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Abstract—The non-intrusive human activity recognition has been envisioned as a key enabler for many emerging applications
requiring interactions between humans and computing systems. To accurately recognize different human behaviors, ubiquitous wireless
signals are widely adopted, e.g., Wi-Fi signals, whose Channel State Information (CSI) can precisely reflect human movements.
Unfortunately, nearly all Wi-Fi-based recognition systems assume a clean wireless environment, i.e., no interference will compromise
the developed algorithms, which, apparently, is not feasible in practice. Even worse, for systems using Wi-Fi 2.4GHz signals, the widely
existing interference from coexisting protocols, such as ZigBee, Bluetooth, and LTE-Unlicensed, can easily compromise the recognition
process, posing a hard limit on further enhancing the accuracy. Therefore, this work uncovers a new Wi-Fi signal adversarial attack
against Wi-Fi-based human activity recognition systems, by intentionally injecting interference using coexisting protocol signals. The
contaminated Wi-Fi signal will distort CSI estimation and finally output a false recognition result. Different from traditional jamming
attacks, this new adversarial attack is intelligent and stealthy in terms of avoiding being detected from traffic analysis. Along with both
theoretical analysis and extensive real-world experiments, we have shown this newly-identified attack can easily compromise many
existing Wi-Fi-based human recognition systems while still bypassing existing schemes for malicious signal detection.

Index Terms—Wireless Adversarial Example, Cross Technology Interference, Channel State Information, Human Activity Recognition

1 INTRODUCTION

UMAN activity recognition, a branch of smart human
Hsensing, has become increasingly vital in advanced
human-computer interaction [1] and has been widely inte-
grated with Virtual Reality technology, health monitoring,
smart homes, safe driving, security surveillance, etc. The
ubiquitousness of human activity recognition applications
persuades both academic and industrial communities to
explore the ability of non-intrusive sensing due to practical
concerns. As such, leveraging changes of invisible wireless
signals to capture unique activity characteristics becomes
a good candidate for further expanding the methodology
of human sensing. Among all of the commonly accessible
signals, the Wi-Fi signal is the handiest one because of
its rich information and wide deployment. Most existing
Wi-Fi-based human activity recognition systems leverage
Channel State Information (CSI) for deriving high-accuracy
human activities. In particular, the CSI, originally used as a
metric to estimate the channel condition, can reflect many
regular activities due to its sensitivity to human movements
occurred in the transmission paths [2]. Unfortunately, the
transmission of wireless signals is delicate and vulnerable
to dynamic and complex environments. This vulnerability
becomes even more severe when multiple wireless proto-
cols share the same spectrum, which is a common case
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nowadays. These coexisting signals interfere with each other
and worsen the transmission environment. Though many
works have put efforts in designing advanced de-noising
schemes for CSI sequences and lowering the negative ef-
fects of environments, existing recognition systems can still
be compromised by powerful attackers. For example, a
common wireless jammer can take advantage of the MAC
protocol, e.g., Carrier-Sense Multiple Access with Collision
Avoidance (CSMA/CA), to maliciously congest the entire
transmission link by adding noises. However, this type of
jamming attack is highly perceptible by the transmission
pair because it will jeopardize the expected Wi-Fi transmis-
sions. Hence, in this paper we discover a new type of power-
ful and inconspicuous attack, IS-WARS, to compromise the
Wi-Fi-based activity recognition system without impacting
normal Wi-Fi transmissions. We take advantages of the
cross-technology signals to craft a Wi-Fi adversarial example
to stealthily compromise the CSI, which is expected to
misclassify the corresponding activities. Compared with the
traditional jamming attack, this new attack is more serious
in terms of its stealthiness and potential consequences. Tak-
ing health monitoring as an example, an abnormal behavior
(e.g., falling) can be misclassified as common activities for
elderlies living alone, resulting in the missing of emergency
calls and first aids. To successfully craft the adversarial
signals, there are several critical challenges to be considered,

e Added noises should be imperceptible. The Wi-Fi MAC
layer protocols will immediately detect the increas-
ing level of noises and drop the crafted adversarial
signals.
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o Added noises should bypass the de-noising scheme. To
cause the misclassification of received adversarial
example, the level of noises cannot be too small to
be removed by de-noising schemes adopted in the
recognition system.

The above contradicting requirements cannot be easily
fulfilled by simply adding noises for generating the ad-
versarial example. To address these challenges, we apply
the cross-technology interference (CTI) on overlapped fre-
quency bands for crafting. The attacker sends controllable
noises to intentionally cause the CTI, which will finally
contaminate the received CSI sequences. In practice, many
overlapping protocols, such as ZigBee and Bluetooth, can
cause severe CTI to Wi-Fi traffic over ISM 2.4GHz bands [3],
[4], [5]. While most of the previous studies try to avoid CTI
to enhance communication performances [6], [7], [8] and
some works show that the CSI amplitudes influenced by
CTI can be leveraged for cross-technology communication
[9], [10], they use machine learning models to handle the
features of CTl-interfered CSI as a black box so the de-
tailed and quantified effect of how CTI will impact the CSI
remains underexplored. Therefore, for this paper, we will
first discuss the principles of state-of-the-art human activity
recognition systems, then provide a thorough study on how
CTI can modify the CSI sequence, and finally, demonstrate
the attacking process of stealthy attacks using the CTI. Our
main contributions are listed as follows,

o This paper provides a comprehensive study on quan-
tifying the impact of CTI on normal Wi-Fi transmis-
sions.

o This work identifies a new intelligent and stealthy
adversarial attack on many Wi-Fi-based human ac-
tivity monitoring systems using received CSI se-
quences and demonstrates the difficulty in mitigat-
ing the CTI-based attack.

o Extensive real-world experiments demonstrate the
existence and feasibility of the attack.

The rest of this paper is organized as follows. Section 2
gives preliminaries about Wi-Fi-based activity recognition.
Section 3 provides an overview of our attack IS-WARS,
followed by a feasibility analysis in Section 4. Section 5
shows the detailed design of IS-WARS. Section 6 thoroughly
evaluates attack performance. Section 7 discusses related
works and Section 8 concludes the paper.

2 PRELIMINARIES
2.1 CSlin Wi-Fi-based Recognition

Compared to other usable channel properties (e.g., Received
Signal Strength (RSS), phases) for activity recognition, CSI,
which is a widely used metric in multiple-input/multiple-
output (MIMO) radio systems [11] to estimate the channel
condition of transmission links, contains more fine-grained
information than RSS and is less vulnerable to noises than
phase information alone.

Suppose a MIMO communication system has N7, trans-
mitter antennas and Np, receiver antennas. x is the sent
signal and 1 denotes the noise. The received signal can be
modeled as:

y=Hx+n,
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where H is the CSI matrix. H(f,t), which is the CSI
matrix measuring channel frequency response in differ-
ent subcarriers with center frequency f at time ¢, can be
calculated at the receiver side by solving a set of equa-
tions using a known transmitted/received signal pair via

H(.fat):Y(fat)/X(fat):

hi1 hi2 hing,
ha1 haa hany.,
H(f,t) = . ) (@
hng 1 hig, 2 hng, Nz,

where h,,, is the complex transmission coefficient from the
transmitter’s antenna m to the receiver’s antenna n. Most
of the human behavior recognition systems leverage the
changes incurred in h,,, and other derived metrics, e.g.,
Doppler shift, to determine the corresponding activities.

2.2 CTl in Heterogeneous Environment

Due to the wireless coexistence in the 2.4GHz ISM band,
CSI can be easily contaminated by interferences from de-
vices using not only traditional Wi-Fi protocols (e.g., 802.11
b/g/n/ac) but also other wireless standards in the over-
lapped spectrum, such as IEEE 802.15.1 Bluetooth and IEEE
802.15.4, i.e., ZigBee, WirelessHART, and ISA100. The lat-
ter, known as Cross-Technology Interference, could bring a
detrimental impact to the reliability of Wi-Fi communica-
tion, e.g., significant packet loss in a highly crowded hetero-
geneous environment. Existing works have demonstrated
that the preambles of Wi-Fi packets can be impacted and the
CSI amplitudes will be greatly altered by on-going ZigBee
packets during Wi-Fi transmission when Wi-Fi traffic is not
backoff [9].

2.3 Signal De-noising and Threats

Despite that CT1’s interference to CSI has been proved, we
have to take the broad spectrum of de-noising approaches
into consideration, such as smooth filter [12], low-pass
filter [13], principal component analysis (PCA) [14], linear
interpolation fitting [15], Kalman filter [16], and wavelet
transform [17]. Most of them have been employed in the Wi-
Fi-based recognition system to discard unavoidable noises
and further capture more accurate human activities. Unfor-
tunately, these de-noising schemes can only help remove the
out-band noise. The noise caused by CTI cannot be easily
detected and eliminated, which will inevitably contaminate
CSI [18]. If no adequate de-noising approaches specifically
for CTI noise, it is highly possible that sending malicious
cross-technology wireless signals can impact the CSI and
further compromise Wi-Fi-based recognition systems.
Recently, there are some noise detecting methods specif-
ically designed for CTI. For example, authors in [10] pro-
posed cyclostationarity analysis that uses the distinct re-
peating patterns shown by different signals to differentiate
between Wi-Fi signals and CTI. They compute the Spectral
Correlation Function (SCF) in the frequency domain on each
subcarriers. For the subcarriers whose amplitude and phase
information are distorted by CTI, some peaks are sufficiently
visible on corresponding SCF, while SCF without interfer-
ence does not exhibit any peak. However, it can only detect
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the CTI that distributing on a small range of frequencies
and tries to recover the interfered subcarriers. It is efficient
for detecting unintended CTI but not that useful if the CTI
is carefully distributed over a bunch of subcarriers.

3 SYSTEM OVERVIEW AND ASSUMPTIONS
3.1 Problem Definition

We consider a device-free indoor Wi-Fi-based human activ-
ity recognition system as described in Fig. 1. When there is a
human subject moving around, the Wi-Fi signals sent from
Wi-Fi senders are interfered with human body’s reflection,
so the signals received contain specific and unique changes
incurred by different types of human activity. The goal of
the recognition system is to find features in each set of nu-
merical changes and map them to the designated activities.
The idea of our attack is to deploy a cross-technology signal
source, e.g., a ZigBee device, to intentionally send a mali-
cious signal, expecting to create an adversarial example to
change CSI at the receiver side and finally cause incorrectly
identification of the recognized activity. For example, the
uncompromised Wi-Fi receiver 1 can correctly recognize the
user’s behavior as “sweeping the floor”, while the Wi-Fi
device 2 suffering the CTI from a nearby ZigBee attacker
fails to output the correct behavior.

WiFi Sender ° WiFi Receiver 1
) ( @ Ftim
@) A (e
WiFi Sender ° WiFi Receiver 2 _
§ . Incorrect Recognition
@) A (@ habpe :
Y “Running”
@
Attacker

Fig. 1: IS-WARS Attack Overview

To design this new attack, named as Intelligent and
Stealthy adversarial attack to Wi-Fi-based Human Activity
Recognition System (IS-WARS), we mainly consider two
different mechanisms in current literature, 1) Classification-
based Approach. A large quantity of data with known
activity labels is collected. Their patterns are learned via
clustering, machine learning methods, etc. and further used
for classifying unknown ones [19], [20], [21], [22], [23]; 2)
Model-based Recognition. They theoretically model the re-
lationship between channel properties and human activities,
such as Fresnel zone model and velocity model. Common
quantities include Angle of Arrival (AoA), Time of Flight
(ToF), speed, distance, Doppler shift, and phase [24], [25],
[26], [27].

3.2 IS-WARS Attacker Model

A complete IS-WARS attack process includes three steps,
1) sense and observe wireless environment (e.g., sniff Wi-Fi
packet), 2) generate interference, and 3) bypass de-noising
and cause classifications. Based on the challenges discussed
in Section 1, an IS-WARS attacker needs to achieve the
following three objectives:
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Objective 1, Basic. Obtain superficial knowledge about
the recognition system, such as the frequency band that Wi-
Fi senders/receivers are working on, the average statistics
of CSI sequences, by sensing and observing the wireless
environment. The attacker must know the information of
the channel that the Wi-Fi packets are transmitted on. The
attacker can sniff CSI multiple times to measure the impact
of interference due to the low cost of sensing the system’s
small-scale, indoor environment.

Objective 1, Advanced. To launch a strong attacker, the
attacker may be able to acquire some more advanced in-
formation about the system. For example, the attacker may
know the deployed locations of Wi-Fi senders/receivers in
some cases, such as when the system is deployed in a public
indoor area. If the attacker spends enough time sniffing,
they can even know how CSI sequences impacted by human
activities may look like. The attacker is not necessarily to
be very close to the scene when sniffing. The CSI charac-
teristics, including the distinct variances caused by human
movements, are detectable even if there is a wall between
the sniffer and the receiver [28]. The technical details that
cannot be sensed or observed easily, e.g., how the system
processes the signals, may not be known to the attacker.
Objective 2. The IS-WARS attack has to “intelligently” adapt
to different wireless environments and device settings based
on the acquired knowledge about the recognition system.
Meanwhile, the attack should be “stealthy” enough to pre-
vent the Wi-Fi receiver from knowing that the malicious
interference has been embedded in the received signal.
The generated interference should be high enough to incur
CSI changes but relatively low to not impact normal Wi-Fi
transmission and decoding.

Objective 3. The generated malicious CTI noises should
survive after the de-noising schemes deployed both by the
Wi-Fi receiver and by the recognition system.

4 FEASIBILITY STUDY
4.1 Theoretical Analysis of CTl Impact on CSI

The Wi-Fi receiver can overhear ZigBee transmission on des-
ignated subcarriers overlapped with ZigBee communication
channels. However, most commodity Wi-Fi devices are not
capable of understanding cross-technology messages and
only hear ZigBee signal as an added power on the original
Wi-Fi signal, which is reflected on CSI as a part of channel
status.

4.1.1 Effects to Signal-to-Interference-plus-Noise Ratio

Assuming the WiFi receiver W; has one single antenna and
is in the transmission range of the ZigBee transmitter Z;,
Z; is working on the spectrum overlapped with W;, the re-
ceived signal y;, at the k-th timestamp can be reformulated
as:
Y = (hk + Z h,fj)illk + ng,
j

where hy, is the CSI without CTI, hfj is the CTI perturbation
caused by Z;, x; is the transmitted signal, and n,, is the
noise.

The Wi-Fi packets will not back-off if the Signal-
to-Interference-plus-Noise Ratio (SINR) detected in Wi-Fi
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transmission is qualified, while the CTI is still affecting the
estimated CSI. Therefore, the ground truth SINR 7, and the
SINR from system'’s view 1);, can be derived as follows:

7.
. LT y [P *pi + 35, [’ PP
k= 7 g —
PR+ 2, [y Por Pk
where p;, the signal power at k-th timestamp and pj, is the
noise power complying to a normal distribution.

» (@)

4.1.2 Factors in CTl-enabled CSI perturbation

We try to find out why CSI can be perturbed by the presence
of ZigBee signals from the aspect of signal propagation,
which is often described by the path loss. Suppose that

P/ is the power of signal emitted from Z; and received

at W;, denoted as |th,j |2pk in Equation (2). The relationship
between P/ ; and the power of the transmitted signal by Zj,
i.e., P}, is as follows if free space path loss is considered:

t

b dij
P = Pr(d;) + 10v1log d +¢; (3)

PL(di,j) = 10 10g

where Pp(-) is the path loss, d; is the close-in reference
distance, d; ; is the distance between W; and Z;, v is the
path loss exponent, and ¢, is the shadow fading factor with
anormal distribution (0, 073).

From Equation (3), it is clear that Py, (d; ;) is determined
by d; ; and P (d; ;) — Pr(d;) follows a normal distribution:

),0%)-

The transmit power P} is another dominant factor for
P' ., and thus, also for the CSI |hfj 2.

4,37

d;
PL(diJ’) — PL(dl) ~ N(lOV log( d"j

(2

4.1.3 Why using CTI

In our work, we will focus on ZigBee-Wi-Fi interference. The
advantages of using ZigBee-Wi-Fi CTI come in four folds.

First, compared to other noise addition schemes, CTI
is more controllable and fine-tuned by adjusting the above
deterministic factors, e.g., Pjt and d; ;.

Second, it is possible to achieve “stealthiness” described
in Objective 2 if CTI-impacted SINR successfully deceives
the Wi-Fi receiver. Devices that can generate CTI, e.g. Zig-
Bee pads, can be small enough to be unnoticeable. They
are handier and cheaper than Software-defined Radios like
USRP, which allows a wider application of IS-WARS attacks.

Third, ZigBee transmission power can be as low as
Imw (two orders of magnitude lower than Wi-Fi’s), making
the CTI-based attack less detectable and the possibility of
triggering collision avoidance during interference lower,
while its transmission range (10 - 100 meters) is sufficient
for attacking a small-scale Wi-Fi-based system.

Last but not least, deploying ZigBee protocol in our
attack is free from modification on protocol design. It does
not offer complex interference avoidance features like the
adaptive frequency hopping technique used in Bluetooth.
Moreover, the data rate of ZigBee is comparatively slower
than other wireless protocols in the 2.4GHz spectrum. With-
out manually putting constraints on data rate, the travel
time of a ZigBee packet is long enough to cover the entire
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transmitting Wi-Fi packets, which makes it more difficult for
legitimate receivers to discover and mitigate interference.
Hence, attacking with ZigBee signals is more reliable than
other coexisting protocols.

4.2 Empirical Study on CTl-impacted CSI

We conduct an empirical study to evaluate CSI statistics and
show that CTI is capable of interfering with CSI in practice.

4.2.1 Experiment Setting

We set a pair of Wi-Fi transceivers (1m to each other) and a
ZigBee source locating in the middle to generate interference
at different transmission powers. For each interference level,
we collect 10 CSI sequences from received Wi-Fi traffic with
a time duration of 20 seconds.
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Fig. 2: Ratio of Interfered Signals vs. Clean Signals

4.2.2 Performance Evaluation

The means and variances of amplitudes and phases, which
are represented as ratios between statistics of the contami-
nated CSI sequences and clean samples, are shown in Fig. 2.
The averages of amplitudes in Fig. 2a are larger than those of
clean samples, and are increasing with the interference level
(from -18dBm to -9dBm). If the interference level exceeds a
threshold (-9 dBm in our cases), the interference reflected by
amplitudes becomes smaller because the Wi-Fi transmitter
backoffs in response to the existence of noises or the Wi-Fi
receiver discards highly-contaminated, corrupted packets.
The large variances of interfered amplitudes may lead to
inaccurate recognition. From Fig. 2¢, the differences between
average phases between interfered signals and clean signals
are much smaller than those of amplitudes. However, the
ranges of phases are significantly expanded with an in-
creased number of outliers and large variances. Therefore,
we can confidently deduce that the robustness of CSI-based
recognition systems will be jeopardized by the interference
and the abnormality of attacks may be more unnoticeable
from phase statistic monitoring.
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TABLE 1: A Summary of Recognition Systems and Their Vulnerabilities

Existing Works

Used Quantities or Models

Vulnerabilities

Wang et al. [2]
Widar 3.0 [24]
Widar 2.0 [25]

Mathematical Profiles

Location velocity profile
Body-coordinate velocity profile
Multi-dimensional signal parameters

CSI amplitude and phase
CSI phase and Doppler Frequency Shift
AoA, ToF, Doppler shifts

Zhang et al. [29]

Fresnel Zone Model Wang et al. [26] Phase shifts in Fresnel zones CSI amplitude and phase
Wu et al. [27]
Jiang et al. [21] CNN Everything in CSI
e Gu et al. [20] Classification tree RSS fingerprint
Black-box Classification Wang et al. [22] Kernel SVM Everything in CSI
Ordoriez et al. [23] DeepConvLSTM Everything in CSI

4.3 Existing Recognition Systems and Their Vulnera-
bilities

Existing approaches are either domain-related or domain-
free, where domain is a pair of activity and the correspond-
ing environment factors, such as location and orientation.
We summarize them into three categories: mathematically
derived profiles, Fresnel zone model, and black-box clas-
sification as in Table 1 and explore their vulnerabilities as
below.

4.3.1 Mathematical Profiles

In [2], Wang et al. model the domain-related velocity profile
from multi-path length changes and rewrite H(f,t) as a
summation of responses on multiple travel paths. They
divide the power of CSI |H(f,t)|? into dynamic portion
|Hy(f)|* and static portion |H,(f)|>. |H(f,t)|? holds the
speed vj, of human subject moving on k-th path as follows:

(Pl O cos (T 00 1),

where ay(f, 1) is the attenuation, \ is the wavelength, dy,(0)
is the initial path length on k-th path, and ¢, is an initial
phase offset.

CTI creates perturbations afj (f,t) on ag(f,t). So, com-
pared to the ground truth vy, the CTl-interfered velocity
2rurt | 2mwdy(0)

profile v}, derived has an error of:
arccos { ax(f,?) = co! + %k} }
ak(fvt)'i'Zjak'](fvt) A A

Widar 3.0 [24] works on another velocity profile, body-
coordinate velocity profile (BVP). It is a domain-free quantity
that describes the velocities at different body parts involved
in the gesture movements. It first estimates a human sub-
ject’s location and orientation via ToF, AoA, and Doppler
Frequency Shift (DFS) D in the dynamic portion of CSI,
and then derives BVP from DFS without domain impacts.
The CSI representation of BVP is similar to that of velocity
profile. Therefore, though the static portion is fully ignored,
dynamic DFS D can still be mistaken with perturbed CSI
and results in wrong BVP. The location and orientation
inference could also be obfuscated from AoA and ToF, which
leads to wrong base points when discarding domain effects.

Specifically, the signal phase of the I-the path, i-th packet,
j-th subcarrier and k-th sensor [25] is:

In (iaja k) & fei + Afj’rl + fASE - ¢ — fDlAti,

where 7, ¢, and fp, are the ToF, AoA, and DFS of the I-th
path. For a contaminated phase with CTI-introduced error
> j lej , the error is distributed among ToF, AoA, and DFS.

Authorized licensed use limited to:

4.3.2 Fresnel Zone Model

Fresnel zone is a series of concentric ellipsoids representing
the signal strength of propagation in free space. When a
human object is moving, they cross zone boundaries and
introduce phase shifts, leading to constructive or destructive
interference in the received signal. In [29], they model the
sum of dynamic part and static part in a slightly different
way:

[H(f,0)* = [Hs () + [Ha()* + 2| Hs ()] Ha(f)] cos 6,

where 6 is the phase difference between the static vector
and dynamic vector. In their model, they assume that the
amplitude of the dynamic vector is stable.

The contaminated phase difference between the static
vector and dynamic vector become 6/ = 6 + > 0%. The
path-length difference between direct path and reflected
path as Ad := QfTAAO is derived for classification, where A#
is the difference between s of two subcarriers and A f is the
subcarrier spacing. The contaminated A’d is A’6/A0 times
of the ground true Ad.

4.3.3 Black-box Classification

A black-box approach in [21] uses Convolution Neural
Networks (CNNSs) to train and classify activity data with
two labels, domains and ground truth, to remove domain-
specific quantities. The quantity extracted from CSI is rep-
resented as V' = Softplus(W.Z + b,), where W, and
b, are parameters to be learned and the softplus function
is an activation function to introduce linearity, Z is the
output of feature extractor. Another softmax layer obtains
the probability vector y; of activities of mapped feature
representation H; and output the activity label with the
highest probability. Here, everything in CSI may lead to
misclassification. The attacking goal turns into how to make
the unclassified data cross CNN's decision boundaries. This
is impossible to be analyzed from formulation due to the
complexity of neural networks. We will show how IS-WARS
attack performs against neural networks by experiments
later.

4.4 De-noising Performance against CTI

A majority of de-noising schemes used in Wi-Fi-based
recognition systems are originated from eigenvalue-based
methods, such as Principal Component Analysis (PCA),
which works more effectively than filters [30]. The basic
idea of PCA is to perform eigen-decomposition on the
correlation matrix of CSI to calculate the eigenvectors and
then eliminate out-band noises and quasi-static offsets by
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reconstructing the principal components from eigenvectors.
The CSI is orthogonally transformed into a new coordinate
systems such that the greatest variance, i.e., noise, of the
data is projected on the first coordinate, which is called the
first principal component. The interfered phase on k-th path,

A0 4 Y [or 0 - 0P 0]

COS

is decomposed into

cos(¢},) cos [%AA’“@)} , — sin(¢},) sin {%AA’““)}

where ¢, is 2% 4 g + 53, 67 (t) — 6 (1)] and Ay (1)
is the length of the path changes between time 0 and ¢. The
first PCA component is discarded for de-noising. Due to
the orthogonality of PCA components, the discarded one is
either cos part or sin part. Obviously, the error introduced
by CTL 3, [qﬁfj (t) — qﬁfj (t)} , still remains in other compo-
nents. Therefore, the de-noising scheme will not effectively
work against CTI noises, for which Objective 3 will be
satisfied.

As for the cyclostationary analysis [10], it locates the sub-
set of stained subcarriers by finding the spiked peak/valley
of CSI amplitudes over all subcarriers. When the level of
CTl is carefully controlled and widely spread, the peaks are
not significant for detection.

5 DESIGN OF IS-WARS
5.1 Wi-Fi Packet Sniffing

In correspondence with the aforementioned adversarial
model and analysis, the attacker is assumed to have a sniffer
to sense the Wi-Fi environment and a ZigBee device to
generate CTIL. The sniffer can be deployed near the scene
within desired period of time before launching the attack
in order to retrieve rich background information, including
average CSI amplitudes, which can be used to pre-analyze
different CSI patterns. The attacker can use this background
information to determine suboptimal settings I,° for their
initial attack. For example, to decide an initial CTI power
level, the attacker will jointly consider a set of distance and
transmit power to ensure that the CTI power received at the
Wi-Fi’s side meets the expectation of attack after suffering
from path loss (Equation (3)). Moreover, the attacker may
choose to attack the Wi-Fi device with the highest received
packet power because it allows more intense CTI while
preserving normal traffic. Theoretically, the Objective 1
is always fulfilled regardless of other settings. Under this
objective, the attacker has freedom to change interference
given the analysis in Sec. 4.1.

5.2 Malicious CTI Generation

In North America, the 2.4 GHz Wi-Fi works on 2401 MHz
to 2473 MHz. Though the bandwidth of ZigBee channels is
only 2 MHz (1/10 of Wi-Fi channel’s bandwidth), ZigBee
channels can cover a frequency range from 2402 MHz to
2480 MHz. Thus, it is sufficient for ZigBee devices to affect
as many WiFi channels and subcarriers as wishes. To meet
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the Objective 2, it is of great importance to ensure the
generated CTI could be adequate enough to invoke wrong
recognition but without impacting normal Wi-Fi transmis-
sions. For the IS-WARS attacker, changing the perturbation
on CSI can be easily achieved by increasing the power of
interference level, while the stealthiness can only be fulfilled
by jointly considering the normal symbol decoding at the
receiver side. The CSI can be estimated from the received
symbols y,, = (hr + > j hfj Ty, +ny with known ground
truth symbols in Sec. 4.1.1, which is usually transmitted on
pilot subcarriers,

Z; .
hi, =y = hk+2th lzk| + npxy,. 4)
J

Given the estimated channel status, Maximum Likeli-
hood (ML) detector is more frequently used way to find
the optimal transmitted symbols from the received signals,
where the receiver finds the optimally transmitted signal
vector & via Maximum Likelihood criterion that minimizes
the Euclidean distance to the received signal vector y and
perform an exhaustive search across all valid sequences
for the transmitted symbol as & = argmin ||y — Hz|[2. It
is impractical to give a mathematical constraint on H for
stealthiness or compute solutions every time, so our idea is
to lower the sensitivity of CSI estimation to noise in order
to reduce the possibility of decoding failure.

The sensitivity of the solution to small changes in the
input data is measured by condition number x(H) of H,
which evaluates how much error in the output results from
an error in the input and gives a bound on how inaccurate
the message decoding will be. The condition number is
defined as:

||A]| o 1Ay
Ay S RH) ©)
||z + Azf| [yl
and formulated as:
“ Omax ﬁ,
w(H') = o (H') : ) ©)
Omin (H,)
where || - || is the matrix norm. If the condition number is

large, a small change in the transmitted signal will generate
larger perturbations in y, which indicates low reliability and
higher probability of solution finding failure. amax(ﬂ ) and
Umin(f{ ’) are maximal and minimal singular values of ",
respectively.

Therefore, from Equation (5), the attacker, who has the
ability of Wi-Fi packet sniffing, has to minimize the condi-
tion number x(H). Along with decreasing x(H) to avoid
the decoding failure, the attacker has to ensure that the per-
turbation triggered is large enough to cause misrecognition.
The problem turns into as follows,

«()

min

st Q([hn o BY)) = ([he Ry)) 2 To,
@)

where Q([ﬁ;, . 73;]) is the quantities derived from a set
of perturbed CSI readings for recognition and Tp is the
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minimum difference between noisy quantities and clean
ones that can lead to misclassification.

Finding the optimal solution for x(H’) is an NP hard
problem due to the nonlinear and non-convex nature of
singular values, but it can be changed into a convex op-
timization problem with existing relaxation methods. For
example, authors in [31] relax the nonconvex problem of
controlling singular values in to a set of optimization prob-
lems on convex subsets. Then, we can find the optimal
solution on the convex problem K (0yax(H"), Oumin(H’))
converted from (H).

5.3 Iterative Optimal Solution Finding

We propose to find the optimal interference on the con-
verted convex problem in an iterative way by observing
the resulting noisy CSI matrix H’ from interference. At the
very beginning, the attacker holds a vector of parameters I
with attacker-chosen factors that can change the interference
posed on CSI. The possible candidates include the transmit
power level of Z;, the frequency range that Z; works on, the
location of the attacker (locg,loc,,loc,), and the distance
d; ; to the system sensor W;.

To improve the suboptimal initial attack settings and
find the optimal solutions of I, a function f(I5) is derived
from Equation (7), which is formulated by combining the
constraint and minimization goal together:

f(Is) =K (Umax (ﬁl) ; Omin (ﬁ,)) —f_—\[,(—[s)"’_(S (Is)a (8)
where H’(I,) is CSI matrix interfered by I, and 6(I) is:

A[h(LL);, - h(IL)]])
Q([E(Is)zv T aﬁ(Is)j}

max | log ) |, —1og(Ta) ©)

Then, we apply a method similar to Zeroth Order Stochastic
Descent [32]. If the optimal is not reached, an interference
setting I, is randomly picked in Iy to be updated by
subtracting a small amount computed from the approximate
gradient g; and Hessian estimate 5;:

f(Is + eei) — f(Is — eei)

gi ‘= % ) (10)
Si ~ f(IS + Eei) B 2f£js) + f(IS B Eei)’ (11)

where € is a small constant and e; is a standard basis vector
with only the i-th component as 1. I, is modified based on
the values of g; and S;.

Optimal I, is located when the newly updated I,
is similar to the old one, which is equivalent to that the
approximated gradient is almost zero as summarized in Al-
gorithm 1. Therefore, the resulting I, and I, find a balance
between stealthiness and effectiveness. After deciding the
optimal I, the attacker finds the optimal location (distance),
transmit power, etc., and may leave the device at the spot
for a continuous attack. The computation complexity of this
optimization depends linearly on the dimensionality [33].

Authorized licensed use limited to:

Algorithm 1: Basic IS-WARS Attack

Result: Optimal I

Sense Wi-Fi environment;

Initialize a suboptimal attacking profile I,%;

while The incurred interference does not meet the
attacker’s expectation do

Obtain the CSI sequences H'(I sl) under current
attacking profile I" ;

Compute f(I);

Pick an interference setting I, sz‘ in I,%;

Choose a small constant € and a standard basis
vector e; with only the j-th component as 1;

Slightly modify I. sji by computing gradient g;
and Hessian estimate S;;

Choose a scaling factor 7;

if S; <0 then
‘ IsJ-H_1 = Iqu/ — N9is

else ,
‘ IsJ-H_1 = ISjIL - ngi/Si;
end
Monitor the newly incurred interference on CSI;
end

5.4 Advanced Scheme

The stealthiness property in the basic scheme is not as desired
in the sense that the attacking device will stay at its optimal
location. Moreover, based on the analysis in Section 4, exist-
ing recognition systems rely more on dynamic portions and
frequency domain properties of CSI. A stable attacker affects
more from the aspect of CSI amplitudes but produces less
perturbation in the frequency domain. To generate a more
untraceable and powerful interference, we add a dynamic
property to the IS-WARS attack, e.g, the attacking device
is moving at a certain speed. If the interference source is
moving, its signal arouses Doppler shift from the view of
Wi-Fi receiver W; as:

a%p= B0y, 12)
where Auv is the relative velocity to W;.

Not only will it directly affect the Doppler-shift-related
profiles for recognition (e.g., the DFS profile, D, used in
BVP), Af also creates a Carrier Frequency Offset (CFO) in
signals, which deviates the CSI phase ¢(t) by 2rA ft with
time ¢ and further affects the CSI power/amplitudes and
thus, resulting in a new H’. Based on the fact that A f is pos-
itive when the source and the receiver are moving towards
each other, the attacker is able to control the constructive or
destructive effect of dynamic adversarial property on CSI
sequences. By including the relative velocity Av in I, the
strategy is optimized in the same fashion as Algorithm 1.

6 PERFORMANCE EVALUATION

In this section, we analyze the attacking performance on
profiles and then implement our attack on a real system.
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6.1 Evaluation Settings
6.1.1 Attacker Setting

To verify that our attack is feasible in the most constrained
situation, we only consider an attacker that can achieve
Objective 1, Basic in Section 3.2 instead of Objective 1,
Advanced. Thus, the sensing and observation ability of the
attacker is limited to sensing the frequency band that Wi-
Fi senders/receivers are working on and extracting the CSI
from sensed packets. Their attacking profiles only consists
of the transmit power level, the location of the attacker, and
their moving speed.

6.1.2 Environmental Setting

The experiment is done in a 3m X 5m room as shown in
Fig. 3a. The distance between the Wi-Fi sender and the Wi-
Fi receiver is 1.5 meters. We choose Nexus 5 smartphones
as the WiFi devices, which are installed with Nexmon [34],
a C-based firmware patching framework enabling raw Wi-
Fi signal transmission and CSI extraction. The Wi-Fi trans-
mission happens in 24GHz and on single antenna. The
interference sources are ZigBee devices setting on different
frequency bands, TI SimpleLink Multi-Standard CC26x2R
Wireless MCU LaunchPads. The devices used are shown in
Fig. 3b, where the human subject is waving.

ine-of-Sight

A

WIFi Receiver

(a) Floorplan (b) Environment Setup

Fig. 3: Experimental Settings

6.1.3 Experimental Settings

Wi-Fi devices are set to work on Wi-Fi Channel 1 (2401
MHz-2423 MHz with center frequency 2412 MHz) and the
ZigBee interference sources can work on a combination of
ZigBee Channel 11 (center frequency 2405 MHz), Channel 12
(center frequency 2410 MHz), Channel 13 (center frequency
2415 MHz), or Channle 14 (center frequency 2420 MHz)
to cover as many as Wi-Fi subcarriers as they want. Two
activities categories are designed for experiments. The first
one is gentle movements, including resting in bed, waving,
clap, and push and pull, during which the human subject
stays at the same location. The second category is vigorous
activities involving location changes, including walking,
sitting down, entering and leaving the room. In total, twenty
volunteers were recruited for data collection.

For the basic attack scenario, the attacker’s location is
fixed. In the advanced scheme, the attacker walks with rel-
ative speed to the Wi-Fi receiver. Under each set of settings,
2-3 CSI sequences with a monitoring time of 20 seconds are
recorded.

6.2 Throughput Analysis

We first monitor the wireless environment when a ZigBee
device, 1.5 meters away from the Wi-Fi receiver, is emitting
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interference signals. The Wi-Fi sender sends 8 x 800 packets
under 8 different levels of CTIL This process is repeated for
10 times. We have verified that all captured packets can be
correctly decoded. The numbers of packets received by Wi-
Fi receiver are recorded and the packet success transmission
rates, as well as network throughputs, are evaluated as
shown in Table 2. We can tell that CTI will not greatly affect
throughput and thus, it is hard to distinguish an attacker
from the network performance perspective, which verifies
the objective of achieving stealthiness. When the CTI level is -
18 dBm, the ZigBee interference sensed by the Wi-Fi receiver
is so low that it does not affect the network performance
at all. However, slight drops in performance are observed
when CTI level is -9 dBm, -12 dBm, and -15 dBm, which
is in correspondence with the change of CSI amplitudes in
Fig. 2a.

6.3 Attacking Mathematical Profiles

Next, we break down the interfered CSI sequences and an-
alyze how the derived profiles affected by interference. The
attack effectiveness is directly reflected by profiles because
the basic principle of real systems is matching profiles with
the closest known label. If the statistics of an interfered
sample becomes closer to a wrong class than the correct
one, it definitely leads to incorrect classification. The reason
for comparing the distance changes between labeled and
unlabeled profiles instead of comparing against a certain
threshold is that reliable recognition systems rarely set
thresholds manually and instead, their thresholds/decision
boundaries are learned from data. We will not talk about
Fresnel zone model because it is directly related to CSI
amplitudes and phases, which have been proven to be
influenceable by CTL

20

n
=]

I Clean M1 & Clean M2
Clean M1 & Clean M1
I Noisy M1 & Clean M1
Noisy M1 & Clean M2

J ]
1 2 3 4

DWT Coefficients

(a) Gentle

[l Clean M3 & Clean M4
Clean M3 & Clean M3

I Noisy M3 & Clean M3
Noisy M3 & Clean M4
o |
5 6 1 2 3 4 6

5
DWT Coefficients

o
o

Distance
>
Distance
>

(b) Vigorous

Fig. 4: DWT Coefficient Distances

6.3.1 Location Velocity Profile

After PCA de-noising, authors in [2] apply Discrete Wavelet
Transform (DWT) to decompose the first five PCA compo-
nents into 12 levels and average the results to capture the
movement information presented in different PCA compo-
nents. The recognition is done by calculating the likelihood
of each activity’s hidden Markov model. Therefore, we
extract DWT-decomposed coefficients of interfered samples
and compare them with coefficients of clean samples. We
set the decomposition level to 6 because our data experience
boundary effects if the level is 12. The average distances of
coefficients between two classes of activities are shown in
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TABLE 2: Network Performance Under Different levels of CTI

0dBm -3dBm -6dBm -9dBm -12dBm -15dBm -18dBm clean
# of Received Packets 682 684 686 663 632 652 706 701
Successful Transmission Ratio | 85.25%  85.5% 85.75%  82.88%  79% 81.5% 88.25% 87.63%
Throughput (kbps) 38.74 40.57 39.54 37.81 36.04 37.26 40.26 40.65

Fig. 4, where M1 and M2 are two different gentle motion
types, while M3 and M4 are vigorous.

In Fig. 4, we measure four types of distances: between
coefficients of clean samples from M1 and clean samples
from M2, between coefficients of clean samples in M1, be-
tween coefficients of noisy samples in M1 and clean samples
in M2, and between coefficients of noisy samples in M1 and
clean samples in M2. Intuitively, the distances between clean
samples from two different motion classes are larger than
those from the same class. After experiencing the attack,
however, not only the distances between noisy samples
to samples in its actual class become larger, but also we
witness an increase in the distances between noisy samples
and samples from a wrong class. Moreover, for 5 out of 6
coefficients, the gap between the distances of noisy samples
to M1 and M2 is smaller. All aforementioned results indicate
that our attack successfully blurs the boundary between
M1 and M2 for interfered CSI, so the system will more
likely guess a random class to fit noisy CSI in. For vigorous
activities, the differences between classes are larger, but the
coefficient changes still suffer from the attack.

500

s,
ey ~ Vo
DI
Time (ms) Time (ms)

(a) Motion 1 (b) Interfered Motion 1

Time (ms)

(d) Interfered Motion 2

Time (ms)

(c) Motion 2

Fig. 5: Doppler Spectrum of Detected Motions

6.3.2 BVP

BVP in [24] is estimated as an [p-optimization problem from
the Doppler spectrum, which is derived from CSI ampli-
tudes and phases after basic PCA de-noising. We use the
authors’ open-source codes to compute Doppler spectrum
and visualize some examples in Fig. 5, where Motion 1 is
push/pull and Motion 2 is clap.

In Fig. 5, more peaks show up in interfered Doppler
spectrum of Motion 1 while a featured peak in the clean
spectrum of Motion 2 is replaced by a bunch of small
peaks. Moreover, the spectrum apart from the peaks in
Fig. 5d is changed by the interference and becomes similar
to that in Fig. 5b. Visually, the interfered Motion 2’s Doppler
spectrum is closer to the spectrum of the other class. To
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verify this observation, we calculated the correlation coeffi-
cients between spectrum matrices. The correlation between
clean Motion 1 and clean Motion 2 is 0.1616, demonstrating
their distinctiveness, but there is a sharp increase in the
correlation between interfered Motion 2 and clean Motion
1, which is 0.6509, while the correlation between interfered
Motion 2 and clean Motion 2 is only 0.3651. Thus, it is highly
possible for the system to classify the interfered Motion 2
CSI as Motion 1. Though the correlation between interfered
Motion 1 and clean Motion 1 is slightly higher than the
correlation between interfered Motion 1 and clean Motion
2 (0.4994 compared to 0.4341), the advantage of correct
classification over misclassification is so subtle that the ex-
pected classification accuracy will certainly be downgraded
by IS-WARS attack. This result also applies to the average
spectrum matrices of all other activities.

6.4 Improvement with Advanced Attacking Scheme

In an advanced attack, the attacker is moving at a speed
of 0.02 m/s. We introduce an additional setting, whether
the transmission path of the interference signal to the Wi-Fi
receiver is Non-Line-of-Sight (NLOS), into the performance
analysis, where NLOS is modeled by placing the source
behind the door. The performance under NLOS is measured
in advanced attacks because it is possible for the interference
source to be occasionally blocked by obstacles during mov-
ing, but the effects of NLOS are also valid on basic attacks.

Basic

No ATK

N0 ATK
B Advanced Bl

Basic
Advanced
NLOS

Distance

o

1

6 Advanced  Advanced NLOS

2 3 4 5
DWT Coefficients

(a) Location velocity profiles (b) BVP

Fig. 6: Invoked changes in profiles

The performance of advanced attack on mathematical
profiles is illustrated in Fig. 6. The y-axis in Fig. 6a are
distances between a class A to be attacked and another
class B that the interfered samples for A are much easier
to be misclassified into. Distances are averaged over all
possible classes A. From Fig. 6a, the advanced attacker is
more powerful than the basic one as 4 out of 6 interfered
coefficients move closer to class B. The advanced attack
under NLOS setting is worse than the LOS one, but still
outperforms the basic one. Fig. 6b shows the correlation
coefficients between clean class A samples (no attack exists)
and class B samples, class A samples under basic attack
and class B samples, class A samples under advanced attack

3:37:39 UTC from | estrictions apply.

ublicationsﬁstandards/Eublications/ri%gts/indexhtml for more information.
EE Xplore.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3110480, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. XX, XXX 2020

and class B samples, and class A samples under advanced
NLOS attack and class B samples. The results are aligned
with what in Fig. 6a, i.e., the interfered A samples under
advanced attack, whose coefficient is approximately 0.7, is
the closest one to the B samples. The NLOS setting brings
negative effects to attack performance, but the basic one
is still the worst. The effectiveness of advanced attack is
proved.

6.5 Attacking a Real System
6.5.1 System settings

As mentioned in Section 4, we implement our attack on
a real learning-based recognition system built on Convo-
lutional, long short-term memory, fully connected Deep
Neural Networks (CLDNN) [35], which is a combination of
Convolutional Neural Network (CNN) layers, Long Short-
Term Memory (LSTM) layers, and Deep Neural Networks
layers. We recruit 10 volunteers to perform each motion
for 5 times with a time duration of 100 seconds to collect
enough CSI data. In all, 25,000 seconds of samples are stored
for 5 activity labels. 80% of these CSI sequences are clean
ones labeled with activities for training, 10% of them are
unlabeled, clean samples for testing, and the remaining are
unlabeled, IS-WARS-attacked samples for testing.

6.5.2 Attack Performance

The accuracy of training and testing are illustrated in Fig. 7.
From the converged training accuracy (close to 100%) and
original testing accuracy (approximately 93%), we can tell
that this model is well-trained. However, the accuracy after
attack dropped to around 53%, which is close to random
guess. This huge drop proves the effectiveness of IS-WARS
on learning-based systems.

1
0.8
>
[8)
©06
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S o4l
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Test Acc Interfered
0

20 40 60 80 100
Epoch

Fig. 7: Effect on CLDNN-based system’s accuracy

Next, we analyze the accuracy w.r.t. activity categories,
which is shown in the confusion matrices for gentle and vig-
orous activities, respectively, in Fig. 8. For the movements
in the gentle activity category, samples with ground truth
“rest” are likely to be misclassified into other categories
with a probability of 61.25%, while samples with other three
ground truth labels have a misclassification rate less than
50%. Thus, “rest” tends to be more vulnerable to the attack
compared to the other three activities because “rest” creates
less distinct turbulences on CSI sequences while IS-WARS
attack adds perturbation to make CSI sequences to be more
like CSI from activities involving hand movements. It also
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Fig. 8: Confusion Matrix

explains why it is less possible for CSI sequences to be
misclassified as “rest”. Vigorous activities are slightly more
difficult to be attacked because they contain more dynamic
features. Nevertheless, there is still a chance to fool the
recognition because the spatial information, which is used
to distinguish walking, entering the room, and leaving the
room, can be blurred under CTI.

6.5.3 Compare with Random Interference

To further validate the practicability and effectiveness of
both the activity recognition system and our attack, we
bring up several additional experimental scenarios featured
with random noises. The new designs are as below. All
devices are working on frequencies that overlap with the
frequencies used by recognition systems.

1) Random background noises from other types of
source: Some Wi-Fi devices are downloading data
on the 2.4 GHz spectrum at a place at the scene.

2) Random background noises from the same type of
source: Some benign ZigBee devices are producing
ZigBee traffics.

In the previous experimental scenario, experiments are
done in an apartment building with ongoing 2.4GHz Wi-
Fi traffics on all channels in the background. We have also
collected each activity multiple times to include the random-
ness of human activities. From the performance mentioned
above, we can tell that our attack is way more harmful
than random Wi-Fi interference. Therefore, we focus on the
second scenario.

In the previous experimental environment, the attacking
device was initially placed at a random place. Here, we
replace the attacking device with a benign ZigBee device.
The benign ZigBee is transmitting on ZigBee Channel 13
with a transmission level chosen from -21 dBm to 10 dBm.
This channel overlaps with Wi-Fi Channel 1 but will not
affect the attacker working on ZigBee Channel 11. Unlike
the attacker, the benign ZigBee will always stay at its initial
place and not change its initial transmission level. The
impacts of the benign ZigBee device with different power
levels are averaged. Table 3 shows the average effects of
random ZigBee interference and attacker. Since the benign
ZigBee device is placed at a fixed position near the Wi-Fi
transceiver, more Wi-Fi packets are held back from the trans-
mission or received as corrupted, which results in a huge
drop in the average ratio of successfully received packets.
On the contrary, the packets that survived interference are
mostly those experiencing a low level of ZigBee CTI and less
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perturbed. Thus, they produce more accurate recognition
compared to packets interfered with by our attack. Then,
we add the attacking device back to the scene and let
the attack and the transmission of benign ZigBee packets
happen simultaneously. The success transmission ratio does
not change much. The impact on recognition accuracy is
almost the same as when there is only one attacker at the
spot and is much lower than there is only one benign ZigBee
device. Despite how much noise is in the background, the
attacker’s goal is still to try to minimize the extra packet
loss caused by malicious interference and maximize the
drop in accuracy of recognizing activities using successfully
received packets.

TABLE 3: Performance Under Random ZigBee Interference

Success Transmission | Accuracy
Clean 87.63% 93%
One Benign 49.11% 76%
One Attacker 84.10% 53%
Benign & Attacker | 47.42% 59%

6.6 De-Noising Performance Vs. Interference

We evaluate whether interference from other wireless
sources will be discarded. Along with the aforementioned
discussion, the de-noising scheme considered here is based
on PCA.

Since human cannot precisely control their activities and
it is hard to synchronize the timestamps of different CSI
samples, we leverage another technique, Dynamic Time
Warping (DTW) [36], to measure how far the unlabeled
signals are from their ground truth. The Euclidean dis-
tances between interfered signals and the ground truth
clean signals are divided by the average amplitudes of
ground truth clean sequences, denoted as “distance ratio”.
We compute the average distance ratios before and after
de-noising applied to both interfered ones and clean ones.
Surprisingly, the average distance ratio after de-noising is
almost 10 times more than the ratio before. The resulting
sequence is drifting farther away than the ground truth, so
the de-noising approach cannot discard interference without
harming the recognition accuracy.

7 POTENTIAL DEFENSES

Generally, a wireless human activity recognition system
has at least three components: signal preprocessing, fea-
ture extraction, and activity recognition. This section briefly
provides some insights into how to defend against our
proposed attack in these three steps.

Defense during Signal Preprocessing. In our attack, the
attacker can cover all Wi-Fi subcarriers with CTI. If most
CTI can be removed from the signal, the possibility of a
successful attack will be significantly reduced. Thus, one
possible defense is to recover the fully contaminated signal.

Defense during Feature Extraction. The recognition
results are directly influenced by the values of features.
Current features used in recognition systems, such as am-
plitudes and phases, are very sensitive to noises. If less
sensitive features are explored, this could undermine the
impact of CTL.
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Defense during Activity Recognition. Lastly, the recog-
nition scheme can be made more robust. For example,
if machine learning techniques are used for recognition,
techniques like deliberately training the model with CTI-
interfered signals should raise the model’s robustness
against CTIL.

8 RELATED WORK
8.1 Applications of Human Activity Recognition

Two major application scenarios of wireless human activity
recognition are healthcare monitoring and gesture recog-
nition. The recognition of healthcare applications involves
dangerous motions and emergent vital signal monitoring.
Dangerous motion recognition often utilizes the deployed
in-home wireless transceivers. One representative work is
WiFall [37], which uses CSI as an indicator of falling and
enables accurate alert of potential injuries. Vital signs, in-
cluding heartbeat, respiration, blood volume, etc., bring dis-
placement of body surface to be detected by wireless signal
characteristics. In [38], authors build testbeds for respiration
monitoring based on commodity devices and prove the
effectiveness of wireless monitoring. Gesture recognition is
a more general-purpose application, which has been widely
applied in Virtual Reality and human-computer interac-
tion. In [39], authors achieve contactless gesture recognition
via Commercial-Off-The-Shelf (COTS) RFID as a tag array,
benefiting users’ daily life in time-saving. However, the
consequences brought by successfully attacking these vital
applications are severe.

8.2 Wireless Signal Interference

Because of spectrum overlapping, wireless signals are al-
ways facing the threats of unexpected interference from
other signal sources. Existing works mostly focus on detec-
tion [18], mitigating [8], achieving coexistence [3], or exploit-
ing the interference. However, these works analyze from
plain metrics, such as packet loss, to estimate interference,
without providing detailed analysis and cannot reduce the
loss caused by interference but bring heavier burdens of
assessing and hopping. In [9], Guo et al. use SVM to classify
Wi-Fi packets that are contaminated by ZigBee packets. Wi-
Fi packets are symboled as 0 and 1 in terms of whether
being contaminated or not. Then, they use 0s and 1s to
represent messages that both Wi-Fi and ZigBee receivers
can decode. The authors use CTI to fulfill cross-technology
communication (CTC), but the experiments cannot provide
any generalized conclusion.

8.3 Existing Attack against Wireless Systems
8.3.1 Jamming Attack and Countermeasures

Wireless jamming is a common attack to compromise the
service of wireless systems. The main objective of the jam-
ming device is to ensure that the legitimate nodes cannot use
the network by purposefully interfering with the physical
transmission and reception of wireless communications. As
summarized in [40], there are four kinds of jammers: con-
stant jammer, deceptive hammer, random jammer, and reac-
tive jammer, in which the deceptive jammer is similar to our
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attacker. A deceptive jammer emits a legitimate bit sequence
which gives the network an impression of the presence
of a legitimate node. This impersonation makes deceptive
jammers more effective than constant jammers. In [41],
authors deploy deceptive jammer to confuse information
acquisition without arousing the awareness of the hostile
radar. Although this kind of jammer is intelligent, their
packets can be easily identified in CSI-based recognition due
to environmental differences and unique location profiles.
They do not have the same objective as our attack and are
not stealthy enough to achieve a long-term negative effect.
There are some works in countering the wireless jam-
ming attack, especially cross-technology jamming. In [42],
a ZigBee device will assume that it is suffering from a
jamming attack if there are too many failed attempts of
transmission when sensing channels, and it will force trans-
mission in busy channels. Suppose the ZigBee packet is
transmitted but corrupted due to cross-technology inter-
ference. In that case, the authors apply a band stop filter
to isolate slower rate Wi-Fi subcarriers, reduce total inter-
ference, and then compensate the distorted ZigBee signals
with the Direct Sequence Spread Spectrum (DSSS) scheme.
However, it is difficult to do these steps vice versa. The
filter cannot completely remove the impact of CTI, and Wi-
Fi signals cannot be compensated by DSSS because DSSS
only available in old version 801.11b and low data rates in
801.11g. The attacker in our attack can cover a Wi-Fi channel
with as many ZigBee channels as they desire, which makes
it very challenging for the receiver to recover corrupted
subcarriers using the information in clean subcarriers,

8.3.2
sures

Illegitimate RF sensing is a kind of attack where attackers
sensing and analyzing the Wi-Fi signal that bounced off
the human body to detect human activity for malicious
purposes, e.g., detect if there is anyone at home to prepare
for an illegal break-in. The basic principle of protecting
against illegitimate RF sensing is obfuscating the wireless
signal characteristics used for human activity recognition,
such as amplitude gain, delay, Doppler shift, etc.

In [43], the adversary uses a single-antenna receiver to
sniff the wireless transmission. They place a reflector near
the legal wireless receiver. The reflector can receive and
transmit signals and modify the reflected packet copies by
controlling three multipath components: amplitude gain,
delay, and Doppler shift, before relaying copies to the le-
gitimate receiver. Their scheme preserves the normal data
communication, but since any features that reveal physical
information are distorted, the legal wireless receiver cannot
recognize human activity from the received signal as well.

To enable simultaneous protection and legitimate human
activity sensing, authors in [44] define a term named “adver-
sary region”, which is the place that adversaries can perform
attack without being visually noticed. In their scheme, the
reflector is placed outside the legitimate sensing region.
The reflector is equipped with a directional antenna to scan
the adversary region, broadcast modified copies, and avoid
sending the modified copies to the legitimate receiver. This
scheme has several limitations. First, knowing the location
and shape of the potential adversary region are required

lllegitimate RF Sensing and Existing Countermea-
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to make this scheme work and the reflector has to be
placed in the adversary region, which leaves the indoor area
unprotected and increases the chance of being noticed by the
attacker, as well as the chance of failed protection. Second,
there is a huge decrease in recognition accuracy shown in
evaluation results. The recognition accuracy of legitimate
sensors drops from 0.9 to 0.78. Though this accuracy is still
much higher than the one suffered from our attack, it is
definitely incredible harm to system performance. Lastly,
since the reflector is using a directional antenna to scan
the region, it is not guaranteed that the reflector can ob-
fuscate all copies sensed by the adversary, as claimed by
the authors. Receiving partially corrupted results may block
adversaries from successfully sensing human activities, but
it is possible for an attacker to separate obfuscated packets
from clear ones through analysis. Moreover, our attacker
does not need the fully correct copies of human-activity-
interfered signals to perform attacks. Our purposed attack
remains threatening to existing systems.

9 CONCLUSION

Benefiting from ubiquitous wireless device deployments,
human activity recognition systems can achieve non-
intrusiveness and high accuracy at the same time leveraging
the rich channel information embedded in Wi-Fi signals.
However, Wi-Fi-based recognition systems are vulnerable
to wireless attacks. In this work, we discover an intelligent
but stealthy attack on human activity recognition systems
by leveraging wireless signal interference. “Intelligence” is
to find optimal interference that can incur misrecognition
while preserving normal packet decoding, while “stealth”
means the attack remains unnoticeable because it does not
harm the function of systems. We thoroughly analyze this
new attack from both theoretical and experimental perspec-
tive, and demonstrate the feasibility of the attack on real
profiles and systems. To the best of our knowledge, we
are the first one to quantitatively analyze the influence of
wireless interference and demonstrate effectiveness in real-
world experiments.
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