
SciChain: Blockchain-enabled Lightweight and
Efficient Data Provenance for Reproducible

Scientific Computing

Abdullah Al-Mamun�, Feng Yan†, and Dongfang Zhao‡
University of Nevada, Reno

�aalmamun@nevada.unr.edu, {†fyan,‡dzhao}@unr.edu

Abstract—The state-of-the-art for auditing and reproducing
scientific applications on high-performance computing (HPC)
systems is through a data provenance subsystem. While recent
advances in data provenance lie in reducing the performance
overhead and improving the user’s query flexibility, the fidelity
of data provenance is often overlooked: there is no such way to
ensure that the provenance data itself has not been fabricated
or falsified. This paper advocates leveraging blockchains to
deliver immutable and autonomous data provenance services
such that scientific discoveries are trustworthy. The challenges
for adopting blockchains to HPC include designing a new
blockchain architecture compatible with the HPC platforms and,
more importantly, a set of new consensus protocols for scientific
applications atop blockchains. To this end, we have designed the
proof-of-scalable-traceability (POST) protocol and implemented
it in a blockchain prototype, namely SciChain, the very first
practical blockchain system for provenance services on HPC. We
evaluated SciChain by comparing it with multiple state-of-the-art
systems; experimental results showed that SciChain guaranteed
trustworthy data provenance while incurring orders of magnitude
lower overhead than existing solutions.

Index Terms—Blockchain, provenance, fault tolerance, HPC.

I. INTRODUCTION

A. Motivation

A fundamental means to reproduce computational scientific

results is through data provenance, which tracks the entire

lifespan of the data during the experiments and simulation at

various phases such as data creation, data changes, and data

archival. Data provenance plays a critical role in guaranteeing

the validity of scientific discoveries and research results, as

data fabrication and falsification could happen to meet research

objectives or personal interests, or both. For instance, the

National Cancer Institute found 0.25% of trial data are fraud-

ulent in the year of 2015 [1], [2]. In earth sciences, scientists

emphasized the importance of maintaining data provenance in

achieving the transparency of scientific discoveries [3].

Conventional provenance systems can be categorized into

two types: centralized provenance systems and distributed

provenance systems. One popular centralized provenance sys-

tem is SPADE [4], where the provenance (from various data

sources) is collected and managed by a centralized relational

database management systems (RDBMS). Domain-specific

systems based on such centralized design paradigms are

also available in biomedical engineering [5], computational

chemistry [6], among others. Although having been reasonably

adopted by various disciplines, the centralized provenance sys-

tems are being increasingly criticized due to the exponentially-

grown data: the centralized provenance system becomes a

performance bottleneck and a single point of failure, and

to this end, we witness the inception of various distributed

approaches toward scalable provenance [7], [8]. Indeed, those

distributed provenance systems, mostly built upon distributed

file systems as opposed to centralized databases, eliminated

the performance bottleneck and proved to deliver orders of

magnitude higher performance than centralized approaches.

As a double-edged sword, however, distributed provenance

systems raise a new concern [9] on the provenance itself: while
the provenance is supposed to audit the execution of the appli-
cation, who then should audit the provenance? Do we need to

build the provenance of provenance? So the recursion goes on

and on, indefinitely. Note that this concern was not that critical

in a centralized approach as long as we can, which is the case,

apply robust reliability mechanisms to the centralized node.

However, it turns to be an extremely challenging problem

for all the participating nodes in a (large-scale) distributed

system: if any single node of the entire deployment is com-

promised, the provenance as a whole becomes invalid. To this

end, distributed provenance systems were recently proposed,

inspired by blockchains. These systems (e.g., ProvChain [10],

SmartProvenance [11], LineageChain [12]) are also called

blockchain-based provenance systems that are both tamper-

evident and autonomous, thus guarantee trustworthiness of the

provenance data. They share the same key idea: instead of
storing the data on a single node or splitting the data into
n exclusively distinct chunks on n nodes, let us replicate the
data and maintain a hashed linkedlist for each copy of the
data. The replication guarantees the provenance is tolerant to

a certain degree of fault (e.g., �n−1
3 � in a Byzantine system,

where the fault is arbitrary, including malicious activities and

even possible coalition among participants), and the hashed
linkedlist guarantees that the provenance data cannot be tam-

pered with without being noticed by a simple hash verification.

In the context of scientific applications and high-

performance computing (HPC), however, we encounter unique

challenges in employing blockchain-based provenance ser-

vices. There is a series of concerns on resource utilization: the

20
21

 IE
EE

 3
7t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(I

C
D

E)
 |

97
8-

1-
72

81
-9

18
4-

3/
20

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

D
E5

13
99

.2
02

1.
00

16
6

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 28,2021 at 06:44:27 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Conventional blockchain architecture on shared-nothing platforms.

space efficiency is low, the network bandwidth consumption

is high, the CPU cycles are “wasted” for meaningless mining,

to name a few. Besides, existing blockchain-based provenance

systems are built in such a way that the underlying blockchain

infrastructure is a black box, and the provenance service

works as a higher-level application by calling the programming

interfaces provided by the blockchain infrastructure such as

Hyperledger Fabric [13] and Ethereum [14]. In the best case,

the provenance service might miss optimization and cus-

tomization opportunities because it cannot modify the lower

blockchain layer; to make it worse, the applicability of those

blockchain-based provenance systems is constrained by the un-

derlying blockchain infrastructure, which is not optimized for,

or not applicable to, HPC platforms. For instance, (i) current

blockchain-based provenance system becomes useless when

compute nodes have no local disks, (ii) inappropriate consen-

sus protocols with either compute-intensive or communication-

intensive design, and (iii) incompatibility with multi-tiered

storage architecture such as burst buffers, I/O nodes, remote

parallel file systems. Figure 1 shows the system architecture

of conventional blockchains deployed to a shared-nothing

cluster. Regardless of private (Hyperledger [13]) or public

(Ethereum [14]), all existing blockchain systems assume that

the underlying computer infrastructure is shared-nothing: the

memory subsystems and I/O subsystems are all independent

of the participant nodes who are often connected through

commodity networking.

In summary, a highly desired provenance system for sci-

entific applications should be crafted with a balance between

scalability, reliability, and applicability. Unfortunately, existing

provenance systems failed to meet the above requirements

from scientific computing and HPC communities. Of note, a

few recent works indeed proposed a blockchain-like prove-

nance system deployed to HPC systems. These works are

either a preliminary study [15] or solely depends on conven-

tional compute-intensive proof-of-work (PoW) protocol [16]

which is hardly applicable to real-world settings for the HPC

architecture. What is desired is a protocol that is particularly

crafted to adopting blockchain-backed provenance in HPC

systems and overcomes the resource utilization challenges

from various perspectives, such as replacing the conventional

compute-intensive consensus by more cost-effective ones, en-

forcing memory constraints on compute nodes, and limiting

Fig. 2. Proposed HPC blockchain architecture with shared storage.

inter-node communications to reduce network overhead.

B. Proposed Approach

This paper proposes a new distributed approach to manage

the data provenance of scientific applications deployed to

HPC systems. Rather than only taking an existing blockchain

system as a block box, we hack into blockchain internals

to improve the applicability and performance of provenance

services built upon blockchains. Specifically, as shown in

Figure 2, we propose a new blockchain architecture supporting

multi-tier storage and then design new consensus protocols

aiming to optimize the distributed provenance services in an

HPC environment. The proposed architecture applies to any

resource-constrained environment, where the nodes need to

operate with limited memory and require no local disks (i.e.,

lightweight replication support) but supported by a distributed

remote-storage that persists the blockchain. Besides, the se-

cured lightweight privacy mechanism applied in the newly

proposed consensus protocol (i.e., HPC compatible lightweight

custom protocol) allows the proposed system to be able to

work in the blockchain-based HPC ecosystem.

In summary, this work makes the following contributions:

• We propose a new architecture for secure and reliable

distributed data provenance on HPC systems. The new

architecture is tailored to the HPC environment: compute

nodes can maintain the blockchain in local memory

with minimum overhead (i.e., lightweight ledger support)

while using distributed shared ledger as a persistent

medium (i.e., multi-tiered storage support) for enhanced

reliability and as a precaution for any catastrophes (e.g.,

compute nodes failure or restart).

• We design a set of consensus protocols, namely, proof-of-

scalable-traceability (POST), for validating applications’

data provenance following a push-pull mechanism that

promises memory optimization (i.e., HPC compatible

lightweight custom protocol). The key idea of POST

is that the consensus comes not only from the fel-

low compute nodes but also from the remote shared

storage through proof-of-extended-traceability (POET).

POET comes into action only if the compute nodes are

unable to reach consensus.

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 28,2021 at 06:44:27 UTC from IEEE Xplore. Restrictions apply.

• We implement a system prototype, SciChain, and experi-

mentally verify the system’s effectiveness (i.e., reliability

in III-B, lightweightedness in III-C, scalability in III-D)

with more than one million transactions derived from both

micro-benchmarks on up to 100 nodes.

II. SYSTEM DESIGN

A. Architecture Overview

Our proposed system consists of four key modules: a

lightweight distributed blockchain, shared storage persistence,

a ledger synchronization protocol, and a consensus protocol.

We will discuss each of them in more detail in the following.

1) Lightweight Distributed Blockchain: The first module

is a distributed blockchain specially crafted to alleviate the

memory constraints in compute nodes. The module helps

enable the compute nodes to perform the block validation

process while keeping a minimum number of recent blocks

(e.g., 100-200 blocks) in memory. As we are interested in per-

missioned blockchains for HPC, a high-performance network

infrastructure (e.g., Infiniband) interconnects all the compute

nodes to speed up the communication.

2) Shared Storage Persistence: The second module acts

as a persistent medium to hold the entire blockchain. As we

assume that the compute nodes are generally volatile and store

the distributed blockchain in memory, persistent shared storage

is essential to provide more reliable backup in case of any

catastrophes (e.g., more than 50% compute nodes crash or

restart or lose their in-memory blocks).

3) Ledger Synchronization Protocol: The third module

is an extended validator protocol (i.e., proof-of-extended-

traceability) that supports a faster validation mechanism.

Whenever a block is broadcasted, first, the compute nodes

come forward to validate the block with the support of the

in-memory blocks. If more than 50% of nodes fail to validate

the block, the protocol then employs the shared storage to

provide the validation service. The protocol also supports the

synchronization among the distributed ledger of the compute

nodes and the shared storage. The benefit of this protocol is

two-fold: (i) it synchronizes the compute nodes in case of any

catastrophes; (ii) it provides a reliable guaranteed validation

through the shared storage. We will discuss more details in

Section II-B1.

4) Consensus Protocol: The fourth module manages the

consensus mechanism among the compute nodes and the

shared storage. The consensus protocol (i.e., proof-of-scalable-

traceability) leverages the third module (i.e., ledger synchro-

nization protocol) to employ the nodes in the validation

process, and finally, helps in aggregating the compute nodes

votes to provide the system the consensus for a block. The

benefit of this protocol is that it minimizes the extensive

communication overhead between the compute nodes and the

shared storage during the consensus gathering process. This is

because the consensus process stops as soon as 51% of nodes

can attain the consensus for a block. Section II-B2 provides

more details on this protocol.

(a) Push-Pull (b) Consensus

Fig. 3. Some primitives in the proposed protocol. Note that the ‘shared
storage’ is a cluster of nodes, in despite of being drawn as a single cylinder
for simplicity here.

B. Protocols

The proposed architecture is designed to work through

two parallel protocols. Protocol 1 (i.e., proof-of-extended-

traceability) helps in validating a block consists of new

provenance records, while Protocol 2 (i.e., proof-of-scalable-

traceability) works with gathering consensus from the nodes

after the validation and helps Protocol 1 in making the

final decision about storing the validated block both in the

shared storage’s disk and compute nodes’ in-memory. The pro-

posed protocol optimizes memory consumption following two

phases, as shown in Figure 3(a). In Phase 1 (i.e., Push method),

the shared storage is being leveraged to persist the entire ledger

replica with minimum communication overhead as all ledgers

on compute nodes are necessarily volatile and only keep the

recent blocks in a limited amount of memory, as the nodes

are usually disk-less. In Phase 2 (i.e., Pull method), proof-of-
extended-traceability (i.e., Protocol 1) pushes the storage node

into a more active position: whenever a new block is created,

it will be validated by the compute nodes first, and if more

than 50% of compute nodes are compromised or unable to

validate the new block with the in-memory blocks, the shared

storage participates in the validation process.

To reduce the communication overhead, the overall consen-

sus (i.e., 51% votes) aggregation is controlled by the shared

storage, as shown in Figure 3(b). The compute nodes forward

their hashed-votes (biCi, where b indicates a block and C

indicates a vote by a node for that block) to the shared storage

after validating a block, where it (i.e., shared storage) has

the aggregation mechanism to generate the final consensus for

a block (bfCf). During the aggregation process, the shared-

storage randomly picks one of the compute nodes’ hashes

from the hashed-votes list to set the new-id for the newly

validated block. As soon as 51% consensus is reached, the

shared storage broadcasts the final consensus along with the

hashed-votes list to the compute nodes to suspend further

validation. A node’s hashed-vote is encrypted with its private

key.

To keep the compute nodes up-to-date, we leverage the Pull
method, as shown in Figure 3(a). That is if a compute node

is unable to validate a block and provide the vote, it is then

added to the Cl list (i.e., shown in Figure 3(b)) in the shared

storage. If more than 50% of compute nodes fail to provide

vote during a block validation process, the shared storage will

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 28,2021 at 06:44:27 UTC from IEEE Xplore. Restrictions apply.

Protocol 1 Proof-of-Extended-Traceability on storage

Require: Compute nodes C where the i-th node is Ci; Ci
B

the in-memory recent block list on Ci; bo oldest block

in the i-th compute node’s Ci
B ; a newly mined block b;

shared storage D; DB the blockchain copy on the storage;

Synced compute nodes Cl where the k-th node is Ck
l ;

Ensure: b is validated by both the local SciChain ledger Ci
B

and the shared ledger DB , and then appended to all CB’s

and DB .

1: function PROOF-OF-EXTENDED-TRACEABILITY(b, C,

D)

2: i ← 1
3: while |Consensus| <= C

2 do � Call Protocol 2

4: Validate b with recent block list Ci
B

5: if Ci
B can not validate b then

6: Cl ← Cl ∪ Ci

7: end if
8: i ← i+ 1
9: end while

10: if |Consensus| <= C
2 then � Call Protocol 2

11: Validate b with DB � Pull method

12: for Ck
l ∈ Cl do

13: Update with recent block from DB

14: end for
15: end if
16: if |Consensus| > C

2 then � Call Protocol 2

17: DB ← DB ∪ b � Push method

18: for Ci ∈ C do
19: if b �∈ Ci

B then
20: Ci

B ← Ci
B − bo

21: Ci
B ← Ci

B ∪ b
22: end if
23: end for
24: end if
25: end function

update the nodes enlisted in Cl with the recent block from the

storage node’s blockchain.

1) Proof of Extended Traceability (POET) : POET (i.e.,

shown in Protocol 1) helps in both validating and storing a

block and works in two steps. First, it checks whether it can

validate a block (e.g., new provenance records) with the help

of the recent blocks stored in the compute nodes memory,

as shown in Line 4. If a compute node is unable to validate

a block, it is enlisted to the Cl (Line 6). If more than 50%

compute nodes fail (Line 10), which is rare, the storage node

then comes forward (i.e., Pull method) to proceed further with

the block validation process as shown in Line 11. The block is

stored both in the compute nodes (Line 21) as well as in the

shared storage (Push method in Line 17) only if more than

50% nodes jointly from compute nodes and shared storage

provide consensus (Line 16). We remove the oldest block

from the in-memory block list (Line 20) of a compute node

before appending the newest block. Besides, we stop the block

validation process as soon as 51% consensus is attained (Line

Protocol 2 All compute and storage nodes reach consensus

Require: Compute nodes C where the i-th node is Ci; Ci
B the

in-memory recent block list on Ci; a new block b; shared

storage D; DB the blockchain copy on the storage;

Ensure: At least 51% nodes provide Consensus who val-

idate b both with in memory latest block list and with

shared ledger DB .

1: function POST-CONSENSUS(b, C, D)

2: Consensus ← ∅
3: if b �∈ DB then
4: for Ci ∈ C do
5: if Ci

B can validate b then � Call Protocol 1

6: Consensus ← Consensus ∪ Ci

7: if |Consensus| > C
2 then

8: break � Stop consensus process.

9: end if
10: end if
11: end for
12: if |Consensus| <= C

2 then � 51% consensus?

13: if DB can validate b then � Call Protocol 1

14: Consensus ← Consensus ∪D
15: end if
16: end if
17: end if
18: end function

3).

The benefits of this new validation method are two-fold: (i)

A faster validation process achieved by the agreement of the

compute nodes, thanks to the in-memory support, (ii) Extended

and stable validation support is achieved from the shared

storage that serves as a reliable persistent medium if more

than 50% compute nodes are compromised or fail to provide

consensus. The time complexity of Protocol 1 is O(|C|), which

is on par with the original PoW consensus. However, most of

the time, it is possible to reduce the number of iterations, as

we stop the validation process as soon as 51% consensus is

attained.

2) Proof of Scalable Traceability (POST): To achieve the

consensus, as shown in Figure 3, Protocol 2 is applied in

parallel with Protocol 1. Protocol 2 ensures that most of the

compute nodes (more than 50%) guarantee the validity of the

newly proposed block from all respective in-memory blocks

previously-stored in all compute nodes and the shared storage.

If 51% compute nodes get compromised, it is guaranteed

that at-least the shared storage can ensure validity. To avoid

duplication, the new block validation and consensus collection

process start only if the block is not already validated, as

shown in Line 3 of Protocol 2. If the provenance records

in the newly proposed block are new, all of the compute

nodes in the network attempt to validate the block (Line 4).

Each compute node provides a vote after validating the block

(i.e., Line 6). If more than 50% nodes agree on the validity

of the new block, the block will be appended both in the

shared storage and the compute nodes, as shown in Lines 17

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 28,2021 at 06:44:27 UTC from IEEE Xplore. Restrictions apply.

and 21 of Protocol 1 respectively. However, if at-least 51%

compute nodes are unable to reach the consensus (i.e., Line

12), then the remote storage node starts to validate the block

through Protocol 1 (i.e., Line 13 in Protocol 2) to achieve

51% consensus jointly from compute nodes and remote storage

node. To minimize the block validation cost, we stop the

consensus attaining process as soon as at least 51% compute

nodes provide consensus, as shown in Line 7.

III. EVALUATION

We have implemented a prototype system of the proposed

blockchain architecture and consensus protocols with Python.

At this point, we only release the core modules of the proto-

type; some complementary components and plug-ins are still

being tested with more edge cases and will be released once

they are stable enough. The source code is currently hosted

on Github. Figure 2 illustrates the overview of the proposed

SciChain architecture. The prototype system currently runs

on a high-performance computing (HPC) system consist of

58 nodes where (i) each node is equipped with 32 cores;

hence each node can be emulated with up to 32 individual

nodes through user-level threads, (ii) ledgers are stored on in-

memory, (iii) shared storage’s ledgers are stored on as files.

A. Experiment Setup

1) Testbed: All experiments with the proposed system are

carried out on a high-performance computing (HPC) cluster

comprised of 58 nodes interconnected with FDR InfiniBand.

Each node is equipped with an Intel Core-i7 2.6 GHz 32-

core CPU along with 296 GB 2400 MHz DDR4 memory.

There is no local disk on compute nodes, which is a typical

configuration on HPC systems; yet, a remote 2.1 PB storage

system is available managed by GPFS [17]. Each node is

installed with Ubuntu 16.04, Python 3.7.0, and NumPy 1.15.4.

We deploy the system prototype mostly on 100 cores.

2) Evaluated Systems: We evaluate the SciChain prototype

against two other blockchain systems. The first blockchain

is a Conventional Blockchain system deployed to a shared-

nothing cluster comprised of 10 nodes interconnected with

Ethernet. Each node in the cluster is equipped with an Intel

Core-i7 2.6 GHz 32-core CPU along with 128 GB 2400 MHz

DDR4 memory. The second blockchain is a Memory-only
Blockchain deployed to the same cluster (i.e., HPC cluster with

58 nodes) same as the proposed system with high-performance

networking interconnections (i.e., InfiniBand, RDMA) without

any persistent storage; this is not a practical solution due to the

lack of data persistence but is considered as the performance

upper bound of the proposed SciChain. We implement all three

blockchain systems in Python and make a reasonable effort in

optimizing all of them.

3) Workload: For micro-benchmarks, we use YCSB work-

load [18] commonly used for transaction evaluation. We map

each provenance record (e.g., file creation or modification)

in a YCSB transaction format before start processing. At

the beginning of the transaction, the system checks whether

the submitted transaction is valid. If so, the statuses of two

Fig. 4. POST guarantees more than 50% of nodes holding valid blocks.

 10

 100

 1000

20 40 60 80 100
 0

 5

 10

 15

 20

 25

 30

 35

B
lo

ck
 P

ro
ce

ss
in

g
T

im
e

(m
s)

O
ve

rh
ea

d
(%

)

Number of Nodes

Baseline SciChain Overhead

Fig. 5. Latency overhead.

nodes are updated accordingly, followed by the propagation

of the updates to all other nodes in the network. On average,

each block contains about a thousand transactions in our

experiments. We deploy more than one million transactions

(1,036,303) to the system prototype, and compare it to the

other two baseline systems.

B. Reliability and Trustworthiness

This section demonstrates that the proposed POST consen-

sus can be achieved by more than 50% of participants. In

other words, we want to show that introducing the shared

storage as an additional node does not reduce the portion of

good compute nodes to under 51%. To put it another way,

we want to verify, if we try to inject tampered blocks (e.g.,

provenance records) randomly, whether the new consensus

protocol leads to the same longest valid blockchain compared

to other consensus protocols. Note that we prove the safety

and liveness in Section II-B; we will experimentally verify

the trustworthiness and reliability here.

To demonstrate the trustworthiness and reliability, we run

the system prototype given random transactions for 10 minutes

and repeat the execution 15 times, as shown in Figure 4. All

of the 15 executions lead to more than 50% nodes holding

the correct blockchains: 13 out of 15 executions yield more

than 90% validity, while two executions exhibit lower ratios

because we terminate the execution once more than 50% of

nodes hold the correct blocks. The bottom line is that we need

to guarantee at least 51% of nodes’ data are not tampered with,

which is the case.

C. Overhead

This section reports the provenance overhead incurred by

the proposed SciChain. The memory-only baseline system

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 28,2021 at 06:44:27 UTC from IEEE Xplore. Restrictions apply.

 10

 100

 1000

 10000

20 40 60 80 100

B
lo

ck
 P

ro
ce

ss
in

g
T

im
e

(m
s)

Number of Nodes

Conventional Blockchain
Memory−only Blockchain

SciChain Blockchain

Fig. 6. Scalability of three blockchain systems.

persists the data provenance to the disk with no security or

audibility guarantees. We turn on SciChain atop the baseline

and measure the end-to-end block processing time compared

to the baseline performance.

As shown in Figure 5, we observe the overhead incurred by

the proposed SciChain is noticeable (25% – 30%) at small

scales of 20 and 40 nodes. This is the price we have to

pay to achieve high security. The good news is, however,

the overhead is reduced to under 20% on larger scales; in

particular, the overhead is only 15% on 100 nodes. That

is, unlike conventional provenance systems whose overhead

increases proportionally to the number of nodes, SciChain’s

overhead ratio does not significantly increase, thanks to the

POST consensus. In the POST mechanism: (i) a block gets

persisted only once after it gets qualified by majority votes; (ii)

the larger the scale, the fewer chances the POST will redirect

the validation to the shared storage that incurs reasonable, if

not negligible, overhead.

D. Scalability

Figure 6 reports the performance of the three systems on

20-, 40-, 60-, 80-, and 100-node scales. The memory-only

blockchain, as expected, achieves the highest performance

(i.e., lowest processing time). The proposed SciChain with

shared storage does not exhibit a significant slowdown than the

upper bound; for instance at 100-node scale, the comparison is

157 ms vs. 311 ms, at the same order of magnitude. However,

the conventional blockchain on 100 nodes appends a new

block in 3,231 ms, significantly slower than SciChain. Specif-

ically, SciChain shows significant speedup in performance

compared with existing systems: 3,231
311 = 10.4×.

IV. CONCLUSION AND FUTURE WORK

This paper proposes a new blockchain consensus protocol,

namely POST, to enable immutable and autonomous data

provenance for scientific applications deployed to HPC sys-

tems. POST is implemented in a prototype system called

SciChain, the first practical HPC-blockchain system toward

trustworthy data provenance in HPC. The effectiveness and

efficiency of POST experimentally demonstrated through both

micro-benchmarks on up to 100 nodes.

Our future work is two-fold. Firstly, the current POST pro-

tocol does not take into account the energy consumption of the

underlying data movement. We plan to design and integrate a

subsystem for application-specific optimizer regarding energy

consumption. Secondly, at this point, it is unclear how to

migrate the data stored in one specific SciChain instance to

another. This is also a challenge in the blockchain community:

ensuring the atomicity of the transaction migration is far more

complicated than it looks.

ACKNOWLEDGEMENT

This work is in part supported by the U.S. DOE under

contract number DE-SC0020455. This work is also supported

in part by the following grants: National Science Foundation

CCF-1756013, IIS-1838024.

REFERENCES

[1] R. B. Weiss, N. J. Vogelzang, B. A. Peterson, L. C. Panasci, J. T.
Carpenter, M. Gavigan, K. Sartell, E. Frei, and O. R. McIntyre, “A
successful system of scientific data audits for clinical trials: a report
from the cancer and leukemia group b,” JAMA, vol. 270, no. 4, pp.
459–464, 1993.

[2] Data fraud in clinical trials, “https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC4340084/,” Accessed 2020.

[3] The Importance of Data Set Provenance for Science, “https://eos.org/
opinions/the-importance-of-data-set-provenance-for-science,” Accessed
2020.

[4] A. Gehani and D. Tariq, “SPADE: Support for Provenance Auditing
in Distributed Environments,” in Proceedings of the 13th International
Middleware Conference (Middleware), 2012.

[5] T. Clark, P. N. Ciccarese, and C. A. Goble, “Micropublications: a
semantic model for claims, evidence, arguments and annotations in
biomedical communications,” Journal of Biomedical Semantics, vol. 5,
no. 1, p. 28, Jul 2014.

[6] E. Pettersen, T. Goddard, C. Huang, G. Couch, D. Greenblatt, E. Meng,
and T. Ferrin, “Ucsf chimera–a visualization system for exploratory
research and analysis,” Journal of Computational Chemistry, vol. 25,
no. 13, pp. 1605–1612, Oct 2004.

[7] D. Zhao, C. Shou, T. Malik, and I. Raicu, “Distributed data provenance
for large-scale data-intensive computing,” in IEEE International Con-
ference on Cluster Computing (CLUSTER), 2013.

[8] D. Dai, Y. Chen, P. Carns, J. Jenkins, and R. Ross, “Lightweight
provenance service for high-performance computing,” in International
Conference on Parallel Architectures and Compilation Techniques, 2017.

[9] A. Bates, D. J. Tian, K. R. Butler, and T. Moyer, “Trustworthy whole-
system provenance for the linux kernel,” in 24th USENIX Security
Symposium, 2015, pp. 319–334.

[10] X. Liang, S. Shetty, D. Tosh, C. Kamhoua, K. Kwiat, and L. Njilla,
“Provchain: A blockchain-based data provenance architecture in cloud
environment with enhanced privacy and availability,” in IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CC-
GRID), 2017.

[11] A. Ramachandran and M. Kantarcioglu, “Smartprovenance: A dis-
tributed, blockchain based data provenance system,” in Proceedings of
the Eighth ACM Conference on Data and Application Security and
Privacy, ser. CODASPY ’18, 2018, pp. 35–42.

[12] P. Ruan, G. Chen, T. T. A. Dinh, Q. Lin, B. C. Ooi, and M. Zhang, “Fine-
grained, secure and efficient data provenance on blockchain systems,”
Proceedings of the VLDB Endowment, vol. 12, no. 9, pp. 975–988, 2019.

[13] Hyperledger, “https://www.hyperledger.org/,” Accessed 2018.
[14] Ethereum, “https://www.ethereum.org/,” Accessed 2018.
[15] A. Al-Mamun, T. Li, M. Sadoghi, L. Jiang, H. Shen, and D. Zhao,

“Hpchain: An mpi-based blockchain framework for data fidelity in high-
performance computing systems,” in Supercomputing, 2019.

[16] A. Al-Mamun, T. Li, M. Sadoghi, and D. Zhao, “In-memory blockchain:
Toward efficient and trustworthy data provenance for hpc systems,” in
IEEE International Conference on Big Data (BigData), 2018.

[17] F. Schmuck and R. Haskin, “GPFS: A shared-disk file system for large
computing clusters,” in Proceedings of the 1st USENIX Conference on
File and Storage Technologies (FAST), 2002.

[18] YCSB, “https://github.com/brianfrankcooper/YCSB/wiki/Core-
Workloads,” Accessed 2018.

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 28,2021 at 06:44:27 UTC from IEEE Xplore. Restrictions apply.

