
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

QFlow: A Learning Approach to High QoE Video
Streaming at the Wireless Edge

Rajarshi Bhattacharyya, Archana Bura , Desik Rengarajan , Mason Rumuly, Bainan Xia ,

Srinivas Shakkottai , Senior Member, IEEE, Dileep Kalathil , Senior Member, IEEE,
Ricky K. P. Mok, Member, IEEE, and Amogh Dhamdhere

Abstract— The predominant use of wireless access networks
is for media streaming applications. However, current access
networks treat all packets identically, and lack the agility to
determine which clients are most in need of service at a given
time. Software reconfigurability of networking devices has seen
wide adoption, and this in turn implies that agile control
policies can be now instantiated on access networks. Exploiting
such reconfigurability requires the design of a system that can
enable a configuration, measure the impact on the application
performance (Quality of Experience), and adaptively select a new
configuration. Effectively, this feedback loop is a Markov Decision
Process whose parameters are unknown. The goal of this work
is to develop QFlow, a platform that instantiates this feedback
loop, and instantiate a variety of control policies over it. We use
the popular application of video streaming over YouTube as our
use case. Our context is priority queueing, with the action space
being that of determining which clients should be assigned to each
queue at each decision period. We first develop policies based
on model-based and model-free reinforcement learning. We then
design an auction-based system under which clients place bids for
priority service, as well as a more structured index-based policy.
Through experiments, we show how these learning-based policies
on QFlow are able to select the right clients for prioritization
in a high-load scenario to outperform the best known solutions
with over 25% improvement in QoE, and a perfect QoE score
of 5 over 85% of the time.

Index Terms— Reinforcement learning, wireless edge networks,
video streaming, auction mechanisms, OpenFlow.

Manuscript received May 4, 2020; revised November 27, 2020 and May 19,
2021; accepted July 19, 2021; approved by IEEE/ACM TRANSACTIONS ON
NETWORKING Editor S. Rao. This work was supported in part by the National
Science Foundation under Grant CNS-1955696, Grant CRII-CPS-1850206,
and Grant NSF-Intel CNS 1719384; in part by the Army Research Office
(ARO) under Grant W911NF-19-1-0367 and Grant W911NF-19-2-0243; and
in part by the Defense Advanced Projects Research Agency (DARPA) under
Grant CA HR00112020014. (Corresponding author: Srinivas Shakkottai.)

Rajarshi Bhattacharyya was with Texas A&M University, College Station,
TX 77843 USA. He is now with Aruba (a Hewlett Packard Enterprise
Company), San Jose, CA 95002 USA (e-mail: rajrc11@gmail.com).

Archana Bura, Desik Rengarajan, Srinivas Shakkottai, and Dileep Kalathil
are with the Department of Electrical and Computer Engineering, Texas A&M
University, College Station, TX 77843 USA (e-mail: archanabura@tamu.edu;
desik@tamu.edu; sshakkot@tamu.edu; dileep.kalathil@tamu.edu).

Mason Rumuly was with Texas A&M University, College Station, TX 77843
USA. He is now with Arista Networks, Austin, TX 78746 USA (e-mail:
masonminer1552@gmail.com).

Bainan Xia was with Texas A&M University, College Station, TX 77843
USA. He is now with Breakthrough Energy LLC, Kirkland, WA 98033 USA
(e-mail: ericxbn@gmail.com).

Ricky K. P. Mok and Amogh Dhamdhere are with the Center for Applied
Internet Data Analysis (CAIDA), University of California at San Diego, San
Diego, CA 92093 USA (e-mail: cskpmok@caida.org; amogh@caida.org).

Digital Object Identifier 10.1109/TNET.2021.3106675

Fig. 1. Ensuring high QoE video streaming via adaptive prioritization.

I. INTRODUCTION

AMAJOR fraction of the traffic carried by wireless access
(edge) networks today is related to media streaming,

and has relatively stringent constraints on the required qual-
ity of service (QoS) provided by the network. These QoS
metrics typically are measured as link statistics such as
[Throughput, RTT, Jitter, LossRate]. The impact of such
QoS on user satisfaction is identified in terms of Quality
of Experience (QoE). QoE indicates user-satisfaction and is
quantified as a number in the interval [1, 5], which can depend
on the application and its evolving state. For example, the
application can be video streaming over the Web, with the state
being the number and duration of stalls (re-buffering events)
that have been experienced thus far. Supporting a large number
of concurrent streams of this kind, while ensuring high QoE
for all clients is a major challenge.

As a concrete example, consider Figure 1 that shows 9
simultaneous YouTube clients that are supported over a wire-
less access network. This setup with simultaneous YouTube
sessions is used for our laboratory experiments, and can
emulate a range of load and channel conditions at the access
point. The traditional (vanilla) approach is to maintain a single
queue, and to treat all packets identically regardless of the
importance of the packets to the QoE of the clients. So a
session that has already buffered up many seconds of video
might get equal service as one that is near stalling. While this
approach might be acceptable when the number of streams
is limited, the need to support multiple high quality streams
motivates the desire to do better.

Given that queuing behavior is fundamental to all elements
of the QoS statistics mentioned above, differentiated queuing
at the access point immediately suggests itself. Token-bucket-
based shaping can be used to create high-priority and low-
priority queues, with the QoS statistics of the former being
superior to that of the latter. We can also create multiple “bins”
of queues as shown in Figure 1, with each bin corresponding

1558-2566 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Texas A M University. Downloaded on September 20,2021 at 22:15:46 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7897-2473
https://orcid.org/0000-0002-8538-6023
https://orcid.org/0000-0001-7531-1741
https://orcid.org/0000-0002-5882-6433
https://orcid.org/0000-0001-7968-5185

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 2. Feedback loop for configuration selection.

to similar client channel conditions, and allocate them similar
time-spectrum resources. At the client end, middleware can be
used to gather and share the application QoE and state. Then a
basic question is that of periodically deciding client schedules:
Given the current QoE and video state at each client, how
should the controller assign clients to queues for the next
decision period in order to attain system-wide benefits?

A policy that can attain system-wide benefits requires a
feedback control loop of the kind shown in Figure 2. First,
we need to configure the system in terms of assigning flows
to queues. Second, we need to measure the impact of the
configuration on QoE and application state at the end-user.
Third, we need to learn what is the relation between realized
QoE and the configuration used (using offline and online
learning). Finally, we need to adapt the policy used for
configuration in order to maximize performance goals.

Posed in this manner, the application QoE and other measur-
able application-specific parameters (such as buffered seconds
of video) are the observable state of the system, whose
evolution is mediated through the assignment of flows to
queues. The underlying network QoS statistics cause stochastic
transitions to the application state. The decision of which flows
to assign to what queue determines the state transitions that
a particular application incurs, and must be done in a manner
that maximizes QoE. Thus, the control loop in Figure 2 can
be interpreted as a Markov Decision Process (MDP) whose
transition kernel is unknown, and which could potentially
be discovered using reinforcement learning. We note that
existing approaches such as max-weight scheduling [1], [2]
or deficit-weight based scheduling [3] are Markov algorithms
that use state information such as queue length, deficit in
service and channel state. Other notions of fair scheduling may
compare average channel statistics and the current realization,
in which case the running average is used as a state variable.
Thus, although these schedulers are not directly generated as
the optimal solution produced by solving an MDP, they are
Markov algorithms that fit into our general view.

In this work, our goal is to design, implement, and evaluate
QFlow, a platform for reinforcement learning that instantiates
the feedback control loop described above on a WiFi access
point that faces a high demand. Performance over high capac-
ity wired backhaul links is near-deterministic, and resources
constraints apply to the last hop wireless link. We choose video
streaming as the application of interest using the case study
of YouTube, since video has stringent network requirements
and occupies a majority of Internet packets today [4].

A. Main Results

1) Measurement of Application State and QoE: We imple-
ment simple middleware for monitoring of client-specific
application state consisting of buffered seconds of video and
stall duration (when the video re-buffers). The middleware
periodically sends statistics to the OpenFlow controller for
processing. Here, we continuously predict the QoE of the
ongoing application (video streaming) flows as a function of
the application state using existing maps of the relationship

between video events (such as stalls) and QoE. Details are
presented in Sections III, VIII.

2) Model-Free Reinforcement Learning: We develop a
model-free reinforcement learning (RL) method that enables
adaptation to the current QoE and application state over all
users to maximize the discounted sum of QoEs. We develop a
simulator that approximates the evolution of the underlying
system, and train a Q-Learning algorithm with non-linear
function approximation using a neural network. This so-called
Deep Q Network (DQN) is able to account for state space
explosion across the users and provides a Q-function approx-
imation for all states. As with many model-free approaches,
training takes many samples and we use 200,000 in our case.
Details are presented in Section IV.

3) Model-Based Reinforcement Learning: We next develop
a model-based RL approach based on the observation that the
state evolution of an individual client is independent of others
given the action (queue assignment). We first use measure-
ments conducted over the system to empirically determine the
transition probabilities on a per-client basis, and then use the
independence observation to construct the system transition
kernel (this applies to the vector of all client states taken
together). While doing so, we reduce the system state space
by discretization and aggregation to a subset of frequently
observed system states. Exploiting this structure reduces the
training samples needed significantly to 3600. Finally, we
solve the MDP numerically to obtain the model-based policy.

4) Auction: The above approaches require that the state
of each client be supplied by the clients themselves, which
implies that strategic clients could obtain more than their
fair share of resources through appropriate declarations. We
hence develop an incentive compatible (truth-telling) auction
approach. Here, bids for the auction are placed via a mid-
dleware algorithm (the human end-user need not engage with
the system), and can be interpreted as the number of cents
that the bidding algorithm is willing to pay for high priority
service for the next 10 seconds.1 The agents are provided the
model (transition kernel) as in model-based RL, as well as the
empirical bid-distribution of all the agents, and use these to
obtain the best response bid, consistent with our earlier work
on a mean field game approach to scheduling [5], [6]. The per-
agent bid computation under this regime is straightforward,
and details are presented in section VI.

5) Index Policy: The results from the auction approach
suggest that a indexing of state in the manner of the Whittle
index [7] is possible, under which each client state is asso-
ciated with a real-number index. The optimal policy simply
picks the clients with largest indices to promote to the high
priority queues. We empirically validate this hypothesis by
using the value function of a given state derived from the
auction as its index, and find that such an index policy
performs as well or better than all others, lending credence
to the indexing claim. Details are presented in Section VII.

6) Platform Implementation: We enable reliable delivery
of configuration commands to hardware that can support
re-configuration. We extend the OpenFlow protocol (currently
limited to the network layer) in a generic manner that enables
us to use it reconfigure queueing mechanisms. We select com-
mercially available WiFi routers with Gigabit ethernet back-
haul as the wireless edge hardware. Reconfigurable queueing

1We calculate that the eventual dollar price will be consistent with current
cellular data prices of about $5-10 per GB.

Authorized licensed use limited to: Texas A M University. Downloaded on September 20,2021 at 22:15:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BHATTACHARYYA et al.: QFlow: LEARNING APPROACH TO HIGH QoE VIDEO STREAMING AT WIRELESS EDGE 3

is attained by leveraging differentiated queueing mechanisms
available in the Traffic Controller (tc) package by installing
OpenWRT (a stripped-down Linux version). Here, we can
choose between queueing disciplines and set filters to assign
flows to queues. Details are presented in Section VIII.

7) Experimental Results: The experimental configuration
consists of a single queue in the base (vanilla) case, and
two reconfigurable queues in the adaptive case. We conducted
experiments in both a static scenario with a fixed number
of clients, as well as a dynamic one in which the num-
ber varies with time. Apart from auction-based, model-free
and model-based RL, we also implemented channel-binned
round-robin assignment (approximating proportional fairness),
greedy maximization of expected QoE, and greedy selection
of the clients with lowest video buffers (this policy has been
shown to ensure low probability of stalling [8]). Our results on
adaptive flow assignment (Section IX) reveal that the vanilla
approach of treating all flows identically has significantly
worse average QoE than adaptive approaches.

Interestingly, the model-based, model-free and auction-
based approaches ensure that any given client experiences a
perfect QoE of 5 over 85% of the time, whereas the best
that any other policy is able to achieve is only about 60%,
while vanilla manages even less at about 50%. This impressive
performance improvement of about 25-30% indicates that by
selecting flows in need of QoE improvement (due to high
likelihood of stalls in the near future), RL-based adaptive flow
assignment improves QoE for the majority of clients.

8) Limitations: We focus on network-level adaptations, and
so fix the video bitrate at 1080P in our experiments. How-
ever, such birate adaptation is compatible with our RL-based
approach in two ways, namely, (i) treating it as part of
the transition kernel and accounting for it implicitly during
learning, or (ii) jointly choosing video bitrate and network
priority, which, however, would require coordination across the
content distributor and network manager. Another considera-
tion is of Sim2Real mismatch when we transfer a simulation-
trained controller in the model-free approach to the real
system. However, the online training that occurs naturally
during experiments appears to be sufficient to obtain the same
performance of the model-based approach that is trained on
offline empirically collected data.

An earlier version of this work appeared in [9], in which
we presented basic RL approaches over the QFlow platform.
The differences between our earlier work and this paper are:
(i) we develop an auction platform for clients to compute and
bid their perceived valuations, and show empirically that it
attains similar (slightly better) performance than the basic RL
approaches, (ii) we explore the idea that policies can have
structure, and show empirically that a simple index-type of
policy might be optimal, and (iii) we show empirically that
the indices (state ordering by value) developed for a larger
number of clients follow a similar order to those for a smaller
number of clients, meaning that a single set of indices work
well without retraining, even under a dynamically changing
number of clients with time varying channel conditions.

II. RELATED WORK
A. Optimal Queueing

There has been significant work on QoS as a function of
the scheduling policy, e.g., a sequence of work starting with
[1], and follow on work in the wireless context that resulted in
algorithms such as backpressure-based scheduling and routing
in wireless networks [2] and more recently [3] that ensures

that strict delay guarantees are met. Most of these works
aim at maximizing throughput or loss rate, but they do not
consider all the elements of QoS together. Also, they do not
map received QoS to application QoE.

B. SDN-Based Video Streaming

A number of systems have been proposed to improve
the performance and QoE of video streaming with SDN.
One direction is to assign video streaming flows to different
network links according to various path selection schemes [10]
or the location of bottlenecks detected in the WAN [11]. In the
home network environment, the problem shifts from managing
the paths of video traffic to sharing the same network (link)
with multiple devices or flows. VQOA [12] and QFF [13]
employ SDN to monitor the traffic and change the bandwidth
assignment of each video flow to achieve better streaming
performance. However, without an accurate map of action
to QoE, the controller can only react to QoE degradation
passively.

C. Reinforcement Learning

An RL approach is natural for the control of systems with
measurable feedback under each configuration. The idea of
using RL in the context of video streaming rate selection
has been explored in [14]–[17]. Different control theoretic
methods, such as model predictive control [18] and PID
control [19] have also been used for adaptive video streaming.
This body of work can be seen as the complement of our own.
Whereas we are interested in allocating network resources
(at the wireless edge) to suit concurrent video streams, their
goal is to choose the streaming rate to suit the realized
network characteristics. Finally, deep reinforcement learning
algorithms have been used to solve a number of problems
in communication network applications, although not in our
problem space; see [20] for a survey.

D. Auctions and Scheduling

There has been much work on using price or auction-based
resource allocation in the wireless context. On the analytical
side, [21] considered the problem of auction-based wireless
resource allocation. It was shown that with finite number of
users, a Nash Equilibrium exists and the solution is Pareto
optimal. In [5], [6], an auction framework is presented in
which queues (representing apps on mobile devices) repeatedly
bid for service in a second-price auction. They show that under
a large system scaling (called the mean field game regime),
the result of the auction would ensure fair service for all. Our
design of auction-based scheduling algorithms are motivated
by these ideas. In the context of experiments, a recent trial
of a price-based system is described in [22]. Here, day-ahead
prices are announced in advance to users, who can choose to
use their cellular data connection based the current price. Thus,
the decision makers are the human end-users that essentially
have an on/off control. Furthermore, the prices are not dynamic
and have to be determined offline based on historical usage.

E. OpenFlow Extensions

There has been much work on OpenFlow extensions for
cross-layer wireless configuration. In this context, CrossFlow
[23], [24] uses the SDN framework for configuring software
defined radios. Similarly ÆtherFlow [25], extends OpenFlow
for enabling remote configuration of WiFi access points.
Finally, recent systems such as AeroFlux [26] and OpenSDWN

Authorized licensed use limited to: Texas A M University. Downloaded on September 20,2021 at 22:15:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

[27] enable packet prioritization for flows that are identified
by packet inspection as belonging to high priority applications,
such as video streaming. However, these are all offline static
policies in that they do not relate the prioritization policy with
the state of the application.

III. SYSTEM MODEL AND ARCHITECTURE

We consider a system in which clients are connected to an
wireless Access Point (AP) in a high demand situation. We
choose video streaming as the application of interest using
the case study of YouTube, since video has stringent network
requirements and occupies a majority of Internet packets today
[4]. Our goal is to maximize the overall QoE of all the clients
in this resource constrained situation.

The AP has a high priority and low priority queue. Here,
we mean that clients assigned to the high priority queue
typically experience a better QoS (higher bandwidth, lower
latency etc.) when compared to the clients assigned to the
low priority queue. The controller assigns clients to each of
these queues at every decision period (DP; 10 seconds in our
implementation). Determining the optimal strategy is complex,
since the controller does not have prior knowledge of the
system model. Hence, the controller must learn the system
model and/or control law.

A. Markov Decision Process

We consider a discrete time system where time is indexed
by t ∈ {0, 1, . . .}. At each DP (t = 0, 1, 2 . . .) the controller
makes an assignment of clients to queues, and observes the
system. Based on its observation and previous assignment,
the controller makes an assignment in the next DP, eventually
learning the system model empirically. This class of problem
falls within the Reinforcement Learning (RL) paradigm, and
thus can be abstracted to a general RL framework consisting
of an Environment that produces states and rewards and an
Agent that takes actions.

1) Environment: The environment is composed of clients
and the AP. Let C denote the set of clients.

2) State: Each client keeps track of its state which consists
of its current buffer (the number of seconds of video that
it has buffered up), the number of stalls it has experienced
(i.e., the number of times that it has experienced a break in
playout and consequent re-buffering), and its current QoE (a
number in [1, 5] that represents user satisfaction, with 5 being
the best). The state of the system is the union of the states of
all clients. Let sc

t denote the state of client c at time t and st

denote the state of the system,

sc
t = [Current Buffer State, Stall Information, Current QoE]

∀c ∈ C
st = [∪∀c∈Csc

t]

3) Scheduler Action: The scheduler is the agent that takes
queue assignment actions in every decision period in order
to maximize its expected discounted reward. Let ac

t ∈ {0, 1}
denote the action taken on client c at time t, where 1 and
0 indicate assignment to the high and low priority queue,
respectively. Let the set of overall actions be denoted A.

Each such overall action is of form at = [a1
t , a

2
t , · · · a|C|

t].
The scheduler may assign only N clients to the high priority
queue, i.e.,

∑
c∈C at

c = N.
4) Reward: The per-client reward R(sc

t , a
c
t) resulting from

taking action at at state st is the QoE of client c in state sc
t .

The overall reward R(st, at) is the average QoE of all clients
in state st+1,

R(st, at) =
1
|C|

∑
c∈C

R(sc
t , a

c
t)

5) Transition Kernel: Let P (st+1|st, at) denote the system
transition kernel.

6) Policy: The goal of the agent is to maximize the overall
QoE of the system. This goal can be formulated as maximizing
the expected discounted reward over an infinite horizon. Let
π(at|st) denote the probability of taking action at given the
current state (called the policy) and γ denote the discount
factor. Then the goal is to find π∗, the policy that maximizes
the expected discounted reward,

π∗ = argmaxπE

[∞∑
t=0

γtR(st, at)|s0 = s, at ∼ π(·|st)

]
. (1)

The infinite horizon discounted reward models the idea that
a video might conclude or the user might terminate it with
some probability at any time. Empirically, the discount factor
is chosen such that the mean lifetime matches the average
video length in the library of videos that we use for testing.

B. Auction

We consider a market wherein clients bid for high priority
service periodically. In each discrete time instant, a fixed
number of clients N are assigned to the high priority queue.
Clients participate in an (N + 1)th auction to compete for
admission to the high priority queue. The N winners who
obtain high priority service will pay a price that is equal to
the (N + 1)th highest bid, and the rest of the clients will be
assigned to the low priority queue. We model the system in a
Mean Field approach as described below,

1) Bid: The bid submitted by the client in each auction is
denoted by b ∈ B, where B is a set containing discrete bid
values. The bids can be seen as the price each client c is
willing to pay to obtain high priority service. Note that the
human end user plays no role in selecting these bids.

2) Bid Distribution: The clients must place their bid based
on the beliefs of their competitors. We denote the assumed bid
distribution in the market as ρ.

3) Auction Outcome: The probability that a client c wins
at the auction depends on the event that its bid is greater
than the N + 1th bid. Under the mean field model, the client
assumes that competing bids are all drawn in an IID manner
from ρ. We denote the probability of winning under this
assumption when a client places a bid b by pwin(b), where
we have dropped the dependence on ρ for ease of notation.
Thus, pwin(b), is the probability that b lies within the top N
values of |C| − 1 independent draws from ρ. Accuracy of the
mean field approximation in the regime where there is a large
pool of clients from which a small subset is drawn at each
auction is available in [5], [6]. The model might apply to the
situation at a coffee shop or other public access point, where
the devices in the whole town are possible clients, but only a
few of them are in the coffee shop using the access point at
a given time.

4) Payment: The (random) amount paid after each auction
is denoted by pay. The payment distribution in our system
upon winning is the distribution of the (N +1)th highest bid.

Authorized licensed use limited to: Texas A M University. Downloaded on September 20,2021 at 22:15:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BHATTACHARYYA et al.: QFlow: LEARNING APPROACH TO HIGH QoE VIDEO STREAMING AT WIRELESS EDGE 5

5) Scheduler Action: As in the previous case, the scheduler
decides on which clients to assign to each queue. However,
here the actions are taken based on the outcome of the auction.
The actions ac

t = 1 and ac
t = 0 correspond, respectively, to

winning and losing at the auction by the client c.
6) Client Reward: As before, reward R(sc

t , a
c
t) resulting

from action ac
t at state sc

t is the QoE of client c in state sc
t .

Note, however, that each agent is only concerned with its own
reward, unlike the average case discussed earlier.

7) Client Transition Kernel: Let P (sc
t+1|sc

t , a
c
t) denote the

client transition kernel. Thus the probability of transitioning
to state sc

t+1 is jointly defined by the probability of winning
the auction when bidding b, pwin(b) and P (sc

t+1|sc
t , a

c
t).

8) Policy: The agent (client) must place a bid at each time,
accounting for its progression of state. Following the same
methodology as [5], [6], we formulate the optimal policy (bid
decision) problem of the corresponding MDP:

b∗(sc
t) = argmaxb∈B

{
pwin(b)

[
R(sc

t+1, a
c
t = 1) − pay

+
∑
sc

t+1

P (sc
t+1|sc

t , a
c
t = 1)γv(sc

t+1)
]

+ (1 − pwin(b))
[
R(sc

t+1, a
c
t = 0)

+
∑
sc

t+1

P (sc
t+1|sc

t , a
c
t = 0)γv(sc

t+1)
]}

, (2)

where v(.) is the optimal client value function.

C. Measuring QoE for Video Streaming

Considerable progress has been made in identifying the
relation between video events such as stalling, and subjective
user perception (QoE) [28]–[30] via laboratory studies. How-
ever, these studies are insufficient in our context, since they
do not consider the network conditions (QoS statistics) that
gave rise to the video events. Nevertheless, we can leverage
these studies by using them as models of human perception
of objectively measurable video events. We considered three
models in this context, namely Delivery Quality Score (DQS)
[28], generalized DQS [29], and Time-Varying QoE (TV-QoE)
[30]. The three models are based on the features of stall events
and video bitrate adaptation, if any. Since our focus is on
network adaptation, with the goal of supporting high resolution
video, we fix the resolution to prevent video bitrate adaptation.
All three models are similar in this case, and we choose DQS
as our candidate. We note that DQS has earlier been validated
using 183 videos and 53 human subjects [28].

The DQS model weights the impact according to dura-
tion of the impairments to better model human perception.
For example, the impact on QoE of stall events during play-
back is greater than that of initial buffering. Similarly, the first
stall event produces less dissatisfaction than repeated stalling.
The state diagram of the QoE model is shown in Figure 3,
and the model can account for rate adaptations by augmenting
the state with video bitrate. The increases and the decreases
in perceived QoE are captured by a combination of raised
cosine and ramp functions. This enables it to model greater or
lesser changes in the perceived QoE according to the time it
spends in a particular state. The behavior of the predicted QoE
by the model in the presence of a particular stalling pattern
can be seen in Figure 4, where the two stall events result in

Fig. 3. DQS state machine.

Fig. 4. Sample DQS evolution.

Fig. 5. The system architecture of QFlow.

degradation of QoE. Recovery of QoE from each stall event
becomes progressively harder.

D. QFlow System Architecture

The system architecture is illustrated in Figure 5. The three
main units are, (i) an off-the-shelf WiFi access point running
the OpenWRT operating system, (ii) a centralized controller
hosted on a Linux workstation, and (iii) multiple wireless
stations. We denote each software functionality with both
a color and a circled number. These functionalities pertain
to 1© queueing mechanisms, 2© QoS policy (configuration
selection), 3© Reinforcement Learning, and 4© End User Value
and Auction, which we overview below. Tying together the
units are 5© Databases at the Controller (to log all events),
and at each station (that obtains a subset of the data for
local decision making). The final components are 6© Network
Interfaces and 7© User Application, which are unaware of
our system. We refer to the user application as a client or
session, which is composed of one or more flows that are
treated identically.

1© Per-Packet Queueing Mechanisms: At the level of
data packets, we utilize the MAC layer of software defined
infrastructure, namely, reconfigurable queueing. Multiple
Layer 2 queues can be created, and different per-packet
scheduling mechanisms can be applied over them. When such
mechanisms are applied to aggregates of flows, the resulting
QoS statistics at the queue level can be varied, with higher
priority queues getting improved performances. In turn, this
results in state and QoE changes at the application.

Authorized licensed use limited to: Texas A M University. Downloaded on September 20,2021 at 22:15:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

2© QoS Policy and Statistics: Policy decisions are used
to select configurations (which clients are assigned to which
queue). Decisions are made at a centralized controller that
communicates using the OpenFlow protocol. We create a
custom set of OpenFlow messages for QFlow. The Access
Point runs QFlow, which interprets these messages and instan-
tiates the queueing mechanisms and configurations selected by
the controller. The access point periodically collects statistics
related to QoS, including signal strengths, throughput, and
RTT and returns those back to the controller (these statistics
are used for sanity checks).

A smart middleware layer at clients is used to interface with
QFlow in a manner that is transparent to the applications (such
as YouTube) and the end-user. The middleware determines
the foreground application, and samples the application to
determine its state (stalls, and buffered seconds on YouTube).
QoE is calculated using the DQS model. The client middle-
ware contacts the Controller Database to periodically send the
application state and QoE.

3© Reinforcement Learning Agent: Application state and
configuration decisions (state-action pairs) are used to train RL
agents. in the case of the model-free approach, a simulation
environment duplicating the QFlow setup is used for offline
training, and online training continues on the actual system. In
the case of model-based RL, state-action pairs (resulting from
various different policies) stored in the controller database are
used for learning the model.

4© End User Value and Auction: Clients are offered feasi-
ble QoS vectors under an market framework. The decision
on which N flows to admit to a high-priority queue is
taken via an N + 1th price auction using a local currency
(a token allowance), which is conducted every 10 seconds.
The resultant policy decisions in turn lead to a realization
of the offered QoS. End-users setup priorities for different
applications (at the timescale of weeks or months), and the
Controller Database provides statistics of current market con-
ditions (bid distribution), using which a Value Engine at the
client middleware determines what the value of winning and
losing would be. Finally, a Bid Generator places a bid for
service. Auction results translate into QoS policies that remain
in place for 10 seconds.

Policy Adaptation has to do with implementing the policy as
empirical data accumulates. An assignment algorithm (policy)
matches sessions to queues every 10 seconds, and obtains
a sample of client state each time it does so. This state-
action pair is captured in the database, and a new action
is obtained from the database (as determined by the agent).
The assignment algorithm is geared towards discounted QoE
maximization.

Interactions: The Client Middleware at each wireless client
captures the state and calculates the corresponding QoE values
specific to the foreground application. These realized QoE
and state values from all participating clients are sent to
the Controller, which performs a policy decision for flow
assignment. These policy decisions are sent to the Access Point
using OpenFlow Experimenter messages. QFlow interprets and
implements these policy decisions. These steps are executed
once every 10 seconds.

IV. MODEL-FREE RL

We describe a model-free RL based approach for learning a
control algorithm for the system described in Section III. More
specifically, the objective is to learn a control policy for the

MDP when the system model (transition probability kernel
of the MDP) is unknown. Model-free RL algorithms learn
the optimal control policy directly via the interactions with
the system, without explicitly estimating the system model.
The interaction of the RL agent with the system is modeled
as a set of tuples (st, at, Rt+1, st+1) over time and the goal
of the RL agent is to learn a policy π that recommends an
action to take given a state, in order to maximize its long
term expected cumulative reward. We will employ a specific
model-free RL algorithm known as Q-learning algorithm.

A. Q-Learning

Each state-action pair (s, a) under a policy π can be mapped
to a scalar value, using a Q-function. Qπ(s, a) is the expected
cumulative reward of taking an action a in a state s and
following the policy π from there on. Qπ is specified as

Qπ(s, a) = E

[∞∑
t=0

γtR(st, π(st))|s0 = s, a0 = a

]
,

where γ ∈ (0, 1) is the discount factor. Maximizing the
cumulative reward is equivalent to finding a policy that max-
imizes the Q-function. The optimal Q-function, Q∗ satisfies
the Bellman equation

Q∗(s, a) = R(s, a) + γEs′ [max
b

Q∗(s′, b)], ∀s, a.

The objective of the Q-learning algorithm is to learn
this optimal Q∗ from the sequence of observations
(st, at, Rt+1, st+1). The optimal policy π∗ can be computed
from Q∗ as,

π∗(s) = argmax
a

Q∗(s, a).

The Q-learning algorithm is implemented as follows. At
each time step k, the RL agent updates the Q-function Qk as

Qk+1(s, a) =

⎧⎨
⎩

(1 − αk)Qk(s, a) + αk(Rk

+ γ maxb Qk(sk+1, b)) if s=sk, a = ak

Qk(s, a) otherwise

where αk is the learning rate. If each-state action pairs is
sampled infinitely often and under some suitable conditions
on the step size, Qk will converge to the optimal Q-function
Q∗ [31].

B. Deep Q-Learning

Using a standard tabular Q-learning algorithm as described
above to solve our problem is infeasible due to the huge
state space associated with it. The individual client states are
combined to form a joint state. The aggregate reward is the
reward of all clients combined. The learning agent observes
the states and rewards, and outputs an action. The environment
then moves to the next state, yielding a reward.

The state of each client is a tuple consisting of its buffer
state, stall information, and its QoE at t. Buffer state and
QoE are considered to be real numbers, and thus can take
an uncountable number of values. Even if we quantize, the
number of states increases exponentially with the dimension
and the number of clients. Tabular Q-learning approaches fails
in such scenarios.

To overcome this issue due to the curse of dimensionality,
we address this problem through the framework of deep

Authorized licensed use limited to: Texas A M University. Downloaded on September 20,2021 at 22:15:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BHATTACHARYYA et al.: QFlow: LEARNING APPROACH TO HIGH QoE VIDEO STREAMING AT WIRELESS EDGE 7

reinforcement learning. In particular, we use the double DQN
algorithm [32]. This approach is a clever combination of three
main ideas: Q-function approximation with neural network,
experience replay, and target network. We give a brief descrip-
tion below.

1) Q-Function Approximation With Neural Network: To
address the problem of large and continuous state space,
we approximate the Q-function using a multi-layer neural
network, i.e., Q(s, a) ≈ Qw(s, a) where w is the para-
meter of the neural network. Deep neural networks have
achieved tremendous success in both supervised learning
(image recognition, speech processing) and reinforcement
learning (AlphaGo games) tasks. They can approximate arbi-
trary functions without explicitly designing the features like
in classical approximation techniques. The parameter of the
neural network can be updated using a (stochastic) gradient
descent with step size α as

w = w + α∇Qw(st, at)
× (Rt + γ max

b
Qw(st+1, b) − Qw(st, at)) (3)

2) Experience Replay: Unlike supervised learning algo-
rithm, the data samples {st, at, Rt, st+1} obtained by an RL
algorithm is correlated in time due to the underlying system
dynamics. This often leads to a very slow convergence or non-
convergence of the gradient descent algorithms like (3). The
idea of experience replay is to break this temporal correlation
by randomly sampling some data points from a buffer of
previously observed (experienced) data points to perform the
gradient step in (3) [33]. New observation are then added to
the replay buffer and the process is repeated.

3) Target Network: In (3), the target Rt +
γ maxb Qw(st+1, b) depends on the neural network parameter
w, unlike the targets used for supervised learning which
are fixed before learning begins. This often leads to poor
convergence in RL algorithms. To addresses this issue, deep
RL algorithms maintain a separate neural network for the
target. The target network is kept fixed for multiple steps.
The update equation with target network is given below.

w = w + α∇Qw(st, at)(Rt + γ max
b

Qw−(st+1, b)

−Qw(st, at))
w− = w after every N steps.

The combination of neural networks, experience replay and
target network forms the core of the DQN algorithm [33].
However, it is known that DQN algorithm suffers from overes-
timation of Q values. Double DQN algorithm [32] overcomes
this problem using slightly modified updated equation as

w = w + α∇Qw(st, at)
× (Rt + γQw−(st+1, arg max

b
Qw(st+1, b)) − Qw(st, at)).

The target network is updated after every N steps as before.

C. Simulation-Based Training the RL Algorithm

We implemented the double DQN algorithm using the
TensorForce library [34]. Hyperparameters are selected by
evaluating common empirical choices from the user com-
munity, as well as sweeping some parameters such as the
learning rate over a small interval to find the best one. The
final configuration and hyperparameter of the RL algorithm is
specified in Table I.

TABLE I

SELECTED HYPERPARAMETERS FOR RL AGENT

Fig. 6. Training model-free RL via simulations.

For faster training of our RL algorithm, we first implement
a simulation environment which closely mimics the dynamics
of the physical system. The environment simulates each video
including its bitrate, buffer, length, and QoE. The bitrate and
length of each video is generated according to a normal
distribution; buffer is stored in terms of time, rather than
bits. Each client plays videos sequentially, stalling where its
buffer runs out and building up a buffer of 10 seconds before
attempting to play again. Queues are serviced with a constant
total bandwidth, but the fairness of queue’s service among
flows assigned to that queue is chosen in each decision period
(DP) according to a Dirichlet distribution. Each DP is of
duration 10 seconds. The simulation environment uses a high-
priority queue with 11 Mbps bandwidth and a low-priority
queue with 4.3 Mbps. In the static network configuration, six
clients are specified that draw video bit-rates from a truncated
N (2.9, 10) distribution in Mbps, and draw video lengths from
a truncated N (600, 50) distribution in seconds.

For hyperparameter search, the system was simulated for
200 DP per episode for 1000 episodes (200,000 samples). Note
that increasing the number of units or layers in the network
used for value estimation after (64, 32) does not significantly
affect the convergence curve; however, the magnitude of the
learning rate creates large differences in the performance to
which the agent ultimately converges. Further, a single layer is
incapable of learning to the performance achieved by the two-
layer network. We therefore choose the (64, 32) configuration
for our agent. The evolution of value during the training
process is shown in Figure 6 top-left. As is seen, the trained
controller achieves a high QoE of near 5.

Next, we compare the performance of different policies
in the simulation environment. Figure 6 top-right shows the
average QoE attained by different policies, which suggests
that perhaps the model-free approach, while best, may not
give substantial performance improvements. The QoE CDFs
in Figure 6 bottom-left, however, indicate that model-free

Authorized licensed use limited to: Texas A M University. Downloaded on September 20,2021 at 22:15:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

RL achieves a higher QoE for a larger fraction of clients,
suggesting that it might be more robust to resource constraints.
Indeed, we will see in experiments in Section IX that it attains
quite substantial gains over the other approaches in practice
under a bandwidth constrained environment.

D. Dynamic Number of Clients

In the above description, we assumed that the number of
clients in the system is static. The timescale at which the
number of clients change is very large (several tens of minutes;
this models human mobility) when compared to the decision
period (10 seconds). Including a dynamic number of clients
into training would require augmenting the state space with
the number of connected clients, and a Markov model of
transitions in this value. Since this increases the state space
and training duration, we instead obtain the optimal static
policy for the system with 4 to 6 clients using the model-
free approach. Figure 6 bottom-right shows the evolution of
value over the training process over the different cases. We can
then choose the right policy based on number of clients in the
system. Interestingly, there appears to be enough structure in
our problem that a policy developed for a larger number of
clients can simply be used for a smaller number (setting non-
existent clients to have large QoE and buffer values), since the
relative priorities of clients is all that matters. We discuss this
idea further in Section VII.

V. MODEL-BASED RL

In this section, we discuss the scenario in which the
dynamics of the system (transition kernel) are first determined,
i.e., given the current state st of the system and the action
taken at, we find the transition probabilities to the next states
st+1. Given the transition kernel of the system P , we can use
policy or value iteration to solve for the optimal policy π∗.
The model-based approach is particularly interesting because
of its special structure, since the state transitions of a client
given its current state and action are independent of the states
and actions of other clients in the system. In other words,

P (st+1|at, st) =
∏
∀c∈C

P (sc
t+1|ac

t , s
c
t) (4)

We also note that the state transitions of all clients in the
system given their current states and actions are identical.
Thus, we can determine the transition kernel of the system
using the transition kernel of each individual client. Hence, the
model-based approach here is attractive because of the con-
ditional independence of the transition matrix, which makes
construction of the model much easier. This may not be true
of a general problem.

A. Static Model

In what follows, we determine the transition kernel of the
system and obtain the optimal policy.

1) Experimental Traces: We generate state (sc
t), action (ac

t)
and next state (sc

t+1) tuples for clients by running the system
under arbitrary policies (Vanilla, Round Robin etc.) for a
duration of 10 hours giving 3600 sample points.

2) Discretizing the State Space: The state of each individual
client sc

t and hence the state of the system st have elements
that are (non-negative) real numbers. In order to calculate
the transition kernel of the client in a tractable manner,
we discretize the state space of the client according to table II.

TABLE II

CLIENT STATE SPACE DISCRETIZATION

Since the state of a client is 3 dimensional (Buffer, Stall, QoE)
we encode it to obtain a label for each client state as follows,
Let NSB and NQB denote the number of stall and QoE bins
respectively,

sc
t = Buffer × NSB × NQB + QoE × NSB + Stall

The discretized and encoded state space of a client Sc has
a cardinality of 945.

3) Determining the Transition Kernel of a Client: We
determine the transition kernel of a single client by fitting
an empirical distribution over the state, action, and next state
tuples collected from experimental traces, i.e., we empirical
determine,

P (sc
t+1|ac

t , s
c
t) ∀sc

t+1, s
c
t ∈ Sc ∀ac

t ∈ Ac

from experimental traces. Ac is the set of all actions for a
client c.

4) Identifying Frequent States of the System: The state of
the system (st) is the union of states of all clients (sc

t) in
the system. If there are N clients in the system, the state of
the system is a N dimensional vector, where each dimension
corresponds to the state of a client. Let S denote the discretized
state space of the system. The cardinality of S is of the order
of 945N . Solving an MDP with 945N states is intractable.
Hence, based on experimental traces, we identify the most
frequent states Sp of the system, and approximate all other
states to these popular states using the L2 norm, i.e., given a
state in S, we approximate it by a state in Sp with the least
Euclidean distance.

5) Calculating the Transition Kernel of the System: The
state space of our system has now reduced from S to Sp.
To obtain the transition kernel of this system, we empirically
sample one hundred state transitions for each state in Sp under
each action in A using the transition kernel of individual
clients. If the generated state transitions are outside Sp, we
approximate it with the state in Sp which is closest in
Euclidean distance. Thus, we obtain state, action, next state
tuples for the system with state space Sp. We fit an empirical
distribution over these tuples to obtain the transition kernel of
the system. Hence, we empirically determine

P̃ (st+1|at, st) ∀st+1, st ∈ Sp ∀at ∈ A.

6) Obtaining the Optimal Policy: We obtain the optimal
policy π∗ by running value iteration over the transition kernel
generated for Sp. It must be noted that the reward obtained by
taking action at in state st is the average QoE of state st+1

which is a part of st+1 and is not calculated explicitly.

B. Dynamic Number of Clients

In the previous subsection, we assumed that the number of
clients in the system are static. To deal with a dynamic number
of clients, we follow an approach similar to the one described
in section IV. We obtain the optimal policy for the system
with 4-6 clients using the static model approach described in

Authorized licensed use limited to: Texas A M University. Downloaded on September 20,2021 at 22:15:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BHATTACHARYYA et al.: QFlow: LEARNING APPROACH TO HIGH QoE VIDEO STREAMING AT WIRELESS EDGE 9

the previous subsection. In the same manner as the model-free
case, we may also use the policy for 6 clients for a smaller
number of clients by just comparing their relative priorities,
as will be discussed in Section VII.

VI. AUCTION

As discussed in the Introduction, the model-based and
model-free approaches require the self-reporting of states. We
now consider an auction system, wherein agents place bids
to determine their relative valuations for priority service. To
determine its value, a client must solve (2) and obtain the
optimal value function. The information required to compute
this solution are the transition kernel and the bid (belief)
distribution of agents. This belief distribution is obtained from
the auction server (Controller), which collects the bids made
over intervals of time and provides the empirical distribution
back to all agents. Furthermore, the model-based approach
immediately provides the transition kernel using the transition
kernel of a client (Section V-A).

The auction is chosen as an (N + 1)th-price auction with
N identical goods (i.e., the number of clients that may be
admitted to the high-priority queue) in which each agent may
obtain at most one unit of the good. It is straightforward to
see that such an auction is a simple VCG auction [35], and so
is incentive compatible (agents bid true values obtained from
solving (2)). The Auction Agent receives the bids from all
clients, conducts the (N +1)th-price auction and performs the
assignment on the basis of the result. This approach follows
our earlier results on scheduling games, wherein we proved
that such a scheme results in a mean field equilibrium in which
the highest value clients are prioritized at each time [5], [6].

VII. INDEX POLICY AND DYNAMIC NUMBER OF CLIENTS

The auction approach suggests that at equilibrium each
client is associated with a value that only depends on the state
of that client, and the transition kernel (4). The solution to
(2) results in a value for each state sc

t of the client. Then
in the manner of the Whittle Index [7], we can order states
in increasing order of value, and associate each state with an
index, which is its position in the order. Then these indices
can be used to directly decide which clients to prioritise, and
we call this as an index policy that simply picks the clients
with the highest indices to provide priority service.

Now, given the indices corresponding to a system with J
clients, it would save computational effort if we could use
the same indices for a system with K < J clients, by simply
setting indices of non-existent clients to 0. For example, would
the indices for a system with 6 clients be consistent with one
that has 3 clients?

We determined the values for different numbers of clients
using the empirical model developed in Section V-A, and
determined the ordering of states in each case. The comparison
of the orderings for different client configurations (6, 5, 4, 3
clients) is shown in Figure 7, using the ordering for 6 clients
as the base ordering. We have not shown several hundred
states that are indistinguishable at minimal value, which are all
assigned an order of 0. We find the values of the 350 states
that turn out to have non-minimal value with 6 clients, and
assign the label 350 to the highest value state, 349 to next
highest value state and so on. Hence, when ordered by value,
state 350 is also the 350th in order and so on, which results in
the 45

◦
red line in Figure 7. Next, we find the values of each

state for 5, 4 and 3 clients, and in each case show the ordering

Fig. 7. Ordering of states in different client configurations.

of the states using the same state labels as we did in the case
of 6 clients. We observe that the relative ordering of most of
the high value states is consistent across configurations.

The above observation indicates that it is unnecessary to
obtain policies tuned to the number of clients. Rather, simply
training the system with a fixed number of clients and using
the relative state priorities obtained from such training for an
instance with a smaller number of clients is likely to perform
well. In particular, a Whittle-index like policy developed for
6 clients is likely to prioritize the correct clients in a system
with fewer clients. This is the approach that we use in the
next section while considering experiments with a dynamically
changing number of clients.

VIII. QFLOW IMPLEMENTATION DETAILS

We extend the OpenFlow protocol using experimenter mes-
sages [36]. We exploit the separation of control and data planes
of OpenFlow to implement policy decisions using QFlow.
Further, our choice of using experimenter messages ensures
that we do not require changes at the controller. We use an
off-the-shelf TP-Link WR1043ND v3 router with OpenWRT
Chaos Calmer as the firmware for our implementation. We
choose OpenWRT because of its support for Linux based
utilities like tc (Traffic Control) for implementing per packet
mechanisms. Since OpenWRT does not natively support SDN,
we use CPqD SoftSwitch [37], an OpenFlow 1.3 compatible
user-space software switch implementation.

We next extend SoftSwitch to include QFlow capabili-
ties. Such capabilities include the ability to modify packet-
handling mechanisms. Our goal is to enable configuration
changes, in addition to the collection of statistics related to
the implemented per packet mechanisms and the connected
clients. We construct two types of QFlow commands for
implementing the described capabilities, Policy commands and
Statistics commands. The rationale behind this separation is
to differentiate policy decisions from statistics collection. The
controller uses Experimenter messages to communicate these
commands to the Access Point using OpenFlow.

A. Policy Commands

We design Policy commands to allow us to choose between
available mechanisms at different layers. Every time a Policy
command is sent, it is paired with a Solicited response that is
generated by the receiver and sent to the controller using an
experimenter message. A Solicited response message thus pro-
vides us with feedback from the intended receiver. We define

Authorized licensed use limited to: Texas A M University. Downloaded on September 20,2021 at 22:15:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 8. Packet formats in QFlow.

the format of the policy experimenter messages as shown in
Figure 8 (left). The Controller packs a policy command, and
sends it to the Access Point using OpenFlow. On receiving
the message, QFlow unpacks it, identifies the specific policy
command using the type field, and performs the correspond-
ing operation. Using this framework, we implemented policy
commands for the MAC layer.

1) Data Link Layer Queue Command: At the data link
layer, we need a means of providing variable queueing
schemes. Traffic control (tc) is a Linux utility that enables
us to configure the settings of the kernel packet scheduler
by allowing us to Shape (control the rate of transmission
and smooth out bursts) and Schedule (prioritize) traffic. Each
network interface is associated with a qdisc (Queueing dis-
cipline) which receives packets destined for the interface. We
selected Hierarchical Token Bucket (htb) for our experiments
because of the versatility of the scheme. It performs shaping
by specifying rate (guaranteed bandwith) and ceil (maximum
bandwidth) for a class, with sharing of available bandwidth
between children of the same parent class, and can also pri-
oritize classes. Finally, we use Filters to classify and enqueue
packets into classes.

In our experiments, we create queues with different token
rates using htb. Tokens may be borrowed between queues,
meaning that queues will share tokens if they have no traffic.
We also create a default queue that handles any background
traffic. Decisions at the data link layer include assigning flows
to queues, setting admission limits, changing the throughput
caps queues, and enabling or disabling sharing of excess
(unused) throughput between them.

B. Statistics Commands

We define Statistics commands to collect queue and client
information and send them back to the controller for analy-
sis. Queue statistics include cumulative counts of downlink
packets, bytes and dropped packets. Client-specific statistics
consist of average Round Trip Times (RTT), signal strength
(RSSI) and Application specific statistics like buffer state, stall
information and video bitrate gathered by client middleware
from the browser playing the YouTube session. Since statistics
are sent periodically (once every second) to the controller, we
label such messages as Unsolicited response messages.

Similar to Policy commands, we define the structure of both
Queue and Client-specific Statistics messages. After collecting
the respective statistics, QFlow packs the data and sends
them to the Controller using OpenFlow. On receiving these
messages, the Controller unpacks them, identifies the type
from the header information and then saves the extracted data
to the database. The packet formats of the Client Statistics
messages is shown in Figure 8 (right). QFlow thus is capable
of generating state-action, and measuring the resultant rewards
in terms of QoE. The details of using the system for RL will
be described in the next two sections.

IX. EVALUATION

An off-the-shelf WiFi router with QFlow is used as the
Access Point and three Intel NUCs are used to instantiate up
to 9 YouTube sessions as clients for our experiments. Note
that each such session will generate multiple TCP flows, and
we treat all the flows associated with a particular YouTube
session identically. Relevant session information such as ports
used by an application, play/load progress, bitrate and stall
information for YouTube sessions is collected by middleware
every second and written to the database.

We use the platform to study several scenarios involving
one or more “bins”, each containing two downlink queues, one
with a higher bandwidth allocation (resulting in better QoS)
than the other using token bucket queueing via Ubuntu Traffic
Controller (TC). In Section IX-D, we ensure that devices
with similar signal strengths are made to occupy the same
bin, and hence do not adversely affect the performance of
clients with better signal strengths. An example with two bins
corresponding to “High” and “Low” signal strengths and four
queues is shown in Figure 1. A default queue is used for
any background traffic. Two clients may be allowed into each
high priority queue. For the no differentiation case, we set up
a single queue with the same total throughput limit as the sum
of all queues in the previous scenarios. Our control problem is
to determine which sessions to assign to which queues. The
first two policies are based on fair network resource allocation,
while the others account for application state as well.

A. Policies

In addition to described model-based, model-free and
auction-based policies, we consider four additional policies
for choosing these assignments.

1) Vanilla: This is the base case with a single queue that
is allocated the full bandwidth, and with no differentiation
between clients. This scheme attains the random access fair-
ness that is native to CSMA.

2) Round Robin: We assign clients to the high priority
queue in turn. Since we first bin clients based on channel qual-
ity, this is an approximation of channel-weighted proportional
fairness. Although it is computationally inexpensive, work-
conserving and prevents starvation, it might lead to the clients
who have no hope of significantly increasing their QoE being
promoted to high-quality service.

3) Reward Greedy: This policy computes the expected one-
step reward on a per-client basis, and assigns clients so as
to maximize the sum of rewards. We can think of this as a
myopic version of model-based RL. This might starve sessions
that were unlucky and stalled at some point, since QoE growth
rates reduce after stalls.

4) Greedy Buffer: This approach promotes the clients with
the lowest buffered video to the high priority queue to reduce
their stall probabilities. It can thus be seen as an approximation
of scheduling clients that have the highest deficit in terms of
service obtained thus far [3]. This policy might promote the
agents who have low buffers because they are at the end of
their videos, or those that have stalled multiple times and can
never recover high QoE.

B. Static Network Configuration

In our static configuration, we have just one bin, and each
NUC hosts two YouTube sessions to simulate a total of 6
clients. The QoE performance comparison of the different

Authorized licensed use limited to: Texas A M University. Downloaded on September 20,2021 at 22:15:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BHATTACHARYYA et al.: QFlow: LEARNING APPROACH TO HIGH QoE VIDEO STREAMING AT WIRELESS EDGE 11

Fig. 9. Comparison of average QoE.

Fig. 10. Comparison of client QoE CDF.

Fig. 11. Comparison of average QoE CDF.

Fig. 12. Comparison of average buffer.

policies is shown in Figures 9, 10 and 11. We first compare
the average QoE of the various policies in the first figure.
It is clear that the model-based, model-free and auction-based
policies outperform the other policies. This gap in performance
becomes even more evident when we compare the CDFs of
the individual and the average QoE of the different policies
in Figures 10 and 11. For example, we can observe from
Figure 10 that the Model-based, Model-free and Auction-based
policies are able to provide a QoE of 5 for almost 90, 85 and
87% of the time for all clients, whereas it is only about 65% of
the time for the next best policy. Similarly, it can be deduced
from Figure 11 that the Model-based, Model-free and Auction-
based policies are able to achieve an average QoE of 4.5 for

Fig. 13. Comparison of client buffer CDF.

Fig. 14. Comparison of average buffer CDF.

all participating clients in the system about 70, 85 and 90%
respectively. The value for the next best policy is about 35%.

Interestingly, the auction outperforms the model-based pol-
icy. We believe that this is due to the coarse quantization of
the state space. System-wide identification of value is worse
affected by such coarse quantization due to the fact that 6
clients together are considered in the sate, whereas in Auction
only 1 client is part of the (marginal) state. Hence, we believe
that relative value identification (indexing of client states; see
Section VII) is more accurate in the Auction case.

The QoE experienced by a client is affected by the buffer
state of the client and the stalls experienced during video play-
back. Hence, we study the buffer state and the stall durations
experienced by the clients under the different policies. Similar
to the QoE plots, we compared the averages, the CDFs of the
individual and the average values for both these features in
Figures 12 to 17. Again, it is evident from the figures that the
Model-based, Model-free and Auction-based policies ensure
better buffer state and lower stall durations (both individual
and average) than the other policies under consideration.

We also compared the bid distributions of the clients in the
Auction-based policy for two different client configurations.
The first had 6 clients whereas the second had 3, with the
total bandwidth being the same. The comparison of the two
distributions is shown in Figure 18. When there are more
clients participating, resources are scarce and valuable, and
clients tend to bid higher in order to get into the high
priority queue and experience better QoE as seen in Figure 18
(bottom). Current cellular data rates are in the range of 0.5 to
1 cent per MB in the US, and 1080P video consumes around 1
MB per second, while 4k consumes about 2 MB per second.
Hence, bids of about [0, 5] cents at each auction round of
10 seconds gives us an average payment in the auction that is
comparable to current cellular billing rates.

C. Dynamic Number of Clients

We next study the performance of the policies in a scenario
with a varying number of clients. We still maintain a single
bin, but choose the number of active clients in the system to

Authorized licensed use limited to: Texas A M University. Downloaded on September 20,2021 at 22:15:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 15. Comparison of average stall duration.

Fig. 16. Comparison of stall duration CDF.

Fig. 17. Comparison of average stall duration CDF.

Fig. 18. Bid distribution for 6 and 3 client configurations.

vary between 4 and 6, while keeping the bandwidth allocation
same as that of the static configuration. We study three
policies, namely (i) Model-free: This is obtained by retraining
Q-Learning for 4, 5 and 6 clients, (ii) Model-based: This is
obtained by retraining the model-based approach for 4, 5 and
6 clients, (iii) Auction-based (index policy): This is obtained
by training via the auction for 6 clients, and using the ordering
of values so obtained as state indices.

We consider a larger timescale of 30 minutes for changing
the number of clients participating in the system. We start
with 6 clients in the system and then remove 1 client each for
the next two time periods. At the end of the third period, we

Fig. 19. Comparison of client QoE CDF for dynamic clients.

Fig. 20. Comparison of average QoE CDF for dynamic clients.

introduce two more clients in the system. It is observed that
Model-based, Model-free and Auction-based (index) policies
perform well irrespective of the number of users in the system,
whereas other policies only do well when there are relatively
fewer clients in the system. Also, the index approach also
implies that we only need train once, and not for each possible
number of clients separately. Hence, it has a lower complexity
as compared to the other two approaches.

Observe that since the bandwidth allocation is the same,
reducing the number of clients implies relaxation of the
resource constraints and hence other policies see an improve-
ment in performance. This can be seen in Figures 19 and 20,
where the CDF curves of the other policies are closer to those
of model-based, model-free and auction-based policies. Even
so, these three policies exhibit the best performance, which
reinforces their superiority in both static and dynamic client
scenarios.

D. Time Varying Channel Conditions

Wireless clients could have time varying signal strengths,
and consequently face different link-level throughputs, laten-
cies, and loss rates. We need to ensure that clients having
lower signal strengths do not adversely affect the performance
of clients with better signal strengths by occupying the channel
longer for each packet transmission [38]. Hence, we create two
bins of downlink queues, each containing a high priority and
a low priority queue as shown in Figure 1. We then have a
Good bin for clients with high signal strengths, and a Bad
bin for those who have low signal strengths.

In order to ensure repeatably of experiments across different
polices as clients experience good and bad channels, we emu-
late a bad channel by reducing the throughput, and increasing
the latency and loss rates of the queues in the Bad bin as
compared to those in the Good bin using Ubuntu Network
Emulator (NetEm). We then create a sequence of good and
bad (emulated) channel conditions over time for each client
that we repeat for each policy. In order to determine a realistic
emulation of what “bad” might mean for video streaming, we

Authorized licensed use limited to: Texas A M University. Downloaded on September 20,2021 at 22:15:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BHATTACHARYYA et al.: QFlow: LEARNING APPROACH TO HIGH QoE VIDEO STREAMING AT WIRELESS EDGE 13

Fig. 21. Comparison of QoE CDF for bad channel.

Fig. 22. Evolution of QoE: Dynamic clients with variable channels.

Fig. 23. Comparison of QoE CDF for dynamic clients with variable channels.

ran several hours of experiments with clients having low signal
strengths (via antenna attenuators) to determine appropriate
emulator settings. Thus, we are able to mimic varying network
conditions by dynamically assigning the sessions hosted on the
NUCs to either the Good or the Bad bin.

We consider four policies: (i) Vanilla and (ii) Round Robin,
and two advanced polices that show good performance, namely
(iii) Model-based RL and (iv) Auction-based (which yields an
ordering for the index policy). We first illustrate the difference
in achieved performance for the different policies with a
static 6 clients under Good vs. Bad channel conditions by
comparing Figures 10 and 21. We observe that the gap between
the baseline and advanced policies decreases in the Bad
channel scenario, but Model-based RL and the Auction-based
policies still achieve higher QoE for the clients.

We next fix a sequence of client configurations (number of
active clients) under each channel condition for the evaluation
of all policies. The first configuration consists of 6 clients
under Good channel conditions and 3 under Bad channel
conditions. We decrease the number of clients in the Good
channel by 1 and increase those in the Bad channel by 1 for
the next three intervals. The evolution of the average QoE for
each of the policies for the above sequence is shown in Figure
22. The Model-based RL and Auction-based (index) policies
exhibit a high average QoE in most of the configurations
except for the last where it is not possible to achieve a high

QoE for the 6 clients in the Bad channel. Even in such a
scenario, the drop in QoE is less severe than the other policies.

Finally, we show the overall CDF of client QoEs taken
over the whole experiment interval in Figure 23. While the
QoE improvement from the baseline using the learning-based
policies is not as striking as it is in Figure 10, the QoE samples
with the learning policies have a perfect QoE score in about
80% of the samples as compared to he baseline policies that
only manage this in about 60% of the samples.

E. Discussion of Limitations

We fix the video resolution at 1080p, which means that our
learning algorithms do not account for variable video bitrate.
While this can be included by joint selection of priority and
bitrate, that would require APIs for coordination across the
content provider (YouTube) and the RL-controller. Another
issue is that on the one hand, the model-based approach is
based on offline empirical data and so is limited to exactly
that environment. On the other hand, the model-fee approach
has inaccuracies due to its being simulation-trained, but does
undergo some fine-tuning during experiments. This appears to
be sufficient to match model-based algorithm performance, but
we do not explicitly use Sim2Real methods to add robustness
to simulation inaccuracies.

X. CONCLUSION

We considered the design, development and evaluation of
QFlow, a platform for learning based edge network configura-
tion, applicable to small cell architectures such as 5G. Working
with off-the-shelf hardware and open source operating systems
and protocols, we showed how to couple queueing, learning,
and markets to develop a system that is able to reconfigure
itself to best suit the needs of video streaming applications.

We instantiated a variety of learning-based policies on
the platform, and showed that they significantly outperform
purely network resource fairness-based or application state-
based policies. The RL approach is successful in learning
complex multi-layer interactions across network control (such
as TCP) and application performance. We also showed that
using an auction framework is able to a elicit truthful proxy
for state in terms of the bid made for prioritized service, and
discovered an ordering of state values that can be applied
directly as a simple index policy.

ACKNOWLEDGMENT

Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and
do not necessarily reflect the views of the sponsoring agencies.

REFERENCES

[1] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Trans. Autom. Control, vol. 37, no. 12,
pp. 1936–1948, Dec. 1992.

[2] A. Eryilmaz, R. Srikant, and J. R. Perkins, “Stable scheduling policies
for fading wireless channels,” IEEE/ACM Trans. Netw., vol. 13, no. 2,
pp. 411–424, Apr. 2005.

[3] I.-H. Hou, V. Borkar, and P. R. Kumar, “A theory of QoS for wireless,”
in Proc. IEEE INFOCOM 28th Conf. Comput. Commun., Apr. 2009,
pp. 1–9.

Authorized licensed use limited to: Texas A M University. Downloaded on September 20,2021 at 22:15:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

[4] Ericsson. (2015). Ericsson Mobility Report: On the Pulse of the
Networked Society. [Online]. Available: https://www.ericsson.com/
assets/local/mobility-report/documents/2015/er%icsson-mobility-report-
june-2015.pdf

[5] M. Manjrekar, V. Ramaswamy, and S. Shakkottai, “A mean field game
approach to scheduling in cellular systems,” in Proc. IEEE INFOCOM
Conf. Comput. Commun., Apr. 2014, pp. 1554–1562.

[6] M. Manjrekar, V. Ramaswamy, V. Reddyvari Raja, and S. Shakkottai,
“A mean field game approach to scheduling in cellular systems,” IEEE
Trans. Control Netw. Syst., vol. 7, no. 2, pp. 568–578, Jun. 2020.

[7] P. Whittle, “Restless bandits: Activity allocation in a changing world,”
J. Appl. Probab., vol. 25, pp. 287–298, Jan. 1988.

[8] R. Singh and P. R. Kumar, “Optimizing quality of experience of dynamic
video streaming over fading wireless networks,” in Proc. 54th IEEE
Conf. Decis. Control (CDC), Dec. 2015, pp. 7195–7200.

[9] R. Bhattacharyya et al., “QFlow: A reinforcement learning approach to
high QoE video streaming over wireless networks,” in Proc. 20th ACM
Int. Symp. Mobile Ad Hoc Netw. Comput., Jul. 2019, pp. 251–260.

[10] M. Jarschel, F. Wamser, T. Hohn, T. Zinner, and P. Tran-Gia, “SDN-
based application-aware networking on the example of YouTube video
streaming,” in Proc. 2nd Eur. Workshop Softw. Defined Netw., Oct. 2013,
pp. 87–92.

[11] H. Nam, K.-H. Kim, J. Y. Kim, and H. Schulzrinne, “Towards QoE-
aware video streaming using SDN,” in Proc. IEEE Global Commun.
Conf., Dec. 2014, pp. 1317–1322.

[12] S. Ramakrishnan, X. Zhu, F. Chan, and K. Kambhatla, “SDN based QoE
optimization for HTTP-based adaptive video streaming,” in Proc. IEEE
Int. Symp. Multimedia (ISM), Dec. 2015, pp. 120–123.

[13] P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu, and N. Race,
“Towards network-wide QoE fairness using openflow-assisted adaptive
video streaming,” in Proc. ACM SIGCOMM Workshop Future Hum.-
Centric Multimedia Netw., Aug. 2013, pp. 15–20.

[14] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video stream-
ing with pensieve,” in Proc. Conf. ACM Special Interest Group Data
Commun., Aug. 2017, pp. 197–210.

[15] T. Huang, R.-X. Zhang, C. Zhou, and L. Sun, “QARC: Video quality
aware rate control for real-time video streaming based on deep reinforce-
ment learning,” in Proc. 26th ACM Int. Conf. Multimedia, Oct. 2018,
pp. 1208–1216.

[16] Y. Zhang, P. Zhao, K. Bian, Y. Liu, L. Song, and X. Li,
“DRL360: 360-degree video streaming with deep reinforcement learn-
ing,” in Proc. IEEE INFOCOM Conf. Comput. Commun., Apr. 2019,
pp. 1252–1260.

[17] G. Xiao, M. Wu, Q. Shi, Z. Zhou, and X. Chen, “DeepVR: Deep
reinforcement learning for predictive panoramic video streaming,” IEEE
Trans. Cognit. Commun. Netw., vol. 5, no. 4, pp. 1167–1177, Dec. 2019.

[18] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic
approach for dynamic adaptive video streaming over HTTP,” in
Proc. ACM Conf. Special Interest Group Data Commun., Aug. 2015,
pp. 325–338.

[19] Y. Qin et al., “A control theoretic approach to ABR video streaming: A
fresh look at PID-based rate adaptation,” IEEE Trans. Mobile Comput.,
vol. 19, no. 11, pp. 2505–2519, Nov. 2020.

[20] N. C. Luong et al., “Applications of deep reinforcement learning in
communications and networking: A survey,” IEEE Commun. Surveys
Tuts., vol. 21, no. 4, pp. 3133–3174, 4th Quart., 2019.

[21] J. Sun, E. Modiano, and L. Zheng, “Wireless channel allocation using
an auction algorithm,” IEEE J. Sel. Areas Commun., vol. 24, no. 5,
pp. 1085–1096, May 2006.

[22] S. Ha, S. Sen, C. Joe-Wong, Y. Im, and M. Chiang, “TUBE: Time-
dependent pricing for mobile data,” in Proc. ACM SIGCOMM, 2012,
pp. 247–258.

[23] P. Shome, M. Yan, S. M. Najafabad, N. Mastronarde, and A. Sprintson,
“CrossFlow: A cross-layer architecture for SDR using SDN principles,”
in Proc. IEEE Conf. Netw. Function Virtualization Softw. Defined Netw.
(NFV-SDN), Nov. 2015, pp. 37–39.

[24] P. Shome, J. Modares, N. Mastronarde, and A. Sprintson, “Enabling
dynamic reconfigurability of SDRs using SDN principles,” in Proc. Ad
Hoc Netw., 2017, pp. 369–381.

[25] M. Yan, J. Casey, P. Shome, A. Sprintson, and A. Sutton, “ÆtherFlow:
Principled wireless support in SDN,” in Proc. IEEE 23rd Int. Conf. Netw.
Protocols (ICNP), Nov. 2015, pp. 432–437.

[26] J. Schulz-Zander, N. Sarrar, and S. Schmid, “AeroFlux: A near-sighted
controller architecture for software-defined wireless networks,” in Proc.
USENIX ONS, 2014, pp. 1–2.

[27] J. Schulz-Zander, C. Mayer, B. Ciobotaru, S. Schmid, and A. Feldmann,
“OpenSDWN: Programmatic control over home and enterprise WiFi,” in
Proc. 1st ACM SIGCOMM Symp. Softw. Defined Netw. Res., Jun. 2015,
pp. 1–12.

[28] H. Yeganeh, R. Kordasiewicz, M. Gallant, D. Ghadiyaram, and
A. C. Bovik, “Delivery quality score model for internet video,” in Proc.
IEEE Int. Conf. Image Process. (ICIP), Oct. 2014, pp. 2007–2011.

[29] N. Eswara et al., “A continuous QoE evaluation framework for video
streaming over HTTP,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 28, no. 11, pp. 3236–3250, Nov. 2018.

[30] D. Ghadiyaram, J. Pan, and A. C. Bovik, “Learning a continuous-time
streaming video QoE model,” IEEE Trans. Image Process., vol. 27, no. 5,
pp. 2257–2271, May 2018.

[31] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[32] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Proc. AAAI, vol. 2. Phoenix, AZ, USA,
2016, p. 5.

[33] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, p. 529, 2015.

[34] M. Schaarschmidt, A. Kuhnle, and K. Fricke. (2017). Tensorforce:
A Tensorflow Library for Applied Reinforcement Learning. [Online].
Available: https://github.com/reinforceio/tensorforce

[35] V. Krishna, Auction Theory. New York, NY, USA: Academic, 2009.
[36] Open Networking Foundation STD, document ONF TS-023, OpenFlow

Switch Specification, Rev., vol. 1, no. 5, 2015, p. 3.
[37] CPqD. (2015). OpenFlow Software Switch. [Online]. Available:

http://cpqd.github.io/ofsoftswitch13/
[38] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda, “Perfor-

mance anomaly of 802.11 b,” in Proc. IEEE INFOCOM 22nd Annu.
Joint Conf. IEEE Comput. Commun. Societies, vol. 2, Mar. 2003,
pp. 836–843.

Rajarshi Bhattacharyya received the Ph.D. degree in electrical and computer
engineering from Texas A&M University in 2019. He currently works as a
Software Designer at Aruba Networks, the wireless networking subsidiary of
Hewlett Packard Enterprise. His research interest is in the area of wireless
communication networks, with a focus on providing guarantees of quality of
service and quality of experience at the wireless edge.

Archana Bura is currently pursuing the Ph.D. degree with the Department of
Electrical and Computer Engineering, Texas A&M University. Her research
interests are reinforcement learning, optimization, and their applications to
wireless networks.

Desik Rengarajan is currently pursuing the Ph.D. degree with the Department
of Electrical and Computer Engineering, Texas A&M University. His research
interests include reinforcement learning and game theory, with a focus on their
application to the real world.

Mason Rumuly received the M.S. degree in electrical engineering from Texas
A&M University in 2019. He currently works as a Software Engineer at Arista
Networks. His research interests include cryptography, machine learning, and
reinforcement learning.

Bainan Xia received the Ph.D. degree in computer engineering from Texas
A&M University in 2019. He currently works as a Research Software
Lead at Breakthrough Energy, the clean energy innovation subsidiary of
Gates Ventures. His research interests include optimization, game theory,
reinforcement learning, and network economics, with a focus on large scale
power system optimization and mechanism design in electricity market.

Authorized licensed use limited to: Texas A M University. Downloaded on September 20,2021 at 22:15:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BHATTACHARYYA et al.: QFlow: LEARNING APPROACH TO HIGH QoE VIDEO STREAMING AT WIRELESS EDGE 15

Srinivas Shakkottai (Senior Member, IEEE) received the Ph.D. degree in
electrical and computer engineering from the University of Illinois at Urbana-
Champaign in 2007.

He was a Post-Doctoral Scholar in management science and engineering at
Stanford University in 2007. In 2008, he joined Texas A&M University, where
he is currently a Professor of computer engineering with the Department of
Electrical and Computer Engineering. His research interests include caching
and content distribution, wireless networks, multi-agent learning and game
theory, and network data collection and analytics. He was a recipient of the
Defense Threat Reduction Agency Young Investigator Award in 2009, the
NSF CAREER Award in 2012, and the research awards from Cisco in 2008
and Google in 2010. He received an Outstanding Professor Award in 2013,
the Select Young Faculty Fellowship in 2014, and the Engineering Genesis
Award at Texas A&M University in 2019.

Dileep Kalathil (Senior Member, IEEE) received the Ph.D. degree from the
University of Southern California (USC) in 2014. From 2014 to 2017, he was
a Post-Doctoral Researcher with the Department of Electrical Engineering
and Computer Sciences, University of California, Berkeley. He is currently
an Assistant Professor with the Department of Electrical and Computer
Engineering, Texas A&M University, College Station, TX, USA. His research
is in the area of reinforcement learning, with applications in communication
networks, power systems, and intelligent transportation systems. He was a
recipient of the NSF CAREER Award in 2021, the NSF CRII Award in
2019, the Best Ph.D. Dissertation Award from the Department of Electrical
Engineering, USC, in 2014–2015, and the Best Academic Performance Award
from the EE Department, IIT Madras, in 2008.

Ricky K. P. Mok (Member, IEEE) received the B.Eng. degree in computer
engineering from the Department of Computer Science and Engineering, The
Chinese University of Hong Kong, in 2009, and the Ph.D. degree in computer
science from the Department of Computing, The Hong Kong Polytechnic
University, in 2016. He is currently an Assistant Research Scientist at
CAIDA/University of California San Diego. His research interest includes
network performance measurements, network data analysis, HTTP streaming
systems, quality of experience (QoE) measurement, and reliable crowd-
sourcing-based QoE assessment methods.

Amogh Dhamdhere received the Ph.D. degree in computer science from
Georgia Institute of Technology, Atlanta, GA, USA, in 2009. From 2009 to
2019, he was at the Center for Applied Internet Data Analysis (CAIDA),
University of California, San Diego, first as a Post-Doctoral Scholar (2009–
2011) and then as a Research Scientist (2011–2019). In 2019, he joined
Amazon Web Services as a Principal Research Scientist. His research interests
revolve around measurement and modeling of internet topology, traffic,
economics, and protocols. His recent work has focused on building tools
and systems to measure internet availability and performance. He received
the ACM SIGCOMM Best Paper Award in 2018 for the paper “Inferring
Persistent Interdomain Congestion.”

Authorized licensed use limited to: Texas A M University. Downloaded on September 20,2021 at 22:15:46 UTC from IEEE Xplore. Restrictions apply.

