e-Approximate Coded Matrix Multiplication is
Nearly Twice as Efficient as Exact
Multiplication

Haewon Jeong, Member, IEEE, Ateet Devulapalli, Viveck R. Cadambe, Member, IEEE, Flavio P.
Calmon, Member, IEEE

Abstract—We study coded distributed matrix multiplication
from an approximate recovery viewpoint. We consider a
system of P computation nodes where each node stores
1/m of each multiplicand via linear encoding. Our main
result shows that the matrix product can be recovered with
€ relative error from any m of the P nodes for any ¢ > 0.
We obtain this result through a careful specialization of
MatDot codes — a class of matrix multiplication codes
previously developed in the context of exact recovery
(¢ = 0). Since prior results showed that MatDot codes
achieve the best exact recovery threshold for a class of
linear coding schemes, our result shows that allowing for
mild approximations leads to a system that is nearly twice
as efficient as exact reconstruction. For Entangled-Poly
codes — which are generalizations of MatDot codes — we
show that approximation reduces the recovery threshold
from pZg+ g — 1 to p*g, when the input matrices A, B are
split respectively in to a p X ¢ and g X p grids of equal-sized
submatrices.

Index Terms—Coded computing, Distributed computing,
Fault-tolerant computing, Error correction codes, Approx-
imate algorithms, Matrix Multiplication, Distributed ma-
chine learning

I. INTRODUCTION

Coded computing has emerged as a promising paradigm
to resolving straggler and security bottlenecks in large-
scale distributed computing platforms [1]-[24]. The
foundations of this paradigm lie in novel code construc-
tions for elemental computations such as matrix oper-
ations and polynomial computations, and fundamental
limits on their performance. In this paper, we show that
the state-of-the-art fundamental limits for such elemental
computations grossly underestimate the performance by
focusing on exact recovery of the computation output.

This material is based upon work supported by the National Sci-
ence Foundation under grants CIF 1900750, CAREER 1845852, 1IS
1926925, and CCF 1763657.

Haewon Jeong and Flavio Calmon are with the John A. Paulson
School of Engineering and Applied Sciences at Harvard University.
E-mails: haewon, flavio@seas.harvard.edu.

Ateet Devulapalli and Viveck R. Cadambe are with the School of
Electrical Engineering and Computer Science at Pennsylvania State
University. E-mails: azd565,viveck@psu.edu

By allowing for mild approximations of the computa-
tion output, we demonstrate significant improvements in
terms of the trade-off between fault-tolerance and the
degree of redundancy.

Consider a distributed computing system with P nodes
for performing the matrix multiplication AB. If each
node is required to store a fraction 1/m of both matrices,
the best known recovery threshold is equal to 2m — 1
achieved by the MatDot code [3]. Observe the contrast
between distributed coded computation with distributed
data storage, where a maximum distance separable
(MDS) code ensures that if each node stores a fraction
1/m of the data, then the data can be recovered from
any m nodes! [25], [26]. Indeed, the recovery threshold
of m is crucial to the existence of practical codes that
bring fault-tolerance to large-scale data storage systems
with relatively minimal overheads (e.g., single parity and
Reed-Solomon codes [27]).

The contrast between data storage and computation is
even more pronounced when we consider the gener-
alization of matrix-multiplication towards multi-variate
polynomial evaluation f(Aj,As,...,A,) where each
node is allowed to store a fraction 1/m of each of
A, Ay, ..., Ay In this case, the technique of Lagrange
coded-computing [5] demonstrates that the recovery
threshold is d(m — 1) + 1, where d is the degree of
the polynomial. Note that a recovery threshold of m
is only obtained for the special case of degree d = 1
polynomials. The case of d = 1 i.e., elementary linear
transformations that were originally studied in [28]* can .
While the results of [3], [29] demonstrate that the amount
of redundancy is much less than previously thought for
degree d > 1 computations, these codes still require an
overwhelming amount of additional redundancy—even

I'This essentially translates to the Singleton bound being tight for a
sufficiently large alphabet

2The case of distributed storage can be viewed as the case of d = 1;
specifically, we may view the problem of recovering the data matrix
A as equivalent to recovering linear transformation A applied to all
columns of the identity matrix, hence the recovery threshold of m.

to tolerate a single failed node—when compared to codes
for distributed storage.

A. Summary of Results

Our paper is the result of the search for an analog of
MDS codes—in terms of the amount of redundancy
required—for coded-computation of polynomials with
degree greater than 1. We focus on the case of coded
matrix multiplication where the goal is to recover the
matrix product C = AB. We consider a distributed
computation system of P worker nodes similar to [2],
[3]; we allow each worker to store an m-th fraction of
matrices of A, B via linear transformations (encoding).
The workers output the product of the encoded matrices.
A central master/fusion node collects the output of a
set S of non-straggling workers and aims to decode
C with a relative error of e. The recovery threshold
K(m,e€) is the cardinality of the largest minimal subset
S that allows for such recovery. It has been shown in [3],
[29] that, for natural classes of linear encoding schemes,
K(m,0) =2m — 1.

Our main result shows that the MatDot code with
a specific set of evaluation points is able to achieve
K(m,€) = m, remarkably, for any ¢ > 0. A simple
converse shows that our result is tight. Our results
mirrors several results in classical information theory
(e.g., almost lossless data compression), where allowing
e-error for any € > 0 leads to surprisingly signifi-
cant improvements in performance. We also show that
for PolyDot/Entangled polynomial codes [3], [29], [30]
where matrices A, B are restricted to be split as p X ¢
and ¢ X p block matrices respectively, we improve the
recovery threshold® from p?q+q—1 to p?q by allowing
e-error. When we fix the splitting of input matrices as in
PolyDot codes, the gain in recovery threshold we obtain
from approximation is not 2x as in e-MatDot codes.
e-Approximate MatDot codes are a special case of e-
Approximate PolyDot codes with p = 1, which has the
biggest relative gain compared to the exact computation
counterpart. We believe that these results open up a
new avenue in coded computing research via revisiting
existing code constructions and allowing for an e-error.

Through an application of our code constructions to
distributed training for classification via logistic regres-
sion, we show that our approximations suffices to obtain
accurate classification results in practice.

B. Related Work

The study of coded computing for elementary linear
algebra operations, starting from [4], [28], is an active

3Strictly speaking, the recovery threshold of entangled polynomial
codes depends on the bilinear complexity, which can be smaller than
p?q+q—1129].

research area (see surveys [22]—[24]). Notably, the recov-
ery thresholds for matrix multiplication were established
via achievability and converse results respectively in [2],
[3], [29]. The Lagrange coded computing framework of
[5] generalized the systematic MatDot code construction
of [3] to the context of multi-variate polynomial evalua-
tions and established a tight lower bound on the recovery
threshold. These works focused on exact recovery of the
computation output.

References [31]-[33] studied the idea of gradient coding
from an approximation viewpoint, and demonstrated
improvements in recovery threshold over exact recov-
ery. However, in contrast with our results, the error
obtained either did not correct all possible error patterns
with a given recovery threshold (i.e., they considered
a probabilistic erasure model), and the relative error of
their approximation was lower bounded. The references
that are most relevant to our work are [20], [21], [34],
which also aim to improve the recovery threshold of
coded matrix multiplication by allowing for a relative
error of e. These references use random linear coding
(i.e., sketching) techniques to obtain a recovery threshold
K (e,8,m) where ¢ is the probability of failing to recover
the matrix product with a relative error of €; the problem
statement of [34] is particularly similar to ours. Our
results can be viewed as a strict improvement over this
prior work, as we are able to obtain a recovery threshold
of m even with 6 = 0, whereas the recovery threshold
is at least 2m — 1 for § = 0 in [20], [21], [34].

A related line of work in [35], [36] study coded
polynomial evaluation beyond exact recovery and note
techniques to improve the quality of the approxima-
tion. References [37], [38] develops machine learning
techniques for approximate learning; while they show
empirical existence codes with low recovery thresholds
(such as single parity codes [37]) for learning tasks
they do not provide theoretical guarantees. Specifically,
while [37], [38] shows the benefits of approximation
in terms of recovery threshold, it is unclear whether
these benefits appear in their scheme due to the special
structure of the data, or whether the developed codes
work for all realizations of the data. In contrast with
[35]-[38], we are the first to establish the strict gap in
the recovery thresholds for e-error computations versus
exact computation for matrix multiplication, which is a
canonical case of degree 2 polynomial evaluation.

A tangentially related body of work [39]-[42] studies
the development of numerically stable coded comput-
ing techniques. While some of these works draw on
techniques from approximation theory, they focus on
maintaining recovery threshold the same as earlier con-
structions, but bounding the approximation error of the

output in terms of the precision of the computation.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. Notations

We define [n] £ {1,2,---,n}. We use bold fonts for
vectors and matrices. A[i, j] denotes the (4, j)-th entry
of an M x N matrix A (i € [M],j € [N]) and v[f] is
the i-th entry of a length-N vector v (i € [N]).

B. System Model

We consider a distributed computing system with a
master node and P worker nodes. At the beginning of the
computation, a master node distributes appropriate tasks
and inputs to worker nodes. Worker nodes perform the
assigned task and send the result back to the master node.
Worker nodes are prone to failures or delay (stragglers).
Once the master node receives results from a sufficient
number of worker nodes, it produces the final output.

We are interested in distributed matrix multiplication,
where the goal is to compute

C = AB. (1)

We assume A, B € R™*"™ are matrices with a bounded
norm, i.e.,

I[All[r <n and |[B|lr <, (2)

where || || denotes Frobenius norm. We further assume
that worker nodes have memory constraints such that
each node can hold only an m-th fraction of A and an
m-th fraction of B in memory. To meet the memory
constraint, we divide A, B into small equal-sized sub-
blocks as follows*:

Aiq A, Bia B,
A=| CB=] 0
Ap,l Ap,q B By
3)
where pg = m. When p = 1, we simply denote
B,
B,
A= [Al Ay Am} and B =

B,

To mitigate failures or stragglers, a master node encodes
redundancies through linear encoding. The i-th worker
node receives encoded inputs A; and B; such that:

A= fi(A1 - Apg), Bi=gi(Bi1,--Bgyp),
#We limit ourselves to splitting the input matrices into a grid of

submatrices. Splitting into an arbitrary shape is beyond the scope of
this work.

where
fiiRPXa x - x R? ™4 — Rv» ¥4, 4)
pg=m
gi:Ra™» x--- xRa*p - Ra™», (5)
m

We assume that f;,g; are linear, i.e., their outputs are
linear combinations of m inputs. For example, we may
have fi(Zy1, -+ ,Zm) = Yi1Z1+- - - +i,m Ly, for some
Yij € R (j S [m]) .

Worker nodes are oblivious of the encoding/decoding
process and simply perform matrix multiplication on
the inputs they receive. In our case, each worker node
computes B o

C; = A;B,, (6)

and returns the % X % output matrix C; to the master

node.

Finally, when the master node receives outputs from
a subset of worker nodes, say S C [P], it performs
decoding:

~ ~

Cs = ds((Ci)ies), 7

where {ds}sc(p) is a set of predefined decoding func-
tions that take |S| inputs from R»*% and outputs an
n-by-n matrix. Note that we do not restrict the decoders
ds to be linear.

C. Approximate Recovery Threshold

Let f and g be vectors of linear encoding functions:

£ =[f:

and let d be a length-2” vector of decoding functions
ds for all subsets S C [P]. More specifically, ds is a
decoding function for the scenario where worker nodes
in set S are successful in returning their computations to
the master node and all other worker nodes fail. We say
that the e-approximate recovery threshold of f, g, d is K
if for any A and B that satisfy the norm constraints (2),
the decoded matrix satisfies

frl.g=[n gr],

Csli,j] = Cli,j)l < e (5,5 € [n]) @®)

for every & C [P] such that |S| > K. We de-
note this recovery threshold as K(p, g, ¢, f,g,d). More-
over, let K*(p,q,e) be defined as the minimum of
K(p,q,¢f,g,d) over all possible linear encoding func-
tions f, g and all possible decoding functions d, i.e.,

K*(p,q,¢€) é;ngigK(p,q,@f,g,d)- ©)

Furthermore, we define K*(m,¢) as the minimum over
all combinations of p, g such that pg = m.

D. Existing code constructions for exact recovery (¢ =
0)

We provide a brief description on previous works on
exact recovery codes for distributed matrix multiplica-
tion. First, we introduce MatDot codes where p = 1 and
q=m.

Construction 1 (MatDot Codes [3]). Define polynomials
pa(x) and pg(x) as follows:

pa@) =" A pe(e) =y B,
i=1

j=1

(10)

Let \i, o, ..., \p be P distinct elements in R. The i-th
worker receives encoded versions of matrices:

A =pa(\) = A+ NAg+---+ATIA,
B =pa(\) =B + ABp1 4 -+ A IBy,

and then computes matrix multiplication on the encoded
matrices:

C,=AB, = PA(Ai)pB(Ni) = pc(Ni).

The polynomial pc(x) has degree 2m — 2 and has the
following form:
m m

pc(z) = Z Z A;Bjam 109,

i=1 j=1

(1)

Once the master node receives outputs from 2m — 1
successful worker nodes, it can recover the coefficients
of pc(x) through polynomial interpolation, and then
recover C = 2:21 A;B; as the coefficient of ™ !
in pc(z). O

The recovery threshold of MatDot codes is 2m — 1
because the polynomial pc(z) is a degree-(2m — 2)
polynomial and we need 2m — 1 points to recover all of
the coefficients of pc(z). However, in order to recover
C, we only need the coefficient of ™1 in pc(z).
Through an achievability scheme in [3] and a converse in
[29], for exact recovery, the optimal threshold has been
characterized to be 2m — 1:

Theorem 1 (Adaptation of Theorem 2 in [29] and
Theorem III.1 in [3]). Under the system model given
in Section II-B

K*(m,e=0)=2m— 1. (12)

Next, we describe PolyDot (Entangled-Poly) codes
which are a generalization of MatDot codes for arbitrary
p and q.

Construction 2 (PolyDot (Entangled-Poly) Codes [3],
[29]). In [3], a general framework for PolyDot codes is

proposed as follows:

P q
pA(I7y) = ZZ Ai,jxlilyjila
i=1 j—1
q p
pB(Y,2) = > Bruy’ "
k=11=1

where the input matrices are split as (3). Substitut-
ing x = y? and z = yP? results in Entangled-Poly
codes [29]:

P

pa(y) = Z Z A,y
i=1j=1
a P

pe(Y) = Z Z Bkylyqfkﬂoq(l*l)_
k=11=1

In the product polynomial pc(y) = pa(y)ps(y), the
coefficient of yli—Nata—ltral=1) — yigtpa(i=1)—1 g
Cii=> {1 AikBg,. The degree of pc is:

(p—1g+(@—1)+(@—1)+palp—1) =p*q+q—2.

Hence, a recovery threshold of p*>q+q— 1 is achievable.

E. Main Result

Our main result is summarized in the below theorem:

Main Theorem. Under the system model given
in Section II-B, the optimal e-approximate re-
covery threshold for arbitrary p and q such that
pq =m is:

K*(m,e) =m. (13)

(Achievability — Corollary 1)
For any € > 0, the e-approximate MatDot codes
in Construction 4 achieves:

K(la m,e, fe—MatDota Ee-MatDot de-MulDot) =m.

(Converse — Coroz)llary 2)
For all 0 < e < -, K*(m,€) > m.

This shows that for a given storage constraint m, the
optimal approximate recovery threshold for any € > 0 is
m. As compared to the exact recovery threshold of 2m —
1, this is almost 2x gain. The main result is obtained as
a special case from our more general result on PolyDot
(Entangled-Poly) codes:

(Achievability — Theorem 2)

For any e > 0, the e-approximate PolyDot codes
in Construction 3 achieves:

K(pa q, ¢, f67P01yD0t7 Se-PolyDot de—PolyDot) = p2Q-

(Lower Bound — Thzeorem 3)
For all 0 <e< m, K(p,q76) qu

Note that for the general case, the gain in recovery
threshold is from p2q 4+ ¢ — 1 to p?q. Furthermore, the
gap between the achievable scheme and the lower bound
is tight only when p = 1 and ¢ = m, i.e., for the case
of Approximate MatDot codes.

II1. THEORETICAL CHARACTERIZATION OF K*(m, ¢)

In this section, we derive the main theorem given in
Section II-E. We first propose the construction of e-
approximate PolyDot codes that can achieve the recovery
threshold of p2q for € approximation error for any € > 0.
Then, we give a lower bound on the approximate re-
covery threshold for sufficiently small e. By substituting
p = 1,9 = m, we obtain the result for Approximate
MatDot codes, which meets the lower bound m. Finally,
we conclude the section by providing an insight of the
proposed approximate code constructions.

A. Approximate PolyDot Codes

Recall that for arbitrary p and ¢, the recovery thresh-
old of PolyDot codes (Entangled-Poly codes) is p?q +
q — 1. We propose e-approximate PolyDot codes which
achieves the e-approximate recovery threshold of p2q by
choosing evaluation points close to 0.

Construction 3 (e-Approximate PolyDot codes). Let A
and B be matrices in R™*" that satisfy ||Al|r,||Bl||r <
n and let € > 0 be a constant. Then, e-Approximate Poly-
Dot code is a PolyDot code defined in Construction 2
with evaluation points A1, ..., Ap that satisfy:

€ 1
n?q(p?q—1)" p?q—1

I\ <min< > i €[P]. (14)

The following theorem states that the recovery threshold
can be reduced by ¢ — 1 by allowing e-approximate
recovery.

Theorem 2 (Achievability). For any ¢ > 0, the e-
approximate PolyDot codes in Construction 3 achieves:

2
K(pv q, €, fe-PolyDot» 8e-PolyDot s de-PolyDot) =Pgq,

where fe-PolyDot; 8e-PolyDot s de-PolyDuI are encoding and de-
coding functions specified by Construction 3.

We defer the full proof to Appendix A.

Theorem 2 shows that for any matrices A and B, and for
any set of p2q successful nodes, e-approximate PolyDot
codes can recover the output with error at most €. We
now show that if we only have pq — 1 successful nodes,
there exist matrices A, B € R™*" such that the recovery
error cannot be made arbitrarily small for any encoding
scheme.

Theorem 3 (Lower bound on recovery threshold K for
arbitrary p and q). Under the system model given in

Section II, for any 0 < € < m,

K(p,q,¢) > pq. (15)
Proof Sketch. To prove by contradiction, we construct
matrices A and B that lead to large reconstruction error.
that the error is big. To do that, we realize that the
encoding coefficients form an underdetermined system
of equations and we use vector from its null space to
generate a matrix A such that the encoded output is O.
We then use the properties of Frobenius norm to argue
that the decoding error is lower bounded. Full proof is
given in Appendix B. O

B. Approximate MatDot Codes

Observe that PolyDot codes are a general version of
MatDot codes, i.e. by setting p = 1,94 = m. So,
substituting p = 1, ¢ = m in Construction 3, Theorem 2
and Theorem 3 we obtain:

Construction 4 (e-Approximate MatDot codes). Let A
and B be matrices in R™*™ that satisfy ||A||r, ||B||r <
7. Let € € R be a constant. Then, e-Approximate MatDot
code is a MatDot code defined in Construction 1 with
evaluation points A1, ..., Ap that satisfy:

€ 1
n2-mim—1)"m-1

|Ai| < min<) , 1 €[P]. (16)
We then show that this construction has the approximate
recovery threshold of m.

Corollary 1 (Achievability). For any ¢ > 0, the e-
Approximate MatDot codes in Construction 4 achieves:

K(L m,e, fe-MalDota 8e-MatDot de-MarDat) =1m, (17)
where fe-MazDuh 8e-MatDot s de-MafDol are €nC0ding and de-

coding functions specified by Construction 4.

Corollary 2 (Converse). Undeerhe system model given
in Section II, for any 0 < e < ',

K*(m,e) > m. (18)
Remark 1. The error bound provided by Theorem 2 and
Corollary 1 is an absolute bound, i.e., ||C —C||max < €

This is because we choose the evaluation points which
are scaled by n, which is the upper bound of ||A||Fr
and ||B||F as given in (2). If we do not assume prior
knowledge on the upper bound of ||A||r and ||B||r, we
can choose \;’s to be some small numbers, e.g., | ;| <
A, and then the error bound will be a relative bound
on %. Furthermore, note that the bound on the
max norm can be easily converted to bounds on other
types of norm (e.g., Frobenius norm or 2-norm) within a
constant factor using matrix norm equivalence relations.

C. An insight behind Approximate MatDot Codes

Recall that in MatDot codes the decoder receives evalua-
tions of a degree 2m — 1 polynomial, and aims to recover
the coefficient corresponding to ™~ !. The key idea of
Approximate MatDot Codes to use MatDot codes, but
to select evaluation points close to 0, specifically, in an
interval around O that is proportional to ¢. We below
explain why the coefficient z™~! can be approximately
recovered for an arbitrary degree 2m—1 polynomial with
only m evaluations.

Let S(z) be a polynomial of degree 2m —1 and let P(z)
be a polynomial of degree m. Then, S(z) can be written
as:

S(z) = P(z)Q(x) + R(x), (19)

and the degree of () and R are both at most m — 1. Now,
let A1,..., A, be the roots of P(x). Then,

S(Ai) = R(N). (20)

If we have m evaluations at these points, we can exactly
recover the coefficients of the polynomial R(x).

Recall that we only need the coefficient of ™! in
MatDot codes. Letting P(x) = 2™, S(x) can be written
as:

S(x) =2mQ(x) + R(x). (1)

Since the lower order terms are all in R(z), the coef-
ficient of 2™~ ! in R(x) is equal to the coefficient of
2™~ 1 in S(z). Thus, recovering the coefficients of R(x)
is sufficient for MatDot decoding. However, " has only
one root, 0. For approximate decoding, we can use points
close to 0 as evaluation points to make =™ ~ 0. Then,
we have:

S(A) = A"Q(N) + R(M) = R(Ai). (22)

When |S(\;)—R(\;)| is small, we can use m evaluations
of S(A;)’s to approximately interpolate R(x). Moreover,
when J; is small, we can also bound |S(\;) — R(\;)|
when @ has a bounded norm. In our case, S has a
bounded norm due the norm constraints (2) on the input
matrices and, thus, () must have a bounded norm since
the higher-order terms in S are solely determined by Q.

D. Approx MatDot Experimental results

k 2m 1
10~ —
T10-3
0 — -
1077
MatDot
10717 —— Chebyshev
o Approx MatDot
1077 i 5 6
Nouee =
(a) € vs Ngyee for m =3, P =6
1073
107 W
-9
T 10

]\YSU.CC
3
4
— 5
— 6

10712

107

0 100000 200000 300000 400000 500000
¥ -

(b) MatDot: ¢ vs y for m =3, P =6

k=2m-—1

4
Nsuyee =

wt
[N

(c) MatDot: € vs Ny for m =3, P =6

Figure 1: Performance comparison between different
coding methods, over various number of successful
nodes for fixed m = 3 and P = 6 is shown in
(a). In (b),(c) performance of approx MatDot codes are
shown as the evaluation points decrease in magnitude.
The y-axis represents the empirical evaluation of e, i.e.,
||C - C‘ |max~

In Fig. 1, we compare the performance of the conven-
tional MatDot and Chebyshev polynomial-based codes
[39] with the approximate MatDot codes developed in
this paper. We show the error in the decoded matrix
product, ie., € = ||C — C||max- To compute this, we
performed multiplications of two random matrices of

sizes 100 x 100, which were normalized to have unit
Frobenius norm (n = 1). Each element in the matrices
before normalization is a Gaussian random variable with
PDF N (0, 1).

In the figures, the parameter gy represents the number
of non-straggling nodes. Note the difference between
Ngyee and k; k represents the recovery threshold that the
codes have been designed for, while Ny, represents the
number of nodes that do not fail and is independent of
code design. For example, for MatDot codes k = 2m—1
and for approximate MatDot codes k = m. Note that
when Ny, out of P nodes fail, there are (NI: L) different
failure patterns. The decoding error of each failure
pattern need not be equal and in practice we observed
the same. Fig. 1, plots €, which is the failure pattern that
produced maximum decoding error.

The 2m — 1 recovery threshold is highlighted in a red
dotted vertical line for reference. MatDot and Approxi-
mate MatDot codes are constructed using the evaluation
points A(1) and A(70000) respectively, where

o= {Jom (P57}

The above equation is consistent with picking of Cheby-
shev nodes as our evaluation points. The Chebyshev
nodes are a popular choice [43] to mitigate the well-
known Runge phenomenon, where the interpolation er-
ror increases closer to the boundaries of the interval
[-1/7,1/4]. Tt is also instructive to note that the only
difference between MatDot and Approx Matdot is the
choice of ~, the encoding scheme is same.

Figure la demonstrates that for Nge > k = 2m — 1,
the Matdot and Chebyshev codes have very small error
(10716), however, for Ng.. < k Approximate MatDot
codes outperform Chebyshev and MatDot codes.

Figures 1b and lc represent MatDot codes (with eval-
uation points A(«)) behavior for increasing condition
number (controlled with v parameter). Observe that the
error € is composed of two quantities: €7, the interpola-
tion error under infinite precision, and €5 the computation
error due to finite precision. For Ny > k = 2m — 1,
€1 = 0, €5 increases as . However, for Ny < k =
2m — 1, €; decreases and ey increases, as 7y increases;
therefore in Fig 1b the error is non-monotonic in vy for
Ngyee < k = 2m — 1. Showing a different view, in
Fig lc, observe that for Ny > k = 2m — 1 smaller
~ has better loss, while the opposite behaviour is seen
for Ngee < k = 2m — 1. The source code for Figure 1
is in [44].

IV. APPLICATION TO MACHINE LEARNING

In this section, we illustrate that approximate coded com-
puting is particularly useful for training machine learning
(ML) models. ML models are usually trained using
optimization algorithms that have inherent stochasticity
(e.g., stochastic gradient descent). These algorithms are
applied to finite, noisy training data. Consequently, ML
models can be tolerant of the accuracy loss resulting
from approximate computations during training. In fact,
this loss can be insignificant when compared to other
factors that impact training performance (parameter ini-
tialization, learning rate, dataset size, etc.).

We illustrate this point by considering a simple logis-
tic regression training scenario modified to use coded
computation. First, we describe how coded matrix mul-
tiplication strategies can be applied to training a logistic
regression model. Then, we train a model on the MNIST
dataset [45] using approximate coded computing strate-
gies and show that the accuracy loss due to approximate
coded matrix multiplication is very small.

A. Logistic regression model with coded computation

We consider logistic regression with cross entropy loss
and softmax function. We identify parts of training steps
where coded computation could be applied.

Consider a dataset D = {(x1,y1) ... (p,yp)} and the
loss function L(W ;D) with gradient 5% L(W; D), for
model W. Let there be J classes in the dataset, and
{y:}2, be a set of one-hot encoded vectors, such that
y;; = 1 means i data point x; belongs to j™ class. Let
Y € F*P = [y1,...,yp]. Let W = [wy;...;wy]
(w; is a row vector) be a matrix that comprises the
logistic regression training parameters. The cross entropy

loss is given by:

D J
LW;D) =Y yjilogply;i = 1z;) (23)
i=1 j=1

where
p(y;; = 1|x;) = softmax(z;;) =
x; is an column vector. Define Z € R/*P =

J,.D — D :
{#5i};21,21 and X = {z;};Z;. Then we write above
equation as

Z=WX (24)
The gradient is computed as:
0
~—L(W;D)=HX" 25
Sy LW D) ©5)

where H = (softmax(Z) — Y'), and we apply softmax
function element-wise.

Clearly, we can apply the coded matrix multiplication
schemes to computations in (24) and (25). In (24), we
encode W and X and perform coded matrix multiplica-
tion, then we encode H and reuse encoded X to perform
another coded matrix multiplication in (25).

B. Experimental Results

The goal is to explore whether, despite the loss of
precision due to approximation, our approach leads to
accurate training. We trained the logistic regression using
the MNIST dataset [45]. A learning rate of 0.001 and
batch size of 128 were used. Each logistic regression
experiment was run for 40,000 iterations. For every
matrix multiplication step in the training algorithm i.e.,
computing WX and HX7, we assume that we have
Nguee successful nodes out of P nodes. Tables I and
IT show the 10-fold cross validation accuracy results
obtained for training and test datasets. For accurate
comparison, we used the same the random folds, ini-
tialization and batches for the different coding schemes.

We first ran the training algorithm for the worst-case
failure scenario where we assume that the worst-case
failure pattern happens at every multiplication step. The
results are summarized in Table I. To simulate a scenario
where different nodes fail in different iterations, we ran
the experiments for a scenario where a random subset of
Nguee nodes returns at every iteration. The corresponding
accuracies are given in Table II. The training and test
accuracies for uncoded strategy (without failed nodes)
are 92.32+0.07 and 91.17£0.25. The training and test
accuracies for uncoded distributed strategy (with 2 failed
nodes, but no error correction) are 21.45+1.00 and
21.48+1.05 for m = 5, and 29.09+5.99 and 28.96+6.32
for m = 20. This indicates the importance of redun-
dancy and error correction for accurate model training
in presence of stragglers.

From the results in both tables, we observe that approx
MatDot codes have essentially identical performance to
uncoded multiplication for smaller values of parameter
m, but degrades for larger values of m. As expected,
the random failure scenario in Table II has much better
performance than the worst-case failure scenario. The
source code for logistic regression implementation via
uncoded and coded multiplications can be found in [44].

V. DISCUSSION AND FUTURE WORK

This paper opens new directions for coded computing
by showing the power of approximations. Specifically,
an open research direction is the investigation of related
coded computing frameworks (e.g., polynomial evalua-
tions) to examine the gap between e-error and 0O-error
recovery thresholds.

As our constructions require evaluation points close to 0
(Section III), encoding matrices become ill-conditioned
rapidly as m grows. An open direction of future work is
to explore numerically stable coding schemes possibly
building on recent works, e.g. [39]-[41], with focus on
e-error instead of exact computation.

REFERENCES

[1] K. Lee, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Coded computation for multicore setups,” in /EEE International
Symposium on Information Theory (ISIT), 2017, pp. 2413-2417.

[2] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Polynomial
Codes: an Optimal Design for High-Dimensional Coded Matrix
Multiplication,” in Advances In Neural Information Processing
Systems (NIPS), 2017.

[3] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and
P. Grover, “On the optimal recovery threshold of coded ma-
trix multiplication,” IEEE Transactions on Information Theory,
vol. 66, no. 1, pp. 278-301, 2020.

[4] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing
large linear transforms distributedly using coded short dot prod-
ucts,” in Advances In Neural Information Processing Systems,
2016, pp. 2100-2108.

[5] Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and
S. A. Avestimehr, “Lagrange coded computing: Optimal design
for resiliency, security, and privacy,” in The 22nd International
Conference on Artificial Intelligence and Statistics. ~ PMLR,
2019, pp. 1215-1225.

[6] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis,
“Gradient Coding: Avoiding Stragglers in Distributed Learning,”
in International Conference on Machine Learning (ICML), 2017,
pp- 3368-3376.

[71 N. Raviv, R. Tandon, A. Dimakis, and I. Tamo, “Gradient coding
from cyclic mds codes and expander graphs,” in International
Conference on Machine Learning (ICML), 2018, pp. 4302-4310.

[8] W. Halbawi, N. Azizan, F. Salehi, and B. Hassibi, “Improving
distributed gradient descent using reed-solomon codes,” in 2018
IEEE International Symposium on Information Theory (ISIT).
IEEE, 2018, pp. 2027-2031.

[9]1 A. Reisizadeh, S. Prakash, R. Pedarsani, and S. Avestimehr,
“Coded computation over heterogeneous clusters,” in Information
Theory (ISIT), 2017 IEEE International Symposium on. 1EEE,
2017.

[10] H. Jeong, T. M. Low, and P. Grover, “Masterless Coded Com-
puting: A Fully-Distributed Coded FFT Algorithm,” in [EEE
Communication, Control, and Computing (Allerton), 2018, pp.

887-894.

[11] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded
fourier transform,” in 2017 55th Annual Allerton Conference
on Communication, Control, and Computing (Allerton). 1EEE,

2017, pp. 494-501.

[12] M. Aliasgari, J. Kliewer, and O. Simeone, “Coded computation
against processing delays for virtualized cloud-based channel
decoding,” IEEE Transactions on Communications, vol. 67, no. 1,

pp. 28-38, 2019.

[13] N. S. Ferdinand and S. C. Draper, “Anytime coding for dis-
tributed computation,” in Communication, Control, and Comput-

ing (Allerton), 2016, pp. 954-960.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

Training Accuracy (%)

Test Accuracy (%)

(m, Neuwee, P) Approx MatDot Chebyshev ~ Approx MatDot Chebyshev
5,5.7) 92.32+0.07 29.00+£2.84 91.17£0.26 29.14£2.99
(5,6,8) 92.33+0.07 41.83+4.90 91.16+0.25 41.81+5.38
(5,7,9) 92.33+0.07 50.55+8.00 91.17+0.25 50.44+8.22

(5, 8,10) 92.32+0.07 47.10+5.67 91.17+0.25 46.82+5.63
(5,9,11) 92.32+0.07 92.32+0.07 91.17+0.25 91.17+0.25
(20,20,22) 44.25+2.06 38.50+8.26 44.04+1.38 38.33+£8.16

Table I: Logistic regression results on MNIST dataset for worst case failures

Training Accuracy (%)

Test Accuracy (%)

(m, Nsuwee, P) Approx MatDot Chebyshev ~ Approx MatDot Chebyshev
(5,5.7) 92.32+0.07 91.37£0.10 91.17£0.25 91.03£0.34
(5,6,8) 92.32+0.07 91.91+£0.07 91.17£0.25 91.47+0.25
(5,7,9) 92.32+0.07 92.14+0.10 91.17£0.25 91.58+0.16

(5, 8,10) 92.32+0.07 92.22+0.09 91.17+£0.25 91.45+0.23
(5,9,11) 92.32+0.07 92.32+0.07 91.17+0.25 91.17+£0.25
(20,20,22) 46.05+1.47 92.54+0.05 45.97+1.02 91.85+0.19

Table II: Logistic regression results on MNIST dataset for random failures

N. Ferdinand and S. C. Draper, “Hierarchical coded computa-
tion,” in IEEE International Symposium on Information Theory
(ISIT), 2018, pp. 1620-1624.

A. Mallick, M. Chaudhari, and G. Joshi, “Fast and efficient
distributed matrix-vector multiplication using rateless fountain
codes,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2019, pp. 8192-8196.

S. Wang, J. Liu, and N. Shroff, “Coded sparse matrix multiplica-
tion,” in International Conference on Machine Learning (ICML),
2018, pp. 5139-5147.

Q. M. Nguyen, H. Jeong, and P. Grover, “Coded QR Decompo-
sition,” in IEEE International Symposium on Information Theory
(ISIT), 2020.

A. Severinson, A. G. i Amat, and E. Rosnes, “Block-Diagonal
and LT Codes for Distributed Computing With Straggling
Servers,” IEEE Transactions on Communications, vol. 67, no. 3,
pp. 1739-1753, 2019.

F. Haddadpour, Y. Yang, V. Cadambe, and P. Grover, “Cross-
Iteration Coded Computing,” in 2018 56th Annual Allerton Con-
ference on Communication, Control, and Computing (Allerton).
IEEE, 2018, pp. 196-203.

V. Gupta, S. Wang, T. Courtade, and K. Ramchandran, “Overs-
ketch: Approximate matrix multiplication for the cloud,” in 2018
IEEE International Conference on Big Data (Big Data). 1EEE,
2018, pp. 298-304.

V. Gupta, S. Kadhe, T. Courtade, M. W. Mahoney, and K. Ram-
chandran, “Oversketched newton: Fast convex optimization for
serverless systems,” arXiv preprint arXiv:1903.08857, 2019.

V. Cadambe and P. Grover, “Codes for distributed computing: A
tutorial,” IEEE Information Theory Society Newsletter, vol. 67,
no. 4, pp. 3-15, Dec. 2017.

S. Li and S. Avestimehr, Coded Computing: Mitigating Funda-
mental Bottlenecks in Large-scale Distributed Computing and
Machine Learning. Now Foundations and Trends, 2020.

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

[33]

S. Dutta, H. Jeong, Y. Yang, V. Cadambe, T. M. Low, and
P. Grover, “Addressing Unreliability in Emerging Devices and
Non-von Neumann Architectures Using Coded Computing,” Pro-
ceedings of the IEEE, 2020.

R. Roth, Introduction to coding theory. Cambridge University
Press, 2006.

A. Dimakis, V. Prabhakaran, and K. Ramchandran, “Decen-
tralized erasure codes for distributed networked storage,” IEEE
Transactions on Information Theory, vol. 52, no. 6, pp. 2809—
2816, 2006.

S. B. Balaji, M. N. Krishnan, M. Vajha, V. Ramkumar,
B. Sasidharan, and P. V. Kumar, “Erasure coding for distributed
storage: an overview,” Science China Information Sciences,
vol. 61, no. 10, p. 100301, 2018. [Online]. Available:
https://doi.org/10.1007/s11432-018-9482-6

K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ram-
chandran, “Speeding up distributed machine learning using
codes,” IEEE Transactions on Information Theory, 2017.

Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mit-
igation in distributed matrix multiplication: Fundamental limits
and optimal coding,” IEEE Transactions on Information Theory,
vol. 66, no. 3, pp. 1920-1933, 2020.

S. Dutta, Z. Bai, H. Jeong, T. Meng Low, and P. Grover, “A
Unified Coded Deep Neural Network Training Strategy Based
on Generalized PolyDot Codes for Matrix Multiplication,” arXiv
preprint arXiv:1811.10751, 2018.

S. Wang, J. Liu, and N. Shroff, “Fundamental limits of approxi-
mate gradient coding,” Proceedings of the ACM on Measurement
and Analysis of Computing Systems, vol. 3, no. 3, pp. 1-22, 2019.

Z. Charles, D. Papailiopoulos, and J. Ellenberg, “Approximate
gradient coding via sparse random graphs,” arXiv preprint
arXiv:1711.06771, 2017.

R. Bitar, M. Wootters, and S. El Rouayheb, “Stochastic Gradient
Coding for Straggler Mitigation in Distributed Learning,” /EEE
Journal on Selected Areas in Information Theory, vol. 1, no. 1,
pp- 277-291, 5 2020.

https://doi.org/10.1007/s11432-018-9482-6

[34] T. Jahani-Nezhad and M. A. Maddah-Ali, “Codedsketch: Coded
distributed computation of approximated matrix multiplication,”
in 2019 IEEE International Symposium on Information Theory

(ISIT). IEEE, 2019, pp. 2489-2493.

[35] “Berrut Approximated Coded Computing: Straggler
Resistance Beyond Polynomial Computing,” arXiv preprint

arXiv:2009.08327, 2020.

[36] M. Soleymani, H. Mahdavifar, and A. S. Avestimehr, “Analog
lagrange coded computing,” Arxiv preprint, arxiv:2008.08565,
2020.

[37] J. Kosaian, K. V. Rashmi, and S. Venkataraman, “Parity mod-
els: erasure-coded resilience for prediction serving systems,” in
Proceedings of the 27th ACM Symposium on Operating Systems

Principles, 2019, pp. 30-46.
[38]

, “Learning-Based Coded Computation,” /IEEE Journal on
Selected Areas in Information Theory, 2020.
[39] M. Fahim and V. R. Cadambe, “Numerically Stable Polynomially
Coded Computing,” IEEE Transactions on Information Theory,
p.- 1, 2021. [Online]. Available: https://ieeexplore.ieee.org/
document/9319171
[40] A. Ramamoorthy and L. Tang, “Numerically stable coded matrix
computations via circulant and rotation matrix embeddings,”
Arxiv preprint, arxiv:1910.06515, 2019.
[41] A. M. Subramaniam, A. Heidarzadeh, and K. R. Narayanan,
“Random khatri-rao-product codes for numerically-stable dis-
tributed matrix multiplication,” in 2019 57th Annual Allerton
Conference on Communication, Control, and Computing (Aller-
ton). 1EEE, 2019, pp. 253-259.
[42] N. Charalambides, H. Mahdavifar, and A. O. Hero, “Numerically
stable binary gradient coding,” in 2020 IEEE International Sym-
posium on Information Theory (ISIT). 1EEE, 2020, pp. 2622—
26217.
[43] L. N. Trefethen, Approximation Theory and Approximation Prac-
tice, Extended Edition. SIAM, 2019.
[44] Github code repository. [Online]. Available: https://github.com/
Ateet-dev/ApproxCodedMatrixMulArxiv.git
[45] Y. LeCun and C. Cortes, “MNIST handwritten digit database,”
2010. [Online]. Available: http://yann.lecun.com/exdb/mnist/
[46] E. Cornelius Jr, “Identities for complete homogeneous symmetric
polynomials,” JP J. Algebra Number Theory Appl, vol. 21, no. 1,
pp. 109-116, 2011.

APPENDIX A
PROOF OF THEOREM 2

We first prove the following crucial theorem.

Theorem 4. Let f(z) = ag+arx+-+ap_12"1 and let

X1, .., T be distinct real numbers that satisfy |x;| < §
foralli=1,...,m, for some 0 <& < =. Let
ap f(z1)
LoEV (26)
am—l f(xm)
where V. = Vander(x, m) for x = [2; Zom). Then,
[@m—1 — am—1| <||a]|oo - (K —m)md. (27)

Proof. Let R,,(xz) be the higher order terms in f:
Ry(z) = ama™ + ---ax_12"~ 1. Then, the following
relation holds:

f(x1) ao Ry (1)
NS B
f(xm) Am—1 Ry ()
f(x1) ao R (z1)
— y-! : _ . vl :
f(zm) Am—1 Ry ()
Let v be the last row of V=1, i.e., v. = V~1[m,:] and let
r = [Ry,(7;)]ig[m)- Then, @m—1| = |v-r|. Using

the explicit formula for the inverse of Vandermonde
matrices, the ¢-th entry of v is given as:

1
v = =——m—. (28)
= T —
J#i
Thus, v - r can be rewritten as:
V.r= Z Zl—l am—l-‘rlx i
[17% (zj — 1)
VE)
k—m m xm—l—!—l
= Um—141) =m - (29)
2 ot L T =)
J#i

The expression in (29) can be further simplified using
the following lemma.

Lemma 1. [Theorem 3.2 in [46]]
m 1+1

Zmu e RS

(30)

axm)a

where h; is the complete homogeneous symmetric poly-
nomial of degree | defined as:

dq da dm
E xyt - xg? e

dy i =1

hi(zq,... 31)

7xm) -

Using Lemma 1, (29) can now be written as: v -r =

f;lm @m—141 - hi(z1, -+ ,2m,). Finally,
[Gm—1 — @m—1| = |v - 1|
k—m
= Z Am—1+41 " hl(xla to aan)
=1
k—m
m+1—1
<3 (l)51
=1

IA

k—m
m+1—
fall 3 ("7

=1
< ||al]oo (k — m)mSé.

(32)

https://ieeexplore.ieee.org/document/9319171
https://ieeexplore.ieee.org/document/9319171
https://github.com/Ateet-dev/ApproxCodedMatrixMulArxiv.git
https://github.com/Ateet-dev/ApproxCodedMatrixMulArxiv.git
http://yann.lecun.com/exdb/mnist/

The last inequality holds because 6 < % and thus
(m+ll_1)(5l < (T)é forl=1,...,m— 1. O

Recall that polynomial pc(x) is essentially a set of
n? polynomials, having one polynomial for each C[i, j]
(4,7 € [n], and we use pcy; 5)() as the (4, j)-th polyno-
mial for C[i, j].

Lemma 2. Assume ||Al||lr < n and ||B||r < 0. Then,
for pc(x) given in Construction 2, the oo-norm of
Plo,w] = Vec(pciv,w)) (v, w € [n]) is bounded as:

1Pw,w)l]oe < 17 (33)

Proof. Let d £ q(i — 1) +pq(l — 1)
The coefficient of y¢ in pc(z) is

Zj’*k’:jfk Ai,j’Bk’,l

+Zj'7k’:jfk7q Ai—i—l,j’Bk’,ly for j— k> 0,
Zj’:k’ Ai,jer/J, for j —k=0.

(q—1+j—k).

P, =

(34
For both cases, the number of terms in the sum is gq.
Thus, it can be rewritten as:

Bkl
Ag Ay (35)
[B, |
As these matrices are submatrices of A and B,
BT
1[A, Ajllly <] 2 | <m0 36)
qu 2
Hence, |[ppy,u)llec = maxq|[Pulv,w]| < [[P4l[z <
n2. O

Proof of Theorem 2. The decoding for e-approximate
PolyDot codes can be performed as follows. For de-
coding C;;, we choose d;; = iq + pg(l — 1)
points from the p?q successful nodes. Let Vi =
Vander([x1,- -+ ,%q,,],d;;) and v be the last row of
V;ll. Then, we decode C;; by computing:

pc(r1)
Cii=v- : (37)
pc(zd,,)

By combining Theorem 4 and Lemma 2, we can show
that:

(PPa+q—1—dig)diy

q(p*q — 1)

The smallest d; ; is d1,1 = ¢ and the largest d; ; is d , =
p*q. For ¢ < diy < p*q, (PPq +q — 1 — dig)diy <
Ai,l — Ci,lH <e O

max

Hci,l - Ciy

max

q(p*q — 1). Hence,

APPENDIX B

Proof of Theorem 3. We provide proof by contradic-
tion. Assume that there exists a coding scheme with
K(p,q,¢) = pg — 1, Ve < ¢y, for some constant ¢,
i.e., linear encoding functiogs fi’s, gi’s and decoding
function ds such that ||ds((C;)ics) — AB||max < € for
all |S| > pg — 1.

Since f; is a linear encoding function, it can be written
as:

JilAir, . s Apg) = Vi1 A1 HYi2Ar 2+ HYipgApg

Now, let & C [P] such that |S| = pg — 1 and let T' be

a (pg — 1) x pg matrix: ' = [v; j];cs je[pq- Let p be a
unit null vector of I'. We reshape p in to a p X ¢ matrix
Q@ in a row-major order. Then, we let

A=, B,
n n q P

n

andlet A=Q®A,B=QT @B, where layn and
lqu xm are all-one matrices of dimension 2 x E and 7%
%. Since @ is constructed from the null space of T,
notice that for all 7 € S, fi(é) = 0. Hence, forall 7 € S,
the output at the i-th node C; = f;(A)g;(B) = 0. This
implies that

ds((Cy)ies) = ds((—Cy)ies) “2° ds(0).

By triangle inequality,

lds(C) — AB||p + ||ds(—C) — AB||r
> [|AB — (-AB)||r = 2[|AB|r.
Hence,
max(||ds(0) — AB||F, ||ds(0) + AB||r) > [|AB||r.

Assume rank(Q) = 7.

IAB|lF =1(Q ® A)(QT @ B)|lr
=I(QQ") ® (AB)||r

- \/1(Q@r e B'A))(QQ" © AB))
—/TH((@QTQQ") & (B'A AB))

THQQTQQT)\/ Tr(B' A" AB)
=11QQ"||r||AB||r
(a) _ _
> ||QQ"||2|[AB||F = ||Q||2HAB||F
(d) 2 (6) 2
r (p7 q)
min (p, q)

(c)
The following inequalities were used: » < min (p, q),
(a) (b)
Zllz < [|ZIlp < VTI|Z]]2.

and for some matrix Z,
Therefore

2
max(||ds(0) — AB||r, [|ds(0) + AB|[z) > —

~ min (p, q)
= max(||ds(0) — AB||max; ||ds(0) + AB||max)
2
> 1T _2ag
n - min (p, q)

Therefore, for at least one of AB and —AB, the
decoding error is > when recovery threshold
is set to pg — 1.

n
n-min (p,q)

O

	Introduction
	Summary of Results
	Related Work

	System Model and Problem Statement
	Notations
	System Model
	Approximate Recovery Threshold
	Existing code constructions for exact recovery (=0)
	Main Result

	Theoretical Characterization of K*(m,)
	Approximate PolyDot Codes
	Approximate MatDot Codes
	An insight behind Approximate MatDot Codes
	Approx MatDot Experimental results

	Application To Machine Learning
	Logistic regression model with coded computation
	Experimental Results

	Discussion and Future Work
	References
	Appendix A: Proof of Theorem 2
	Appendix B

