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Abstract—We consider the problem of serving real-time
flows over a multi-hop wireless network. Each flow is
composed of packets that have strict deadlines, and the goal
is to maximize the weighted timely throughput of the sys-
tem. Consistent with recent developments using mm-wave
communications, we assume that the links are directional,
but are lossy, and have unknown probabilities of successful
packet transmission. An average link utilization budget (sim-
ilar to a power constraint) constrains the system. We pose
the problem in the form of a Constrained Markov Decision
Process (CMDP) with an unknown transition kernel. We use
a duality approach to decompose the problem into an inner
unconstrained MDP with link usage costs, and an outer link-
cost update step. For the inner MDP, we develop model-
based reinforcement learning algorithms that sample links
by sending packets to learn the link statistics. While the first
algorithm type samples links at will at the beginning and
constructs the model, the second type is an online approach
that can only use packets from flows to sample links that
they traverse. The approach to the outer problem follows
gradient descent. We characterize the sample complexity
(number of packets transmitted) to obtain near-optimal
policies, to show that a basic online approach has a poorer
sample complexity bound, it can be modified to obtain an
online algorithm that has excellent empirical performance.

I. INTRODUCTION

The next generation of cellular communication net-
works that are taking shape under the moniker of 5G are
expected to provide ultra-low latency, ultra-high through-
put communications to support a variety of real-time
applications. They will utilize a large bandwidth from
the directional and loss-prone mm wave spectrum. In
particular, the low coherence time of these bands implies
that channel state must be dynamically determined, and
the approach to effective utilization of these channels lies
in learning link statistics as they change, and employing
those that are most likely to be able to support the offered
loads.

Some of the first planned deployments using mm-wave
spectrum are using the Integrated Access and Backhaul
(IAB) architecture [1], [2]. As the name suggests, the
user-equipment (UE) is provided access via mm-wave
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spectrum. However, a fundamental departure with the
current cellular architecture is a dense deployment of
small cells, with a small number of base stations act-
ing as gateways being equipped with fiber backhaul,
some base stations being connected purely over mm-
wave backhaul, and a large number of inexpensive analog
repeaters adding to the mm-wave backhaul creating many
additional links to account for occlusion effects. These
wireless backhaul links are directional, and essentially
interference free [2]. However, their reliance on mm-wave
implies that their statistics are prone to change, which
requires dynamic packet routing that accounts for these
changes.

The availability of a large, dynamically changing spec-
trum band with many links, and also the fact that the ana-
log repeaters cannot generate packets of their own implies
that the traditional approach of sounding each link using
pilot packets is untenable, and an online learning ap-
proach to efficiently sample the system is called for. With
this motivation in mind, the goal of this work is to address
the problem of learning how to maximize throughput,
while meeting hard end-to-end deadline guarantees over
multihop wireless networks composed of unreliable links.
The real-time nature of the flows implies that packets that
are not delivered by the deadline are simply dropped. In
the IAB context, the model pertains to the problem of
routing such deadline constrained packets across the IAB
base stations to the one connected to the end-user. Once
this happens, the packet is immediately transmitted to the
requesting end-user.

The problem of maximizing timely throughput can be
posed in the manner of reinforcement learning (RL) over
a Constrained Markov Decision Process (CMDP). Here,
the state of the system is the tuple of location and
remaining lifetime of each packet, and a unit reward is
obtained each time that an unexpired packet is delivered
successfully to end-user. The available actions are the
choices of links that can be used for forwarding the packet
at each node, and the randomness of the MDP kernel
stems from the randomness of the links. The constraints
of this problem are on the number of tranmissions per-
missible per link at each time, while the fact that the
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probabilities of success or failure at each link is unknown
implies the need for a learning approach.

Multiple challenges must be addressed to successfully
solve the CMDP problem of deadline constrained flows.
First, online reinforcement learning must be employed
to estimate the link reliabilities using as few packets as
possible. Second, we must ensure that per-packet deadline
guarantees are met. Finally, it is untenable to solve a
global MDP that requires state information about every
packet and node in the system, and a simple distributed
implementation of the policy is desired.

Main Results

We build on a framework of a general solution method-
ology for constrained MDPs using a dual decomposition
approach of Altman [3]. Here, the CMDP problem is
solved via a two step procedure of (i) maximizing the
objective (solving an MDP) under fixed Lagrange multi-
plers corresponding to the constraints, and (ii) a gradient
descent step over the Lagrange multipliers. This approach
is tailored to the case of deadline constrained flows in
Singh et al. [4]. The main insight of Singh et al. [4]
is that the CMDP for timely throughput maximization
under an average link utilization constraint (number of
tranmissions allowed per time slot) decomposes into a
simpler set of per-packet MDPs, thus permitting a dis-
tributed solution. However, the work assumes that the
transition kernel of the MDP, which depends on the
success probabilities of links is known apriori.

Our work is perhaps the first to consider a learning
approach towards solving constrained MDPs in the con-
text of optimal wireless scheduling design. The main
contribution of our work is to design algorithms that
explicitly account for the overhead of learning link re-
liabilities while computing the optimal packet and link
scheduling policy. We follow the general theme of model-
based reinforcement learning, under which the intent is
to efficiently determine the transition kernel of the MDP
under study, and explicitly solve it to obtain the opti-
mal policy. This approach is particularly suited to our
problem, as it has a well defined structure under which
the unknown sources of randomness in the system are
parametrized by the success probabilities of the links.
Our performance analysis goal is to characterize the so-
called sample complexity of our algorithms, i.e., we wish to
determine the number of packet transmissions needed to
ensure that the value of the packet transmission policy
differs from that of the optimal policy at most by a
parameter ε with a high probability.

Our first algorithm entitled Generative Model-Based
Learning (GMBL) follows a procedure under which each
link is sampled a given number of times to determine its
statistics to a desired level of accuracy, and the resulting
(noisy) model of the system is used as an input to the
CMDP framework of Altman [3]. Although difficult to
actually implement (since all nodes have to generate

packets on their own to sample links), this approach sets
up both the analytical methodology and a baseline sample
complexity bound. The main result here is that the sample
complexity is proportional to the number of links in the
system, which is consistent with the number of unknown
parameters (link success probabilities). Furthermore, the
sample complexity is inversely proportional to the square
of the desired accuracy ε.

Our second algorithm entitled Constrained Model Based
Interval Estimation (Con-MBIE) is an extension of the
MBIE algorithm [5], appropriately modified to the finite
horizon [6]. Con-MBIE follows a procedure of targeted
routing of packets to learn link parameters of the most
attractive links, and solves for an ε−optimal policy under
the model. Since Con-MBIE learns the model to a desired
accuracy for each given value of the Lagrange multipliers,
it has to re-learn the model for each change in the La-
grange multipliers, resulting in a higher bound on sample
complexity than GMBL. However, empirically it turns out
that this tradeoff between the focus on attractive links
(much like an online algorithm that focuses on high-value
arms in a multi-armed bandit setting), and re-learning the
model for each Lagrange multiplier update balance out,
and the performance is very close to GMBL.

Finally, we propose a heuristic algorithm, Con-MBIE-
RU, which is identical to Con-MBIE, except that it cumu-
latively uses all data samples gathered to progressively
increase the model accuracy as the Lagrange multipliers
are updated at each step (i.e., it ”re-uses” samples over
updates). It thus retains the targeted learning idea from
Con-MBIE, while ensuring high model accuracy by using
all samples in the manner of GMBL. We show empirically
that Con-MBIE-RU is near-optimal, and significantly out-
performs both GMBL and Con-MBIE in terms of sample
complexity and timely throughput attained.

Our numerical evaluation is over topologies similar to
those proposed for IAB trails [2]. We compare our RL-
based algorithms with the optimal solution value assum-
ing that the model (link success probabilities) are known
to show how the accuracy improves with increasing sam-
ple complexity. We also compare the sample complexities
of the variants of our algorithms to compare their efficien-
cies of link sampling, and show how Con-MBIE-RU uses
its samples effectively.

II. RELATED WORK

There has been much work in the past several years on
provably throughput optimal scheduling policies, starting
with seminal work of Tassiulas et al. [7], and follow
up works [8], [9] leading to the so-called backpressure
type scheduling policies. Recent work in this space has
focused on throughput optimal broadcast under networks
with different topologies [10], [11]. With the rise of
real-time streaming applications that require hard delay
guarantees, a different approach is needed as backpres-
sure cannot provide delay optimality. Work in this space
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focuses on scheduling such real-time flows, wherein an
MDP formulation is avoided due to the emphasis on a
single (typically downlink) wireless hop [12], [13].

The design of scheduling algorithms that can support
hard deadline constrains in the multi-hop context has
been the topic of recent study. For instance, Xiong et al.
[14] introduce delay-awareness into the protocol, with-
out, however, enabling hard deadline guarantees. Other
work, such as that by Mao et al. [15] provide such
guarantees under fixed routing, while that by Li et al.
[16] is only able to do so in a heuristic manner without
optimality guarantees. The fundamental issue here is the
need to solve a global MDP for taking scheduling/routing
decisions, and the work of Singh et al. [4] is the first
to use an average link utilization constraint to enable a
simple and distributed solution. The approach has been
further generalized to the broadcast setting by Hasan-
zadeZonuzy et al. [17].

The use of AI methods in communication networks has
recently been the subject of much interest, with most
work focusing on bandit-style approaches to learning
the sources of randomness in the system. For example,
Krishnasamy et al. [18] use posterior sampling with some
additional learning effort in order to small queuing regret
in a system with a single queue and many wireless
channel. Combes et al. [19] and Gupta et al. [20] both
use a marginal posterior sampling approach in the context
of power allocation in the context of a system in which
channel statistics are unknown. Talebi et al. [21] also
consider a bandit approach to routing over links whose
statistics are unknown.

Unlike the above body of work on learning in wireless
networks, our problem of delay constrained unicast flows
does not admit a bandit-type of solution due to the hard
delay constraint that implies that the state of each packet
in the system consists of both a location and a time to live.
Hence, while the source of randomness in our problem
lies in unreliable links (like earlier work), our formulation
is very different and takes the form of a constrained MDP
that explicitly accounts for state, rather than the bandit
formulation considered earlier.

III. PROBLEM FORMULATION

In this section, we formally describe our model and
the constrained MDP (CMDP) formulation for maximizing
the weighted timely throughput of the system. The setup
is similar to Singh et al. [4], and employs the relaxed
transmission constraint and Lagrangian decomposition
technique proposed in that work to obtain simple per-
packet MDPs that are conducive to the RL approach that
will be developed in the next section.

A. System Model

We consider a communication network described by a
directed graph G = (S,L), where S is the set of nodes and
L is the set of links. The cardinality of S,L are denoted

by S, |L| respectively. Let Lj be set of the outgoing links
from node j ∈ S. A directed link l = (j, k) indicates that
node j can transmit data packet to node k. We use self
loops to indicate the decision not to transmit at a node,
i.e., (j, j) ∈ Lj for all j ∈ S. We model unreliability of
network links by assuming that a transmission over link
l is successful with a probability pl. We also assume that
the time is slotted, and one time slot is the time needed
to transmit one packet over any link in the network.

We consider a set of finite number of flows F with size
|F | indexed by f ∈ {1, . . . , |F |}. Each flow f ∈ F has
a positive bounded weight denoted by βf . Besides, sf
and df indicate the source node and destination node
of flow f ∈ F, respectively. Let Af (t) denotes the set
of packets arriving at node sf at time t that are in flow
f . The average arrival rate of flow f is then defined as
ρf = limT→∞

∑T
t=1 |Af (t)|/T . We denote ρtot =

∑
f ρf .

Each packet of flow f has a maximum end-to-end delay
τf associated with it. A packet of flow f that has arrived
at sf at time t needs to be delivered to df before time
t + τf , or else it will be discarded. We assume that
maxfτf = τmax <∞.

The timely throughput for flow f under a scheduling
policy π, Rπf , is the expected value of the number of
packets delivered prior to deadline expiry per unit time,

Rπf = lim inf
T→∞

1

T
E

T∑
t=1

xπf (t), (1)

where xπf (t) is the number of packets of flow f success-
fully delivered to df under policy π at time t.

The average link utilization for link l under policy π,
denoted by Cπl is defined as

Cπl := lim sup
T→∞

1

T
E
∑
f∈F

T∑
t=1

cπl,f (t), (2)

where cπl,f (t) is the number of packet transmissions for
flow f on link l under policy π at time t. This is the relax-
ation proposed in [4]. In practice, such a relaxation might
correspond to an average transmit power constraint. It is
pointed out in [4] that the gap between this approach
and the hard constraint becomes small in the heavy traffic
regime. We will also consider such a hard constraint in the
numerical simulations.

The optimal scheduling problem is to find a policy π∗

that solves the following optimization problem

[OSP] max
π

∑
f∈F

βfR
π
f , s.t Cπl ≤ Cl,∀l ∈ L, (3)

where βf is the weight assigned to flow f.

B. Constrained MDP Formulation

We now formulate OSP using the framework of con-
strained Markov Decision Processes (CMDP). We first
specify the states, actions, rewards and transition kernel
of the corresponding MDP.
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State. Let si,f (t) denote the state of the packet i from
flow f at time t, defined as the node at which that packet
is located at time t. If the packet has been delivered to its
destination, or if it has been discarded from the network
by time t, then si,f (t) is defined as the terminal state sterm.
The state of the network at time t, s(t), is then defined
as s(t) = (si,f (t), i ∈ ∪τfτ=0Af (t− τ), f ∈ F ).

Action. The scheduling action ai,f (t) for packet i in
flow f at time t is defined the link on which that packet
is transmitted at time t. Hence, ai,f (t) ∈ Lsi,f (t). The
scheduling action for the network at time t, a(t), is then
defined as a(t) = (ai,f (t), i ∈ ∪τfτ=0Af (t − τ), f ∈ F ). A
scheduling policy π maps the state of the system s(t) to
the scheduling action a(t), i.e., a(t) = π(s(t)).

Transition Kernel. We denote the transition kernel of
the MDP as P (k|j, l), which is the probability that the
si,f (t + 1) = k given that si,f (t) = j and ai,f (t) = l.
Clearly,

P (k|j, l) =

 pl if l = (j, k)
1− pl if j = k
0 O.W.

(4)

We assume that pl = 1 for l = (j, j) for all j ∈ S. Note
that the transition kernel is the same for all packets in all
the flows.

Reward. Let rf (j) denote the reward for a packet in
flow f for being in state j. We define

rf (j) =

{
βf if j = df
0 O.W. (5)

The OSP is equivalent to [CMDP],

max
π

lim
T→∞

1

T
E

T∑
t=1

∑
f∈F

∑
i∈Af (t)

τf∑
τ=0

rf (sπi,f (t+ τ)) (6)

s.t. lim
T→∞

1

T
E

T∑
t=1

F∑
f=1

∑
i∈Af (t)

τf∑
τ=0

I{aπi,f (t+ τ) = l} ≤ Cl,

∀l ∈ L (7)

where the states and actions are generated according the
policy π. The expectation is taken with respect to the
arrival process, the transition kernel P and the policy π.

C. Packet-by-Packet Decomposition

We next describe the decomposition approach that
reduces the complexity of the problem by turning it into
a per-packet MDP, rather than having to consider a global
problem that accounts for the states of all packets in the
system at each transmission decision.

The Lagrange Dual is a usual approach towards the
solution of a CMDP [3]. The Lagrangian can be written
as,

L(π, λ) =
∑
l∈L

λlCl + lim
T→∞

1

T
E

T∑
t=1

∑
f∈F

∑
i∈Af (t)

τf∑
τ=0

(rf (sπi,f (t+ τ))−
∑
l

λlI{aπi,f (t+ τ) = l}),

(8)

considering equivalent formulation of OSP, presented
by (6) and (7). Noting that the rewards and transition
probabilities are the same for each packet i in a given
flow f , we define

V πf (λ) = E[

τf∑
τ=0

(rf (sπi,f (t+ τ))−
∑
l

λlI{aπi,f (t+ τ) = l})

|i, f, sπi,f (t) = sf ], (9)

where E is the expectation w.r.t. to the underlying transi-
tion kernel under the policy π. Then the Lagrangian (8)
can be written as

L(π, λ) =
∑
l∈L

λlCl +
∑
f∈F

lim
T→∞

1

T

T∑
t=1

∑
i∈Af (t)

V πf (λ)

=
∑
l∈L

λlCl +
∑
f∈F

lim
T→∞

1

T

T∑
t=1

|Af (t)|V πf (λ)

=
∑
l∈L

λlCl +
∑
f∈F

ρfV
π
f (λ). (10)

The dual function D(λ) and ‘dual policy’ π(λ), and the
optimal dual variable are defined as

D(λ) = max
π

L(π, λ), π(λ) = arg max
π

L(π, λ),

λ∗ = arg min
λ≥0

D(λ) (11)

Since there is no duality gap [3], the optimal policy π∗

for the [CMDP] is the same as π(λ∗).
Note that given a λ, V πf (λ) for a given flow f does

not depend on other flows. Hence, rather than finding an
optimal joint policy π(λ) for all flows, we can instead find
an optimal policy πf (λ) for each flow separately. More
precisely,

D(λ) = max
π

L(π, λ) =
∑
l∈L

λlCl + max
π

∑
f∈F

ρfV
π
f (λ)

=
∑
l∈L

λlCl +
∑
f∈F

ρf max
πf

V
πf

f (λ)

=
∑
l∈L

λlCl +
∑
f∈F

ρfV
∗
f (λ),

where,

V ∗f (λ) = max
πf

V
πf

f (λ), and, πf (λ) = arg max
πf

V
πf

f (λ)

(12)

Now, πf (λ) and V ∗f (λ) can be computed by standard finite
horizon dynamic programming if we know the transition
kernel P (equivalently, the link probabilities pl).
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However, as discussed in the Introduction, pls are un-
known a priori. We thus propose a reinforcement learning
approach for learning pls and at the same time solving for
the optimal policy.

IV. REINFORCEMENT LEARNING SOLUTIONS

In this section, we propose two model-based Reinforce-
ment Learning (RL) algorithms for solving the CMDP
corresponding to timely throughput maximization. Both
algorithms operate in a loop consisting of two steps.
First, they solve the per-packet MDP under the current
model to obtain sub-optimal solution of V ∗f (λ) with high
probability. Next, the Lagrange multipliers, λ are updated
according to estimated model. The difference between the
two algorithms is in how they sample the system in order
to construct the model and update it, using an offline
or online approach. We will show how both algorithms
would result in an ε−optimal policy with high probability.
We also characterize the sample complexity, which in this
case is the number of packets that are transmitted before
the model is learned with a sufficiently high accuracy to
ensure ε−optimality. We do not present any proofs due to
space constraints.

A. Generative Model-Based Learning

According to the GMBL algorithm, we use a traditional
channel sounding approach, and simply send n packets
over each link for estimating the reliability of each link
pl. For each link l = (j, k), the transmission of a packet
is ‘successful’ if the packet transmitted from node j in
the link l reaches node j in one time slot. We define the
empirical link reliability, p̂l, as the ratio of the successful
transmission to the total number of transmission. Given
p̂l, we can define the approximate transmission kernel P̂
as (4) by replacing pl with p̂l. It is straight forward to see
that p̂l is an unbiased estimator of pl and P̂ is an unbiased
estimator of P . The expectation w.r.t. to this approximate
transition kernel P̂ is denoted by Ê[·].

We now consider a different constrained MDP that is
identical to the CMDP defined in Section III except that its
transition kernel is P̂ instead of P . The expectation w.r.t.
P̂ is denoted by Ê[·]. We define the quantities V̂ πf (λ) in the
same way as in (9) but by replacing E by Ê. The quantities
L̂(π, λ), D̂(λ) can also now be defined in a similar way
as in (10) and (11) by replacing V πf (λ) with V̂ πf (λ). The
optimal dual variable λ̂∗ is defined as λ̂∗ = arg minλ D̂(λ).
We also define

π̂f (λ) = arg max
πf

V̂
πf

f (λ), V̂ ∗f (λ) = V̂
π̂f (λ)
f (λ). (13)

Note that π̂f (λ) and V̂ ∗f (λ) can be computed by standard
finite horizon dynamic programming [22], and we omit
the details.

We also define the following quantities for describing
the GMBL algorithm succinctly.

Ĉ
πf

l,f = Ê[

τf∑
τ=0

1{aπf

i,f (t+ τ) = l}|i, f, sπf

i,f (t) = sf ], (14)

R̂
πf

f = E[

τf∑
τ=0

rf (s
πf

i,f (t+ τ)|i, f, sπf

i,f (t) = sf ], (15)

Ĉπl =
∑
f

ρf Ĉ
πf

l,f , R̂π =
∑
f

ρf R̂
πf

f , for π = (πf )f∈F ,

(16)

Here π is the joint policy given by the collection of each
individual policy πf . Note that from (9), (14), (15), we
can write

V̂
πf

f (λ) = R̂
πf

f −
∑
l

λlĈ
πf

l,f , (17)

L̂(π, λ) = R̂π +
∑
l

λl(Cl − Ĉπl ). (18)

The GMBL algorithm is summarized in Algorithm 1.

Algorithm 1 Generative Model-Based Learning (GMBL)
1: Input: accuracy ε, δ. Initialize λl(0) = 0,∀l ∈ L
2: Send n = n(ε, δ) packets in each link l ∈ L
3: Estimate the link probability p̂l by transmitting n

packets across all links uniformly
4: Construct the approximate transition kernel P̂
5: for m from 1 to M do
6: For each flow f , compute πf (m) = π̂f (λ(m)) ac-

cording to (13). Define π(m) = (πf (m))f∈F
7: Compute Ĉπ(m)

l according to (14) and (16)
8: Compute λl(m+ 1) for each link l as

λl(m+ 1) = ΠΛ(λl(m)− α(Cl − Ĉπ(m)
l ))1

9: Compute λ̂(M) = 1
M

∑M
m=1 λ(m).

10: Compute πf (M + 1) = π̂f (λ̂(M))
11: Output: π̂ = (πf (M + 1))f∈F , λ̂ = λ̂(M)

We next present the sample complexity of GMBL.

Theorem 1. GMBL algorithm with

n(ε, δ) ≥ 18(ρtotβmaxτmax)2

ε2
log

6|L||F |
δ

(19)

and parameters

M =
36|L|(τmaxρtot + Cmax)2λ2

max

ε2
, (20)

α =
ε

3|L|(τmaxρtot + Cmax)2
, (21)

where λmax = ρtotβmax

Cmin
and Cmin = minl Cl, achieves a λ̂

and π̂ such that

P
(
|L(π̂, λ̂)− L(π∗, λ∗)| ≤ ε

)
≥ (1− δ).

1ΠΛ is projection to set Λ = [0, 2λmax], where Cmin = minl Cl.

5



Algorithm 2 MBIE (Model Based Interval Estimation) for
flow f

1: Input: accuracy ε, δ
2: n(j, l) = n′(k, l, j) = 0; Ṽτf+1 := 0 ∀j, k ∈ S, l ∈ Ls
3: m =

4Sτ4
f

ε2 +
τ4
f

ε2 ln
(
S|L|H
εδ

)
4: lc = ln (2S − 2) + ln

(
2S|L|m

δ

)
5: while Model Stops Updating do
6: for t = τf to 1 do
7: for j ∈ S do
8: for l ∈ Lj do
9: p̃(l|j, l) = n′(l,l,j)

n(j,l) +
√

2lc
n(j,a)

10: p̃(j|j, l) = 1− p̃(l|j, l)
11: Q(l) = rf (j, l) +

∑
k∈Lj

p̃(k|j, l)Ṽt+1(k)

12: πf (j, t) = arg maxlQ(l), Ṽt(j) = Q(π(j, t))
13: j0 = sf
14: for t = 1 to τf do
15: lt = πf (jt, t), jt+1 ∼ P (jt, lt)
16: n(jt, lt) + +, n′(jt+1, lt, jt) + +
17: Output: πf

B. Con-MBIE

As mentioned in the Introduction, many IAB nodes
are analog repeaters that cannot generate packets for
channel sounding. Thus, we require an online approach
that utilizes packets to learn the model as they are routed
through the network.

We start with a simple model-based RL scheme called
Model-Based Interval Estimation (MBIE) [5], and modify
it to our constrained MDP setting2. The finite horizon
MBIE algorithm, described in Algorithm 2 proceeds in
episodes, where each episode corresponds to the time
interval between the generation and expiry of a packet.
The model P̃ is updated at the end of each such episode,
and a new (optimistic) policy πf for each flow f is
generated. The algorithm proceeds over episodes until
we obtain a PAC guarantee on the accuracy of the policy.
Note that unlike GMBL, sampling is online, and ”targeted”
towards routes (and hence links) that are likely to yield
high reward, much like the difference between sampling
of all arms of a multi-armed bandit vs. using an online
learning algorithm.

Under Constrained MBIE, or Con-MBIE we have two
time scales of updates. The algorithm consists of an
alternate MBIE [5] step (consisting of multiple episodes),
and a stochastic subgradient step at which Lagrange
multipliers are updated (called an epoch). Hence, we start
with an initial λ(0) and compute optimistic policies πf
for each flow f with respect to λ(0) by means of MBIE
(Algorithm 2). The MBIE step results in πf for each flow f

2Note that MBIE is an RL algorithm designed originally for infinite-
horizon MDPs with a discount factor γ. However, it can be utilized
as a finite-horizon algorithm while the analysis still holds with minor
modifications.

(which are likely sub-optimal during the initial epochs),
and an optimistic transition kernel P̃ according to the
samples from links.

We denote expectation w.r.t P̃ by Ẽ. After the MBIE
procedure, we apply stochastic subgradient method and
calculate new Lagrange multipliers, disregard the samples
from MBIE step and repeat the identical process for the
new Lagrange multipliers. At each epoch, we define the
quantities Ṽ πf (λ) similar to equation (9) by replacing E
with Ẽ. Then, quantities L̃(π, λ) and D̃(λ) are defined
similar to (10) and (11) by replacing V πf (λ) with Ṽ πf (λ).
We also define

π̃f (λ) = arg max
πf

Ṽ
πf

f (λ), Ṽ ∗f (λ) = Ṽ
π̃f (λ)
f (λ). (22)

Note that every time the MBIE step is conducted with
failure probability δ′ for accuracy of ε′ for a flow f and
given λ, some samples are collected such that

P(|Ṽ ∗f (λ)− V ∗f (λ)| ≤ ε′) ≥ 1− δ′.

In fact, there are countably many sets of other samples
that would yield the same result, and any execution of
MBIE picks one set of samples among all possible set of
samples. Therefore, all the quantities of Ṽ πf

f (λ), L̃(π, λ)

and D̃(λ) would be random variables.
Call each set of samples an observation O, and denote

expectation w.r.t observations by EO. Since we do not
have any information about distribution on O, we can
treat EO of any random variable as another random
variable. Denote EO[Ṽ πf (λ)] by V̄ πf (λ) for each flow f,
and replace V πf (λ) with V̄ πf (λ) in equations (10) and (11)
to obtain L̄(π, λ) and D̄(λ). It is obvious that D̄(λ) =
EO[D̃(λ)] and is a convex function.

Now, instead of minimizing D(λ), we minimize D̄(λ).
Then, the optimal dual variable λ̄∗ is defined as λ̄∗ =
arg minλ D̄(λ). We also define the following quantities
required for describing the Con-MBIE algorithm.

C̃
πf

l,f = Ẽ[

τf∑
τ=0

1{aπf

i,f (t+ τ) = l}|i, f, sπf

i,f (t) = sf ], (23)

R̃
πf

f = E[

τf∑
τ=0

rf (s
πf

i,f (t+ τ)|i, f, sπf

i,f (t) = sf ], (24)

C̃πl =
∑
f

ρf C̃
πf

l,f , R̃π =
∑
f

ρf R̃
πf

f , for π = (πf )f∈F ,

(25)

Here, π is the joint policy given by the collection of
each individual policy πf . Note that from (9), (23), (24),
we can write

Ṽ
πf

f (λ) = R̃
πf

f −
∑
l

λlC̃
πf

l,f , (26)

L̃(π, λ) = R̃π +
∑
l

λl(Cl − C̃πl ). (27)

Con-MBIE is described by Algorithm 3 and the result
below presents the sample complexity of Con-MBIE.
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Algorithm 3 Constrained MBIE (Con-MBIE)
1: Input: accuracy ε, δ. Initialize λl(0) = 0,∀l ∈ L
2: for m from 1 to M do
3: for f ∈ F do
4: πf (m) = MBIE( δ

4|F | ,
ε

5ρtot
)

5: π(m) = (πf (m))f∈F
6: Compute C̃π(m)

l according to (23) and (25)
7: Compute λl(m+ 1) for each link l as

λl(m+ 1) = ΠΛ(λl(m)− α(Cl − C̃π(m)
l ))

8: Reset samples
9: Compute λ̄(M) = 1

M

∑M
m=1 λ(m)

10: for f ∈ F do
11: πf (M + 1) = π̃f (λ̄(M)) = MBIE( δ

4|F | ,
ε

5ρtot
)

12: Output: π̃ = (πf (M + 1))f∈F , λ̄ = λ̄(M)

Theorem 2. Con-MBIE with parameters

M =
100|L|(τmaxρtot + Cmax)2λ2

max

ε2
, (28)

α =
ε

5|L|(τmaxρtot + Cmax)2
, (29)

and

nC(ε, δ) =

O(M |F |S|L|τ
6
max

ε2
(S + ln (

S|L|τmax

εδ
)) ln

1

δ
ln
τmax

ε
), (30)

achieves π̃ and λ̄ such that

P
(
|L(π̃, λ̄)− L(π∗, λ∗)| ≤ ε

)
≥ 1− δ.

Theorem 3. [5] Let πi be the policy of MBIE algorithm 2 in
the ith episode on any finite horizon MDP with N states, A
actions and horizon H. Then with probability 1− δ′ for all
ε′ > 0 jointly the number of episodes i where V ∗−V πi > ε′

is at most

O
(NAH6

ε′2
(N + ln (

NAH

ε′δ′
)) ln

1

δ′
ln
H

ε′

)
.

C. Con-MBIE-RU

The above results suggest that Con-MBIE has a poorer
sample complexity to GMBL, due to the fact that it re-
samples the system at each update of the Lagrange multi-
pliers. Hence, we introduce a heuristic learning algorithm
Con-MBIE-RU. This algorithm is identical to Con-MBIE,
except for reusing samples obtained in previous epochs.
In section V we show that it outperforms both GMBL and
Con-MBIE algorithms empirically. This intuition is based
on two facts. First, Con-MBIE-RU is an online learning
algorithm based on MBIE, which trade offs exploration
and exploitation in a structured manner. Hence, within
each epoch, it is likely to offer superior performance to a
GMBL-like approach (even if its sample complexity bound
is the same). Second, it recognizes that the link statistics

are unchanged between epochs, and hence aggregates all
samples to create an increasingly more accurate model
with the passage of epochs. Hence, it is likely to require
fewer episodes per epoch than MBIE, particularly in the
later epochs.

V. SIMULATION RESULTS

In this section, we present simulation results to com-
pare the performance of the GMBL, Con-MBIE and Con-
MBIE-RU algorithms with respect to the optimal policy in
the context of attaining high weighted timely throughput
in an IAB network. We need to implement the basic MBIE
algorithm described in algorithm 2 for both Con-MBIE and
Con-MBIE-RU, and we follow the same steps as [5].

We develop a simulation scenario motivated by the IAB
use case, with the green nodes representing gateways,
and the white nodes representing fully wireless nodes in
Figures 1. Since gateway nodes communicate with zero
latency over an optic fiber medium, they can be merged
into a single node. Hence, in Figure 1 nodes 1 and 11 can
jointly be represented as a single node (1, 11).

For each link l, pl is uniformly randomly chosen from
[0.5, 1.0], while Cl is chosen from [1, 5]. We have two
unicast flows, with Flow 1 between nodes (1, 11)→ 6, and
Flow 2 is between nodes 10 → 6. Packet arrivals to the
system follow a Poisson number of arrivals to each source
node in each time slot, and the injection rate is varied
based on the experiment of interest (indicated below).
Flow 1 has a weight of 3, and Flow 2 has a weight of 4.

The performance metrics of interest are the error in the
value engendered by the policy that is the outcome of the
algorithm and the optimal reward. We define the error as∣∣∣∣∣∣

∑
l

λMl Cl +
∑
f

V
πf (λM )
f (λM )−D(λ∗)

∣∣∣∣∣∣ , (31)

where λM and πf (λM ) are the Lagrange multipliers and
policy that result from the execution of a particular
learning algorithm. The error depends on the number of
sub-gradient updates, M, which we empirically set as 100
for good error performance. Further, optimal reward is
simply the sum of the first two terms in (31).

We set a packet budget for learning the model, and
identify the error for each of our candidate algorithms.
Figures 2 depicts the relation between the error and
transmission budget empirically. The graph shows that
increasing the transmit budget reduces error for all the al-
gorithms. However, GMBL outperforms Con-MBIE which
is consistent with Theorems 1 and 2. Finally, Con-MBIE-
RU significantly outperforms both algorithms by benefit-
ing from the targeted routing of the online approach,
while building the model from all samples. Figure 3 is also
consistent with the fact that Con-MBIE-RU outperforms
both GMBL and Con-MBIE.
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VI. CONCLUSION

In this paper, we considered the problem of maximizing
the throughput of unicast flows with strict per-packet
deadlines over a multi-hop wireless network, motivated
by 5G IAB mm-wave networks. The problem formulation
took the form on a constrained MDP, and, assuming that
the link statistics are known, can be solved using a dual-
decomposition approach. We proposed a model-based RL
approach, and developed two types of algorithms, based
on offline channel sounding, and online learning. We
showed that although the basic online approach, Con-
MBIE performs targeted sampling of links, suffers from
having to start with a fresh model for each Lagrange
multiplier update, and so has higher sample complexity
than GMBL. An online learning approach that elimi-
nates this wekness, Con-MBIE-RU has excellent empirical
performance, and our future goal is to characterize its
performance analytically.
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