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The booming development of large-scale infrastructure projects (LSIPs) facilitated by China’s Belt and Road
Initiative (BRI) has drawn global concern regarding the scale, pace, and potential impact. Studies have largely
focused on the geopolitical impact (i.e., politics and international relations) but less is known about social and
environmental impact. This is in large part because consistent, high-resolution, cross-boundary social and
environmental data at large scales are rather limited. To address the knowledge gap, this research developed a
novel Socio-Environmental Sensing (SES) approach by synthesizing remote sensing imagery and geotagged
Twitter data to map the socio-environmental impact of LSIPs. We demonstrated the applicability of this approach
using two BRI flagship projects, namely, the Mombasa-Nairobi Standard Gauge Railway (SGR) in Kenya and the
China-Pakistan Economic Corridor (CPEC) in Pakistan. Our analysis shows that both projects have led to a
substantial loss of natural land (e.g., 3.7 % loss of vegetation in Kenya, and 23.3 % reduction of the glacier in
Pakistan) but gains in artificial land (e.g., 4.2 % increase in cropland in Kenya, and 34.6 % expansion of built-up
land in Pakistan). In addition, the BRI-LSIPs have largely improved local economic development, because
nighttime light imagery revealed that regions near the BRI-LSIP sites became much brighter than other regions.
Regarding the social aspect, we found that public sentiment toward the projects was largely positive and
improved over time, which contradicts the prevalent pessimism to BRI-LSIPs by critics. Nevertheless, sentiment
also presented strong spatial heterogeneity — regions around the BRI transportation hubs (usually large cities)
most showed more positive sentiment than other regions. By spatially joining the georeferenced sentiment scores
with environmental indicators from remote sensing, we further found that positive sentiment improved more in
more developed regions, but only changed slightly in other regions. This study provides a novel approach to
assess the socio-environmental impact of large-scale projects, and the findings would be useful for informing the
implementation of future BRI projects across the globe.

1. Introduction

In the last decade, large-scale infrastructure projects (LSIPs, e.g.,
railways, highways, ports, pipelines, and hydropower) have proliferated
throughout the Global South. China’s Belt and Road Initiative (BRI) is
one especially noteworthy international finance-driving global

development. Launched in 2013, this initiative plans to build a network
of transportation and economic centers connecting more than 180
countries across East Asia, Europe, and Africa. To date, China has
pledged an estimated US$1 trillion (7.7 % of China’s GDP or 1.2 % of the
world’s GDP) for these projects worldwide, and many more are currently
being planned. Projects at this scale have had a significant positive
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impact on transportation connectivity and economic development
(Thacker et al., 2019), but there is also considerable concern regarding
their socio-environmental impact (Ascensao et al., 2018; Isaksson and
Kotsadam, 2018; Lechner et al., 2018; Narain et al., 2020). Earlier
research suggests that large-scale construction can not only lead to
substantial land-use change (e.g., deforestation, agricultural land ex-
pansions), but also can affect human livelihood and wellbeing (Forman
et al., 2003; Karlson et al., 2014; Moran, 1993; Moran and Brondizio,
1998). It is, therefore, crucial to understand the potential widespread
socio-environmental impact of infrastructure projects generally, but the
scope of large-scale infrastructure projects elevates this importance as
even individual projects have the potential to impact many more people
and ecosystems.

In recognition of this heightened potential, considerable scholarly
attention has been devoted to understanding the socio-environmental
impact of major infrastructure projects, especially the BRI-LSIPs. How-
ever, the existing studies largely considered either the environmental
aspect or the social aspect. Moreover, studies on environmental impact
mostly focused on predicting potential impact rather than assessing the
factual impact, which is essential for informed planning and decision-
making. For example, some work predicted possible increases in en-
ergy consumption and pollution, enlarged carbon footprints, and
encroachment on wildlife habitats (Hughes, 2019; Teo et al., 2019;
WWE, 2017), but little is known about how LISPs have actually altered
environmental conditions. For studies on the social aspect, rich litera-
ture explored the political and economic implications at the macro-level
(Du and Zhang, 2018; Saud et al., 2019; Zhai, 2018), but perspectives
from the local communities have been largely ignored. Incorporating the
perspectives of local communities is crucial as these communities are the
ones who were affected directly. In an endeavor to address this, some
conducted fieldwork (e.g., interview and survey) to gather such data
(Blair and Roessler, 2018). But these traditional methods are usually
costly and time-consuming, which limit the research scope to small and
local scales (Boonwattanopas, 2015; Garcia-Herrero and Xu, 2019;
Wissenbach and Wang, 2017), making them underrepresented and
insufficiently positioned to speak to the international, national, and
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regional concerns. In short, existing studies are limited in two primary
ways: most either (1) adopt a risk assessment perspective where they
focus on the potential harm rather than investigating actual
socio-environmental impact, or (2) fail to consider both aspects of social
and environmental impact despite increasingly forceful calls for such
analyses (Liu et al., 2007; Ostrom, 2009). In particular, the World Bank
and the International Union for Conservation of Nature (IUCN) have
recently called for Strategic Environmental and Social Assessments
(SESAs) of BRI-LSIPs specifically to address this knowledge gap
(Ascensao et al., 2018).

To advance the understanding of socio-environmental impact at
large spatial scales and inform policy, this study proposes to integrate
broadly available social media data and environmental remote sensing
data to investigate the social and environmental impact of BRI-LSIPs
(Fig. 1). These two data sources complement each other and provide
more comprehensive indicators for both environmental and social as-
pects. Long-term, global remote sensing data have proven powerful for
monitoring environmental changes on the Earth’s surface. For example,
Landsat images are used to detect land-use change (Linderman et al.,
2005), while nighttime light images serve as indicators of socioeco-
nomic change (Wulder et al., 2019). Similarly, social media data (e.g.,
Twitter) provides rich individual-level information (e.g., user-generated
images, text, and videos). This kind of data is increasingly used to
analyze the public sentiment in a variety of contexts (Arthur et al., 2018;
Di Minin et al., 2019; Liu et al., 2015; Moore et al., 2019). Although both
provide important contributions, environmental remote sensing and
social sensing are often applied separately for different research pur-
poses. To date, they have rarely been considered together within the
same research effort to understand the socio-environmental impact of
large-scale infrastructure development efforts.

In this paper, we first illustrated the novel Socio-Environmental
Sensing (SES) approach that integrates remote sensing and social
sensing. Then, we exemplified the approach by taking two BRI flagship
projects — the Mombasa-Nairobi Standard Gauge Railway (SGR) projects
in Kenya and the China-Pakistan Economic Corridor (CPEC) in Pakistan
— as representative cases (see Geographic foci in Section 2.2). We aimed
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to address three research questions. First, how did landscapes change
with the development of BRI-LSIPs? Previous research focused on forest
loss (BenYishay et al., 2016), but it is still not clear how other types of
land use/land cover have changed. For instance, farmland expansion
and rapid urbanization are very likely to happen in these developing
countries under population growth and increasing globalization (Bron-
dizio and Moran, 2012; Liu et al., 2020). Second, how did the general
public perceive the BRI-LSIPs, and how did their sentiment change over
time? Many environmental non-governmental organizations (NGOs),
conservationists, journalists, and scholars criticized the nature, pace,
and scale of China’s overseas projects (BenYishay et al., 2016; Blair and
Roessler, 2018; Laurance et al., 2015), but it would be more important to
know how the general public and local community perceived those
projects as they are the ones who experienced the actual impact. Lastly,
is the public sentiment change associated with environmental change?
We synthesized results from remote sensing and social sensing and hy-
pothesize that there might be strong negative sentiment towards natural
land loss. This study contributes to human-environment literature by
providing a novel SES approach to enable socio-environment impact
assessment to a large spatial extent. The findings provide valuable in-
formation for the planning, implementation, and monitoring of similar
large-scale infrastructure projects globally.

2. Materials and methods
2.1. Socio-environmental sensing

The Socio-Environmental Sensing (SES) approach is a key extension
of the People and Pixels foundation (National Research Council, 1998),
which connects remotely sensed data and georeferenced social science
data to advance empirical and theoretical understanding of
human-environment interactions (Kugler et al., 2019). Remotely sensed
satellite data have been widely applied in environmental monitoring,
while the individual-level geotagged social media data is an emerging
data source for capturing collective human behavior and
individual-level sentiments (Di Minin et al., 2019; Liu et al., 2015).
Adopting social and remote sensing data simultaneously provides a new
way to investigate changes in complex socio-environmental systems and
inform policymaking in a timely manner. Both data sources can be easily
queried from databases at very low or no cost (Hasan et al., 2017).
Remote sensing images at high spatial resolution (e.g., 10-m or 30-m)
can be accessed weekly or biweekly, and social media data can be
collected in real-time. These enable us to investigate the long-term
environmental changes with detailed information and capture senti-
ment changes with social sensing technologies across a large region.
Here, we took a commonly used Before-After (also called Pre-Post test)
analysis to evaluate the impact (Christie et al., 2020) given there were
few other projects at this large scale in the region. Each LSIP is divided
into two stages: “before” the project implementation, and “after” the
project was completed (See Table A.1 for the detailed timeline of each
project). Referring to previous studies (Benitez-Lopez et al., 2010;
Isaksson and Kotsadam, 2018; Ng et al., 2020), we chose 50 km as the
threshold distance to determine the project impact zone. Our SES
approach builds on and advances previous studies by integrating
emerging big data sources and novel tools (e.g., artificial intelligence,
cloud computing) to enable human-environment research at a large
spatial scale. In the following sections, we detail each sensing approach
and how they complement each other for a more comprehensive impact
assessment.

2.1.1. Environmental sensing

Remote sensing and its associated cloud computing technologies
provide powerful datasets and tools to capture the landscape and envi-
ronmental change over considerable time and space — a substantial
advance to traditional field observation-based environmental research
(Gorelick et al., 2017). For example, more than 46 years of Landsat
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imagery archive has enabled long-term global forest monitoring (Han-
sen et al., 2013), crop yield estimation (Huang et al., 2015), surface
water mapping (Pekel et al., 2016), surface temperature estimation (Li
et al., 2013), and more (Wulder et al., 2019). Similarly, Google Earth
Engine’s cloud-computing platform makes remote sensing more efficient
in detecting and quantifying changes at large spatial scales (Gorelick
et al., 2017). In this study, we focused on investigating changes in land
use and nighttime light. This is because land-use change is often the
most direct consequence of large-scale development (Brown et al., 2007;
Lambin et al., 2001; Liu et al., 2010), and nighttime light brightness
often is used as an indicator of economic growth and social-economic
activity (Chen and Nordhaus, 2019; Wu et al., 2013).

2.1.2. Social sensing

Large-scale development can have a substantial impact on local
communities. For some, infrastructure development projects create jobs
and make transportation more convenient. For others, these projects
invade protected areas and impact sacred landmarks (Giddens, 2013).
These impacts can unfold over the course of the project as intended
actions become unfeasible or unintended consequences become clear
(Cohen et al., 2014; Jiang et al., 2016). Capturing this change tradi-
tionally relies on participatory mapping or questionnaire-based surveys.
These approaches are useful for studies at the local scale but are limited
for research at large spatial extents. The recent rapid development of
social media platforms and Application Programming Interfaces (API)
offers a more accessible and abundant data source over large spatial
extents to fill the data gap (Bing et al., 2014). Social media platforms
such as Twitter allow individual voices to be heard in an unprecedented
way, bypassing news media which traditionally acts as the primary
gatekeeper for the spread of the information (Bing et al., 2014; Seki,
2016; Tan et al., 2014; Vos, 2019). Put another way, Twitter allows for
relatively unfiltered opinions to be expressed. Extensive studies show
how individuals are more willing to give their honest opinion through
online platforms, sharing feelings they would not share face-to-face or
through a record associated with their name (e.g., some interviews and
questionnaire-based surveys) (Black et al., 2016; Correa et al., 2015;
Jones et al., 2020). As Twitter’s prompt to post (i.e., “What’s
happening?”) indicates, social media provides a temporally- and
spatially-explicit rich mix of news and reactions, thus allowing for the
efficient study of trends in public sentiment on a larger scale than was
previously possible (Rajadesingan and Liu, 2014; Tavoschi et al., 2020).

In this study, we only used Twitter data because it is the only
available and accessible data source that offers fine-scale spatial infor-
mation (Arthur et al., 2018; Cai, 2021; Fu et al., 2018). Although in-
formation from local news and other media outlets is valuable, they
mostly do not have specific spatial location information (only a few can
be geocoded to a city or state level). Besides, opinions and attitudes in
news reports are largely determined by the journalists, and even worse
censored by the government or certain political parties. While a few
Twitter accounts are run by governments and newspaper offices, a vast
majority are owned by individuals. The advantage of using Twitter data
is that we can collect diverse “voices” from a large body of individuals
and use those data to identify the “emerging” pattern (Cai, 2021; Tan
et al, 2014). Sentiment information derived from tweets might be
sometimes less accurate than that from a well-designed survey, but as far
as we know, Twitter is by far the most feasible data source we can use to
estimate human sentiment and behaviors at a large spatial scale. In
addition, Twitter data have been proven efficient in analyzing public
sentiments to climate change (Moore et al., 2019), wildlife conservation
(Di Minin et al., 2019), cultural ecosystem services (Johnson et al.,
2019), urban planning (Cai, 2021), and disasters (Arthur et al., 2018).

2.1.3. Integrating environmental and social sensing analysis

Although remote sensing and social sensing data are useful on their
own, integrating these two can provide us with complementary infor-
mation to more comprehensively understand both the social and
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environmental impact of BRI-LSIPs and as well as their linkages.

In this study, after evaluating the environmental and social impact
respectively (see details in Section 2.3), we then took information from
the data layers of two sensing analyses and ran a regression analyses to
test if public sentiment change was associated with environmental
landscape change and socioeconomic change (Fig. 1). Specifically, we
extracted evenly distributed points from the data layers of landscape
naturalness (see details in Section 2.3.1), nighttime light brightness, and
sentiment based on a 10 km x 10 km grid. Within the same grid unit, we
assume the corresponding sentiment change could be observed if the
grid area experienced environmental change (e.g., deforestation because
of infrastructure development). In total, 4735 points were obtained for
Kenya and 8193 points for Pakistan.

Overall, by linking environmental remote sensing and social sensing
data, we aimed to provide a feasible way to narrow the gap in efficiently
assessing the socio-environmental impact of LSIPs (Fig. 1).

2.2. Geographic foci

This study seeks to shed light on the impact of BRI-LSIPs through an
investigation of the Mombasa-Nairobi Standard Gauge Railway (SGR) in
Kenya, and the China-Pakistan Economic Corridor (CPEC) highway
system in Pakistan. We selected these two projects for a few reasons.
First, these two projects generally are representative of BRI-LSIPs in
terms of their large spatial scale/coverage, geography, level of invest-
ment, and widespread media coverage (Laurance et al., 2014). There are
also noteworthy concerns regarding the impacts of both projects given
their overlap with environmentally important or ecologically fragile
regions (WWF, 2017). Additionally, we selected transportation projects
specifically because they account for over 60 % of all BRI-LSIPs that are
currently planned (around 6200 projects; Fig. A.1) (AIDDATA, 2020;
Strange et al., 2017). We chose projects in two continents to facilitate a
multinational analysis (Carlson and Harris, 2020; Hu, 2018; Janowicz
et al., 2012). Finally, we selected these sites because of the relatively
strong availability of English-language Twitter posts (text in a common
language is important for the analyses) and high-quality remote sensing
data in those regions.

2.2.1. The mombasa-nairobi standard gauge railway

The Mombasa-Nairobi Standard Gauge Railway (SGR) is a flagship
BRI project in East Africa. To date, it is the most expensive infrastructure
project in Kenya’s history, with a total cost of US$3.6 billion. The SGR is
one of the earliest completed projects under the BRI with construction
formally starting in December of 2015, passenger services opening in
May of 2017, and freight rail services opening in January of 2018. The
railway has greatly reduced the transportation cost between Mombasa
and Nairobi, and facilitated regional tourism and other related busi-
nesses. Despite these benefits, concerns have been raised regarding
increased national debt (Githaiga and Bing, 2019). Additionally, the
SGR railway traverses several important ecological areas (e.g., Tsavo
National Park, Nairobi National Park, Mombasa Mangrove Wetland
Park) and there is concern that the project may offset previous conser-
vation efforts or even aggravate environmental degradation (Kenneth
and Zhao, 2020).

2.2.2. The China-Pakistan economic corridor

The China-Pakistan Economic Corridor (CPEC) is a flagship project
of the BRI. CPEC was launched in April 2015 to upgrade Pakistan’s
transportation infrastructure, for which China has allocated financing
for US$10.63 billion. Three primary corridors have been identified: (1)
the Eastern Alignment through the heavily populated provinces of Sindh
and Punjab, where most industries are located; (2) the Western Align-
ment through the less developed and more sparsely populated provinces
of Khyber Pakhtunkhwa and Baluchistan; and (3) the future Central
Alignment that will pass through Khyber Pakhtunkhwa, Punjab, and
Baluchistan (Abid and Ashfaq, 2015). Most of these highway projects
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started in early 2016 and were completed in the second half of 2019 (see
Table A.1 for the detailed timeline of each project). Together they have
promoted regional economic development and interregional trade, but
also brought considerable environmental concerns (e.g., loss of natural
vegetation, increased glacial melting in the northern Pakistan region)
(Kanwal et al., 2019).

2.3. Data collection and analysis

2.3.1. Environmental sensing data collection and analysis

We used freely available, high-resolution global land cover products
derived from remote sensing imagery to investigate land-use change due
to BRI-LSIP developments. GlobeLand30 - the 30-meter resolution
global land cover data product for 2010 and 2020 — was used to analyze
the land cover and land-use changes in Kenya and Pakistan. Globe-
Land30 includes land cover classes such as cultivated land, forest,
grassland, shrubland, wetland, water bodies, tundra, artificial surface,
and bare land (Jun et al., 2014). This product has high-resolution, global
coverage, and is constantly updated. The total accuracy of GlobeLand30
2010, as based on the validation of over 150,000 points in 80 of the total
853 tiles, is 83.50 % and the Kappa coefficient is 0.78. The total accuracy
of GlobeLand30, 2020 is 85.72 % and the Kappa coefficient is 0.82
(GlobeLand30, 2020). Due to the data availability, we used the data in
2010 for estimating land cover “before projects” (i.e., in 2013), and
2020 for “after projects” (i.e., in 2019). This approximation may be a
limitation but is widely used in other studies with the assumption that
the changes in land use within adjacent years are usually small (Li et al.,
2017; Liu et al., 2014). In addition, based on different land cover types
from the GlobeLand30, we created a land cover naturalness index for
later quantitative analysis (Machado, 2004). The index ranges from 0 to
100 percent, including different values for the 11 land-cover types. The
more “natural” the land-cover type is, the higher the value. Here, we
assigned 100 % to forest, shrubland, grassland, wetland, tundra, and
snow/ice; 75 % to water; 50 % to agricultural land; 25 % to bare land;
and 0 % to artificial land. We further categorized three naturalness
levels: low (< 25 %), moderate (25 % ~ 50 %), and high (> 50 %).

To address economic changes, we used the NASA Visible Infrared
Imaging Radiometer Suite (VIIRS) nighttime light images at 15 arc
seconds from 2014 to 2019 (https://viirsland.gsfc.nasa.gov/). Night-
time light imagery can approximate socioeconomic indicators (popula-
tion and human activities) and is especially useful for areas that lack
sufficient socioeconomic data (Elvidge et al., 2017; Yang et al., 2019).
Similar to naturalness, we categorized the VIIRS nighttime light images
to three brightness levels (in radiance units of nano-Watts/cm2/sr) for
analysis: low (0 ~ 2), moderate (2 ~ 5), and high (> 5) (Levin and
Zhang, 2017).

2.3.2. Social sensing data collection and analysis

This study used social media data to understand public sentiment
towards the BRI-LSIPs. We chose Twitter because it is the social media
platform with the broadest country user coverage (with 330 million
users active monthly). Recent advanced artificial intelligence methods
(e.g., text mining and sentiment analysis) provide ready-to-use packages
for detecting topics and human sentiments from text information (Bing
et al.,, 2014; Cai, 2021). In this study, a dictionary-based sentiment
analysis R package (sentimentr) (Rinker, 2018) was applied to investigate
public sentiment towards the project (see details in Appendix A).
Additionally, we used the opinion mining method from Microsoft
Azure’s Cognitive Services to further locate the subject and the corre-
sponding sentiment in a tweet (https://docs.microsoft.com/en-us/a
zure/cognitive-services/text-analytics/). For example, if a tweet says,
"The railway is great, but the environmental impact is worrisome.",
opinion mining will return the mapping relationship like “positive”
sentiment to “railway”, and “negative” sentiment to “environmental
impact”.

Twitter’s Application Programming Interface (API) was used to
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extract the historical tweets from its full archive. As the BRI was formally
initiated in September of 2013 when Chinese President Xi visited
Pakistan, we filtered and requested Tweets posted between September
2013 and December 2019. We requested all tweets containing one of a
list of keywords or hashtags (here we followed Twitter API searching
rules and filtering guide, including Boolean operators, truncation, and
wildcard): “#bri OR #obor OR #silkroad OR beltandroad OR beltan-
droadinitiative OR beltroad OR "belt road" OR "silk road" OR onebeltoneroad
OR "belt and road" OR ("one belt" "one road")’ (see detailed explanation in
Supplementary Methods in Appendix A). For each specific project, we
further reviewed local news media posts and a sample of tweets to
identify additional search terms for each country. For Kenya, we added
‘(China OR Chinese OR Beijing) (rail OR highway OR road OR train OR
infrastructure) (SGR OR "standard gauge") place_country:KE’ (see detailed
explanation in Supplementary Methods in Appendix A). For Pakistan,
we added ‘(China OR Chinese OR Beijing) (rail OR highway OR road OR
train OR infrastructure) ("Economic Corridor" OR CPEC) place_country:PK’
to the general BRI search terms. The final dataset is the set of geotagged
tweets between September 1, 2013, and the end of December 2019 (330
weeks, or 2313 days). The tweets, therefore, covered the periods before,
during, and after the construction of both project cases in this study. The
data include anonymous user profile information like fuzzy location and
social identity, tweet locations and timestamps, and comments/replies
in addition to the tweet content itself. Around 1.6 million tweets from
around 0.4 million unique users were collected (replies and retweets are
not included). Unnecessary symbols and noise, such as weblinks, men-
tions, punctuations, stop words (usually refers to the most common
words in a language that have relational rather than content meaning,
such as “a”, “the” and “is”), were removed from the tweet texts before
sentiment analysis and opinion mining (Cielen et al., 2016). Sentiment
analysis was validated by manually screening 1000 tweets (Moore and
Obradovich, 2020).

3. Results
3.1. Land use and land cover change

Infrastructure development through the BRI has resulted in consid-
erable natural land loss and artificial land increases in both Kenya and

Pakistan (Fig. 2). These changes are also reflected in the nighttime light
images. We found human activities along the transportation
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infrastructure networks increased substantially after the projects, and
regions close to the newly built railways and highways presented much
brighter nighttime light than other regions (Fig. A2). These brighter
regions in the satellite images presented a mostly linear pattern and
aligned with the new transportation network obtained from the Open-
StreetMap (https://www.openstreetmap.org/).

In Kenya, there was a net loss of forest within the project impact
zone, but a large net increase outside the zone. Although the project
impact zone only accounts for 22.3 % of the total land area of Kenya, the
increase of agricultural land accounts for 62.0 % of the country’s total
increase. Specifically, land cover within the 50 km buffer zone of the
Mombasa-Nairobi Standard Gauge Railway showed an increase in
artificial land (by 13.7 %), agricultural land (by 4.2 %), and water (by
6.9 %) at the expense of wetland (by 12.2 %), shrubland (by 6.7 %),
grassland (by 3.5 %), bare land (by 5.7 %), and forest (by 3.2 %) during
2010 and 2020 (Table A.2, Fig. 3A). In addition to a relatively large
increase in artificial land because of the infrastructure development,
there is a larger increase in agricultural land near the railway (Fig. 3C
and D). The increase in artificial land and agricultural land was mainly
due to transfer from natural lands, such as grassland, forest, and shrub
(Fig. 3B; Table A3).

For Pakistan, land within the project impact zone has undergone
much larger changes than regions without such projects, with over 65 %
reduction in wetland, forest, agricultural land, shrubland, and grassland,
and more than 80 % increases in artificial land and water bodies (Fig. 2).
Specifically, the land cover within the 50 km buffer zone around the
CPEC transportation networks showed an increase of artificial land (by
34.6 %), water (by 44.4 %), and wetland (by 6.6 %), mainly at the
expense of snow/ice (by 23.3 %), shrubland (by 3.9 %), grassland (by
2.3 %), forest (by 1.0 %) (Table A4). Unlike Kenya, we found there was a
much larger increase in artificial land and water bodies, and an alarming
decrease (>20 %) in glaciers (snow and ice) in Pakistan (Fig. 4A). The
increases in both water bodies and wetland were due to the land transfer
from agricultural land, grassland, and bare land (Fig. 4 B and Table A5).

3.2. Sentiment change

3.2.1. Average sentiment towards the BRI-LSIPs

Of the 1.58 million Tweets collected from 415,770 unique users,
9,426 were attributed to Kenya, and 26,655 were attributed to Pakistan.
Surprisingly, we found most of the public were more concerned about
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social and economic issues (e.g., “corruption”, “debt”, and “coopera-
tion™”) than the environment (see details in Section 3.3). In Kenya, the
most common keyword in tweets is “sgr” (Fig. A2). Most of the negative
sentiment is related to “corruption”, “debt”, and “scandal”, while posi-
tive sentiment is linked to “good” benefits of the “road” (Fig. 5A). In
Pakistan, the keyword most used is “cpec” (Fig. A2). Similar to Kenya,
Pakistan’s negative sentiment is also tied with “corruption” and “debt”
(Fig. 5B); but unlike Kenya, another common negative sentiment is
related to “India” (Fig. 5B). The positive sentiment in Pakistan focuses
on the “cooperation” and “opportunity” by the “bri” and “road”
(Fig. 5B).

In both Kenya and Pakistan, the local community’s sentiment to-
wards BRI-LSIPs (measured as sentiment score) was mostly positive
between 2013 and 2019 (Fig. 6). In Kenya, 60 of the 75 months evalu-
ated had majority positive sentiments (80.0 %), while 15 months had
majority negative sentiments (20.0 %) and the strongest negative
sentiment occurred before the SGR construction (Fig. 6). In Pakistan, 72
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of the 76 months measured had majority positive sentiments (94.7 %),
while only 4 months had majority negative sentiments (5.3 %) and the
strongest negative sentiment emerged before the CPEC as well (Fig. 6).
The mean sentiment score in Kenya was +0.03, while the mean senti-
ment score in Pakistan was +0.12 (Fig. 6).

3.2.2. Spatial-temporal change of sentiment change

Although the sentiment towards BRI-LSIPs in both Kenya and
Pakistan became more positive over time (Fig. 6), it varied largely across
space (Fig. 7). Within Kenya, positive sentiments increased primarily in
the southern half of the country (e.g., the Coast Province), as well as part
of the central portions (e.g., Central Province) (Fig. 7A). These two re-
gions also have the country’s largest city (i.e., Mombasa) and the na-
tional capital city (i.e., Nairobi), which are connected by the new SGR.
Negative sentiments emerged and became worse in the northwest (e.g.,
northern Rift Valley county) and east of the Central Province of the
country after the projects were completed.
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A similar city-hub-dependent sentiment change was seen in Pakistan
(Fig. 7B). Positive sentiment increased primarily in regions around the
large cities, such as the southwestern region with Karachi (the largest
city), the eastern region with Lahore (the second largest city), and the
northern region with Islamabad (the national capital). Sentiment score
decreased mostly in the northern parts of the country (i.e., the Gil-
git-Baltistan region), which is regarded as a conflict zone at the junction
of the three countries — Pakistan, India, and China. Infrastructure pro-
jects in such regions might require additional funding and efforts to ease
social tensions and environmental challenges (Hughes et al., 2020).

3.3. Linkage between sentiment changes and environment changes

Three main environment-related subjects — “environment”, “land”,
and “water” — in tweets were identified by using opinion analysis.
Although it is not statistically significant, we observed that sentiments to
these three subjects were generally negative before implementing the

533

BRI projects, but became more positive after completing the projects in
both countries (Fig. 8). This indicates that from the local perspectives,
the BRI projects did not cause as many environmental concerns as
envisioned at the beginning. However, it does not mean the BRI projects
caused no negative environmental impact at all. A small portion of
tweets did express concerns on the environmental impact, and the
perception also varied across people from different regions within the
country. For example, some worried about the negative impact on the
Nairobi National Park because the SGR is passing the park; others
warned of the alarming trend of glacier melting in Pakistan because of
railway construction.

The relationship between sentiment changes and landscape changes
was subtle for both projects. Other complex confounding factors, such as
level of development and affluence, may also play a role in influencing
human sentiment. Interestingly, we found that sentiment change has a
negative relationship with landscape naturalness change in Kenya, while
the relationship is positive in Pakistan (Fig. 9). Furthermore, we found
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that in both Kenya and Pakistan, people in the low naturalness region
presented more positive sentiment after the BRI projects, while people in
the high naturalness region shown more negative sentiment after the
BRI projects (Fig. A.11). This implies people in the more urbanized re-
gion tended to have more positive sentiment to the projects, while
people in the more rural region tended to have more negative senti-
ments. The positive relationship between sentiment score and nighttime
light brightness further strengthens this argument, as nighttime lights
are often used as proxies for population and economic affluence (Chen

534

and Nordhaus, 2019; Proville et al., 2017). More importantly, we found
that positive sentiment increased most in the brightest regions (i.e.,
more prosperous regions) after the projects were completed, but senti-
ment only changed slightly in less bright regions (Fig. A.11). This spatial
heterogeneity is substantively important for understanding the rela-
tionship between sentiment change and environmental change, even
though results from a regression analysis do not show statistical
significance.
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4. Conclusion and discussion

This research developed and applied the novel Socio-Environmental
Sensing (SES) approach to assess the environmental and social impact of
large-scale infrastructure projects development in the Global South. This
approach narrowed the data gaps in assessing socio-environmental
impact at large spatial scales. We investigated two representative
LSIPs (i.e., SGR in Kenya and CPEC in Pakistan) that were facilitated by
the Belt and Road Initiative. We found both projects led to substantial
land use and land cover changes, mainly reflecting on natural land loss
and artificial land gains. Nighttime light imagery also confirmed this
change and revealed that regions near the project sites became brighter
than regions without such projects. This implies BRI-LSIPs have largely
improved local economic development. In addition, our social sensing
analysis found that the sentiment of local communities towards the BRI-
LSIPs became more positive throughout the projects, which contradicts

the prevalent pessimism by critics. Our integrated analysis found that
there were fewer sentiments to environment impact than socioeco-
nomic, and the relationship between sentiment and environment was
not as strong as expected because of spatial heterogeneity across nation
and region.

4.1. Unexpected landscape change and the potential impact

The two projects had a tremendous direct environmental impact on
each country’s landscape and economic development. Both Kenya and
Pakistan experienced natural land loss and increases in artificial lands
coinciding with increased human activities along with the project sites.
Various natural lands were lost during the construction process for both
countries. Specifically, Kenya lost a large amount of grassland, forest,
and shrubland, in favor of increases in construction, agriculture, and
water bodies. Pakistan lost even more (semi)natural lands, such as
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snow/ice, grassland, shrubland, forest, and agricultural land. These land
types were primarily replaced by artificial land and water bodies.

It is worth noting that transportation construction can not only spur
artificial land use but also propel agricultural activities along with the
transportation network. Our analysis found there is a surge in agricul-
tural land in southern Kenya (Fig. 3). This change might attribute to the
convenient transportation that enables interregional food trade and
promotes agricultural activities in the region. In addition, we surpris-
ingly found an enormous amount of water body and wetland growth in
Pakistan, while the snow and ice retreated (Fig. A.6). This finding is
consistent with the warning from geologists who highlighted the po-
tential for glacier melting in the upstream Indus River and the increase
in High Asia’s runoff (Lutz et al., 2014; Rathore et al., 2018). This
arouses another layer of concern that human construction may com-
pound the climate change effect and catalyze the glacial melting in the
Himalayan region. The consequent impact on local ecosystems and
beyond remains unknown and could be devastating (Kehrwald et al.,
2008; Veh et al., 2020). Our findings thus suggest future LSIPs and road
ecology studies should pay special attention to the usually ignored
broader environmental impact of transportation (e.g., agricultural
expansion, habitat fragmentation, and ecosystem degradation), in
addition to the local effects (e.g., local land use transfer, and local air
quality).

4.2. Sentiment trends

Although many negative comments on the BRI itself and BRI
financed LSIPs in the news media, we found the overall sentiments in
both Kenya and Pakistan were generally positive throughout the
development process (Fig. 6). One potential explanation is the socio-
economic benefits that come with such large-scale infrastructure pro-
jects (Thacker et al., 2019). Looking at the sentiment change over time
by country, we identified a spike in positive sentiment before the project
(when the project was under planning), and then there appeared to be
more negative sentiment when approaching the actual launching of the
project (Fig. 6). This can be confirmed with the fact that several LSIPs
financed by the BRI were either suspended or terminated prior to the
project implementation because of conflicting interests or opposition by
different stakeholders. Future project planning should especially pay
attention to these potential obstacles and impacts before implementing.

In terms of the spatial variation in sentiment within countries, we
find parallels between locations. In Kenya, positive sentiment tended to
be higher in the southern portion of the country where the Mombasa-
Nairobi Standard Gauge Railway is located. While a similar pattern
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can be seen with the China-Pakistan Economic Corridor construction,
we also found most of the regions that experienced LSIPs showed posi-
tive sentiment, though with a mix of few negative sentiments along the
territory border in Pakistan. This indicates people in Pakistan tended to
have positive sentiment towards the LSIPs overall, but concerned about
geopolitical relations. Our keyword analysis confirmed this, as “India” is
among the most frequently mentioned keywords on Twitter in Pakistan.
This makes sense when placed in context with the conflicting interests
among Pakistan, India, and China. It was reported that several CPEC
projects are set to be conducted near disputed territory in the Himalayan
Mountains near the Indian Ocean (Verma, 2020).

When looking at these country-wide sentiments, it is important to
note the spatial heterogeneity of population centers. A higher concen-
tration of sentiment data is found in higher population areas (Figs. A.7
and A.8), while a lower concentration of sentiment data was in low-
population areas. This makes sense as these populous areas are often
relative wealthy cities, while low-population areas are often less-
affluent rural regions (where the residents may not have access to mo-
bile devices or have limited usage of Twitter app). One way to gather
more sentiment data from a greater portion of the population would be
to incorporate other social media data sources (such as Facebook and
Instagram) or multimedia news to expand the sample size (e.g., the
Global Database of Events, Language, and Tone Project [aka, GDELT],
which collects the world’s broadcast, print, and web news from nearly
every corner of every country; https://www.gdeltproject.org/). How-
ever, it has been extremely challenging to obtain Facebook data since its
API changes in 2018, and cleaning the GDELT mixed text data is
complicated. Our sentiment analysis using Twitter data, although with a
potential data gap in less developed regions within a country, can help
provide a timely sense of how local response to such large-scale infra-
structure development across a country.

4.3. Complex socio-environmental interactions

Social-environmental impact and their interactions across scales and
locations are complex, and depicting the complexity is challenging but
beneficial. For example, Kenya has a negative relationship between
sentiment and landscape naturalness, while Pakistan has a positive one.
However, both countries share the common trend of positive relation-
ships between sentiment and nighttime light brightness (an indicator of
economic growth). According to the World Bank data, Pakistan’s GDP
per capita PPP (i.e., purchasing power parity) ($4,690 in 2019) is
slightly higher than Kenya’s ($4,330 in 2019). What we found from this
study might be relevant to the Environmental Kuznets Curve (EKC) held
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by neoliberal economics, maintaining that poorer people and poorer
governments would not care about the environment until after a certain
economic threshold is reached (Broad and Cavanagh, 2015; Grossman
and Krueger, 1995). Although it is challenging to draw a universal
conclusion on the relations across countries, it otherwise informs us that
the assessment of environmental and social impact should be
country-wide, and that decision-making should be context-specific.
Future research should include more BRI countries to test the EKC
hypothesis.

Of note, our analysis revealed that positive sentiment increased most
in regions with less natural land and brighter nighttime light, but only
changed slightly in other regions with high naturalness land. Generally,
areas with high naturalness land are considered as the rural, remote, and
often poor regions in developing countries. Our findings thus suggest
LSIPs may benefit developed regions more than less developed regions.
Therefore, how to support the poor population and address the
inequality in development should be put into the agenda of future LSIPs
planning and implementation.

The integrated analysis of environmental and social impact can
provide better information for future policymaking, catering to both
environmental and social considerations. By doing so, potential syn-
ergies and trade-offs of policy impact could achieve the optimization of
policy effectiveness and minimize unnecessary cost. For example, less
developed regions could benefit from well-planned infrastructure
development and thus become prosperous. Incorporating social devel-
opment consideration into the planning of infrastructure development
could be applauded by most stakeholders with an overall positive
sentiment in the area. On the other hand, a large trade-off between
environmental and social impact would alert decision-makers in
implementing policies with careful consideration. With a better under-
standing of the strengths and drawbacks of implementing a project,
decision-making would be more robust and engaged with more different
stakeholders.

4.4. Study limitations

While social media provides a channel for a diverse population to
provide individual sentiment expression, due to the various
socioeconomic-cultural status in the study regions, people in part of the
study regions may not use social media or may not speak English. This
may lead to biased estimates in our sentiment analysis. Thus, some
countries or regions with less sufficient social media data may face
challenges in applying the SES approach.

Future research needs to combine more diverse social media data
sources and community engagement scholarship to fully understand the
social impact of LSIPs financed by international agencies. To the best of
our knowledge, the broad coverage and substantial user group of Twitter
throughout the world provide us with the most comprehensive
individual-level data samples by far, and such information thus can help
us capture the best estimate of people’s sentiment and the change over
time and across space. Additionally, although language differences
across countries might add difficulty to generalize this approach, recent
rapid developments in machine learning techniques are more capable of
addressing this by translating text in different languages into a desig-
nated language (e.g., English) for sentiment analysis.

In all, this SES approach fosters timely and prompt socioeconomic-
environmental monitoring across scales with fine resolutions by inte-
grating social media data and remote sensing data. The findings will also
help stakeholders be aware of the potential socio-environmental impact
of implementing large-scale infrastructure projects and facilitate sus-
tainable infrastructure development.

4.5. Future research and implications

Future research can apply this SES approach to other countries that
have experienced rapid development of LSIPs. As of January 2020, 138
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countries had joined the Belt and Road Initiative (https://www.yidaiyil
u.gov.cn/) and many more LSIPs under the BRI are either under con-
struction or under planning (https://green-bri.org/). Some of those
infrastructure projects incurred doubt and dispute. For example, the
Kunming-Singapore railway corridor is currently suspended in Malaysia
because of political and funding conflicts; for the Budapest-Belgrade
railway case, despite not having been started yet, it already shows so-
cial concerns about the environmental impact. It is important for in-
vestors and project managers to conduct a rigorous and transparent
environmental impact assessment first before project planning, and
draw insights and develop media strategies from public sentiment
analysis to help mitigate the potential challenges in implementing those
projects. In this study, we took land use/land cover change and night-
time light change as indicators of the environmental and economic
impact, and took sentiment on BRI-LSIPs from the social media platform
Twitter as an indicator of the social impact. Future research could
incorporate more comprehensive social media data and recently devel-
oped remote sensing environmental indicators — such as concentration
of air pollutants from the Sentinel-5 Precursor TROPOMI multispectral
sensor (Guo, 2017; Veefkind et al., 2012), freshwater stress derived from
the Gravity Recovery and Climate Experiment (GRACE) satellites
(Richey et al., 2015; Rodell et al., 2018), and the land surface temper-
ature detected from Landsat images (Ranagalage et al., 2017) — into
investigating transportation-related LSIPs and many other types of LSIPs
(such as power plants, ports, water supply pipelines).

In addition, since countries are more connected than ever before in
this increasingly globalized world, collaborations will be the key to
achieving multilateral win-win development and sustainability. With
the interactions among countries extending from nearby partnerships to
more distant ones, LSIPs in the Global South are increasingly supported
by international finance, like the BRI. However, differences in cultural,
social, and environmental conditions may incur many unexpected im-
pacts and conflicts. In the meantime, large-scale infrastructure projects —
such as transportation, pipelines, power plants, and dam constructions —
may benefit a certain group of people at the cost of others. For instance,
the transportation network by CPEC made interregional trade more
convenient in northern Pakistan, but unintentionally led to the melting
of glaciers and consequently flooding downstream. Dam constructions
may help people in the upper stream enjoy more abundant water and
more affordable electricity, but would generate unexpected impact on
the livelihoods of the downstream communities (Golden et al., 2019;
Latrubesse et al., 2017; Moran et al., 2018). Further study needs to
consider human-nature interactions across scales and over distances (e.
g., internally, nearby, and far away) by applying the integrated meta-
coupling framework (Liu, 2017). With these integrated efforts, we hope
information from comprehensive assessment like this study can help
inform decision-makers in future LSIP planning and implementation to
address the potential socio-environmental impact, and help countries to
fulfill the United Nations’ Sustainable Development Goals (SDGs) (Sachs
et al.,, 2019; Xu et al., 2020), particularly SDG 9 (to build resilient
infrastructure and promote inclusive and stable industrialization) and
SDG 17 (Partnerships to achieve the Goal).
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