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Abstract—We study coded distributed matrix multiplication
from an approximate recovery viewpoint. We consider a system
of P computation nodes where each node stores 1/m of each
multiplicand via linear encoding. Our main result shows that
the matrix product can be recovered with ε relative error from
any m of the P nodes for any ε > 0. We obtain this result
through a careful specialization of MatDot codes—a class of
matrix multiplication code previously developed in the context
of exact recovery (ε = 0). Since previous results showed that
the MatDot code is tight for a class of linear coding schemes
for exact recovery, our result shows that allowing for mild
approximations leads to a system that is nearly twice as efficient
as exact reconstruction. Moreover, we develop an optimization
framework based on alternating minimization that enables the
discovery of new codes for approximate matrix multiplication.

Theorem proofs and other missing details are provided in the
extended version of the paper [1].

I. INTRODUCTION

Coded computing has emerged as a promising paradigm
to resolving straggler and security bottlenecks in large-scale
distributed computing platforms [2]–[25]. The foundations of
this paradigm lie in novel code constructions for elemental
computations such as matrix operations and polynomial com-
putations, and fundamental limits on their performance. In this
paper, we show that the state-of-the-art fundamental limits
for such elemental computations grossly underestimate the
performance by focusing on exact recovery of the computation
output. By allowing for mild approximations of the computation
output, we show significant improvements in terms of the trade-
off between fault-tolerance and the degree of redundancy.

Consider a distributed computing system with P nodes for
performing the matrix multiplication AB. If each node is
required to store a fraction 1/m of both matrices, the best
known recovery threshold is equal to 2m− 1 achieved by the
MatDot code [4]. Observe the contrast between distributed
coded computation with distributed data storage, where a
maximum distance separable (MDS) code ensures that if each
node stores a fraction 1/m of the data, then the data can
be recovered from any m nodes1 [26]. Indeed, the recovery
threshold of m is crucial to the existence of practical codes
that bring fault-tolerance to large-scale data storage systems
with relatively minimal overheads (e.g., single parity and Reed-
Solomon codes [27]).

The contrast between data storage and computation is even
more pronounced when we consider the generalization of
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1This essentially translates to the Singleton bound being tight for a
sufficiently large alphabet

matrix-multiplication towards multi-variate polynomial evalua-
tion f(A1,A2, . . . ,A`) where each node is allowed to store
a fraction 1/m of each of A1,A2, . . . ,A`; in this case, the
technique of Lagrange coded-computing [6] demonstrates that
the recovery threshold is d(m− 1) + 1, where d is the degree
of the polynomial. Note that a recovery threshold of m is only
obtained for the special case of degree d = 1 polynomials, i.e.,
elementary linear transformations that were originally studied in
[28]. While the results of [4], [29] demonstrate that the amount
of redundancy is much less than previously thought for degree
d > 1 computations, these codes still require an overwhelming
amount of additional redundancy—even to tolerate a single
failed node—when compared to codes for distributed storage.

A. Summary of Results

Our paper is the result of the search for an analog of MDS
codes—in terms of the amount of redundancy required—for
coded-computation of polynomials with degree greater than 1.
We focus on the case of coded matrix multiplication where the
goal is to recover the matrix product C = AB. We consider
a distributed computation system of P worker nodes similar
to [3], [4]; we allow each worker to store an m-th fraction of
matrices of A, B via linear transformations (encoding). The
workers output the product of the encoded matrices. A central
master node collects the output of a set S of non-straggling
workers and aims to decode C with a relative error of ε. The
recovery threshold K(m, ε) is the cardinality of the largest
minimal subset S that allows for such recovery. It has been
shown in [4], [29] that, for natural classes of linear encoding
schemes, K(m, 0) = 2m− 1.

Our main result shows that the MatDot code with a specific
set of evaluation points is able to achieve K(m, ε) = m,
remarkably, for any ε > 0. A simple converse shows that the
our result is tight for 0 < ε < 1 for unit norm matrices. Our
results mirrors several results in classical information theory
(e.g., almost lossless data compression), where allowing ε-error
for any ε > 0 leads to surprisingly significant improvements
in performance. We believe that these results open up a new
avenue in coded computing research via revisiting existing
code constructions and allowing for an ε-error.

A second contribution of our paper is the development of
an optimization formulation that enables the discovery of new
coding schemes for approximate computing. We show that the
optimization can be solved through an alternating minimization
algorithm that has simple, closed-form iterations as well as
provable convergence to a local minimum. We demonstrate
through numerical examples that our optimization approach



finds approximate computing codes with favourable trade-offs
between approximation error and recovery threshold. Finally,
we demonstrate that the proposed approximate code computing
strategies can be used in practical machine learning algorithms
through an example application of logistic regression.

B. Related Work

The study of coded computing for elementary linear algebra
operations, starting from [5], [28], is an active research
(see surveys [23]–[25]). Notably, the recovery thresholds for
matrix multiplication were established via achievability and
converse results respectively in [3], [4], [29]. The Lagrange
coded computing framework of [6] generalized the systematic
MatDot code construction of [4] to the context of multi-variate
polynomial evaluations and established a tight lower bound on
the recovery threshold. These works focused on exact recovery
of the computation output.

References [30], [31] studied the idea of gradient coding
from an approximation viewpoint. The references that are
most relevant to our work are [21], [22], [32]. Like us, these
references aim to improve the recovery threshold of coded
matrix multiplication by allowing for a relative error of ε.
These references use random linear coding (i.e., sketching)
techniques to obtain a recovery threshold K(ε, δ,m) where
δ is the probability of failing to recover the matrix product
with a relative error of ε; the problem statement of [32] is
particularly similar to ours. Our results can be viewed as strict
improvement, as we are able to obtain a recovery threshold
of m even with δ = 0, whereas the recovery threshold is at
least 2m− 1 for δ = 0 in these references. A related line of
work in [33], [34] study coded polynomial evaluation beyond
exact recovery and note techniques to improve the quality of
the approximation. Yet, we are the first to establish the strict
gap in the recovery thresholds for ε-error computations versus
exact computation for matrix multiplication.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. Notations

We define [n] , {1, 2, · · · , n}. We use bold fonts for vectors
and matrices. A[i, j] denotes the (i, j)-th entry of an M ×N
matrix A (i ∈ [M ], j ∈ [N ]) and v[i] is the i-th entry of a
length-N vector v (i ∈ [N ]).

B. System Model

We consider a distributed computing system with a master
node and P worker nodes. At the beginning of the computation,
a master node distributes appropriate tasks and inputs to
worker nodes. Worker nodes perform the assigned task and
send the result back to the master node. Worker nodes are
prone to failures or delay (stragglers). Once the master node
receives results from a sufficient number of worker nodes, it
produces the final output. We are interested in distributed matrix
multiplication, where the goal is to compute: C = A ·B. We
assume A,B ∈ Rn×n are matrices with a bounded norm, i.e.,

||A||F ≤ η and ||B||F ≤ η, (1)

where || · ||F denotes Frobenius norm. We further assume that
worker nodes have memory constraints such that each node
can hold only an m-th fraction of A and an m-th fraction of
B in memory. To meet the memory constraint, we break down
A,B into small equal-sized sub-blocks as follows2:

A =

A1,1 · · · A1,q

...
. . .

...
Ap,1 · · · Ap,q

 ,B =

B1,1 · · · B1,p

...
. . .

...
Bq,1 · · · Bq,p

 , (2)

where pq = m.
To mitigate failures or stragglers, a master node encodes

redundancies through linear encoding. The i-th worker node
receives encoded inputs Ãi and B̃i such that:

Ãi = fi(A1,1, · · · ,Ap,q), B̃i = gi(B1,1, · · · ,Bq,p),

where

fi : R
n
p×

n
q × · · · × R

n
p×

n
q︸ ︷︷ ︸

pq=m

→ R
n
p×

n
q , (3)

gi : R
n
q×

n
p × · · · × R

n
q×

n
p︸ ︷︷ ︸

m

→ R
n
q×

n
p . (4)

We assume that fi, gi are linear, i.e., their outputs are linear
combinations of m inputs. For example, we may have

fi(V1, · · · ,Vm) = γi,1V1 + · · ·+ γi,mVm (5)

for some γi,j ∈ R (j ∈ [m]).
Worker nodes are oblivious of the encoding/decoding process

and simply perform matrix multiplication on the inputs they
receive. In our case, each worker node computes

C̃i = Ãi · B̃i, (6)

and returns the n
p ×

n
p output matrix C̃i to the master node.

Finally, when the master node receives outputs from a subset
of worker nodes, say S ⊆ [P ], it performs decoding:

ĈS = dS((C̃i)i∈S), (7)

where {dS}S⊆[P ] is a set of predefined decoding functions
that take |S| inputs from R

n
p×

n
p and outputs an n-by-n matrix.

Note that we do not restrict the decoders dS to be linear.

C. Approximate Recovery Threshold
Let f and g be vectors of encoding functions:

f =
[
f1 · · · fP

]
,g =

[
g1 · · · gP

]
, (8)

and let d be a length-2P vector of decoding functions dS
for all subsets S ⊆ [P ]. Then, we say that the ε-approximate
recovery threshold of f ,g,d is K if

|ĈS [i, j]− C[i, j]| ≤ ε (i, j ∈ [n]), (9)

for every S ⊆ [P ] such that |S| ≥ K, and any A and
B that satisfy the norm constraints (1). We denote this
recovery threshold as K(m, ε, f ,g,d). Moreover, let K∗(m, ε)
be defined as the minimum of K(m, ε, f ,g,d) over all possible
linear functions f , g and decoding functions d, i.e.,

K∗(m, ε) , min
f ,g,d

K(m, ε, f ,g,d). (10)

2We limit ourselves to splitting the input matrices into a grid of submatrices.
Splitting into an arbitrary shape is beyond the scope of this work.



Note that parameters p and q are embedded in f and g. Through
an achievability scheme in [4] and a converse in [29], for exact
recovery, the optimal threshold has been characterized to be
2m− 1:

Theorem 1 (Adaptation of Theorem 2 in [29] and Theorem
III.1 in [4]). Under the system model given in Section II-B

K∗(m, ε = 0) = 2m− 1. (11)

Our main result is the following:

Theorem 2. Under the system model given in Section II-B,
the optimal ε-approximate recovery threshold is:

K∗(m, ε) = m. (12)

(Achievability – Theorem 3)
For any 0 < ε < min(2, 3η2

√
2m− 1), the ε-

approximate MatDot codes in Construction 2 achieves:

K(m, ε, fε-MatDot,gε-MatDot,dε-MatDot) = m.

(Converse – Theorem 4)
For all 0 < ε < η2, K∗(m, ε) ≥ m.

III. THEORETICAL CHARACTERIZATION OF K∗(m, ε)

In this section, we first propose the construction of ε-
Approximate MatDot codes that can achieve the recovery
threshold of m for ε approximation error. Then, we show
the converse result which shows that the recovery threshold
cannot be smaller than m for sufficiently small ε.

A. Approximate MatDot Codes
We briefly introduce the construction of MatDot codes and

then we show that a simple adaptation of MatDot codes can
be used for approximate coded computing.

Construction 1 (MatDot Codes [4]). Define polynomials
pA(x) and pB(x) as follows:

pA(x) =

m∑
i=1

Aix
i−1, pB(x) =

m∑
j=1

Bjx
m−j . (13)

Let λ1, λ2, . . . , λP be P distinct elements in R. The i-th worker
receives encoded versions of matrices:

Ãi = pA(λi) = A1 + λiA2 + · · ·+ λm−1i Am,

B̃i = pB(λi) = Bm + λiBm−1 + · · ·+ λm−1i B1,

and then computes matrix multiplication on the encoded
matrices:

C̃i = ÃiB̃i = pA(λi)pB(λi) = pC(λi).

The polynomial pC(x) has degree 2m−2 and has the following
form:

pC(x) =
m∑
i=1

m∑
j=1

AiBjx
m−1+(i−j). (14)

Once the master node receives outputs from 2m− 1 successful
worker nodes, it can recover the coefficients of pC(x) through
polynomial interpolation, and then recover C =

∑m
i=1 AiBi

as the coefficient of xm−1 in pC(x). �

The recovery threshold of MatDot codes is 2m− 1 because
the output polynomial pC(x) is a degree-(2m− 2) polynomial
and we need 2m− 1 points to recover all of the coefficients
of pC(x). However, in order to recover C, we only need the
coefficient of xm−1 in pC(x). The key idea of Approximate
MatDot Codes is to choose the evaluation points carefully to
reduce this overhead. In fact, we have to choose evaluation
points in a small interval that is proportional to ε.

Construction 2 (ε-Approximate MatDot codes). Let A and
B be matrices in Rn×n that satisfy ||A||F , ||B||F ≤ η. Let
ε ∈ R be a constant such that

0 < ε < min(2, 3η2
√

2m− 1). (15)

Then, ε-Approximate MatDot code is a MatDot code defined in
Construction 1 with evaluation points λ1, . . . , λP that satisfy:

|λi| <
ε

6η2
√

2m− 1(m− 1)m
, i ∈ [P ]. (16)

We then show that this construction has the approximate
recovery threshold of m.

Theorem 3. For any 0 < ε < min(2, 3η2
√

2m− 1), the ε-
approximate MatDot codes in Construction 2 achieves:

K(m, ε, fε-MatDot,gε-MatDot,dε-MatDot) = m,

where fε-MatDot,gε-MatDot,dε-MatDot are encoding and decoding
functions specified by Construction 2.

Remark 1. The error bound provided by Theorem 3 is an
absolute bound, i.e., ||Ĉ − C||max ≤ ε. This is because we
choose the evaluation points which are scaled by η, the upper
bound of ||A||F and ||B||F as given in (16). If we do not
assume prior knowledge on the upper bound of ||A||F and
||B||F , we can choose λi’s to be some small numbers, e.g.,
|λi| ≤ ∆, and then the error bound will be a relative bound
on ||Ĉ−C||max

||A||F ||B||F . Furthermore, note that the bound on the max
norm can be easily converted to bounds on other types of norm
(e.g., Frobenius norm or 2-norm) within a constant factor using
matrix norm equivalence relations.

While we defer the full proof to [1], we provide an intuitive
explanation of the above theorem.

B. An insight behind Approximate MatDot Codes
Let S(x) be a polynomial of degree 2m− 1 and let P (x)

be a polynomial of degree m. Then, S(x) can be written as:

S(x) = P (x)Q(x) + R(x), (17)

and the degree of Q and R are both at most m− 1. Now, let
λ1, . . . , λm be the roots of P (x). Then,

S(λi) = R(λi). (18)

If we have m evaluations at these points, we can exactly recover
the coefficients of the polynomial R(x).

Recall that we only need the coefficient of xm−1 in MatDot
codes. Letting P (x) = xm, S(x) can be written as:

S(x) = xmQ(x) +R(x). (19)

Since the lower order terms are all in R(x), the coefficient of
xm−1 in R(x) is equal to the coefficient of xm−1 in S(x). Thus,



recovering the coefficients of R(x) is sufficient for MatDot
decoding. However, xm has only one root, 0. For approximate
decoding, we can use points close to 0 as evaluation points to
make xm ≈ 0. Then, we have:

S(λi) = λmi Q(λi) +R(λi) ≈ R(λi). (20)

When |S(λi)−R(λi)| is small, we can use m evaluations of
S(λi)’s to approximately interpolate R(x). Moreover, when
λi is small, we can also bound |S(λi)−R(λi)| when Q has
a bounded norm. In our case, S has a bounded norm due the
norm constraints (1) on the input matrices and, thus, Q must
have a bounded norm since the higher-order terms in S are
solely determined by Q.

C. Converse

We have shown that for any matrices A and B, and with a
recovery threshold of m, MatDot codes can achieve arbitrarily
small error. We now show a converse indicating that for a
recovery threshold of m− 1, there exists matrices A ∈ Rn×n
and B ∈ Rn×n where the error cannot be made arbitrarily
small for any type of encoding.

Theorem 4. Under the system model given in Section II, for
any 0 < ε < η2,

K∗(m, ε) ≥ m. (21)

IV. AN OPTIMIZATION APPROACH TO APPROXIMATE
CODED COMPUTING AND ITS APPLICATION IN MACHINE

LEARNING

The construction of Approximate MatDot code shows the
theoretical possibility that the approximate recovery threshold
can be brought down to m from 2m− 1. In this section, we
propose another, optimization-based approach to find an ap-
proximate coded computing scheme. The goal of optimization
is to find ε such that K∗(m, ε) ≤ k for a given k, among linear
encoding and decoding functions. In Section IV-A, we illustrate
our optimization framework through a simple example, and in
Section IV-B, we state the framework in its full generality. W e
show the results of our optimization algorithm in Section IV-C.

A. A simple example (m = 2, k = 2, P = 3)

The input matrices are split into:

A =
[
A1 A2

]
, B =

[
B1

B2

]
.

As fi’s and gi’s are linear encoding functions, let

α(i) =

[
α
(i)
1

α
(i)
2

]
,β(i) =

[
β
(i)
1

β
(i)
2

]
be the encoding coefficients for A and B for the i-th node.
The i-th worker node receives encoded inputs:

Ã(i) = α
(i)
1 A1 + α

(i)
2 A2, B̃(i) = β

(i)
1 B1 + β

(i)
2 B2.

The matrix product output at the i-th worker node is:

C̃(i) = Ã(i)B̃(i) = α
(i)
1 β

(i)
1 ·A1B1 + α

(i)
1 β

(i)
2 ·A1B2

+ α
(i)
2 β

(i)
1 ·A2B1 + α

(i)
2 β

(i)
2 ·A2B2.

The recovery threshold k = 2 implies that with any two C̃(i),
C̃(j), i 6= j, i, j ∈ [3], the master node can recover:

C = A1B1 + A2B2

= 1 ·A1B1 + 0 ·A1B2 + 0 ·A2B1 + 1 ·A2B2.

For illustration, assume that nodes i = 1 and j = 2 responded
first. For linear decoding, our goal is to determine decoding
coefficients d1, d2 ∈ R that yield: C = d1C̃

(1) + d2C̃
(2). For

this to hold for any A and B, the coefficients must satisfy:

[1 0 0 1] = d1
[
α
(1)
1 β

(1)
1 α

(1)
1 β

(1)
2 α

(1)
2 β

(1)
1 α

(1)
2 β

(1)
2

]
+ d2

[
α
(2)
1 β

(2)
1 α

(2)
1 β

(2)
2 α

(2)
2 β

(2)
1 α

(2)
2 β

(2)
2

]
(22)

By reshaping the length-4 vectors in (22) into 2× 2 matrices
and denoting the identity matrix by I2×2, (22) is equivalent to

I2×2 =
2∑
i=1

diα
(i)β(i)T . (23)

Encoding coefficients α(i)’s, β(i)’s and the decoding coeffi-
cients di’s that satisfy the equality in (23) would guarantee
exact recovery for any input matrices A and B. However,
we are interested in approximate recovery, which means that
we want the LHS and RHS in (23) to be approximately
equal. Hence, the goal of optimization is to find encoding
and decoding coefficients that minimize the difference between
LHS and RHS in (23). One possible objective function for this
is:

||I2×2 −
2∑
i=1

diα
(i)β(i)T ||2F . (24)

Recall that this is for the scenario where the third node fails and
the first two nodes are successful. There are

(
3
2

)
= 3 scenarios

where two nodes out of three nodes are successful. For the
final objective function, we have to add such loss function for
each of these three scenarios. We formalize this next.

B. Optimization Formulation
We formulate the optimization framework for arbitrary values

of m, k and P . We denote the encoding coefficients for the
i-th node as:

α(i) = [α
(i)
1 , · · · , α(i)

m ]T , β(i) = [β
(i)
1 , · · · , β(i)

m ]T .

Let Pk([P ]) = {S : S ⊆ [P ], |S| = k} and let Sp be the p-th
set in Pk([P ]). In other words, Pk([P ]) is a set of all failure
scenarios with k successful nodes out of P nodes. Then, we
define d(p) as the vector of decoding coefficients when Sp
is the set of successful workers. We define our optimization
problem as follows:

Optimization for Approximate Coded Computing:

min
α(i), β(i), d(p)

i=1,...,n,

p=1,...,(Pk)

(Pk)∑
p=1

||Im×m −
∑
i∈Sp

d
(p)
i α(i)β(i)T ||2F . (25)

Notice that (25) is a non-convex problem, but it is convex
with respect to each coordinate, i.e., with respect to {α(i) :

i ∈ [n]}, {β(i) : i ∈ [n]}, and {d(p) : p ∈
[(
P
k

)]
}. Hence, we



Symbol Dimension Expression

A m× P
[
α(1) · · · α(P )

]
B m× P

[
β(1) · · · β(P )

]
Z(full) P × P (ATA)� (BTB)

z(full) P [α(i) · β(i)]i=1,...,P

Z(p) k × k Z(full)|i∈Sp,j∈Sp
z(p) k z(full)|i∈Sp
Y P × P

[∑
p:i,j∈Sp d

(p)
i d

(p)
j

]
i=1,...,P
j=1,...,P

y P
[∑

p:i∈Sp d
(p)
i

]
i=1,...,P

YA, YB P × P YA = Y � (ATA), YB = Y � (BTB)

TABLE I
SUMMARY OF NOTATIONS USED IN PROPOSITION 1 AND ALGORITHM 1

propose an alternating minimization algorithm that minimizes
for d(p), α(i), and β(i) sequentially. Each minimization step
is a quadratic optimization with a closed-form solution, which
we describe in the following proposition. The notation used in
the proposition and in Algorithm 1 is summarized in Table I

Proposition 1. The stationary points of the objective function
given in (25) satisfy

(i) Z(p) · d(p) = z(p) for p = 1, . . . ,

(
n

k

)
,

(ii) YBA = diag(y)B,
(iii) YAB = diag(y)A,

where diag(y) is an n-by-n matrix which has yi on the i-th
diagonal and 0 elsewhere.

Algorithm 1 sequentially solves conditions (i)–(iii) in Propo-
sition 1. Since each step corresponds to minimizing (25) for
one of the variables d(p), A, and B, the resulting objective is
non-increasing in the algorithm’s iterations and converges to a
local minimum.

Algorithm 1: Alternating Quadratic Minimization
Input: Positive Integers m, k and P (P > k);
Output: A, B, d(p) (p = 1, . . . , P );
Initialize: Random m× P matrices A and B;
while num_iter < max_iter do

Compute Z(full) and z(full) from A and B;
for p← 1 to P do

Solve for d(p) : Z(p)d(p) = z(p)

end
Compute Y and y, and YB ;
A← A∗, A∗: solution of YB ·A = diag(y) ·B;
Compute YA ;
B← B∗, B∗: solution of YA ·B = diag(y) ·A;

end

We next show how the optimization objective in (25) is
related to the relative error of the computation output. Let `(p)
be the loss function for the p-th scenario, i.e.,

`(p) = ||Im×m −
∑
i∈Sp

d
(p)
i α(i)β(i)T ||2F . (26)

Theorem 5. The error between the decoded result from the
nodes in Sp, ĈSp , and the true result C can be bounded as:

||C− ĈSp ||F ≤
√
`(p) ·m · η2. (27)

(a) (b)

Fig. 1. (a) Results of running Algorithm 1 with k = 2m− 2. The y-axis is
min loss from 1,000 different trials. (b) Comparison of exact and approximate
coding strategies. The y-axis is the empirical evaluation of ε, i.e., ||Ĉ−C||max.

C. Experimental Results

In Fig. 1a, we plot the result of running Algorithm 1 for
different (m, k, P ) pairs while fixing k = 2m − 2, and we
take the best code out of 1,000 trials with different random
initializations. For each trial, we ran the optimization for
1,000,000 iterations. It demonstrates the best codes found
have a loss (∼ 10−5) that is much smaller than 1/m2, which
implies accurate reconstruction due to Theorem 5. The figure
thus demonstrates the power of the optimization framework.
In Fig. 1b, we compare the performance of exact-recovery
codes (conventional MatDot codes and Chebyshev polynomial-
based codes [35]) with the approximate MatDot codes and
optimization codes developed in this paper. The parameter
Nsucc represents the number of non-straggling nodes. The figure
demonstrates that for Nsucc ≥ k = 2m − 1, the Matdot and
Chebyshev codes have very small loss and error ( 10−16),
however, for Nsucc < k Approximate MatDot codes and
optimized codes outperform Chebyshev and MatDot codes.

D. Application to Logistic Regression

Finally, we show that the proposed approximate coded
computing strategies can be used in machine learning appli-
cations with little impact on accuracy. We trained a logistic
regression model for the MNIST dataset where we applied
Approximate MatDot codes and optimized codes to every
matrix multiplication step in the training, assuming that we
only get k successful outputs from P nodes. The test accuracy
for uncoded strategy (without failed nodes) was 91.17± 0.25.
Even when k < 2m − 1, e.g., (m, k, P ) = (5, 5, 7), training
with Approximate MatDot codes achieves nearly the same
accuracy as uncoded performance, i.e., 91.17 ± 0.26. More
extensive experimental results and details can be found in [1].

V. DISCUSSION AND FUTURE WORK

This paper opens new directions for coded computing by
showing the power of approximations. Specifically, an open
research direction is the investigation of related coded comput-
ing frameworks (e.g., polynomial evaluations) to examine the
gap between ε-error and 0-error recovery thresholds. Since our
constructions requires evaluation points close to 0 (Section III),
we potentially get ill-conditioned encoding matrices. An open
direction of future work is to explore numerically stable coding
schemes building on recent works, e.g. [35]–[37], focusing on
ε-error instead of exact computation.
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