch size L is therefore defined as

Xy = @

[XtLJrl XtL+2 XtL+L] !

where ¢ € {0,1,2,...,N/L}. We then use PCA to
decompose and reconstruct each guided ultrasonic wave
batch. The process of calculating reconstruction coefficients
based on PCA can be expressed through five steps.

First, we remove the column mean in the batch X; (each
column in X subtracts its corresponding column mean) such
that the column-wise means in the updated matrix X; are
ZEros.

X, = 1"

[Rir+1 Xepso XtLiL (3

Xirti = XtLti — X, (4)

where i€ {1,2,...,L} and X,=1 Z]LZI X¢1+;. Both
dimensions of x;74; and X; are M x 1. X; is the vector
containing the mean of each column in the matrix X; with
a dimension of L x M (the mean of each sample in a batch
of guided waves X;). In Eq. 4} each sample in the tL + ¢
measurement X, ; will be subtracted by the corresponding
sample’s mean.

Second, we obtain principal components by computing the
eigenvectors of the covariance matrix X} X for the ¢ batch
)A(t according to

~

e
X Xy Vipti = MP+iViP+i (5)

where v;py; is a vector of length M. We let V, =
[vt P41 VipP42 ViP+ p] r be an principal component
matrix for batch ¢ consisting P principal components that
correspond to the P largest eigenvalues of the covariance
matrix. The dimension of V;is P x M.

Third, we implement an orthogonal projection of our
data onto the space of the top P principal components by
multiplying the ¢-th batch X, with the principal component
matrix V; to obtain Z; in the projected space,

S T

Z, =X¢V] = [zi11 Zir2 zivn] - (6)
where the dimension of Z, is L x P.

Fourth, a reconstructed guided wave data X} is obtained
by the matrix multiplication of V; and Z, according to

— — 1T
X; = ZtVt + [Xt Xt o ... Xt:l 1xL (7)

where the dimension of X} is L x M.
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Finally, the reconstruction coefficients of guided waves in
X are calculated according to

/ — T _
ipes = (Xipi = Tirgs) (Xenti — Trogi) ®
K - — —
1%tr4s = TepaalllXer+i — Terl|

> g
TtL+i = 75 LTtL+i,5
M =
— 1 U !
Tiiti = 3 Z TiLyi,j (10)
j=1

where ¢ € {0,1,2,...,N/L}, i € {1,2,...,L}, and || - ||
represent the Euclidean norm. The dimension of x;;
and x}; ., are M x 1. Typq; and T;p ; are two scalars,
representing the mean of all samples/features in the guided
wave X;14,; and the reconstructed guided wave x;; . ;. The

. . T
reconstruction coefficients r = [rl T9 T N] are the
core metrics we use to distinguish each of the different
variations.

Temporally Local Long-Term PCA Algorithm

Long-term PCA reconstruction uses the same approach
as our short-term PCA reconstruction algorithm but has
a different batch size and nearby long-term batches of
guided waves are partly overlapped. In the short-term
PCA reconstruction, guided waves from nearby batches are
not overlapped and each reconstruction coefficient from
a short-term batch Lgyo¢ Will be saved. In the long-term
PCA reconstruction, the batch size Lione i significantly
longer than Lg,ox and we only compute the reconstruction
coefficient for the final Lgiqe measurements. Lgyige 1S the
stride size of the long-term PCA time window.

For this paper, we will use a long-term batch size Ljopg Of
10 days and a short-term batch size Lo of 1 day. The stride
size of long-term PCA time window Lgyqge is set to 1 day.
This means 9 days of guided waves from two nearby batch
will be overlapped in the long-term PCA reconstruction,
shown in Fig [2] Note that if the damage is stationary (not
changing over time), the long-term reconstruction coefficient
will return to a high condition when Ljoye length window is
fully contained in the data with damage. Fig[2]illustrates how
our short-term PCA and long-term PCA are implemented.

Damage Detection

Damage (i.e., a long-term anomaly in the data) is detected
from the difference between the short-term and long-term
PCA reconstruction coefficients, defined by

B,
thL+i = 6) - (L) (1 1)
t,median t,median

(%) and ") . are the short-term and long-term PCA

tL+i tL+i
. . : (S)
reconstruction coefficients, respectively. The terms,r; " . yian,

and rﬁie dian, are the medians of the corresponding short-

term and long-term batches. These normalizations reduce
drift in the reconstruction coefficients over time, which
varies with the amount of random noise in the data. We use
the median rather than the mean since the median will be

where r
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robust to spurious outliers. When the short-term and long-
term normalized PCA reconstruction coefficients observe
no variations, dr;r4; ~ 0. When the normalized long-term
reconstruction coefficients are smaller than the normalized
short-term reconstruction coefficients, then the data may
contain damage.

To avoid the false alarms from highly variational
environment, we set dryr4; to 0 for measurements from
type-2 variations. We identity type-2 variations such that (A
is a user chosen threshold. Here we set A to 0.99)

S
rh <A (12)
700-Days Guided Waves
.
1d|...[10]| 11 |12 | 13 | 14 - ... | 700
X10 X1z X5
PCA PCA PCA
Reconstruction || Reconstruction || Reconstruction
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Figure 2. The short-term and long-term PCA reconstruction
coefficients calculation process. In the short-term PCA
reconstruction, the time window is 1 day and stride size is 1 day
(e.g., there is no overlap between the 10-th batch data X1 and
the 11-th batch data X1). In the long-term PCA reconstruction,
the batch size/time window Lj,ne contains 10-days of guided
waves and the stride size is 1 day. After obtaining the
reconstruction coefficients for the 2nd batch data (X3),
reconstruction coefficients of the 11-th day guided waves are
appended into the result and reconstruction coefficients from
the 1st to the 10th remain unchanged.



Therefore, we identify damage at measurements such that

drip+i < (13)
where 77 is a user chosen threshold. Note that to further
reduce the effects of spurious outliers, we also apply a 3-
hour long running median filter to dr,y,; before applying the
threshold. This step improves detection performance (AUC
score) by about 3% to 4% in our results.

We use true positive rate (TPR) and false positive rate
(FPR) to evaluate the performance of our method. The true
positive rate is defined by

TP

TPR= —
R=TprFN

(14
where T'P is the number of true positives (the number
of measurements correctly identified as possessing from
synthetic damage) and F'N is the number of false negatives
(the number of measurements with synthetic damage that
were missed). The false positive rate is defined by

FpP

PR =N+ FP

15)
where F'P is the number of false positives (the number of
measurements incorrectly identified as possessing synthetic
damage) and T'N is the number of true negatives (the number
of measurements correctly identified as benign conditions).
The plot of T PR to F'PR is known as the receiver operating
characteristics (ROC) curve. We use the area under the ROC
curve (AUC) as our ultimate metric of performance.

Experimental Setup

We apply our approach to an experiment that has been
running at the University of Utah, Salt Lake City, since
March 201842, The experimental setup consists of a
53 cm by 53 cm aluminum plate with a 3mm thickness,
a data acquisition system, 8 ultrasonic transducers, and
4 environment sensors for measuring temperature, humidity,
brightness, and air pressure. The system is designed to
monitor the status of the aluminum plate under many kinds
of natural conditions. The equipment is placed in a small
room with 4 walls but no roof and is exposed to an outdoor
environment under natural conditions. The environment and
equipment are shown in Fig.

Ultrasonic guided wave signals are transmitted and
collected by ultrasonic transducers, which convert the
voltage to mechanical vibration or vice versa. Our sensors are
composed of 7 mm diameter by 0.2 mm thick piezoelectric
SM412 ceramic discs from StemInc with a 300 kHz radial
mode resonance. The sensors are covered in epoxy to provide
some layer of protection from the elements. The sensors
transmit a chirp signal with frequency from 5 kHz to
350 kHz. Each measurement is taken with a sampling rate of
1 MHz. Among eight ultrasonic transducers, six of them are
used to monitor the status of the aluminum plate. Two of the
six ultrasonic sensors are used to transmit guided ultrasonic
signals, and four of the six ultrasonic sensors are used to
collect guided wave signals. Each guided wave consists of
10000 samples. In one measurement, the system will collect
8 ultrasonic guided signals (4 ultrasonic signals from each
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transmit transducer) and 4 environment values, including
temperature humidity, air pressure, and brightness#243,

The experimental equipment is placed on a shelf with
2 layers. The plate with 8 ultrasonic transducers is on the first
layer. Temperature, humidity, air pressure, and brightness
sensors are on the second layer’s foam box. Equipment on
the first layer is exposed to sunlight, rain, dew, snow, hail,
ice, and other conditions directly. Equipment on the second
layer is not exposed to these conditions. The temperature and
brightness sensors are not entirely covered and observe brief
periods of direct sunlight. However, since the sensors are
covered, the spurious change is narrower in time than that
observed in the reconstruction coefficients.

When collecting our data, each measurement is captured
about every 9 seconds. During a measurement, the total
measurement time is less than 20 ms. The experiment takes
more than 10,000 measurements per day. The experiment
has millions of measurements under all kinds of weather,
including rain, snow, clouds, wind, and ice. A few different
measurement environments are shown in Fig. 4] Note that
rain leaves wetting on the plate, snow covers the plate, and
ice is converted into surface wetting and vice versa due to
temperature variations.

Type-2 Variation Detection Experiment

For this experiment, we study a subset of data that includes
approximately seven million measurements (2 years of
measurements). Each measurement includes 8 ultrasonic
guided waves, a humidity value, a temperature value, an
air pressure value, a brightness value, and the time when
the measurement was collected. Due to the size of the data
set, we only analyze guided waves from the first transmitter
sensor (sensor 5) and received by the fourth receiver sensor
(sensor 1), shown in Fig.[5] Since the signal decays quickly,
we only analyze the first 2000 samples measured (2 ms). We
choose a 2 ms length since the synthetic damage has a strong
effect on later parts of the data, as evidenced by Fig. [TT]
Hence, a longer signal length will have a greater sensitivity
to damage. It should be noted, however, that a longer signal
will also have a greater sensitivity to environmental factors.
We apply a short-term PCA reconstruction method to
detect type-2 variations since a short time window will
guarantee that the first several components will represent
type-1 variations and reconstruct guided waves from type-
1 variations better. In the experiment, the time window used
to reconstruct guided waves is about one day (the batch size
L is 10,000) since the shortest period of type-1 variations
is one day in a natural environment. The slide window step
is also 1 day. Thus, there is no overlap between two nearby
batches. We will apply the first 15 components to reconstruct
6,942, 000 guided waves 10, 000 by 10, 000. The parameters
used by our short-term PCA reconstruction are in Table [2] A
histogram of reconstruction coefficients in Fig. [6] shows that
most of the signals are reconstructed with high accuracy.

Synthetic Damage Detection Experiment

We did not produce real damage in the experiment
implemented at the University of Utah. To test the method’s
performance in detecting damage, we use the synthetic
damage method, shown in paper®, to generate synthetic
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(b) The Setup of Temperature and (c) The Setup of Humidity and
Brightness Sensors Air Pressure Sensors

Figure 3. The setup of ultrasonic, temperature, brightness, air
pressure and humidity sensors. (a) The top level, containing the
ultrasonic sensors and aluminum plate under test. (b) The
bottom level, containing the sensors and environmentally
protected data acquisition system.

damage. As mentioned in the paper, a guided wave from a
damage situation can be approximated by the superposition
between a direct guided wave from a transmitter and a
subsequent guided wave transmitted by a damage point,
shown in Fig.

Thus, we select a guided wave from the shortest signal
path (path 5-1) as a pristine signal and select a guided wave
from the longest path (path 5-4) as the signal transmitted
by a damage point. Typically, the magnitude of a guided
wave transmitted by a damage point should be smaller
than a pristine guided wave since a damaged guided wave
will travel a longer distance and lose energy when being
transmitted. Thus, a synthetic damage signal is defined as

Yi=Yityi, (16)
where y; is the iy, guided wave from the path 5-1, y/ is
the i-th guided wave from the path 5-4, and + is the scatter
factor. In prior Work@, a 10 cm by 10 cm dense wavefield of
Lamb waves from a steel plate with a circular 2-mm diameter
half-thickness notch at its center. In the experiment, the notch
produces a reflection around 0.1 to 0.2 times that of the direct
waves. Hence, in this paper, we consider v values of 0.05,
0.1, and 0.2.

We apply the long short-term PCA reconstruction method
to detect synthetic damage moments (type-3/4 variations).
The short time window is about one day (the batch size
is 10,000) since the shortest period of type-1 variations
is one day in a natural environment. We will use the first
15 components to reconstruct guided waves in the short

Table 2. Parameters for detecting synthetic damage based on
the long short-term PCA reconstruction.

Values

Samples M 2000

Short-Term Batch Size L 10,000 (= 1 day)

# of Short-Term Principle Comp. 15

# of Total Measurements 6,942,000 (=~ 2 years)

Parameters
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(c) Surface Wetting Weather

(d) Snow Weather

Figure 4. Various kinds of measurement environments
experienced when monitoring the plate’s structural health. The
conditions in (b),(c), and (d) represent three different type-2
variations.

time window and use the first 15 components to reconstruct
guided waves in the long time window. The parameters used
by long-term PCA reconstruction are in Table 3]

To test our damage detection performance, we select 30
regions from the measurements and create synthetic damage.
We chose 30 regions with diverse weather conditions,
including precipitation, surface wetting, direct sunlight, and
fair weather. Thus, each region is about 10 days long
and with 12 to 36 hours of synthetic damage within it.
We expect our method to detect the start of synthetic
damage. Considering the stride size of the long-term PCA
reconstruction is about 24 hours, it will be reasonable for
our method to detect these synthetic damages within the
first two strides (48 hours). So, we set the duration of the
synthetic damage to vary from 12 hours to 36 hours and
begin at a random time within each region. These periods
of synthetic damage are generated across many conditions,
including precipitation, direct sunlight, freezing conditions,
fair weather, etc.

Table 3. Parameters for detecting synthetic damage based on
the long short-term PCA reconstruction.

Values

2000
10,000 (=~ 1 day)

Parameters

Samples M

Short Batch Size Lgnort
Long Batch Size Liong 100,000 (= 10 days)
Stride Size in Long-Term PCA Lo, 10,000 (= 1 days)

# of Short-Term Principle Comp. 15

# of Long-Term Principal Comp. 15

30 (damage cases
vary from 12 to 36
hours)

3,000,000 (=~ 10
month)

# of Cases with Synthetic Damage

# of Total Measurements
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Figure 5. The approximate locations of transmitters and
receivers (X:cm Y:cm). A damaged guided wave can be
approximated by the superposition of a direct guided wave and
a transmitted guide wave from a damage point

Effect of Variations on Guided Waves

Figs. [7] to [I1] compare the measured, pulse compressed
guided waves from different conditions (precipitation,
surface wetting, freezing condition, and direct sunlight) with
the measured pulse compressed guided waves from fair
weather. Note that these figures represent specific example
signals. They are not representative of all precipitation,
wetting, freezing, or direct sunlight conditions. Fig. [/| and
Fig. []illustrate the effects of precipitation and the effects of
surface wetting on the actual guided wave signals (shown
after pulse compression). The measurement times and the
reconstruction coefficients for these guided waves are shown
in the legend. The reconstruction coefficients of selected
guided waves in fair, precipitation, and surface wetting
conditions are 0.990, 0.756, and 0.745, respectively. We
observe that the magnitude of the actual guided waves from
precipitation and surface wetting is smaller and noisier than
those from fair weather. The guided waves also vary more
rapidly in the precipitation and surface wetting conditions.

le6

N W A~ U

0%00 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000
Reconstruction Coefficient

The Ratio of High Reconstruction Coefficients
(>0.975): 0.868

[
Figure 6. The histogram of reconstruction coefficients of all
measurements from the short-term PCA reconstruction (using
the first fifteen principal components and the time window is
about one-day). Most signals can be reconstructed well since
over 86.8% of guided waves can achieve a reconstruction
coefficient over 0.975
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The actual pulse compressed guided waves from fair
and freezing conditions are plotted in Fig. )] We observe
that when the reconstruction coefficient is below 0.5, the
guided waves’ amplitude is diminished substantially and is
almost entirely composed of noise. It is not immediately
clear why the data acquisition system fails to collect good
guided waves in the freezing condition, but the freezing
conditions do not appear to cause permanent changes to the
guided waves data since when the temperature goes up, the
abnormal measurements disappear. Since it is difficult for
PCA to reconstruct signals made of unstructured noise, the
reconstruction coefficients for these guided waves are very
low.

Fig. [I0] illustrates the actual pulse compressed guided
waves from fair and direct sunlight conditions. The
reconstruction coefficient from fair weather is about 0.989,
and the reconstruction coefficient from direct sunlight
events is 0.864. Although the reconstruction coefficients are
different, the pulse compressed the guided waves from fair
and direct solar radiation is not significantly different.

Fig. illustrates actual guided waves from fair, with
and without synthetic damage. The reconstruction coefficient
without damage is 0.989, and the reconstruction coefficient
with synthetic damage is 0.978.The pulse compressed guided
wave from synthetic damage is close to that of fair weather.
From this, we observe that the synthetic damage has the
weakest effect among these different variations.

Results and Discussion

This section will show our method’s performance on
classifying type-2 variations and type-3/4 variations from
within type-1 variations. First, we will show the short-term
PCA reconstruction method’s effectiveness in detecting type-
2 variations — precipitation/surface wetting, direct sunlight,
and freezing conditions. We will then show the long short-
term PCA reconstruction to detect type-3/4 variations in the
presence of type-1 and type-2 variations.

Identifying Predominant Type-2 Variations

We choose the short-term PCA reconstruction method and
use the first 15 principal components to decompose and
reconstruct guided waves from 2-year measurements. The
short-term PCA reconstruction time window is a one-day
(batch size is 10, 000). The reconstruction coefficients, along
with corresponding temperature, humidity, brightness, and
measurement times, are shown in the following results. Most
of the reconstruction coefficients in the 2-years guided waves
(about 7 million measurements) are close to 1, shown in
Fig.[6] Hence, the first fifteen principal components will be
enough to represent most one-day type-1 variations in the 2-
years guided waves.

The following results study situations in which these
reconstruction coefficients drop significantly. We provide
significant evidence to support our hypothesis that the drop in
the reconstruction coefficients results from type-2 variations.
This significant evidence is from the corresponding changes
in humidity, temperature, air pressure, brightness, and
weather reports. Based on the available data, we focus on
four categories of type-2 variations: precipitation, surface
wetting, direct sunlight, and freezing conditions.
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Figure 7. Guided wave signals after pulse compression by the
transmitted chirp signal during precipitation and in fair weather.
The precipitation causes the guided wave amplitude to
decrease and become more noisy.
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Figure 9. Guided wave signals after pulse compression by the
transmitted chirp signal in freezing conditions and in fair
weather. The magnitude of a guided wave in freezing weather
decrease to almost 0 and is dominated by noise.
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Figure 11. Guided wave signals after pulse compression by the
transmitted chirp signal in fair weather, with and without
synthetic damage with v = 0.2. The plots show the effect of
synthetic damage is significantly weaker than that of type-2
variations (the two guided waves are almost overlapped).

Identifying Precipitation and Surface Wetting Based on the
times of precipitation events from a public online archive*
we have found that these precipitation events overlapped
with strong drops in the reconstruction coefficient. During
these events, we also observe simultaneous increases
in humidity, decreases in temperature, and decreases in
brightness. These variations are illustrated in Fig.[T2] where
gray points are unlabeled (i.e., likely representing fair
conditions), black points are recorded precipitation events.
During these recorded precipitation events, the recon-
struction coefficients will often drop significantly (below
0.8), but sometimes the drop in reconstruction coefficients is
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Figure 8. Guided wave signals after pulse compression by the
transmitted chirp signal in surface wetting and in fair weather.
The surface wetting causes the guided wave amplitude to
decrease and become more noisy.
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Figure 10. Guided wave signals after pulse compression by the
transmitted chirp signal during direct sunlight and in fair
weather. There is no obvious differences between these signals.
Our method identifies the relatively rapid signal change.

smaller. This phenomenon may be caused by variable rainfall
intensity around the plate. Strong rainfall intensity is likely
to result in a larger drop in the reconstruction coefficient.

Shortly after the recorded precipitation, many reconstruc-
tion coefficients remain low but gradually increase to 1. This
can be observed in 04-03-2018, 04-07-2018, and 04-08-2018
in Fig.[I2} These trends generally occur after high humidity.
As a result, we believe this is due to surface wetting when
residual water remains on the plate.

While recorded precipitation events are correlated with
low reconstruction coefficients, we can identify other
potential precipitation events, such as on 04-12-2018 and 04-
14-2018. We believe these can be identified as precipitation
since the patterns seen among the reconstruction coefficient,
temperature, humidity, and brightness are similar to those
from recorded precipitation events. Note that the location
of the meteorological station is about 15 miles away from
the experiment location. Hence, the recorded precipitation
events may not completely align with those experienced
by the experiment location. Thus, we believe potential
precipitation events, such as 04-12-2018, 04-14-2018, and
04-16-2018, are unrecorded precipitation events.

Identifying Freezing Conditions Between November and
March, there are many events in which the reconstruction
coefficients drop sharply, but precipitation is not observed,
as shown in Fig. [I3] These drops in the reconstruction
coefficients occur when the temperature is cold (typically
below 0° C). For example, in Fig. [[3] 2019-01-21 to 2019-
02-02 shows clear patterns in the reconstruction coefficient
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Figure 12. The reconstruction coefficients, temperature,
humidity, and brightness in precipitation conditions. In fair
weather, reconstruction coefficients of guided waves approach
1 but drop during precipitation. Reconstruction coefficients are
from the short-term PCA reconstruction (using the first fifteen
principal components and the time window is about one-day)
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Figure 13. The reconstruction coefficients, temperature,
humidity, and brightness in freezing conditions. In fair weather,
reconstruction coefficients approach 1 and drop when
temperature drops be 0 degrees C. Reconstruction coefficients
are from the short-term PCA reconstruction (using the first
fifteen principal components and the time window is about
one-day).

when the temperature is below zero. The reconstruction
coefficient will often drop below 0.5 sharply at these times.
When the temperature rises above zero, the reconstruction
coefficient will again approach 1.

Identifying Direct Sunlight Around 10 AM for days from
May to July, we observe another set of low reconstruction
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Figure 14. The reconstruction coefficients, temperature,
humidity, and brightness around direct sunlight conditions. In
fair weather, the reconstruction coefficients approach 1 and
drop when brightness and temperature spikes. Reconstruction
coefficients are from the short-term PCA reconstruction (using
the first fifteen principal components and the time window is
about one-day).

coefficients. The drop in reconstruction coefficients is less
than that of precipitation and freezing events. Reconstruction
coefficients during these events do not drop below 0.8
and occur when humidity is low, brightness is strong,
and the temperature is relatively high. These events are
illustrated in Fig.[I4] We believe these variations correspond
to direct sunlight on the plate, causing a rapid change in
environmental conditions.

The experiment is implemented at the University of Utah
in Salt Lake City. The solar altitude in Salt Lake City will be
the largest in the summer solstice, June 20th. Thus, around
June 20th, it is most possible for direct sunlight to occur
on the plate, which is generally shaded by walls on all four
sides. The direct sunlight may make the surface temperature
of the plate very high. The high temperature may change the
shape of guided waves and thus cause a rapid reduction in the
reconstruction coefficient. Thus, we consider direct sunlight,
another category of type-2 variation.

Automated Detection of Type-2 Variations

From Figs.[12][I3] and[T4] we have identified three categories
of type-2 variations — precipitation/surface wetting, freezing
conditions, and direct sunlight — these will cause the low
reconstruction of guided waves. Based on our empirical
observation in Fig. [6] we define a reconstruction coefficient
value below 0.975 as a low reconstruction coefficient. In this
section, we statistically show that reconstruction coefficient
drops obtained from the short-term PCA are caused by type-
2 variations.

Detection Performance of Individual Events To demon-
strate that our low reconstruction coefficients from the short-
term PCA reconstruction correspond to type-2 variations, we
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assess the ratio of measurements with low reconstruction
coefficients in precipitation, freezing, and direct sunlight
conditions, shown in Fig. [I5] These type-2 conditions are
defined as follows:

* Precipitation conditions are determined based on the
recorded archive of precipitation>.

* Freezing conditions are defined as times when the
temperature is below 0.

* Direct sunlight events occur predictably around 10:30
AM between May 15th to July 30th every year. Thus,
we define 10 AM to 11 AM from May 15th to July

30th as direct sunlight conditions.

Across all measurements, precipitation, freezing, and direct
sunlight conditions consist of 5%, 14%, and 1% of the
data, respectively. Most of the data (80%) are considered
fair conditions. The ratio of measurements with low
reconstruction coefficients is:

Vin L
ST an
where V; is the set contains measurements from the it
environment situation and ¢ € {1,2,3,4}. 1, 2, 3, and 4
represent precipitation, freezing, direct sunlight, and other
situations, respectively. and L is the set of contains all
measurements with low reconstruction coefficients. |- |
represents the number of elements in a set and ”N” means
union operation.

This ratio is statistically known as a method’s recall
metric, the rate at which a category is correctly predicted by
the low reconstruction coefficient. We use recall to measure
performance since there may be other type-2 variations (i.e.,
low reconstruction coefficients unaccounted for in our three
categories). For example, we lack surface wetting records.
In addition, there are likely occurrences of precipitation
that are not accurately recorded or may be shifted in
time when compared with data from the remote weather
station. This is observable by periods of high humidity
and low reconstruction coefficients that are not labeled as
precipitation by the data source. This imperfect knowledge
of the labels greatly and negatively impacts accuracy but not
recall. The recall rate reveals the dependency between type-2
variations and low reconstruction coefficients.

Under these conditions, the recall for precipitation,
freezing, and direct sunlight conditions by measurements
with low reconstruction coefficients are 35%, 43%, and
47%, respectively. However, the recall for the other times
(mostly fair weather conditions) by measurements with low
reconstruction coefficients is only 6%, shown in Fig.[T5] This
demonstrates that a low reconstruction coefficient is most
likely to occur at the same time as type-2 variations.

Detection Performance of Clustered Events The previous
recall of type-2 variations by measurements with low
reconstruction coefficients likely does not perfectly reflect
the correlation between low reconstruction coefficients
and type-2 variations due to transitory periods, such
as periods where precipitation is beginning or ending.
Hence, a time difference between real precipitation
conditions and recorded precipitation conditions results in an
underestimated recall. This is why the ratio of measurements
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Figure 15. The first bars (blue) describe the ratio of
measurements with low reconstruction in each category (i.e.,
the recall). For example, 35% of measurements collected during
precipitation obtain low reconstruction coefficients. The second
bars (orange) describe the ratio of each category across all
measurements. Hence, measurements from precipitation,
freezing condition, direct sunlight, and the other conditions are
5%, 14%, 1%, and 80% of the two years of data, respectively.
The sum of these values is 100%.

with low reconstruction coefficients is not high (e.g., 35%
on average for precipitation). To eliminate these transitions’
influence, we consider the ratio of measurements from
clusters of low reconstruction coefficients to measurements
from clusters of type-2 variation events. That is, we consider
a cluster recall.

In this context, the definitions of precipitation, freezing,
direct sunlight, and low reconstruction clusters are:

* A continuous group of measurements from precipita-
tion condition is defined as a precipitation cluster. For
example, if the weather history records that precipita-
tion started at 2 AM and ended at 3 AM on April 10,
2018, measurements from 2 AM to 3 AM on April 10,
2018, will be considered as a precipitation cluster.

* A continuous group of measurements whose tempera-
tures are below 0° C is defined as a freezing cluster.

e A continuous group of measurements from 10 am to
11 am each day from May 15th to July 30th is defined
as a direct sunlight cluster.

* A continuous group of measurements whose recon-
struction coefficients are below 0.975 is defined as a
low reconstruction cluster.

Leveraging the definitions of precipitation, freezing,
and direct sunlight clusters, we can define the cluster
recall of a category of type-2 variation as the ratio of
measurements from a category of type-2 variation clusters
that overlap with one or more low reconstruction clusters
to all measurements from the category of type-2 variation
clusters. However, using overlapped low reconstruction
clusters and type-2 variation clusters to calculate cluster
recalls of type-2 variation conditions may still be restrictive
and underestimate the cluster recalls since there may exist
time differences between recorded type-2 variations and the
true type-2 variations.

There are several reasons why a time difference between
recorded conditions and true conditions could occur. First,
the 15 miles distance between the meteorological station
and the experiment location may cause weather records
to be imprecise. For example, there may be a 2 hour time
difference between a recorded and true precipitation time.
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Hence, a low reconstruction cluster will not overlap with
any type-2 clusters and will be 2 hours away from the
precipitation cluster. Second, there will likely be a delay
between the ambient temperature (which we measure) and
our metal plate’s temperature. Hence we extend our regions

over which overlaps may occur. In this case, we define the
(

cluster recall of the ¢-th category of type-2 variations rf) as

o _ Vot L@

' Vil * ’
where set Vi(c) contains measurements from the i-th
category of type-2 variation clusters, each of which overlaps
with or is adjacent to one or more low reconstruction
clusters, and set V; contains all measurements from the i-
th category of type-2 variation condition. ¢ € {1,2,3} and
1, 2, and 3 represent precipitation, freezing, and direct
sunlight situations, respectively. | - |7 represents the number
of measurements from specific clusters and ”N*” means
“overlapped with or is adjacent to one or more clusters”.
Cluster recall rl(c) can describe how well any of our three
type-2 variations condition can be recalled or identified by
measurements with low reconstruction coefficients.

Leveraging this idea, we can also use the cluster recall
of low reconstruction measurement r(LC) to demonstrate how
many measurements with low reconstruction coefficients are
caused by precipitation, surface wetting, freezing, and direct
sunlight conditions. We define this cluster recall as

(18)

c (& c +
© ’(Vl( ) U V2 ) U ‘/3( )) ks L(C)

T'L: B

L+

19)

where the numerator contains measurements from low
reconstruction clusters, each of which overlaps with or
is adjacent to any clusters. |- |t represents the number
of measurements from specific clusters and “N*” means
“overlapped with or is adjacent to one or more clusters”

Fig. [16] illustrates our new recall as a function of the
allowable separation time between clusters, in hours. Fig.[T6|
shows the cluster recall of freezing condition is around 70%,
which means the observed probability of a freezing cluster
being near a low reconstruction cluster is 70%. The cluster
recall of direct sunlight condition is around 95%. The cluster
recall of precipitation condition increases from 80% to 90%
as the allowable separation time increases. These cluster
recalls mean that a precipitation cluster or a direct sunlight
cluster will most likely be near a low reconstruction cluster.

Finally, the overall cluster recall of low reconstruction
condition is over 90%. This means precipitation/surface
wetting, freezing condition, and direct sunlight can explain
over 90% of the low reconstruction coefficients. We believe
the true cluster recall should be higher since there are
unrecorded type-2 variations, such as potential precipitation
events on 04-12-2018 and 04-14-2018, shown in Figs. [_1;2}
Regardless, this shows that the low reconstruction coefficient
from the short-term PCA reconstruction is an excellent
metric for identifying type-2 variations

Synthetic Damage Detection

This subsection applies the long short-term PCA reconstruc-
tion method with a 1-day short-term time window (batch size
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Figure 16. The change of cluster recalls for precipitation,
freezing, direct sunlight, and low reconstruction condition with
the allowable separation time between clusters. The greater
than 90% cluster recall of low reconstruction condition indicates
that three type-2 conditions (precipitation, freezing, and direct
sunlight) explain over 90% of the low reconstruction of guide
waves.

is 10, 000) and a 10-day long-term time window (batch size is
100, 000) to detect synthetic damage. We calculate the TPR
and FPR within these regions by sweeping across a range
of thresholds for detecting synthetic damage. From this, we
generate the receiver operating characteristics (ROC) curves
shown in Fig. [I7] Results show that our method achieves an
area under the curve (AUC) score of 0.95, 0.91, and 0.80
when the scatter factor is 0.2, 0.1, and 0.05, respectively. An
area under the curve of 1.0 represents an ideal detector.

We compare our approach with optimal baseline selection
8113 Creating a fair comparison with optimal baseline
selection is not straightforward since our approach requires
no explicit baseline. Therefore, to make the comparison
as fair as possible, we take 100 baselines from the first
day of our 30 10-day regions. These baselines do not
contain damage and are not significantly affected by sensor
drift. When we compute the TPR and FPR, we ignore any
measurements with temperature outside one standard from
the mean in the baseline data. Hence, we will always have
representative baselines. Our detection statistic is then the
maximum correlation coefficient among all of the baselines.
The ROC curves from these statistics are shown when the
scatter factor is 0.2, 0.1 and 0.05, respectively, in Fig.
Part of the resulting correlation coefficients are shown in
the second plots in Fig. [I9] [20] and [2I] Missing correlation
coefficients are those outside of the baseline temperature
range. The results show that optimal baseline selection
obtains large false positive rates from type-2 variations,
thereby lowering the overall performance.

We illustrate the three sets of short-term and long-
term reconstruction coefficients in Fig. [19] 20} and [21]
respectively. In each figure, synthetic damage is represented
by a grey region of time. In the top plot, the black line
illustrates short-term PCA reconstruction and the gray line
illustrates long-term PCA reconstruction. The plot highlights
long-term reconstruction coefficients that detect damage in
orange, based on our damage detection approach, shown in
the first subplot.
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Figure 17. ROC curve and AUC score of synthetic damage
detection by the comparison of reconstruction coefficients from
the long short-term PCA
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Figure 18. ROC curve and AUC score of synthetic damage
detection by the correlation coefficient from optimal baseline
selection method (OBS)

In all three figures, both reconstruction coefficients
are close to 1 during type-1 variations and drop during
precipitation (type-2 variations). During the synthetic
damage period, the long-term reconstruction coefficients
have a noticeable drop while the short-time reconstruction
coefficients remain high. These values fall almost exclusively
in the region of synthetic damage. Overall,when setting 7 =
0.0015), our method achieves true positive rates of 97.9%,
81.2%, and 75.5% as well as false alarm rates of 1.7%, 2.4%,
and 0.0% in Fig. and [21] respectively. There are a
small number of spurious drops in long-term reconstruction
outside of these regions, such as May 23 and June 25 in
Fig. [I9] and These false alarms may be related with
some type-2 variations since such false alarms are near
precipitation and direct sunlight moments.

In contrast, the optimal baseline selection method (when
setting the correlation coefficient threshold to 0.975)
achieves true positive rates of 97.9%, 81.2%, and 99.4%
but with false alarm rates of 19.0%, 61.2%, and 0.0%. in
Fig.[19] 20] and 21] Although we have removed correlation
coefficients outside of the baseline temperature range, the
false positive rates of OBS method are still high. This is
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Figure 20. Synthetic damage detection by the comparison of
reconstruction coefficients from the short-term PCA and the
long-term PCA around direct sunlight moments

due to highly variable environments and deviations from the
baselines.

Note that for long-term structural health monitoring,
optimal baseline selection has two additional weaknesses.
First, for a dataset with approximately seven million
measurements, such as described in this work, optimal
baseline selection with baseline signal stretch (a current
standard approach 805 (with 100 baselines would require
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Figure 21. Synthetic damage detection by the comparison of
reconstruction coefficients from the short-term PCA and the
long-term PCA around fair weather moments.

approximately 4.5 years of computation time (assuming one
run of baseline signal stretch requires about 0.2s). Since
our approach processes data in batches, the same amount of
data requires approximately 10 days of computation time.
Second, long-term datasets are plagued by sensor drift,
which requires new baselines to be collected over time. In our
dataset, for example, two measurements taken at the same
temperature but one year apart have a correlation coefficient
between each other of approximately 0. We observe small
amounts of drift in as little as 10 days. While there have been
some efforts to study this“®, there are not yet comprehensive
studies.

Overall, the results in Fig [T9] 20} and [21] show that
our long short-term PCA reconstruction method can detect
synthetic damage (type-3/4 variations) under highly variable
environments (type-1 and type-2 variations) precisely. The
approach is shown to be robust to highly variable conditions
of all kinds. In addition, to the knowledge of the authors, no
other methods have shown the same resilience to false alarms
from type-2 conditions, such as precipitation.

Conclusions

Based on the difference in the reconstruction coefficients
obtained from the long-term PCA reconstruction and
from the short-term PCA reconstruction, we can identity
synthetic damage (type-3/4 variations) from highly variable
environments (type-1 and type-2 variations). We identified
four categories of type-2 (strong, transient) variations
— precipitation, surface wetting, freezing condition, and
direct sunlight. When precipitation occurs, reconstruction
coefficients will drop, the peak humidity increases, and a
drop in temperature and brightness are observed. The surface
wetting is observed after precipitation conditions and retains
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low reconstruction coefficients that slowly increase to 1.
Freezing conditions occur when the temperature is close to
or below zero degrees Celsius and causes the reconstruction
coefficients to decrease below 0.5. Direct sunlight conditions
are observed between 10 AM and 11 AM from May to July.
Their reconstruction coefficients drop but generally are still
above 0.8 and correspond to reductions in humidity. We
then showed that we can use this approach to detect type-
2 variations to also reduce false alarms caused by them in
damage detection.

The main contributions of the paper can be summarized
as the following. First, we demonstrated that strong and
transient environmental changes cause type-2 variations that
cause false alarms. Second, we show that a short-term PCA
reconstruction method can classify type-2 variations based
on drops in the reconstruction coefficient while remaining
nearly invariant to type-1 variations. Third, we show that
our long short-term PCA reconstruction method can detect
damage under highly variable environments without any
prior knowledge. Fourth, we demonstrate the method’s
performance on classifying type-2 and type-3/4 variations
across two years of guided wave data under all kinds of
weather.

In future work, we will test our method’s performance
for detecting realistic, slowly growing damage under highly
variable environments. Guided waves from real damage will
behave less stationary than synthetic damage. We believe this
approach will be able to distinguish these conditions.
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