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Abstract—We consider an ultra-dense wireless network with N
channels and M = N devices. Messages with fresh information
are generated at each device according to a random process and
need to be transmitted to an access point. The value of a message
decreases as it ages, so each device searches for an idle channel
to transmit the message as soon as it can. However, each channel
probing is associated with a fixed cost (energy), so a device needs
to adapt its probing rate based on the “age” of the message.
At each device, the design of the optimal probing strategy can
be formulated as an infinite horizon Markov Decision Process
(MDP) where the devices compete with each other to find idle
channels. While it is natural to view the system as a Bayesian
game, it is often intractable to analyze such a system. Thus,
we use the Mean Field Game (MFG) approach to analyze the
system in a large-system regime, where the number of devices
is very large, to understand the structure of the problem and to
find efficient probing strategies. We present an analysis based on
the MFG perspective. We begin by characterizing the space of
valid policies and use this to show the existence of a Mean Field
Nash Equilibrium (MFNE) in a constrained set for any general
increasing cost functions with diminishing rewards. Further we
provide an algorithm for computing the equilibrium for any given
device, and the corresponding age-dependent channel probing
policy.

I. INTRODUCTION

In recent years, the number of smart wireless devices has
exploded. Smart wireless devices are used in smart homes,
self-driving cars, and are an integral part of the Internet of
Things (IoTs). As these devices proliferate, so does the de-
mand on the spectrum. As a result, it becomes an increasingly
important problem to allocate channels (frequency bands) to
these devices in an efficient way. For many applications,
centralized solutions are increasingly infeasible because of the
dynamical nature of the systems (devices may continuously
join/leave the system), resulting in a need for distributed
algorithms that maintain efficiency even as the network scales.

We consider the following scenario. Status messages with
fresh information are generated by the devices and need to be
communicated to a central node or peers or a base station. This
is typically seen in IoT systems including surveillance using
wireless sensor networks and V2V/V2X communications in
autonomous driving. In these systems, old messages become
redundant when a new message is generated and thus may
be dropped. It is also critical to send the messages as soon
as possible. Status messaging plays a vital role in many
other networks including wireless sensor networks during
aggregation of sensor information. Status messaging is likely

to play an important role in control channels between central
access points and devices especially in 5G networks. However,
managing medium access in a system with a very large number
of devices, e.g., providing situational awareness across many
ongoing processes in a factory, posses a significant challenge.

We consider the question of distributed medium access
control (MAC) in this regime of a very large number of sensors
providing situational updates at a base station. Each sensor
generates samples at random times, and only the most recent
sample at the sensor is a candidate for transmission (older
ones are dropped). As this sample ages, its value goes down
correspondingly. The sensor must probe to find an idle channel
to transmit its message, and such probing costs it energy.
Thus, each sensor must trade-off age of the current sample and
probing rate in order to ensure highest value of its situational
update. But since the sensor needs to estimate the probing rates
of the other sensors to determine this value, the complexity of
decision making increases exponentially with the number of
sensors in the system. How are we to analyze such a system?

An attractive means of handling the complexity of this
setting is to consider the mean field regime, wherein the
assumption is that each sensor node uses a state-dependent
sensing policy that only depends on the other sensors’ states
via a belief about the steady state fraction of busy channels
engendered by their actions. Validity of this model depends
on the existence of such a steady state distribution—the mean
field limit—for a given policy employed by all sensors as the
number of sensor nodes becomes asymptotically large.

Assuming that the mean field limit exists for a given class of
policies, one can then ask about the nature of an equilibrium
policy in the game setting, wherein each sensor node is
considered as a strategic agent that attempts to maximize its
own payoff. The strategic model is natural in the case of dif-
ferent sensors measuring diverse parameters (eg., temperature,
location, inventory, etc.), with each sensor wanting to ensure
high-fidelity situational awareness regarding the parameter that
it is responsible for sensing. The equilibrium concept here is a
Mean Field Nash Equilibrium (MFNE), under which the policy
applied by all agents generates a mean field distribution, and
none of the agents has an incentive to deviate from this policy
given its belief about the mean field distribution.
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Main Results

Under our problem formulation, each device competes with
other devices over a common set of channels that they must
share. A device needs to solve an infinite horizon MDP
to maximize its discounted sum of rewards, given its age-
dependent state and the fraction of busy channels γ. We
formulate the problem as a mean field game wherein the device
uses the mean field limit to approximate the fraction of busy
channels. A summary of our main results is as follows:

• Existence of Mean Field Limit (MFL). We begin by
showing that the mean field limit exits, i.e., there is a
class of policies under which the steady state distribution
of the nodes converges to a fixed distribution as the
number of nodes becomes large. In Theorem 1, we show
that the system converges to the mean field limit under
the homogeneous setting where all devices employ the
policy α := {α0, α1....}, where αi is the probing rate
when the age of the message is i, as long as the policy
belongs to a specific class of policies P. Therefore, we
may now assume that each device attempts to solve the
MDP problem to obtain the policy α when the fraction
of busy channels γ in the mean field limit is given.

• Age-based probing policy. We next characterize the
optimal policy in the game setting as a function of the
countably infinite age set. We show that when reward
of transmitting a message with age i, denoted by Ri
converges to zero as i → ∞, we can characterize the
value functions {ui} as a decreasing sequence, i.e., value
in non-increasing in age. We conclude that the optimal
policy {αi} exists and converges in the limit as age i goes
to infinity, i.e., it is well defined for all values of age. We
use these two facts to show that we can approximate the
infinite dimensional vector α = {α0, α1, ...} with some
policy in P . These results show that the mean field model
is consistent with the set of policies we choose.

• Existence of MFNE. Having shown that the mean field
limit exists for some class of policies and by charac-
terizing the set of policies for the system at the mean
field limit, we further prove that a fixed point exists
using Brower’s fixed point theorem. These fixed points
are Mean Field Nash Equilibria (MFNE), with devices
being restricted to using the space of policies P. We
prove this by showing that the map from the space of
policies to the fraction of busy channels and the map from
the fraction of busy channels to the space of policies are
both continuous in Theorem 2.

• Performance Evaluation of the Age-Dependent Dis-
tributed MAC. In the last section, Section VII, we
describe a tractable method to find the MFNE for any
given device. We provide simulation results comparing
our protocol to the MFG-based protocol D-MAC pre-
sented in [1] that optimizes for a throughput-dependent
reward for a varying arrival parameter λ. We compare
the delay experienced by a packet transmitted at steady
state under both protocols under an appropriate choice of

parameters to ensure that the policy is well defined for
both protocols. Our algorithm, entitled Age-Dependent
MAC (AD-MAC) experiences better delays for all values
of λ while providing comparable congestion of channels.

II. RELATED WORK

There have been recent advances in the modeling and in-
corporation of strictly deadline-constrained stream of requests
with long-term drop-rate requirements [2]–[7]. There is also
a stream of work emerging on the Age of Information (AoI),
that seeks to ensure that the samples received at an aggregation
point satisfy constraints on the difference between the current
time and generation time of the last received sample, known
as “age” [8]–[11]. In each of these cases, the authors assume
an exponential rate of arrivals, and service is assumed to be
exponential. Our assumptions on the arrivals and transmission
rate reflect these assumptions. The key differences between
this literature are that in our work, the sensor node is con-
cerned with only the most recent sample (we measure age
and the delay cost at sender), and we consider the mean field
regime with a large number of sensors.

The mean field approach to study an M -particle, N -
dimensional continuous time Markov chain has been inves-
tigated extensively in recent years. The key idea is to use
an Ordinary-Differential-Equation (ODE) to model the system
which can approximates the system in the limit of M → ∞.
In such cases, the fixed point of the ODE can be used to
approximate the steady state of the Markov chain and the fixed
point is called the mean field equilibrium (MFE).

For communication networks, the mean field approach was
first used to model MAC protocols in the seminal work [12]
to establish the steady-state performance for 802.11 MAC.
Later, the performance of 802.11 MAC in the unsaturated
case was characterized using the mean field approach in [13].
However, these existing works consider the case of a single
interference channel or an interference graph, instead of multi-
channel systems considered in this paper.

The mean field approach has been exploited in the game
setting famously in [14] which studied a one-shot game under
which the asymptotic independence property was used to
greatly simplify the decision making. More recent papers
have considered repeated games under a variety of different
applications [15]–[17]. These papers typically use almost sure
convergence of the system to a mean field to simplify the
analysis and identify the mean-filed Nash equilibrium based on
mean field. Propagation of chaos ( [18]–[21]) plays a crucial
role in these cases.

This paper relies on Stein’s method [22]–[25] instead of
propagation of chaos to prove the convergence to mean field
limits. Stein’s method was crucial in [1] to prove the existence
and convergence of the MFNE because it can not only be
used to prove convergence, but also can provide the rate
of convergence, which becomes necessary to show that the
MFNE is an ε-Nash-equilibrium. The problem studied in [1]
focuses on throughput and does not consider the age of the
message. In other words, the reward of transmitting a message
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is a constant and is independent of the freshness of the
message. We greatly generalize the results from [1], providing
a framework to solve a subclass of countable state, density
dependent Mean field games. Technically, instead of solving
a single optimization problem at each stage as in [1], each
device must solve a countably infinite state, infinite horizon
MDP problem under an arbitrary continuous increasing cost
function.

III. SYSTEM MODEL AND MEAN FIELD GAME

System Parameters We consider an N -channel, M -device
ultra dense wireless network. We consider the case when both
M and N tend to infinity and M/N is a constant. Each device
in the network generates status messages following a Poisson
process with rate λ. The age of a message at each device
evolves following an exponential clock that ticks with rate
1/δ. We call this clock the delay clock. When the delay clock
ticks, the age/delay of the message increases from i to i+ 1.
States The states in our Markov chain are indexed from
{−2,−1, 0, 1, ....}. When the device has no message to trans-
mit, we define its state to be −1. The state −2 indicates that
the device is currently transmitting the message. When a new
message arrives, the device goes to state 0 indicating that the
message has no delay (zero age). The state i > 0 indicates
non-zero age. Therefore, the state of the device changes from
i to state i+ 1 with rate 1/δ following the delay clock.

Control Policy Each device maintains a separate exponen-
tial clock with rate αi ∈ (0, A) for some constant A when
in state i. When this clock ticks, the device will probe one
channel at random to see if it is free. If the channel is free, the
device grabs the channel and starts transmitting its message.
In this case, the state of the device moves from i to state −2
which indicates that it is in the transmitting state. If a new
message arrives when the device is in the probing state, the
age of message is reset to 0, which means that the state of
the device transits from state i to state 0. On the other hand
if a new message arrives while the device is transmitting its
message, the message is stored and transmitted immediately
after the current message without giving up the channel. The
state space diagram for this system in Fig 1.

Reward and Cost function A device receives a reward of
Ri for transmitting a message with age i (i.e. at state i). It
is important for devices to transmit their messages with fresh
information, so the reward Ri decreases in i and decreases to 0
as i increases. Further, we assume that for messages that arrive
while the device is in state −2, the reward for transmitting
each of these messages is a constant r−2. Additionally, with
probing rate α, the device needs to pay a cost of ĉ(α), which
is a strictly increasing function with ĉ(0) = 0. Consider the
corresponding jump process for the CTMC described above,
then we use tj to denote the time between the jth tick and the
j + 1st tick of the overall exponential clock. Note that with
probing rate α, the expected transition time is 1

α+λ+ 1
δ

.

Bellman Equation Given the above model, each device

maximizes the following discounted infinite-horizon problem:

ux =
1

A+ λ+ 1/δ
×

max
α∈[0,A]

(
α+ λ+

1

δ

)
E

[ ∞∑
j=0

βj
(
1X(j+1)=−2RX(j)

− 1{X(j+1)=X(j)
⋃
X(j+1)=−2}ĉ(αX(j))

)∣∣∣∣X(0) = x

]
,

(1)

where β is the discount factor, X(0) is the initial state of
the CTMC, and X(j) is the state of the CTMC after the
jth transition. We can view this Bellman equation as the
normalized time averaged reward that each device obtains
when initialized with state x with a constant (A + λ + 1/δ).
If one imagines each device to maintain a super clock used to
simulate all the events, then this super clock will need to have
a tick rate of (A+λ+1/δ). One can therefore view 1

A+λ+1/δ

as a normalized unit of time. The time spent in state X(j)
before the next event is given by 1

α+λ+1/δ with probing clock
ticks with rate α.

-1

δ δ

1

i

0 1 i

-2

Figure 1. State space model for the Markov chain

Note that, in order for a given device to find the optimal
policy it must take into account the fraction of busy channels,
γ(t). Which itself is a density dependent random process that
is determined by the states of all the devices. In other words,
this fraction of busy channels γ(t) couples all M devices, and
makes it intractable to solve the steady-state of the system and
the optimal policy based on the Bellman equation.

A. Mean Field Game

To overcome this difficulty, we approach the problem from
a mean field game perspective. We assume the time-scale
separation (a similar assumption used [1]) such that the devices
adapt their policies in a slower time-scale than the convergence
of the system to its steady-state with a fixed policy.

Under this time-scale separation, with a fixed policy α for
all devices, the steady-state of the stochastic system converges
to the equilibrium point of a mean field model, called the
mean field-limit, to be defined in Section IV as the system
size increases. In particular, the fraction of busy channels γ(t)
converges to a point mass γ, i.e. a constant. Let us denote
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this mapping under this mean field limit when the policy α is
given by T1 such that

T1 : α→ γ.

This occurs at a fast time-scale.
Now, for the fixed γ under the previous policy, each device
solves the Bellman equation to determine a new policy for the
given γ. Thus, for a fixed γ, each device finds its policy based
on the Bellman equation with a constant γ (see details on the
structure of the policy in Section V). We denote this mapping
by T2 such that

T2 : γ → α.

We now define an Mean Field-Nash-Equilibrium (MFNE) as
a policy, α∗, such that

α∗ = T2(T1(α∗)),

i.e., a fixed point of mapping T2(T1(·)). In order to show the
existence of such a fixed point, we will need to show that the
composition of maps T1 and T2 is a continuous function. We
have already characterized T1, and in the following sections,
we will characterize T2 to show that both T1 and T2 are
continuous. Hence, the composition of the two maps is also
continuous. The existence of a fixed point follows from
Brouwer’s fixed point theorem. Brouwer’s fixed point theorem
requires the map from some set Ω→ Ω to be continuous and
the set Ω must be closed and compact. The last condition can
be checked easily, we will prove continuity in Section VI after
proving the convergence to the mean field limit in Section IV
and analyzing the policy structure in Section V.

IV. MEAN FIELD LIMIT UNDER A GIVEN POLICY: THE
MAPPING T1

This section focuses on the convergence of the stochastic
system to its mean field limit when the policy α := {α0, α1...}
is chosen by each device is fixed and such that there exists a
finite K such that αk = 0 for all k > K. Let PK denote the set
of all such policies. We will present the necessary assumptions
in Section V so that this condition will be satisfied. Let Qj(∞)
denote the number of devices in state j at the steady state,
so Qj(∞)/M is the fraction of devices in state j. We further
denote SK to be the fraction of devices who are in state j such
that j ≥ K, i.e., the fraction of devices with delay greater than
or equal to K.

In the limit as N and M go to infinity, we will show that
the fraction of devices in state Qj(∞)/M j = 1, · · · ,K − 1
and SK converge weakly to πj where πj is the equilibrium

point of the mean field model below:
dq−1
dt

=− λq−1 +
1

1 + λ
q−2

dq−2
dt

=
∞∑
i=0

(1− γ)αiqi −
1

1 + λ
q−2

dq0
dt

=λ
(
1− q0 − q−2

)
− q0

1

δ
− α0(1− γ)q0

dqj
dt

=
(
qj−1 − qj

)1

δ
− αj(1− γ)qj − λqj

j = 1, · · · ,K − 1

dsK
dt

=qK−1(t)
1

δ
− λsK(t)

(2)

The proof is an application of Theorem 1 in [22]. The
theorem states five conditions that are sufficient to guarantee
the weak convergence to the fixed point of the mean field
model. We next verify these conditions under our model:
• Bounded transition rate: This condition can easily be

verified from the system model. At any point in time,
the rate of transition from any state to any other state is
bounded above by A+ λ+ 1/δ.

• Bounded state transition condition: Since our model
is a collection of M CTMCs whose transition rates are
determined by exponential clocks, at most one transition
can occur at a time. Therefore, the state transitions are
bounded.

• Perfect Mean Field Model: Using the system model it
can be checked that the equations (2) are derived from
the detailed balance equations.

• Partial Derivative condition: It can be checked that
the partial derivatives for the system (2) exist and are
Lipschitz.

• Stability conditions: Let {πi} be the equilibrium point
for the dynamical system given by (2). Then we use {εi}
to denote the difference, πi − qi. One can check that
the system is globally exponentially stable by using the
following Lyapunov function:

V :=
K−1∑
i=0

|εi|+ |εK |+ |ε−1|+ |ε−2|

This proof is highly technical but space consuming and
does not add much to the discussion of the paper itself,
we thus have chosen to omit it due to space constraints.

The following theorem summarizes the result that the
Markovian system,

(
Q1(∞)
M , · · · , QK−1(∞)

M , SK(∞)
)
, con-

verges weakly to the fixed point of the dynamical system
above,

Theorem 1. If every device follows a fixed policy α defined in
the beginning of this section, then the stationary distribution of
the system converges to the unique equilibrium point of system
(2). This defines the mapping T1 : α→ γ.

V. CHARACTERIZING THE POLICY

If γ denotes the fraction of busy channels, which (under
the mean field model) remains to be a constant and is known
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to a device, then the Bellman equation (1) for the discounted
problem becomes

ui = max
α∈[0,A]

α+ λ+ 1/δ

A+ λ+ 1/δ

(
(1− γ)α

1/δ + λ+ α

(
Ri + βu−2

)
(3)

− ĉ(α)
α

α+ λ+ 1/δ
+ β

γα

1/δ + λ+ α
ui+

β
( 1/δ

1/δ + λ+ α
ui+1

)
+ β

( λ

1/δ + λ+ α
u0
))
.

We will henceforth refer to ĉ(α) α
α+λ+1/δ as c(α), which

obeys all the properties of ĉ(α). Note that conditioned on a
state transition occurs when the device is in state i, we have
the following possibilities:
• With probability (1−γ)α

1/δ+λ+α , the probing clock ticks and
the device finds an idle channel. In this case, the device
pays a cost c(α) and receives a reward Ri. The device
transits to state 2.

• With probability γα
1/δ+λ+α , the probing clock ticks and

the device fails to find an idle channel. In this case, the
device pays a cost c(α). The device remains in state i.

• With probability δ
1/δ+λ+α , the age of the message in-

creases by one. In this case, the device moves to state
i+ 1.

• With probability λ
1/δ+λ+α , a new message arrives and

replace the current message in waiting. In this case, the
device moves to state 0.

Note that the term ui appears at both sides of the Bellman
equation, by combining the two terms, we have (this is rela-
tively easy to verify and is omitted due to space constraints):

ui = max
α∈[0,A]

1

1/δ + λ+A− γβα
{

(1− γ)α
(
Ri + βu−2

)
−c(α) (α+ λ+ 1/δ) +

β

δ
ui+1 + βλu0

}
with the special cases

u−1 = β
λ

A+ λ+ 1/δ
u0

and

u−2 =
1 + λ

A+ λ+ 1/δ

(
r−2 + β

1

1 + λ
u−1 + β

λ

1 + λ
u−2

)
.

Subtracting both sides of the previous equation by
β λ

1+λ+Au−2, multiplying throughout by 1+λ
1+λ(1−β) and sub-

stituting u−1 in terms of u0, we obtain

u−2 = r−2
1 + λ

1/δ + λ(1− β) +A
+β2u0

λ

1/δ + λ(1− β) +A
.

Now define

r0 := r−2
1 + λ

1/δ + λ(1− β) +A

and

η := β
λ

1/δ + λ(1− β) +A
,

which gives us the following expression for u−2,

u−2 = r0 + ηβu0

Note that we have essentially treated the fraction of busy
channels as a constant in studying the Bellman equation
above. In other words, a device optimizes its probing strategy
assuming γ is fixed. This assumption is justified so long as
the system converges to a point mass given by the mean field
limit, i.e, satisfies the conditions of Theorem (1).

Before we proceed, we make the following remarks that
will be helpful in later sections.
Remark 1.

1) ui is bounded below by 0. The lower bound is achieved
when we choose α = {0, 0, ...}, i.e. to do nothing at all
no matter the delay, reward or cost.

2) ui is bounded above by R
1−β with R = R0 + r−2.

Now, assume we begin by initializing all the devices with
the same policy in PK . From the previous section, it is clear
that the fraction of busy channels will converge weakly to
some fixed γ. In the rest of the section, we will show that the
sequence of value functions {ui} is decreasing and so is well
defined for all i ∈ {−2,−1, 0, 1, ...}. Since both {ui} and
{αi} are infinite sequences, we need to establish that {αi}
is well defined in the limit as i goes to infinity (it is not
immediate that the map from {ui} to {αi} is sequentially
continuous). We use the convergence of {ui} to show that the
sequence of {αi} converge to some α∞. This is followed by
bounding the difference in value functions between an optimal
policy (which need not lie in PK) and a policy that lies in PK
for sufficiently large K. This justifies the mean field model
used in the previous section and our proof of convergence.

Proposition 1. If {Ri} is a decreasing sequence in i, then
sequence {ui} is a decreasing sequence in i. Consequently,
the sequence converges to some u∞ in the limit as i→∞.

Proof: Let the optimal policy for a device in state i be α∗i
for every i in {0, 1, .....} and denote by u∗i the value functions
of the optimal policy. We define function ui(αi) as

ui(αi) =
αi(1− γ)

1/δ + λ+A− αiγβ
(
Ri + βu∗−2

)
− c(αi)

1/δ + λ+ αi
1/δ + λ+A− αiγβ

+ β
( 1/δ

1/δ + λ+A− αiγβ
u∗i+1

)
+ β

( λ

1/δ + λ+A− αiγβ
u∗0
)

.

From this definition, we have

ui(α
∗
i ) = u∗i = max

α
ui(α),
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which implies that

u∗i ≥ ui(α∗i+1)

=
α∗i+1(1− γ)

1/δ + λ+ α∗i+1(1− γβ)

(
Ri + βu∗−2

)
− c(α∗i+1)

1/δ + λ+ α∗i+1

1/δ + λ+ α∗i+1(1− γβ)

+ β
( 1/δ

1/δ + λ+ α∗i+1(1− γβ)
u∗i+1

)
+ β

( λ

1/δ + λ+ α∗i+1(1− γβ)
u∗0
)

.

Note that we add the superscript ∗ to value function ui
to differentiate the notation from function ui(α). u∗i in this
proof is the same as ui defined in (3) and the statement of the
proposition.

Note there is a similarity between ui(α
∗
i+1) and u∗i+1.

Namely,

u∗i ≥ ui(α∗i+1)

= u∗i+1 + β
( 1/δ

1/δ + λ+ α∗i+1(1− γβ)

)
(u∗i+1 − u∗i+2)

.

Rearranging the terms, we get

u∗i+1 − u∗i

≤β
(

1/δ

1/δ + λ+ α∗i+1(1− γβ)

)
(u∗i+2 − u∗i+1)

≤β
( 1/δ

1/δ + λ

)
(u∗i+2 − u∗i+1)

for all i in {0, 1, ....}. This yields(
β
( 1/δ

1/δ + λ

))J
(u∗i+J+1 − u∗i+J+2) ≥ u∗i+1 − u∗i .

Since the LHS of the inequality above converges to zero as
J →∞, we have u∗i ≥ u∗i+1. So, u∗i is a decreasing sequence
which is bounded above and below. Therefore, u∗i converges
to a fixed value. Let u∗∞ := limi→∞ ui. Then by definition,
u∗i converges to u∗∞.

Next, we state that α∗i is a Cauchy sequence that converges
to some α∞.

Lemma 1. If, Ri is a decreasing sequence in i, then the
probing rate under the optimal policy, denoted by α∗i , is also
a decreasing sequence which converges to some α∗∞.

The proof follows from Proposition 1. Note that,

u∗i − ui+1(α∗i ) ≥ u∗i − u∗i+1 ≥ ui(α∗i+1)− u∗i+1

This inequality can be used to show α∗i is a monotonic
sequence in i. The rest of the proof is omitted due to space
constraints.
Remark 2.

1) Both results generalize to an M -player game where the
reward and costs are different for different players.

2) It is worth noting that Lemma (1) tells us that a device
should probe most aggressively early on and look to

drop the packet as the delay increases. Effectively, this
observation seems to suggest at steady state the devices
will behave such that the packets with the least delay
will be more likely to be transmitted before packets with
higher delay value.

The next result bounds the difference between a device
that uses the optimal policy α∗ = {α∗0, α∗1, ...α∗K , α∗K+1, ...}
and the truncated version α(K) := {α∗0, α∗1, ...α∗K , 0, 0, .....},
assuming that all other devices choose the same fixed policy
α(K). We show that when γ is fixed, given any ε > 0, a
device can chooses α(K) for a sufficiently large K so that
the difference between the two policies is at most ε, where K
is independent of the number of devices. Therefore, a device
may effectively choose a finite dimensional policy if it wishes
to myopically optimize its utility function. This justifies our
use of a finite dimensional policy while considering the mean
field model to approximate the system.

Proposition 2. Let α∗ and α(K) be as defined above. Given
any ε > 0, there exists constant β0 such that for all β < β0
there exists K large enough so that

|EX{u(X,α∗)} − EX̃{u(X̃, αK)}| < ε,

where the expectation is taken over the stationary distribution
of the device for fixed γ.

The proof of this proposition can be found in Appendix A.
We have now characterized the mapping from γ to α. Given
a fixed γ and a parameter K that is common among all other
devices, a device may now use value iteration while fixing
αk = 0 for all k > K to arrive at an approximate policy,
which is the mapping T2.

VI. EXISTENCE OF MFNE
Based on the results in the previous sections, we will now

show that there exists an MFNE using Brouwer’s fixed point
theorem. We show that both mappings T1 and T2 are Lipschitz.
Therefore, there exists at least one fixed point (MFNE). This
is stated in the theorem below.

Theorem 2. There exists a constant β0 such that for any β <
β0, a fixed point for the composite map T2 ◦ T1, denoted by
T , exists.

Proof: We will begin by showing that T1 is Lipschitz.
This turns out to be significantly easier than showing that T2
is Lipschitz.
Claim: The map T1 is Lipschitz in α.

Proof: To characterize T1 as follows, given a policy, {xi}
the detail balance equations yield (derived from Fig 1) give :

π0 =
λ

λ+ 1/δ + x0(1− γ)

πj = πj−1
1/δ

λ+ 1/δ + xj(1− γ)

for j > 0.

π−1 =
1

λ(1 + λ)
π−2
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This gives us the following equation for the fraction of time
spent in state −2 by a device,

1 = π−2(1 +
1

λ(1 + λ)
) + (1− π−2)

λ

1/δ + λ+ x0(1− γ)

×
∞∑
i=0

Πi
j=1

1/δ

1/δ + λ+ xj(1− γ)
.

.
Define,

κ := 1 +
1

λ(1 + λ)
(4)

and

θ(x) :=
λ

1/δ + λ+ x0(1− γ)

∞∑
i=0

Πi
j=1

1/δ

1/δ + λ+ xj(1− γ)

(5)
the fraction of time a device spends in state −2 is given by :

π−2(x) =
1− θ(x)

κ− θ(x)
(6)

. Now, it can be checked that this function is differentiable
and since, ∣∣∣∣∂π−2∂αi

∣∣∣∣ =

∣∣∣∣κ+ 1− 2θ(α)

(κ− θ(α))2

∣∣∣∣∣∣∣∣∂θ(α)

∂αi

∣∣∣∣.
we need only check that ‖∂θ(α)∂α ‖1 is finite to see that the map
T1 is in fact Lipschitz.

Checking that T2 is continuous turns out to be more
complicated. αi depends on the entire sequence of ui and
ui is both an implicit and explicit function of γ. Given that
α ∈ PK , we must first verify that {ui} is Lipschitz in γ with
Lipschitz constant denoted by C1.
Claim: If β < β0, then ui is Lipschitz in γ for all i.
We provide a sketch of the proof for this claim due to space
constraints.

Proof: Let u∗i (γ) be the optimal value function for
fraction of busy channels γ. Then we can define u(αi, γ)i
as we did in Proposition 1 for policy αi. Now, if α∗i (γ1) and
α∗i (γ2) are the optimal values for γ1 and γ2 respectively, then
let,

4i,γ1,γ2 := |ui(α∗i (γ1), γ1)− ui(α∗i (γ2), γ2)|

clearly,

4i,γ1,γ2 ≤ |ui(α∗i (γ1), γ1)− ui(α∗i (γ1), γ2)|

If φ0 = 1
A+λ+1/δ−αγ1β

(
(1 − γ1)αβ2η + βλ

)
and let φ1 =

β1/δ
A+λ+1/δ−αγ1β one can use the inequality above to check that,

4i,γ1,γ2 ≤ C0|γ1 − γ2|+ φ040,γ1,γ2 + φ1C1|γ1 − γ2|
+φ0φ140,γ1,γ2 + φ214i+2,γ1,γ2

One can expand the inequality for all i to bound 4i,γ1,γ2 . In
particular this bound holds for 40,γ1,γ2 :

40,γ1,γ2 ≤
C0

1− φ1
|γ1 − γ2|+

φ0
1− φ1

40,γ1,γ2

it follows that,

40,γ1,γ2 ≤
C0

1− φ0 − φ1
|γ1 − γ2|

Note that for β < β0, φ0 + φ1 < 1 for all γ1 and γ2. Thus,
for any γ1 and γ2, 40,γ1,γ2

γ2−γ1 is bounded. The rest of the proof
then follows naturally. We can denote the Lipschitz constant
by some C1

If u∗i (γ1) and u∗i (γ2) are the optimal value functions for γ1
and γ2 respectively, and if |γ1− γ2| < ε then it can be shown
that

|ui(α∗i (γ1), γ1)− ui(α∗i (γ2), γ2)| < C1ε

by using first order Taylor expansion of ui(γ2) about γ1 and
the triangle inequality,∣∣∣∣[ 1

A+ λ+ 1/δ − α∗i (γ1)βγ1
− 1

A+ λ+ 1/δ − α∗i (γ2)βγ2

]
×(

α∗i (γ1)(1− γ1)(Ri + βu∗−2(γ1))− c(α∗i (γ1))(α∗i (γ1)+

λ+ 1/δ) + βλu∗0 + β1/δu∗i+1

)
+

1

A+ λ+ 1/δ − α∗i (γ1)βγ1
×(

(α∗i (γ2)− α∗i (γ1))(1− γ2)(Ri + βu∗−2(γ2)+

c(α∗i (γ1))(α∗i (γ1) + λ+ 1/δ)− c(α∗i (γ2))(α∗i (γ2) + λ+ 1/δ)

)∣∣∣∣
< (C1 + C2)ε

for appropriate constants C1 and C2. It follows that

supi |α∗i (γ1) − α∗i (γ2)| γ(1)→γ(2)

−−−−−−→ 0. From Proposition (2),
there are only finitely many non zero αi, this means that∑∞
i=0 |α∗i (γ1) − α∗i (γ2)| ≤ K supi |α∗i (γ1) − α∗i (γ2)| which

converges to zero as γ(1) converges to γ(2). Thus, α is
continuous in γ under the L1 norm. Therefore, the map T2
is continuous in γ.

Therefore, the map T : α→ α is also continuous in γ. The
policy space, PK is clearly convex. Since the domain of γ
is compact and T2 is continuous, so the range of T2 must be
compact. Therefore, by Brouwer’s fixed point theorem, there
exists a fixed value α∗∗ such that

T (α∗∗) = α∗∗.

Having demonstrated that there exists a fixed point, our next
theorem shows that the fixed point that is obtained using the
map T2◦T1 is in fact an ε-Nash Equilibrium where ε converges
to 0 as M and K tend to infinity.

Theorem 3. The fixed point given by Theorem 2 is an ε-Nash
equilibrium when the set of available policies are from PK ,
with ε→ 0 as M tends to infinity.

Proof: The main idea of the proof follows from the fact if
one player chooses to deviate by choosing any policy in PK ,
then the mean field, γ changes by at most ε where ε goes
to zero as M tends to infinity. This follows from a simple
extension of the proof of ε-Nash Equilibrium in [1]. The proof
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relies on Stein’s method for finite state Markov chains.
Now, since the mean field γ only deviates by a small amount
and T2 : γ → α is continuous, the best response policy in PK
will lie close to the mean field policy.

Here we would like to make few comments.

Remark 3.

1) Theorem 3 does not rely on asymptotic independence
of the devices in our system. Therefore, it is nontrivial
to show that the mean field remains unchanged when a
finite set of players deviate. In fact under the typical
law of large numbers would suggest ε = O(

√
M), but

in our case ε is O(M
1
3 ).

2) Since PK is ε close to an optimal policy for fixed γ,
one might be tempted to state that the result of Theorem
3 holds for any policy instead of policies in PK . This
is not straightforward since if a single node deviates
with an arbitrary policy, the corresponding fraction of
busy channels need not deviate by ε. Therefore, the best
response need not necessarily be the MFNE policy.

3) While our theorems do not limit the number of fixed
points, we strongly believe that there is a unique fixed
point, primarily because we believe that the function T
is decreasing in γ. Since our fixed points are the set
of all γ such that γ = T (γ), this would ensure that the
fixed point is unique. This conjecture of a unique MFNE
is a topic to be investigated later.

VII. ALGORITHM DESIGN

The previous section proved that there exists at least one
fixed point and the fixed point obtained is a local ε Nash
Equilibrium. However, in the absence of contraction maps
it is difficult to imagine how the device may achieve these
equilibria. Here, we propose a scheme by which a device may
achieve this equilibria.
We first note that while α can in general be a complicated
variable even when it belongs to PK , the variable γ is a one
dimensional real variable restricted to a closed bounded set,
(0, 1). For a fixed γ, a device may use policy iteration to find
a policy α in PK that is ε close to the optimal policy and for
this policy α, explicitly compute T2(α). This gives the device
an estimated value of T (γ) for a fixed value of γ. The device
can now repeat this process for n such values of γ, and use this
to estimate the function T computationally. Now, the device
can find fixed points by solving γ = T (γ). The device now
picks the fixed point with the highest expected utility with ties
broken based on lower fraction of busy channels.

Algorithm 1 Algorithm to find fixed points
input : Rewards (Rj)j , c(.), β, r0, η, λ, δ
initialization : pick γi uniformly from the interval (0, 1)
while i < n do
α ← policy iteration(γ, (Rj)j , c(.), β, r0,
η, δ, λ)
T (i) ← 1−θ(α)

κ−θ(α)
i ← i + 1

end while
interpolate T ;
find γ such that γ = T (γ)
output : γ

Ostensibly, one can view this algorithm as the device
playing the game with itself in its own head to estimate the
MFNE. Under these conditions, the MFNE assumptions of
infinite players are justified and consistent thus, leading to
local Nash equilibria for the devices. Since the devices are
homogeneous, they will pick the same policies achieving the
computed γ. An example implementation can be found in
Figure 2.

VIII. SIMULATION RESULTS

We present simulation results to demonstrate the perfor-
mance of the proposed algorithm. We consider the following
setting: M = N , i.e. the number of channels is equal to the
number of devices, K = 25, Ri = 10× 2−i, β = 0.1, δ = 1,
A = 5, and c(α) = 10α2. We evaluate the delay experienced
per packet when the system reaches MFNE and compare it to
the throughput-oriented MAC protocol proposed in [1]. The
protocols are:
• AD-MAC : This is our age-dependent distributed MAC.

We varied the arrival rate λ from 0 to 2.
• D-MAC : This is the distributed MAC protocol proposed

in [1]. We chose c to be 10 and evaluated the delay over
the same range of λ. Our choices of c, λ in this case
ensure that the MFNE exists as required in [1].

The per packet delays are shown in Figure 3, where we
can observe that AD-MAC has significant smaller per packet
delay when the arrival rate is low, and the delay of AD-MAC
is always smaller than that of D-MAC in our simulations.
In addition to the delay, we also compared the fraction of
occupied channels, which reflects the system throughput. As
we can observe from Figure 4, AD-MAC achieves higher
throughput when λ ≤ 1.2 (with smaller per packet delay as
well). For λ > 1.2, the throughput is lower than that under
D-MAC. This loss is to achieve lower per-packet delay.

IX. CONCLUSION

This paper studied a multichannel ultra-dense wireless
network, and proposed an age-dependent distributed MAC
where each device varies its idle-channel probing rate based
on the age of the message it wants to transmit. The system
has been analyzed using a mean field game framework. We
characterized the policies that would be obtained through
value iteration, and proved that there exist finite dimensional
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Figure 2. An example implementation with K =
25, Ri = 2−i, β = 0.1, δ = 1, λ = 0.5 and
c(α) = 0.3α2

Figure 3. A comparison of the delays experienced
per packet delivered over some time duration.

Figure 4. Comparing γ as a function of λ for the
two protocols.

approximations with an additional condition on the discount
factor. We provided an analysis of this protocol including the
existence of fixed points in the mean field game formulation,
which are ε-Nash equilibria in the original systems, with
general convex cost functions and age-dependent rewards.
Finally, we presented an algorithmic implementation of such a
policy in the finite device setting for achieving the fixed points,
and simulation results that showed the proposed algorithm
achieved smaller per packet delay than earlier approaches.
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APPENDIX A
POLICY CHARACTERIZATION

Proof of Proposition 2

Fix ε̃ > 0. Let u∗i = ui(α
∗) as in the notation above and

let ũi = ui(α
K). We will begin by showing u∗0 − ũ0 < Cuε̃

for some constant Cu for sufficiently large K when β < β0.

u∗0 − ũ0 =

(
βλ

λ+ 1/δ + α0(1− γβ)
(u∗0 − ũ0)

+ η
α0(1− γ)

λ+ 1/δ + α0(1− γβ)
(u∗0 − ũ0)

)
+

β1/δ

λ+ 1/δ + α0(1− γβ)
(u∗1 − ũ∗1)

< β

(
λ

λ+ 1/δ
+ η

)
(u∗0 − ũ−1)

+
βλ

λ+ 1/δ

(
β

(
λ

λ+ 1/δ
+ η

)
(u∗0 − ũ0)

+
βλ

λ+ 1/δ
(u∗2 − ũ2)

)
Expanding u∗j − ũj for j > 0 to j < K we get:

u∗0 − ũ0 <β
(

λ

λ+ 1/δ
+ η

)
(u∗0 − ũ0)

K∑
i=0

( β1/δ

λ+ 1/δ

)i
+
( β1/δ

λ+ 1/δ

)K
(u∗K+1 − ũK)

For sufficiently large K, we can ensure that:

u∗0 − ũ0 <β
( λ

λ+ 1/δ
+ η
) 1

1− β 1/δ
1/δ+λ

(u∗0 − ũ0) + ε̃

<β

(
1 + η

λ+ 1/δ

λ

)
(u∗0 − ũ0) + ε̃

If we fix β0 to be such that β0
(
1 + η λ+1/δ

λ

)
< 1, then

(u∗0 − ũ0) < Cuε̃. We can use the same reasoning to show
that u∗i − ũi < Cuε̃ for 0 < i < K/2. We have shown that
for sufficiently large K we can ensure that |u∗i − ũi| < Cuε̃
for 0 ≤ i < K/2.

For any policy x := {x0, x1, x−2.....} with fixed γ,
recall the detail balance equation from Claim (1), Theorem
2, the fraction of time for a device spent in state −2 is,

π−2(x) =
1− θ(x)

κ− θ(x)

with κ and θ(x) given by equation (4) and (5), respectively.
Clearly, there exists K large enough so that |π−2(α) −
π−2(α(K))| < ε. Since πi converges geometrically to zero
we can ensure that
• Kε→ 0 as K tends to infinity.
•
∑∞
i=K/2 πi < ε for both α∗ and αK .

• |πi(α∗)− πi(αK)| < ε for all 0 < i < K/2.
• As above |u∗i − ũi| < ε for all 0 < i < K/2.

EX{u(X,α∗)} − EX̃{u(X̃, α(K))}

= |
K/2∑
i=1

(
πi(α)u∗i − πi(αK)ũi

)
+ π0(α∗)u∗0 − π0(αK)ũ0 + π−2(α∗)u−2 − π−2(αK)ũ−2

+
∞∑

i=K/2+1

(
πi(α

∗)u∗i − πi(αK)ũi
)
|

Bounding u∗i (x) by R
1−β , replacing πi(α∗)u∗i −πi(αK)ũi with

πi(α
K)(u∗i − ũi) + u∗i (πi(α

∗) − πi(αK)), using the triangle
inequality, for any ε̂ > 0,

EX{u(X,α∗)} − EX̃{u(X̃, α(K))} < ε̂
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