Coded Matrix Chain Multiplication

Xiaodi Fan*, Angel Saldiviaf, Pedro Soto*, Jun Lit
*Graduate Center, City University of New York
tSchool of Computing and Information Sciences, Florida International University
tQueens College and Graduate Center, City University of New York

Abstract—The matrix multiplication is a fundamental building
block in many machine learning models. As the input matrices
may be too large to be multiplied on a single server, it is
common to split input matrices into multiple submatrices and
execute the multiplications on different servers. However, in a
distributed infrastructure it is common to observe stragglers
whose performance is lower than other servers at some time. In
order to mitigate the adversarial effects of potential stragglers,
various coding schemes for the distributed matrix multiplication
have been recently proposed. While most existing works have
only considered the simplest case where only two matrices are
multiplied, we investigate a more general case in this paper where
multiple matrices are multiplied, and propose a coding scheme
that the result can be directly decoded in one round, instead
of in multiple rounds of computation. Compared to completing
the matrix chain multiplication in multiple rounds, our coding
scheme can achieve significant savings of completion time by up
to 90.3%.

I. INTRODUCTION

The matrix multiplication is a fundamental operation for
solving various learning-based problems. With the ever grow-
ing sizes of learning models and datasets, the sizes of the
matrix multiplication in the models are also increasing. It has
become challenging to execute the matrix multiplication on
a single server when input matrices are from large datasets.
Therefore, it is common to split the job of matrix multipli-
cation to multiple tasks which can be executed on different
servers in parallel.

However, it is well known that servers in a distributed
infrastructure, e.g., in a cloud, can exhibit faulty behaviors [I1]]
due to load imbalance, resource contention, or hardware issues,
etc. Therefore, if some tasks are running on such servers, i.e.,
stragglers, they will become the bottleneck of the job. Even
one single straggler can significantly slow down the overall
progress of the whole job, as the completion of the whole job
depends on the completion of all of its tasks.

A naive method that mitigates the adversarial effects of
stragglers is to replicate each task on multiple servers, so
that the job can be completed as long as one of them runs
on a non-straggling server. However, it incurs an excessive
amount of resource consumption. To tolerate any r stragglers,
all tasks need to be replicated on 7 + 1 servers. On the other
hand, coding-based methods have been proposed where the
result of the job can be decoded from a certain number of

978-0-7381-3207-5/21/$31.00 ©2021 IEEE

coded tasks [2], [3l], [4]. As illustrated in Fig. , in order to
calculate AX, we first split A into two submatrices Ag and
Aq so that AX = [iﬂ X = [ﬁ?é((
coded task can be created as (Ao + A1)X, such that any two
of the three tasks can recover the result of AX. Compared to
replication which needs two additional tasks to tolerate one
single straggler, we save the number of workers by 25% in
Fig.[Ip. Hence, the coded matrix multiplication enjoys a higher
level of straggler tolerance with much fewer additional tasks.

]. Then one additional

Master Master

_[Ao] y _ [AoX] [A,XT] _ U —1] [(Ag+ 4))X]
AX= 01X = %) [ax] =0 1] Tax
[AoX] [AoX] [AX] [AX] [AX] [Ao+4DX] [AX]

Task 1 Task 2 Task 3

(a) replication

Task 4 Task 1 Task 2 Task 3

(b) one-dimensional coding

Master

1 [Ag X, ApX
AX = 0] . X, X.] = 02C 0
1 [0 1] »AIXL) Ale

IADXOmAU + A1) (Xy +X1)%A1Xﬂ

Task 1 Task 2 Task 3 Task 4 Task 5
(c) two-dimensional coding

S

Fig. 1. Examples of the coded matrix multiplication.

In order to reduce the size of the task, existing works for
the coded matrix multiplication have been evolved from one-
dimensional coding (e.g., [2]], [3], [S]) where only one matrix is
split as shown in Fig. [Tp, to two-dimensional coding (e.g.,[6],
[7], [8]) where both two matrices can be split, one vertically
and the other horizontally, as illustrated in Fig. [Tc. Comparing
the tasks in Fig. [Ip and those in Fig. [It, we can see that the
size of the tasks in Fig. [1k is further reduced by 50%. On the
other hand, we need to have five tasks to tolerate one straggler
in Fig. [Tk, as the overall result needs to be decoded from any
four tasks.

More generally, the two input matrices can be split both
horizontally and vertically into pg Xp1 and p; X pa submatrices.
Fig. [Tk, for example, corresponds to a special case of py =
p2 = 2 and p; = 1. A coded task will then multiply two
coded matrices that are linear combinations of submatrices in
the two input matrices. Therefore, we can see that the input
matrices can be divided into more and more submatrices of
smaller sizes, and then each task can be computed with less

time. To the best of our knowledge, the recovery threshold, i.e.,
the number of tasks required for the recovery of the result of
the matrix multiplication is pop1p2 + p1 — 1 [4l], [9].

However, existing works on the coded matrix multiplication
have been focusing on the multiplication of only two matrices,
while in practice there are various learning-based algorithms
requiring the result of the matrix chain multiplication, i.e.,
multiplying multiple matrices together.

With existing coding techniques above, the matrix chain
multiplication can only be completed by multiple rounds of
matrix multiplications. At least one input matrix in each round
must be based on the result of the previous round. Although the
sequence of multiplication can be determined using dynamic
programming to minimize the overall computational complex-
ity [[LO], the result of each round still needs to be decoded and
encoded again for the next round, making the job completion
time increase linearly with the number of rounds.

In this paper, we propose a general coding framework for the
matrix chain multiplication where the job can be finished with
just one round of tasks. Assume that there are m matrices M;,
1=0,...,m—1, and we aim to calculate their multiplication
HZ’;Bl M;. Although Dutta er al. [9] have also discussed
coding for the matrix chain multiplication, the input matrices
must be partitioned with specific patterns. Our coding scheme,
instead, supports to split the matrix in a more general way,
where M; can be split into any p; partitions vertically and
pi+1 partitions horizontally, and hence M; will be divided into
Dpipi+1 submatrices, i.e.,

0,0 0,piy1—1
M MOP
M; =

i—1,pit1—1

pi—1,0 D

Each task will then be a chain multiplication of m coded
matrices encoded from the submatrices in M, .. .7Mm,1E]
We prove that with our coding scheme, the recovery threshold
to recover the overall result of T[]/ M; is T/ pi +
szl p; — 1. In particular, we will see that the coding scheme
proposed in [4] can be considered as a special case of m = 2.

II. BACKGROUND: ENTANGLED POLYNOMIAL CODE
(m=2)

Before demonstrating our coding scheme for the matrix
chain multiplication, we first give a brief review of entangled
polynomial codes [4], a special case of our coding scheme
with m = 2. We will construct our code for the matrix chain

I'Since a coded task still calculates the matrix chain multiplication, dynamic
programming can also be applied on each task to minimize its complexity,
regardless of the coding scheme. Therefore, we focus on the coding scheme
only in this paper, instead of the order of multiplication in each task.

multiplication based on entangled polynomial codes. In this
case, the multiplication of My and M; can be written as

MoM; =
p1—1 p1—1
0,21 3 r1,0 0,21 g rx1,p2—1
> My™* M > Myt MY
x1=0 x1=0
b
Pzl po—1l,x z1,0 pizl po—1,x z1,p2—1
o—L,z1 1, o—1,x1 3 rx1,p2—
> M M > Mg M,
1'1:0 3:1:0

where we can see that there are pgpe submatrices. With an
entangled polynomial code, coded tasks are constructed to
obtain such pops submatrices. Each server runs a task that
calculates fo(X) f1(X), where the value of X is different from
that in any other tasks. In particular,

po—1lpi—1

§ : § :Mroﬂ:lXplpzonrm

o= 021—

and
p2—1p1—1

E E M{)1—1—$1,I2Xp1$2+11

xo=0x1=0

fl(X):

Therefore, we have

min{p; —1,s1}

D

z1=max{0,s1—p1+1}

po—1p2—12p1—2

=2 2 2

o= sz 0 51—

fo(X

M(")EO’«”UIM{)I*I*51+$17CU2) Xp1(pzwo+mz)+81’ (1)

From (1), we can see that fo(X)fi(X) is a polynomial
function of X of degree popip2 + p1 — 2. Therefore, we
can decode the coefficients of fo(X)f1(X) with popip2 +

p1 — 1 such tasks, by a polynomial interpolation algorithm or
Gaussian elimination. In particular, in (T)), the coefficients of
XPi(pzotz2) st with sy = py — 1 are Y 0 Zg My® ™ My "2,
Therefore, we can obtain the pgops desued submatrices in
MyM, after decoding.

It is interesting to note that when s; # p; — 1, the
corresponding coefficients are noise coefficients, i.e., they are
not needed after decoding. As shown in Fig. 2] we cover the
exponents of the terms in fo(X)f1(X) with some specific
values of zg and ;. We can see that such exponents range
between pip2po + p172 and pi1paro + p1w2 + 2p1 — 2. In
particular, the term with the exponent p;paxo+p122 +p1 — 1,
which corresponds to 51 = p1 — 1, has its coefficient as a
desired submatrix 7' Z oMoV

In fo(X)f1(X), the exponents of noise coefficients will not
interfere with the other desired coefficients with s; = p; — 1,
although the values of s; can range between 0 and 2p; — 2. If
we compare the terms of (xg,x2) with those of (zg, s — 1),
we can see that the exponents of (xg,z2 — 1) are all smaller
than the exponent that corresponds to the desired submatrix, if
29 > 0. On the other hand, the exponents of (zq, 22 + 1) are
all larger than that of the desired submatrix if xo < ps — 1.
Hence, no other terms in fo(X)f1(X) will have the same

(2,29 — 1) ‘ ‘ ‘ p1(p220 + ¥2) + 51
P1P2To T P12 — P1 Pp1pao + prr2 — 1 P1P2Zo + P12 +p1 — 2
(51 =0) (s1=p1—1) (51 =2p; —
(zg,29) ‘ ‘ ‘ p1(pazo + x2) + 51
P1P2%0 + P12 P1p2o + P12 +p1 — I pipado Fp122 +2p1 =2
(s,=0) (s1=p1—1) (s1=2p, —2)
(zg, o + 1) ‘ ‘ ‘ p1(p220 + 22) + 51

P1P2%o + P12 + P1
(51, =0)

P1p2Z0 + 122 + 2p1 — Ipipazo + praa +3p1 — 2
(s1=p1—1) (51 =2p; —2)

Fig. 2. Entangled exponents of X in fo(X)f1(X).

exponent as p1p2Zo + p1r2 + p1 — 1. We can also get the
same result if x5 = 0 or x5 = py — 1, i.e., when (xg,ps — 1)
goes to (zo+1,0). Therefore, all desired submatrices with all
possible values of (xg,x2) will also have unique exponents,
making sure that their values can be correctly obtained after
decoding.

Moreover, the exponents of noise coefficients can overlap so
that the degree of the polynomial can be reduced. In Fig.[2] we
can see that except the exponent corresponding to s; = p; —1,
all the other exponents around can be matched with the same
exponent above with (xg, z2—1) or lower with (xg, z2+1). As
their corresponding coefficients are noise, they can be added
together without affecting the overall result after decoding.
Therefore, compared to making all terms with different values
of (zo,z2) have different exponents, entangled polynomial
codes save the overall degree of fo(X)f1(X) and thus also
helps to achieve a low recovery threshold. In this paper, we
will further utilize this property in order to achieve a low
recovery threshold in the coded matrix chain multiplication.

III. CODED CHAIN MULTIPLICATION OF THREE
MATRICES (m = 3)

We now start to construct our coding scheme for the
matrix chain multiplication. For simplicity, we first present the
construction for a special case of multiplying three matrices,
i.e., m = 3. We will present the code construction for a general
value of m in Sec. [V

We show that the code for the multiplication of three
matrices can be extended from the entangled polynomial
code. Considering the case of MyMiMs, a coded task will
then be constructed as fo(X)f1(X)f2(X). Here, fo(X) and
f1(X) remain the same as constructed with the corresponding
entangled polynomial code constructed for MyM;, and we
will now present how to construct fo(X).

Similar to the case of m = 2 in Sec. [[} there will be pops
submatrices in MM M. In particular, if we define M 9 =
MyM,, we can divide M o into pop2 submatrices and have

MoM My = MoMy =

pa—1 . 0,29 p2—1 ~ 0,

’ 2,0 2 962,;03—1
> My "M, > My
xo=0 xo=0
)
—1
OrPo—1@2 5 ras.0 Paa™ ppo—L@z 3 g pa—1

Z M, M, > M, M,
T = =0 1?2:0

Z0,T2

where M, " = =y oz "
0<me <p2—1

We will now discuss how to construct fo(X) to obtain
such pops submatrices. Considering (I), we can rewrite

fo(X) f1(X) as
Jo(X) f1(X)

po—1p2—12p1—2

_ Z Z Z Ca(z0, x2, Sl)Xpl(pzxo+q¢2)+sl

o= OIQ 0 S1=

2p1—2 /po—1 102—1
(R X et eeans),

5120 IQ:O 1220

w07$1M1301’12, 0<290<py—1 and

Z0,T1

A min{p1—1,s1}
where Cg(l‘o,l‘g, 51) = E =max{0,s1 —p1+1}

MPr 1S T0E Brom Sec |1 we know that we are interested
in the value of Cs(xg,x2,s1) if s1 = p; — 1. Therefore, the

submatrices in Mo have been encoded in fo(X)f1(X) as
po—1lp2—1
fo(X) = Z Z Oy (w0, T, py — 1) XPr(P2rotE2)+p1—1
(L‘D_O (L‘Q_O
po—1lp2—1
— Z Z \, IO’xZXpl(P2$0+w2)+P1*1.
3?0:0 To= =0
Now we reapply entangled polynomial codes
to MgMg, and encode My, as fy(X) =
Zi;é z2 0 Mp2_1 T2,T3 Y pop1p2T3TP1T2 We will
then get
po—1p3—12ps—2 min{pa—1,s2}
PR =330 > >
2o=0x3=0 s2=0 zo=max{0,s2—p2+1}
MmO’IQMm— —92'*‘3?27953) X P1(Pop2ws+pazotsa)+(p1—1)

Similarly, we are interested in the coefficients where
So = po — 1. Therefore, the desired coefficients in
Fo(X) f1(X) f2(X) are those with s; = p;—1 and sy = pa—1:

po—1p3—12py—22p;—

TYY Y

o= 013 0 82_0 81—

fo(X)fr(X

min{p2—1,s2}
p2—1—sao+x2,z
02(1'0,372781)]\432 2 23
zo=max{0,50—p2+1}
X P1(Pop2@a+pazotsa)+ts)

(g, 73)

p1(popazs + pato + s2) + 51

s =p—1
s> = I
Sy =Py —2
s2 =Py~ 1| l |
S2 :';Pj
(zg, x5+ 1) 5y = 2py — 2 P1(popa®s + p2xo + $2) + 81
s1=p;—1

Fig. 3. Entangled exponents of X in fo(

We show how exponents of fo(X)f1(X)f2(X) are en-
tangled in Fig. [3l Given a fixed (xo,x3), we can see that
the exponents of the corresponding terms are entangled in
the same way as entangled polynomial codes. In this case,
however, the exponents are also further entangled with the
exponents with (zg,z3 + 1). Similar to entangled polynomial
codes, although piss + s; can vary from 0 to 2pips — 2,
and the exponents of X in will increase by pips when
(z3,20) goes to (x3,x9 + 1), we can still see that the
desired coefficients in the middle will not interfere with noise
coefficients around. As shown in Fig. 3] given z¢ and x3, the
only desired coefficient has s; = p; — 1 and s2 = po — 1,
while all other noise coefficients can overlap with each other
with different values of s;. When we change x3 to x3 + 1,
the exponents of coefficients with so # ps — 1 will further
be entangled with those of previous coefficients of (zg,xz3),
while the desired coefficient still enjoys its unique exponent.

Given the entangled exponents above, we can see that the
degree of fo(X)f1(X)f3(X) is pop1p2ps + p1p2 — 2, as the
exponents of X range from 0 to pop1p2(ps — 1) + p1p2(po —
1) +p1(2p2 —2)+(2p1 —2) = pop1p2p3 +p1p2 —2. Therefore,
the recovery threshold is pop1p2ps + p1p2 — 1, and the desired
submatrices can be found in pgp3 of its coefficients with s; =
p1 — 1 and so = py — 1.

IV. GENERAL MATRIX CHAIN MULTIPLICATION

We now generalize the code construction for matrix chain
multiplication with any m matrices, m > 2. We define a
coding function (2, that generates fo(X),..., fim—-1(X), i.e.,
(fO(X)7 EEE) fmfl(X)) = Qm<M0a) Mmfl)'

Following the method in Sec. the general coding func-
tion €2, can be constructed recursively in Alg. [I] We define
PP = H?:a p;. In particular, if a > b, we define P? = 1.

Note that an(]\407 ey Mm—l) = fo(X), ceey fm—l(X)
can be constructed before encoding and then the encoding
process will be directly evaluating the value of such m
polynomials with a unique value of X, and we will obtain a
coded task F,,,(X) = H?fol fi(X). Moreover, the coefficients
in F,,(X) can also be decoded by interpolation or Gaussian
elimination, as in the entangled polynomial code.

X) f1(X) f2(X).

Algorithm 1 Construction of Q,,(My, ..
1: if m = 2 then

) Mm—l)

2 fo(X) = b Ty Yoy Myt Xpiperote

B AK) =30 Yoy M e

4: return (fo(X), f1(X))

5: else if m is odd then

6: (fo(X),,fm_ggi()) :QTl_l(Mo,.._.l,_Mm_g)
7. fm—l(X) = ‘2::0 Z:;:i:o Mﬁf”;—f moem
8: XPJVL*lwnl+PIIL72xm71

9: return (fo(X),..., fm—1(X))

10: else if m is even then

11: (fl(X)a~..7fm—l(X)):Qm—l(Ml,...7Mm_l)
12: fo(X) — Zpﬂfé p1—1]\4671717931,a:U‘valmivo_i_PQm_lle
To=

return (fo(X).- .- e 1(X))

(95}

From Alg. [1} we can see that F},(X) is still a polynomial
function of X, and thus we can write F,,,(X) as

po—1pm—12p;—2 2pm—1—2
Fn(X)=20 2. > 2
x0=0x,=0 s1=0 Sm—1=0

Cm(x(h Loy S1y vy Smfl)XRm(wmwm’SI7..-7877171)7

where Crn (0, Ty S14 -+ 5 Sm—1) and
Ry (zo, T, S1,-..,8m—1) denote the coefficient and
exponent of each term, respectively. We now analyze the
recovery threshold and the correctness of Alg. [I| in the two
theorems below.

Theorem 1. In F,,(X), 0 < R, (zo, Zm, S1, -
L

) Smfl) S

Theorem 2. For any m > 2, the popm
submatrices in H?!Ol M; can be uniquely found in
Con(T0, Ty S1, -« s Sm—1) when s; = p;—1,i=1,...,m—1.

From Theorem [I] we can see that the recovery threshold
of F,,,(X) is PJ* + P"~' — 1. Furthermore, by Threorem
the results of the chain matrix multiplication can be correctly
obtained from pgp,, desired coefficients in F,,(X). The proof

of the two theorems above can be found in the full version of
the paper [L1].

V. EVALUATION

In this section, we present our empirical results of running
the coded matrix multiplication in a cluster of virtual machines
hosted on Microsoft Azure. All coded tasks run on virtual
machines of type B1. The job is controlled by another virtual
machine of type B4 as a master, which also decodes the results
of tasks as decoding requires more memory than each task.

We implement our coding scheme (chain) for the matrix
chain multiplication with OpenMPI. The m coded matrices
in Q,,(Mo,...,M,,_1) are initially stored on each worker.
Each worker multiplies such m coded matrices and uploads
the result to the master. The master keeps polling if there is
any new result sent from a worker, terminates all remaining
tasks once the number of received results reaches the recovery
threshold, and then decodes the results. In our experiments, we
decode the results with Gaussian elimination. Note that we
only need to obtain the pop,, desired coefficients in F,,(X),
and thus the decoding will be stopped once we get such desired
coefficients in order to save time.

As a comparison, we implement another scheme EP (parti-
tion) which completes coded chain multiplication in multiple
rounds, each of which is encoded with an entangled poly-
nomial code. To make a fair comparison, we also first store
each m matrices encoded with entangled polynomial codes
on each worker. In the first round, each worker multiplies
the two coded matrices in Q2(Mg, M;), and the master will
obtain P, = MyM;. Then the master will only encode P; as
in Qo(Py, M), as M, has already been encoded, and sends
coded matrices to each worker. In this round, P, = P; M5 will
be calculated and the master will also encode P», and so on
until all m input matrices have been multiplied at the end of
the (m — 1)-th round.

We run jobs with the two schemes above, which multiply
m random matrices of the same size with m = 3, 4, and
5, respectively. In these jobs, the sizes of the m matrices
are 2000 x 2000 and 4000 x 4000. Each matrix is split both
vertically and horizontally into 2 partitions, i.e., pg = --- =
Pm = 2. Therefore, the recovery thresholds for the jobs in
chain are 19 (m = 3), 39 (m = 4), and 79 (m = 5).
The number of workers is then chosen as the sum of the
corresponding recovery threshold and 5 additional workers,
such that at most 5 stragglers can always be tolerated. When
running the job with entangled polynomial codes in multiple
rounds, the number of workers in each round will be chosen
such that the same number of stragglers can be tolerated.

Although EP (partition) maintains the same partitions as
chain, the entangled polynomial code has a much lower
recovery threshold and thus require much fewer workers if
the same number of stragglers need to be tolerated. Hence,
we run the same jobs with one more scheme EP (worker),
which is also based on the entangled polynomial code, by
increasing the number of partitions of input matrices in each
round so that the same number of workers will be required

as chain. The numbers of partitions in the two input matrices
in each round will be 2 x 4 and 4 x 2 (m = 3), 3 x 4 and
4x3(m=4),and 3 x 8 and 8 x 3 (m = 5). If the rows or
columns of a matrix cannot be equally divisible by the number
of partitions, we will add additional zero rows or columns at
the end of the matrix.

EP (partition)
EP (worker)
chain

fany
v

time (sec.)
=
o

o wu

Job 1

(b) m=4

- EP (partition)
840 EP (worker)
° BN chain
£

o

Job1

(c) m=5

B EP (partition)
EP (worker)
B chain

=
o
o

time (sec.)

\
0 Job 1 Job 2

Fig. 4. Comparison of the job completion time of the matrix chain multipli-
cations.

In Fig.] we present the job completion time of coded
chain multiplication in the two jobs with the three schemes
above, i.e., chain, EP (partition), and EP (worker). We run
each job 60 times, and show the average of its job completion
time in Fig.] We can see that our coding scheme can
significantly save the overall job completion time by at most
90.3%. Compared to EP (partition), although more tasks are
allowed with our coding scheme, making the parallelism of
the job increase, the most saving of time comes from the
communication overhead, as with entangled polynomial codes
the intermediate results should be uploaded to the master and
then be encoded for the next round. Moreover, although EP
(worker) enjoys the same level of parallelism as chain, its
high communication overhead actually becomes its bottleneck,
and we can see that its job completion time is the worst.
Due to the space limit, the experiment results about the
communication overhead can be found in the full version [[L1]].

We now use the coded matrix chain multiplication to solve a
linear regression problem in a distributed manner. The problem
is modeled as min, f(z) £ min, |[Az —y||%, where y € R?
is the label vector, A € R2*" is the matrix of the dataset, and
z € R" is the unknown weight vector to be trained. We solve
the linear regression problem with gradient descent. After
initializing the weight vector as z(?), we update it iteratively
as (D) = 2 AV f(2®) = 2 —y AT (Az®) —y), t > 0.
We can then observe that each step can be completed by two
matrix multiplications, i.e., g £ Az®, and AT (¢¥) —y). To
tolerate potential stragglers, we can use entangled polynomial

codes to encode A and z(Y) in the first matrix multiplication,
and A” and ¢(*) — y in the second matrix multiplication, and
then proceed to the next step. As A and A7 do not change in
each step, we can place their coded matrices on each worker
before the job starts, and hence only z(*) and ¢(*) —y need to
be encoded and sent to all workers.

(a) 100 steps

=
wu

B EP (partition)
EP (worker)
B chain

g
o

o
¢

time (sec.)

o
o

1000x1000 2000%2000 4000%x4000

(b) 500 steps

~ | mmm EP (partition)
EP (worker)
— 4| mmm chain

1000x1000

2000%2000

4000%x4000

(c) 1000 steps

B EP (partition)
10{ mmm EP (worker)
B chain

time (sec.)

1000x1000

2000%2000

4000x 4000
Fig. 5. Comparison of the job completion time of the linear regression.

The algorithm above was also used in [2], [12], requiring
two rounds of matrix multiplications in each step. However,
we observe that z(**1) can be written as z(*t1) = z(t) —
yAT Az 4+ vATy. Since A and y are constant, we only
need to compute ATy once. In each step, we only need to
compute a matrix chain multiplication A” Az(*). Compared to
existing solvers based on the distributed matrix multiplication,
the number of matrix multiplications in each step is saved from
two to one. Still, A and AT are encoded and placed on each
worker before the job starts, and only z(*) need to be encoded
and sent to all worker per step.

In our experiment, we run the same jobs using the two
methods above, i.e., EP and chain. We use coded matrix
chain multiplication in chain. In chain, A and A” are both
partitioned into 2 X 2 submatrices. As z(® is a vector, we
just split it into 2 partitions horizontally. The same to Fig. @}
we split the matrices in two ways in EP. EP (partition)
partitions the input matrices in the same way as in chain,
and EP (worker) increases the input matrices so that the
recovery threshold equals that in chain, i.e., A and AT are
partitioned into 4 x 2 submatrices and z(*) is still split into
2 partitions. We repeat each job 20 times, and obtain their
average time of completion. The sizes of the dataset matrix A
are randomly generated in three different sizes, 1000 x 1000,
2000 x 2000, and 4000 x 4000, as well as the label vector y
with the corresponding sizes.

Fig.] illustrates the completion time of the jobs running
with the three schemes above. Comparing to EP (partition),

chain is faster by up to 51.7%. EP (worker) is also a bit
faster than EP (partition), by up to 27.29%, due to its higher
parallelism. Although EP (worker) enjoys the same recovery
threshold as chain, chain is still faster since each step only
requires one chain multiplication, leading to a higher level of
parallelism since the two matrix multiplications in each step
in EP (worker) can only be done sequentially.

VI. CONCLUSION

Coded computing for the distributed matrix multiplication
have been demonstrated to efficiently tolerate stragglers. How-
ever, existing coding schemes proposed so far have only
considered the multiplication of two matrices, and we consider
the matrix chainmultiplication in this paper. As the existing
coded matrix multiplication can only multiply two matrices
each time, with which the chain matrix multiplication needs to
be completed in multiple rounds, we propose a coding scheme
for the matrix chain multiplication with a general number
of matrices multiplied, which allows to complete the chain
multiplication in one single round.

ACKNOWLEDGMENT

This paper is based on work supported by the National
Science Foundation under Grant No. CCF-2101388.

REFERENCES

[1] P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang, M. Chintalapati, and
R. Yao, “Gray Failure: The Achilles’ Heel of Cloud-Scale Systems,”
in USENIX Conference on Hot Topics in Operating Systems (HotOS),
2017.

[2] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchan-
dran, “Speeding Up Distributed Machine Learning Using Codes,” IEEE
Transactions on Information Theory, vol. 64, no. 3, pp. 1514-1529,
2018.

[3] S. Dutta, V. Cadambe, and P. Grover, “Short-Dot: Computing Large
Linear Transforms Distributedly Using Coded Short Dot Products,” in
Advances in Neural Information Processing Systems (NIPS), 2016, pp.
2100-2108.

[4] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler Mitigation
in Distributed Matrix Multiplication: Fundamental Limits and Optimal
Coding,” in IEEE International Symposium on Information Theory
(ISIT), 2018, pp. 2022-2026.

[5] A. Reisizadeh, S. Prakash, R. Pedarsani, and S. Avestimehr, “Coded
Computation over Heterogeneous Clusters,” in /[EEE International Sym-
posium on Information Theory (ISIT), 2017, pp. 2408-2412.

[6] T. Baharav, K. Lee, O. Ocal, and K. Ramchandran, “Straggler-proofing
Massive-scale Distributed Matrix Multiplication with d-dimensional
Product Codes,” in IEEE International Symposium on Information
Theory (ISIT), 2018, pp. 1993-1997.

[7]1 H. Park, K. Lee, J.-Y. Sohn, C. Suh, and J. Moon, “Hierarchical
Coding for Distributed Computing,” in IEEE International Symposium
on Information Theory (ISIT), 2018.

[8] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Polynomial Codes:
an Optimal Design for High-Dimensional Coded Matrix Multiplication,”
Advances in Neural Information Processing Systems (NIPS), 2017.

[9]1 S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and

P. Grover, “On the Optimal Recovery Threshold of Coded Matrix

Multiplication,” IEEE Transactions on Information Theory, vol. 66,

no. 1, pp. 278-301, 2019.

S. S. Godbole, “On Efficient Computation of Matrix Chain Products,”

IEEE Transactions on Computers, vol. 22, no. 9, pp. 864-866, 1973.

[11] X. Fan, A. Saldivia, P. Soto, and J. Li, “Coded Matrix Chain

Multiplication.” [Online]. Available: |https://boole.cs.qc.cuny.edu/li/

papers/xiaodi-iwqos21-full.pdf

Y. Yang, M. Interlandi, P. Grover, S. Kar, S. Amizadeh, and M. Weimer,

“Coded Elastic Computing,” in IEEE International Symposium on In-

formation Theory, 2019.

(10]

[12]

https://boole.cs.qc.cuny.edu/li/papers/xiaodi-iwqos21-full.pdf
https://boole.cs.qc.cuny.edu/li/papers/xiaodi-iwqos21-full.pdf

	Introduction
	Background: Entangled Polynomial Code (m=2)
	Coded Chain Multiplication of Three Matrices (m=3)
	General Matrix Chain Multiplication
	Evaluation
	Conclusion
	References

