2021 IEEE 37th International Conference on Data Engineering (ICDE) | 978-1-7281-9184-3/20/$31.00 ©2021 IEEE | DOI: 10.1109/ICDE51399.2021.00166

2021 IEEE 37th International Conference on Data Engineering (ICDE)

SciChain: Blockchain-enabled Lightweight and
Efficient Data Provenance for Reproducible
Scientific Computing

Abdullah Al-Mamun*, Feng Yan', and Dongfang Zhao*
University of Nevada, Reno

*aalmamun @nevada.unr.edu,

Abstract—The state-of-the-art for auditing and reproducing
scientific applications on high-performance computing (HPC)
systems is through a data provenance subsystem. While recent
advances in data provenance lie in reducing the performance
overhead and improving the user’s query flexibility, the fidelity
of data provenance is often overlooked: there is no such way to
ensure that the provenance data itself has not been fabricated
or falsified. This paper advocates leveraging blockchains to
deliver immutable and autonomous data provenance services
such that scientific discoveries are trustworthy. The challenges
for adopting blockchains to HPC include designing a new
blockchain architecture compatible with the HPC platforms and,
more importantly, a set of new consensus protocols for scientific
applications atop blockchains. To this end, we have designed the
proof-of-scalable-traceability (POST) protocol and implemented
it in a blockchain prototype, namely SciChain, the very first
practical blockchain system for provenance services on HPC. We
evaluated SciChain by comparing it with multiple state-of-the-art
systems; experimental results showed that SciChain guaranteed
trustworthy data provenance while incurring orders of magnitude
lower overhead than existing solutions.

Index Terms—Blockchain, provenance, fault tolerance, HPC.

I. INTRODUCTION
A. Motivation

A fundamental means to reproduce computational scientific
results is through data provenance, which tracks the entire
lifespan of the data during the experiments and simulation at
various phases such as data creation, data changes, and data
archival. Data provenance plays a critical role in guaranteeing
the validity of scientific discoveries and research results, as
data fabrication and falsification could happen to meet research
objectives or personal interests, or both. For instance, the
National Cancer Institute found 0.25% of trial data are fraud-
ulent in the year of 2015 [1], [2]. In earth sciences, scientists
emphasized the importance of maintaining data provenance in
achieving the transparency of scientific discoveries [3].

Conventional provenance systems can be categorized into
two types: centralized provenance systems and distributed
provenance systems. One popular centralized provenance sys-
tem is SPADE [4], where the provenance (from various data
sources) is collected and managed by a centralized relational
database management systems (RDBMS). Domain-specific
systems based on such centralized design paradigms are
also available in biomedical engineering [5], computational

{Tfyan,*dzhao} @unr.edu

chemistry [6], among others. Although having been reasonably
adopted by various disciplines, the centralized provenance sys-
tems are being increasingly criticized due to the exponentially-
grown data: the centralized provenance system becomes a
performance bottleneck and a single point of failure, and
to this end, we witness the inception of various distributed
approaches toward scalable provenance [7], [8]. Indeed, those
distributed provenance systems, mostly built upon distributed
file systems as opposed to centralized databases, eliminated
the performance bottleneck and proved to deliver orders of
magnitude higher performance than centralized approaches.
As a double-edged sword, however, distributed provenance
systems raise a new concern [9] on the provenance itself: while
the provenance is supposed to audit the execution of the appli-
cation, who then should audit the provenance? Do we need to
build the provenance of provenance? So the recursion goes on
and on, indefinitely. Note that this concern was not that critical
in a centralized approach as long as we can, which is the case,
apply robust reliability mechanisms to the centralized node.
However, it turns to be an extremely challenging problem
for all the participating nodes in a (large-scale) distributed
system: if any single node of the entire deployment is com-
promised, the provenance as a whole becomes invalid. To this
end, distributed provenance systems were recently proposed,
inspired by blockchains. These systems (e.g., ProvChain [10],
SmartProvenance [11], LineageChain [12]) are also called
blockchain-based provenance systems that are both tamper-
evident and autonomous, thus guarantee trustworthiness of the
provenance data. They share the same key idea: instead of
storing the data on a single node or splitting the data into
n exclusively distinct chunks on n nodes, let us replicate the
data and maintain a hashed linkedlist for each copy of the
data. The replication guarantees the provenance is tolerant to
a certain degree of fault (e.g., L%’lj in a Byzantine system,
where the fault is arbitrary, including malicious activities and
even possible coalition among participants), and the hashed
linkedlist guarantees that the provenance data cannot be tam-
pered with without being noticed by a simple hash verification.
In the context of scientific applications and high-
performance computing (HPC), however, we encounter unique
challenges in employing blockchain-based provenance ser-
vices. There is a series of concerns on resource utilization: the

978-1-7281-9184-3/21/$31.00 ©2021 IEEE 1853

DOI 10.1109/ICDE51399.2021.00166

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 28,2021 at 06:44:27 UTC from IEEE Xplore. Restrictions apply.

~ —————=

R 3 X
(Compute Node (Compute Node |

Ethernet

Fig. 1. Conventional blockchain architecture on shared-nothing platforms.

space efficiency is low, the network bandwidth consumption
is high, the CPU cycles are “wasted” for meaningless mining,
to name a few. Besides, existing blockchain-based provenance
systems are built in such a way that the underlying blockchain
infrastructure is a black box, and the provenance service
works as a higher-level application by calling the programming
interfaces provided by the blockchain infrastructure such as
Hyperledger Fabric [13] and Ethereum [14]. In the best case,
the provenance service might miss optimization and cus-
tomization opportunities because it cannot modify the lower
blockchain layer; to make it worse, the applicability of those
blockchain-based provenance systems is constrained by the un-
derlying blockchain infrastructure, which is not optimized for,
or not applicable to, HPC platforms. For instance, (i) current
blockchain-based provenance system becomes useless when
compute nodes have no local disks, (ii) inappropriate consen-
sus protocols with either compute-intensive or communication-
intensive design, and (iii) incompatibility with multi-tiered
storage architecture such as burst buffers, I/O nodes, remote
parallel file systems. Figure 1 shows the system architecture
of conventional blockchains deployed to a shared-nothing
cluster. Regardless of private (Hyperledger [13]) or public
(Ethereum [14]), all existing blockchain systems assume that
the underlying computer infrastructure is shared-nothing: the
memory subsystems and I/O subsystems are all independent
of the participant nodes who are often connected through
commodity networking.

In summary, a highly desired provenance system for sci-
entific applications should be crafted with a balance between
scalability, reliability, and applicability. Unfortunately, existing
provenance systems failed to meet the above requirements
from scientific computing and HPC communities. Of note, a
few recent works indeed proposed a blockchain-like prove-
nance system deployed to HPC systems. These works are
either a preliminary study [15] or solely depends on conven-
tional compute-intensive proof-of-work (PoW) protocol [16]
which is hardly applicable to real-world settings for the HPC
architecture. What is desired is a protocol that is particularly
crafted to adopting blockchain-backed provenance in HPC
systems and overcomes the resource utilization challenges
from various perspectives, such as replacing the conventional
compute-intensive consensus by more cost-effective ones, en-
forcing memory constraints on compute nodes, and limiting

m

Compute Node Compute Node

pr— e — 1

B — e

Storage

Storage
Full o Full
Ledger Ledger

g g 3 4

| Parallel File System | | Distributed Blockchain |

| Remote Synchronization through Shared Network |

Memory
BEEE®

Recent Blocks

Memory
BEEBEB

Recent Blocks

Fig. 2. Proposed HPC blockchain architecture with shared storage.

inter-node communications to reduce network overhead.

B. Proposed Approach

This paper proposes a new distributed approach to manage
the data provenance of scientific applications deployed to
HPC systems. Rather than only taking an existing blockchain
system as a block box, we hack into blockchain internals
to improve the applicability and performance of provenance
services built upon blockchains. Specifically, as shown in
Figure 2, we propose a new blockchain architecture supporting
multi-tier storage and then design new consensus protocols
aiming to optimize the distributed provenance services in an
HPC environment. The proposed architecture applies to any
resource-constrained environment, where the nodes need to
operate with limited memory and require no local disks (i.e.,
lightweight replication support) but supported by a distributed
remote-storage that persists the blockchain. Besides, the se-
cured lightweight privacy mechanism applied in the newly
proposed consensus protocol (i.e., HPC compatible lightweight
custom protocol) allows the proposed system to be able to
work in the blockchain-based HPC ecosystem.

In summary, this work makes the following contributions:

e« We propose a new architecture for secure and reliable
distributed data provenance on HPC systems. The new
architecture is tailored to the HPC environment: compute
nodes can maintain the blockchain in local memory
with minimum overhead (i.e., lightweight ledger support)
while using distributed shared ledger as a persistent
medium (i.e., multi-tiered storage support) for enhanced
reliability and as a precaution for any catastrophes (e.g.,
compute nodes failure or restart).

o We design a set of consensus protocols, namely, proof-of-
scalable-traceability (POST), for validating applications’
data provenance following a push-pull mechanism that
promises memory optimization (i.e., HPC compatible
lightweight custom protocol). The key idea of POST
is that the consensus comes not only from the fel-
low compute nodes but also from the remote shared
storage through proof-of-extended-traceability (POET).
POET comes into action only if the compute nodes are
unable to reach consensus.

1854

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 28,2021 at 06:44:27 UTC from IEEE Xplore. Restrictions apply.

« We implement a system prototype, SciChain, and experi-
mentally verify the system’s effectiveness (i.e., reliability
in III-B, lightweightedness in III-C, scalability in III-D)
with more than one million transactions derived from both
micro-benchmarks on up to 100 nodes.

II. SYSTEM DESIGN
A. Architecture Overview

Our proposed system consists of four key modules: a
lightweight distributed blockchain, shared storage persistence,
a ledger synchronization protocol, and a consensus protocol.
We will discuss each of them in more detail in the following.

1) Lightweight Distributed Blockchain: The first module
is a distributed blockchain specially crafted to alleviate the
memory constraints in compute nodes. The module helps
enable the compute nodes to perform the block validation
process while keeping a minimum number of recent blocks
(e.g., 100-200 blocks) in memory. As we are interested in per-
missioned blockchains for HPC, a high-performance network
infrastructure (e.g., Infiniband) interconnects all the compute
nodes to speed up the communication.

2) Shared Storage Persistence: The second module acts
as a persistent medium to hold the entire blockchain. As we
assume that the compute nodes are generally volatile and store
the distributed blockchain in memory, persistent shared storage
is essential to provide more reliable backup in case of any
catastrophes (e.g., more than 50% compute nodes crash or
restart or lose their in-memory blocks).

3) Ledger Synchronization Protocol: The third module
is an extended validator protocol (i.e., proof-of-extended-
traceability) that supports a faster validation mechanism.
Whenever a block is broadcasted, first, the compute nodes
come forward to validate the block with the support of the
in-memory blocks. If more than 50% of nodes fail to validate
the block, the protocol then employs the shared storage to
provide the validation service. The protocol also supports the
synchronization among the distributed ledger of the compute
nodes and the shared storage. The benefit of this protocol is
two-fold: (i) it synchronizes the compute nodes in case of any
catastrophes; (ii) it provides a reliable guaranteed validation
through the shared storage. We will discuss more details in
Section II-B1.

4) Consensus Protocol: The fourth module manages the
consensus mechanism among the compute nodes and the
shared storage. The consensus protocol (i.e., proof-of-scalable-
traceability) leverages the third module (i.e., ledger synchro-
nization protocol) to employ the nodes in the validation
process, and finally, helps in aggregating the compute nodes
votes to provide the system the consensus for a block. The
benefit of this protocol is that it minimizes the extensive
communication overhead between the compute nodes and the
shared storage during the consensus gathering process. This is
because the consensus process stops as soon as 51% of nodes
can attain the consensus for a block. Section II-B2 provides
more details on this protocol.

i biC;

Shared

L—mgﬁ [PuiL >
@)

o

(a) Push-Pull (b) Consensus

Fig. 3. Some primitives in the proposed protocol. Note that the ‘shared
storage’ is a cluster of nodes, in despite of being drawn as a single cylinder
for simplicity here.

B. Protocols

The proposed architecture is designed to work through
two parallel protocols. Protocol 1 (i.e., proof-of-extended-
traceability) helps in validating a block consists of new
provenance records, while Protocol 2 (i.e., proof-of-scalable-
traceability) works with gathering consensus from the nodes
after the validation and helps Protocol 1 in making the
final decision about storing the validated block both in the
shared storage’s disk and compute nodes’ in-memory. The pro-
posed protocol optimizes memory consumption following two
phases, as shown in Figure 3(a). In Phase 1 (i.e., Push method),
the shared storage is being leveraged to persist the entire ledger
replica with minimum communication overhead as all ledgers
on compute nodes are necessarily volatile and only keep the
recent blocks in a limited amount of memory, as the nodes
are usually disk-less. In Phase 2 (i.e., Pull method), proof-of-
extended-traceability (i.e., Protocol 1) pushes the storage node
into a more active position: whenever a new block is created,
it will be validated by the compute nodes first, and if more
than 50% of compute nodes are compromised or unable to
validate the new block with the in-memory blocks, the shared
storage participates in the validation process.

To reduce the communication overhead, the overall consen-
sus (i.e., 51% votes) aggregation is controlled by the shared
storage, as shown in Figure 3(b). The compute nodes forward
their hashed-votes (b;C;, where b indicates a block and C
indicates a vote by a node for that block) to the shared storage
after validating a block, where it (i.e., shared storage) has
the aggregation mechanism to generate the final consensus for
a block (byCy). During the aggregation process, the shared-
storage randomly picks one of the compute nodes’ hashes
from the hashed-votes list to set the new-id for the newly
validated block. As soon as 51% consensus is reached, the
shared storage broadcasts the final consensus along with the
hashed-votes list to the compute nodes to suspend further
validation. A node’s hashed-vote is encrypted with its private
key.

To keep the compute nodes up-to-date, we leverage the Pull
method, as shown in Figure 3(a). That is if a compute node
is unable to validate a block and provide the vote, it is then
added to the Cj list (i.e., shown in Figure 3(b)) in the shared
storage. If more than 50% of compute nodes fail to provide
vote during a block validation process, the shared storage will

1855

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 28,2021 at 06:44:27 UTC from IEEE Xplore. Restrictions apply.

Protocol 1 Proof-of-Extended-Traceability on storage

Protocol 2 All compute and storage nodes reach consensus

Require: Compute nodes C' where the i-th node is C*; Cf
the in-memory recent block list on C?; b, oldest block
in the i-th compute node’s C%; a newly mined block b;
shared storage D; Dp the blockchain copy on the storage;
Synced compute nodes C; where the k-th node is CJ;
Ensure: b is validated by both the local SciChain ledger C%
and the shared ledger Dp, and then appended to all Cg’s
and Dpg.
1: function PROOF-OF-EXTENDED-TRACEABILITY(b, C,

D)
2 141
3 while |Consensus| <= £ do > Call Protocol 2
4 Validate b with recent block list C%
5: if C'%; can not validate b then
6 C+— C,JC;
7 end if
8 11+ 1
9: end while
10: if |Consensus| <= < then > Call Protocol 2
11: Validate b with Dp > Pull method
12: for Cf' € C; do
13: Update with recent block from Dp
14: end for
15: end if
16: if |Consensus| > % then > Call Protocol 2
17: Dp <+ DpUb > Push method
18: for C; € C do
19: if b ¢ C% then
20: Clh + Cli — b,
21: Ch«— CLUb
22: end if
23: end for
24: end if

25: end function

update the nodes enlisted in C; with the recent block from the
storage node’s blockchain.

1) Proof of Extended Traceability (POET) : POET (.e.,
shown in Protocol 1) helps in both validating and storing a
block and works in two steps. First, it checks whether it can
validate a block (e.g., new provenance records) with the help
of the recent blocks stored in the compute nodes memory,
as shown in Line 4. If a compute node is unable to validate
a block, it is enlisted to the C; (Line 6). If more than 50%
compute nodes fail (Line 10), which is rare, the storage node
then comes forward (i.e., Pull method) to proceed further with
the block validation process as shown in Line 11. The block is
stored both in the compute nodes (Line 21) as well as in the
shared storage (Push method in Line 17) only if more than
50% nodes jointly from compute nodes and shared storage
provide consensus (Line 16). We remove the oldest block
from the in-memory block list (Line 20) of a compute node
before appending the newest block. Besides, we stop the block
validation process as soon as 51% consensus is attained (Line

Require: Compute nodes C where the i-th node is C*; C' the
in-memory recent block list on C%; a new block b; shared
storage D; Dp the blockchain copy on the storage;

Ensure: At least 51% nodes provide Consensus who val-
idate b both with in memory latest block list and with
shared ledger Dp.
function POST-CONSENSUS(b, C, D)

1:

2 Consensus + ()

3 if b ¢ Dp then

4 for C; € C do

5: if C'; can validate b then > Call Protocol 1
6 Consensus < Consensus U C;

7 if |Consensus| > $ then

8 break > Stop consensus process.
9: end if

10: end if

11: end for

12: if |Consensus| <= & then > 51% consensus?
13: if Dp can validate b then > Call Protocol 1
14: Consensus <+ Consensus U D

15: end if

16: end if

17: end if

18: end function

3).

The benefits of this new validation method are two-fold: (1)
A faster validation process achieved by the agreement of the
compute nodes, thanks to the in-memory support, (ii) Extended
and stable validation support is achieved from the shared
storage that serves as a reliable persistent medium if more
than 50% compute nodes are compromised or fail to provide
consensus. The time complexity of Protocol 1 is O(|C/), which
is on par with the original PoW consensus. However, most of
the time, it is possible to reduce the number of iterations, as
we stop the validation process as soon as 51% consensus is
attained.

2) Proof of Scalable Traceability (POST): To achieve the
consensus, as shown in Figure 3, Protocol 2 is applied in
parallel with Protocol 1. Protocol 2 ensures that most of the
compute nodes (more than 50%) guarantee the validity of the
newly proposed block from all respective in-memory blocks
previously-stored in all compute nodes and the shared storage.
If 51% compute nodes get compromised, it is guaranteed
that at-least the shared storage can ensure validity. To avoid
duplication, the new block validation and consensus collection
process start only if the block is not already validated, as
shown in Line 3 of Protocol 2. If the provenance records
in the newly proposed block are new, all of the compute
nodes in the network attempt to validate the block (Line 4).
Each compute node provides a vote after validating the block
(i.e., Line 6). If more than 50% nodes agree on the validity
of the new block, the block will be appended both in the
shared storage and the compute nodes, as shown in Lines 17

1856

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 28,2021 at 06:44:27 UTC from IEEE Xplore. Restrictions apply.

and 21 of Protocol 1 respectively. However, if at-least 51%
compute nodes are unable to reach the consensus (i.e., Line
12), then the remote storage node starts to validate the block
through Protocol 1 (i.e., Line 13 in Protocol 2) to achieve
51% consensus jointly from compute nodes and remote storage
node. To minimize the block validation cost, we stop the
consensus attaining process as soon as at least 51% compute
nodes provide consensus, as shown in Line 7.

III. EVALUATION

We have implemented a prototype system of the proposed
blockchain architecture and consensus protocols with Python.
At this point, we only release the core modules of the proto-
type; some complementary components and plug-ins are still
being tested with more edge cases and will be released once
they are stable enough. The source code is currently hosted
on Github. Figure 2 illustrates the overview of the proposed
SciChain architecture. The prototype system currently runs
on a high-performance computing (HPC) system consist of
58 nodes where (i) each node is equipped with 32 cores;
hence each node can be emulated with up to 32 individual
nodes through user-level threads, (ii) ledgers are stored on in-
memory, (iii) shared storage’s ledgers are stored on as files.

A. Experiment Setup

1) Testbed: All experiments with the proposed system are
carried out on a high-performance computing (HPC) cluster
comprised of 58 nodes interconnected with FDR InfiniBand.
Each node is equipped with an Intel Core-i7 2.6 GHz 32-
core CPU along with 296 GB 2400 MHz DDR4 memory.
There is no local disk on compute nodes, which is a typical
configuration on HPC systems; yet, a remote 2.1 PB storage
system is available managed by GPFS [17]. Each node is
installed with Ubuntu 16.04, Python 3.7.0, and NumPy 1.15.4.
We deploy the system prototype mostly on 100 cores.

2) Evaluated Systems: We evaluate the SciChain prototype
against two other blockchain systems. The first blockchain
is a Conventional Blockchain system deployed to a shared-
nothing cluster comprised of 10 nodes interconnected with
Ethernet. Each node in the cluster is equipped with an Intel
Core-i7 2.6 GHz 32-core CPU along with 128 GB 2400 MHz
DDR4 memory. The second blockchain is a Memory-only
Blockchain deployed to the same cluster (i.e., HPC cluster with
58 nodes) same as the proposed system with high-performance
networking interconnections (i.e., InfiniBand, RDMA) without
any persistent storage; this is not a practical solution due to the
lack of data persistence but is considered as the performance
upper bound of the proposed SciChain. We implement all three
blockchain systems in Python and make a reasonable effort in
optimizing all of them.

3) Workload: For micro-benchmarks, we use YCSB work-
load [18] commonly used for transaction evaluation. We map
each provenance record (e.g., file creation or modification)
in a YCSB transaction format before start processing. At
the beginning of the transaction, the system checks whether
the submitted transaction is valid. If so, the statuses of two

[
o
o

80
60
40
20
=)
0 o

Nodes w/ Correct Chains (%)

X |
ol |
wn| &
6

NIRIRINIS NINIRIRIBEIRIRIRIE
S| [O] |Of | N[O || || ||| |©O] [©O
o] (o] || [o] o [[0] |o] |&] [o] [1n] [
12 3 4 5 7 8 9 10 11 12 13 14 15

Number of Executions

Fig. 4. POST guarantees more than 50% of nodes holding valid blocks.

)

5]
S
S
w
a

Baseline SciChain &=z Overhead

Overhead (%)

Block Processing Time (ms

20 40 60 80 100
Number of Nodes

Fig. 5. Latency overhead.

nodes are updated accordingly, followed by the propagation
of the updates to all other nodes in the network. On average,
each block contains about a thousand transactions in our
experiments. We deploy more than one million transactions
(1,036,303) to the system prototype, and compare it to the
other two baseline systems.

B. Reliability and Trustworthiness

This section demonstrates that the proposed POST consen-
sus can be achieved by more than 50% of participants. In
other words, we want to show that introducing the shared
storage as an additional node does not reduce the portion of
good compute nodes to under 51%. To put it another way,
we want to verify, if we try to inject tampered blocks (e.g.,
provenance records) randomly, whether the new consensus
protocol leads to the same longest valid blockchain compared
to other consensus protocols. Note that we prove the safety
and liveness in Section II-B; we will experimentally verify
the trustworthiness and reliability here.

To demonstrate the trustworthiness and reliability, we run
the system prototype given random transactions for 10 minutes
and repeat the execution 15 times, as shown in Figure 4. All
of the 15 executions lead to more than 50% nodes holding
the correct blockchains: 13 out of 15 executions yield more
than 90% validity, while two executions exhibit lower ratios
because we terminate the execution once more than 50% of
nodes hold the correct blocks. The bottom line is that we need
to guarantee at least 51% of nodes’ data are not tampered with,
which is the case.

C. Overhead

This section reports the provenance overhead incurred by
the proposed SciChain. The memory-only baseline system

1857

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 28,2021 at 06:44:27 UTC from IEEE Xplore. Restrictions apply.

10000

Conventional Blockchain
Memory-only Blockchain ==z
SciChain Blockchain ;

1000

Block Processing Time (ms)

Number of Nodes

Fig. 6. Scalability of three blockchain systems.

persists the data provenance to the disk with no security or
audibility guarantees. We turn on SciChain atop the baseline
and measure the end-to-end block processing time compared
to the baseline performance.

As shown in Figure 5, we observe the overhead incurred by
the proposed SciChain is noticeable (25% — 30%) at small
scales of 20 and 40 nodes. This is the price we have to
pay to achieve high security. The good news is, however,
the overhead is reduced to under 20% on larger scales; in
particular, the overhead is only 15% on 100 nodes. That
is, unlike conventional provenance systems whose overhead
increases proportionally to the number of nodes, SciChain’s
overhead ratio does not significantly increase, thanks to the
POST consensus. In the POST mechanism: (i) a block gets
persisted only once after it gets qualified by majority votes; (ii)
the larger the scale, the fewer chances the POST will redirect
the validation to the shared storage that incurs reasonable, if
not negligible, overhead.

D. Scalability

Figure 6 reports the performance of the three systems on
20-, 40-, 60-, 80-, and 100-node scales. The memory-only
blockchain, as expected, achieves the highest performance
(i.e., lowest processing time). The proposed SciChain with
shared storage does not exhibit a significant slowdown than the
upper bound; for instance at 100-node scale, the comparison is
157 ms vs. 311 ms, at the same order of magnitude. However,
the conventional blockchain on 100 nodes appends a new
block in 3,231 ms, significantly slower than SciChain. Specif-
ically, SciChain shows significant speedup in performance

compared with existing systems: 3521?11 =10.4x.

IV. CONCLUSION AND FUTURE WORK

This paper proposes a new blockchain consensus protocol,
namely POST, to enable immutable and autonomous data
provenance for scientific applications deployed to HPC sys-
tems. POST is implemented in a prototype system called
SciChain, the first practical HPC-blockchain system toward
trustworthy data provenance in HPC. The effectiveness and
efficiency of POST experimentally demonstrated through both
micro-benchmarks on up to 100 nodes.

Our future work is two-fold. Firstly, the current POST pro-
tocol does not take into account the energy consumption of the
underlying data movement. We plan to design and integrate a

subsystem for application-specific optimizer regarding energy
consumption. Secondly, at this point, it is unclear how to
migrate the data stored in one specific SciChain instance to
another. This is also a challenge in the blockchain community:
ensuring the atomicity of the transaction migration is far more
complicated than it looks.

ACKNOWLEDGEMENT

This work is in part supported by the U.S. DOE under
contract number DE-SC0020455. This work is also supported
in part by the following grants: National Science Foundation
CCF-1756013, IIS-1838024.

REFERENCES

[1] R. B. Weiss, N. J. Vogelzang, B. A. Peterson, L. C. Panasci, J. T.
Carpenter, M. Gavigan, K. Sartell, E. Frei, and O. R. McIntyre, “A
successful system of scientific data audits for clinical trials: a report
from the cancer and leukemia group b,” JAMA, vol. 270, no. 4, pp.
459-464, 1993.

[2] Data fraud in clinical trials, “https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC4340084/,” Accessed 2020.

[3] The Importance of Data Set Provenance for Science, “https://eos.org/
opinions/the-importance-of-data-set-provenance-for-science,” Accessed
2020.

[4] A. Gehani and D. Tariq, “SPADE: Support for Provenance Auditing
in Distributed Environments,” in Proceedings of the 13th International

Middleware Conference (Middleware), 2012.

[5S] T. Clark, P. N. Ciccarese, and C. A. Goble, “Micropublications: a
semantic model for claims, evidence, arguments and annotations in
biomedical communications,” Journal of Biomedical Semantics, vol. 5,
no. 1, p. 28, Jul 2014.

[6] E. Pettersen, T. Goddard, C. Huang, G. Couch, D. Greenblatt, E. Meng,
and T. Ferrin, “Ucsf chimera—a visualization system for exploratory
research and analysis,” Journal of Computational Chemistry, vol. 25,
no. 13, pp. 1605-1612, Oct 2004.

[7]1 D. Zhao, C. Shou, T. Malik, and I. Raicu, “Distributed data provenance
for large-scale data-intensive computing,” in IEEE International Con-
ference on Cluster Computing (CLUSTER), 2013.

[8] D. Dai, Y. Chen, P. Carns, J. Jenkins, and R. Ross, “Lightweight
provenance service for high-performance computing,” in International
Conference on Parallel Architectures and Compilation Techniques, 2017.

[9] A. Bates, D. J. Tian, K. R. Butler, and T. Moyer, “Trustworthy whole-
system provenance for the linux kernel,” in 24th USENIX Security
Symposium, 2015, pp. 319-334.

[10] X. Liang, S. Shetty, D. Tosh, C. Kamhoua, K. Kwiat, and L. Njilla,
“Provchain: A blockchain-based data provenance architecture in cloud
environment with enhanced privacy and availability,” in /[EEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CC-
GRID), 2017.

[11] A. Ramachandran and M. Kantarcioglu, “Smartprovenance: A dis-
tributed, blockchain based data provenance system,” in Proceedings of
the Eighth ACM Conference on Data and Application Security and
Privacy, ser. CODASPY 18, 2018, pp. 35-42.

[12] P.Ruan, G. Chen, T. T. A. Dinh, Q. Lin, B. C. Ooi, and M. Zhang, “Fine-
grained, secure and efficient data provenance on blockchain systems,”
Proceedings of the VLDB Endowment, vol. 12, no. 9, pp. 975-988, 2019.

[13] Hyperledger, “https://www.hyperledger.org/,” Accessed 2018.

[14] Ethereum, “https://www.ethereum.org/,” Accessed 2018.

[15] A. Al-Mamun, T. Li, M. Sadoghi, L. Jiang, H. Shen, and D. Zhao,

“Hpchain: An mpi-based blockchain framework for data fidelity in high-

performance computing systems,” in Supercomputing, 2019.

A. Al-Mamun, T. Li, M. Sadoghi, and D. Zhao, “In-memory blockchain:

Toward efficient and trustworthy data provenance for hpc systems,” in

IEEE International Conference on Big Data (BigData), 2018.

F. Schmuck and R. Haskin, “GPFS: A shared-disk file system for large

computing clusters,” in Proceedings of the 1st USENIX Conference on

File and Storage Technologies (FAST), 2002.

YCSB, “https://github.com/brianfrankcooper/Y CSB/wiki/Core-

‘Workloads,” Accessed 2018.

[16]

[17]

[18]

1858

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 28,2021 at 06:44:27 UTC from IEEE Xplore. Restrictions apply.

