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Abstract: The paper addresses the problem of robust control of hybrid dynamical systems
with respect to linear-time properties. First, three notions of robust controllers are formulated,
that capture imperfect measurements, actuation errors and delays, and uncertain dynamics,
respectively. Under mild assumptions of uniform continuity on the transition relation, robust
controller synthesis problem with respect to uncertain dynamics is shown to be more general
than those with respect to measurement errors, actuation errors and delays. Hence, the paper
focuses on the latter notion of robust controllers. Next, foundations for abstraction-based robust
controller synthesis are explored, and uniformly continuous alternating simulation relations are
shown to preserve the existence of robust controllers with respect to uncertain dynamics.
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1. INTRODUCTION

Modern embedded software systems consist of complex
software that control safety-critical physical systems as
in autonomous vehicles, smart grids and smart buildings.
Given the safety criticality of these embedded software sys-
tems, formal synthesis has emerged as a rigorous method-
ology for automatically designing correct-by-construction
controllers for complex dynamical systems representing
physical systems. A synthesis algorithm takes as input a
mathematical model of the physical system (plant) and
a formal specification of correctness, and outputs a con-
troller such that the closed-loop system satisfies the speci-
fication. Formal synthesis is a well-studied problem in the
area of formal methods with the focus mainly on discrete
finite-state systems, wherein automata-theoretic methods
are used to compute controllers for objectives ranging
from safety to general linear-time properties specified us-
ing logics such as Linear Temporal Logics or automata-
based formalisms such as Büchi automata Grädel et al.
(2002); Baier and Katoen (2008). Correct-by-construction
synthesis for dynamical systems has gained momentum
in recent years, which consists of an abstraction-based
approach. First, an abstraction of the dynamical system
ẋ(t) = f(x(t), u(t)) is constructed, typically, as a finite-
state game, and an abstract controller is synthesized for
the finite-state game using automata-theoretic methods. A
concrete controller u(t) is then extracted from the abstract
controller. This approach has been investigated extensively
with applications to robot path planning Wongpiromsarn
et al. (2011); Belta et al. (2017); Rungger and Zamani
(2016); DeCastro and Kress-Gazit (2013).
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In this paper, we consider a robust version of the con-
troller synthesis problem, wherein, we desire to synthesize
a controller u(t) such that the closed loop system satisfies
the given specification even in the presence of state mea-
surement errors/sensor noise, actuation errors and delays,
as well as uncertain dynamics, which are practical issues
that arise in an embedded control system. The objectives
of this paper are two fold. First, we intend to formulate
the different notions of robustness required to capture the
deviations introduced in the controller design and imple-
mentation process in the general setting of metric transi-
tion systems that can capture “hybrid dynamical systems”
resulting from the interaction of complex continuous phys-
ical systems and digital controllers. Secondly, the design
of software-controlled physical systems is computationally
complex, and can lead to undecidability for relatively sim-
ple classes of system dynamics Henzinger et al. (1995).
Hence, it is crucial to incorporate abstraction-based de-
sign. However, existing literature on robust controller syn-
thesis using an abstraction-based approach is limited (See
Section 1.1 for a discussion of some of the related work on
robust controller synthesis). Our objective is to develop
the foundations for the abstraction-based design of robust
controllers by understanding the relation between a given
concrete system and an abstract system such that robust
controllers are preserved. Pre-orders such as alternating
simulations and bisimulations Alur et al. (1998) provide
the foundations for abstraction-based design and analysis
of systems. More precisely, if there is an alternating simu-
lation from T1 to T2, then the existence of a controller for
T2 implies the existence of a controller for T1. Here, T2, the
simulating system is interpreted as the abstract/simplified
system on which the controller synthesis is performed.
Our objective is to define pre-orders that, in addition to
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ẋ(t) = f(x(t), u(t)) is constructed, typically, as a finite-
state game, and an abstract controller is synthesized for
the finite-state game using automata-theoretic methods. A
concrete controller u(t) is then extracted from the abstract
controller. This approach has been investigated extensively
with applications to robot path planning Wongpiromsarn
et al. (2011); Belta et al. (2017); Rungger and Zamani
(2016); DeCastro and Kress-Gazit (2013).

� Pavithra Prabhakar was partially supported by NSF CAREER
Award No. 1552668 and ONR YIP Award No. N000141712577.

In this paper, we consider a robust version of the con-
troller synthesis problem, wherein, we desire to synthesize
a controller u(t) such that the closed loop system satisfies
the given specification even in the presence of state mea-
surement errors/sensor noise, actuation errors and delays,
as well as uncertain dynamics, which are practical issues
that arise in an embedded control system. The objectives
of this paper are two fold. First, we intend to formulate
the different notions of robustness required to capture the
deviations introduced in the controller design and imple-
mentation process in the general setting of metric transi-
tion systems that can capture “hybrid dynamical systems”
resulting from the interaction of complex continuous phys-
ical systems and digital controllers. Secondly, the design
of software-controlled physical systems is computationally
complex, and can lead to undecidability for relatively sim-
ple classes of system dynamics Henzinger et al. (1995).
Hence, it is crucial to incorporate abstraction-based de-
sign. However, existing literature on robust controller syn-
thesis using an abstraction-based approach is limited (See
Section 1.1 for a discussion of some of the related work on
robust controller synthesis). Our objective is to develop
the foundations for the abstraction-based design of robust
controllers by understanding the relation between a given
concrete system and an abstract system such that robust
controllers are preserved. Pre-orders such as alternating
simulations and bisimulations Alur et al. (1998) provide
the foundations for abstraction-based design and analysis
of systems. More precisely, if there is an alternating simu-
lation from T1 to T2, then the existence of a controller for
T2 implies the existence of a controller for T1. Here, T2, the
simulating system is interpreted as the abstract/simplified
system on which the controller synthesis is performed.
Our objective is to define pre-orders that, in addition to

Simulation Relations for Abstraction-based
Robust Control of Hybrid Dynamical

Systems

Pavithra Prabhakar ∗ Jun Liu ∗∗

∗ Kansas State University, Manhattan, KS 66503 USA (e-mail:
pprabhakar@ksu.edu).

∗∗ University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
(e-mail: j.liu@waterloo.ca)

Abstract: The paper addresses the problem of robust control of hybrid dynamical systems
with respect to linear-time properties. First, three notions of robust controllers are formulated,
that capture imperfect measurements, actuation errors and delays, and uncertain dynamics,
respectively. Under mild assumptions of uniform continuity on the transition relation, robust
controller synthesis problem with respect to uncertain dynamics is shown to be more general
than those with respect to measurement errors, actuation errors and delays. Hence, the paper
focuses on the latter notion of robust controllers. Next, foundations for abstraction-based robust
controller synthesis are explored, and uniformly continuous alternating simulation relations are
shown to preserve the existence of robust controllers with respect to uncertain dynamics.

Keywords: Hybrid Systems, Robustness, Simulations, Bisimulations, Abstractions

1. INTRODUCTION

Modern embedded software systems consist of complex
software that control safety-critical physical systems as
in autonomous vehicles, smart grids and smart buildings.
Given the safety criticality of these embedded software sys-
tems, formal synthesis has emerged as a rigorous method-
ology for automatically designing correct-by-construction
controllers for complex dynamical systems representing
physical systems. A synthesis algorithm takes as input a
mathematical model of the physical system (plant) and
a formal specification of correctness, and outputs a con-
troller such that the closed-loop system satisfies the speci-
fication. Formal synthesis is a well-studied problem in the
area of formal methods with the focus mainly on discrete
finite-state systems, wherein automata-theoretic methods
are used to compute controllers for objectives ranging
from safety to general linear-time properties specified us-
ing logics such as Linear Temporal Logics or automata-
based formalisms such as Büchi automata Grädel et al.
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simulations and bisimulations Alur et al. (1998) provide
the foundations for abstraction-based design and analysis
of systems. More precisely, if there is an alternating simu-
lation from T1 to T2, then the existence of a controller for
T2 implies the existence of a controller for T1. Here, T2, the
simulating system is interpreted as the abstract/simplified
system on which the controller synthesis is performed.
Our objective is to define pre-orders that, in addition to
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1. INTRODUCTION

Modern embedded software systems consist of complex
software that control safety-critical physical systems as
in autonomous vehicles, smart grids and smart buildings.
Given the safety criticality of these embedded software sys-
tems, formal synthesis has emerged as a rigorous method-
ology for automatically designing correct-by-construction
controllers for complex dynamical systems representing
physical systems. A synthesis algorithm takes as input a
mathematical model of the physical system (plant) and
a formal specification of correctness, and outputs a con-
troller such that the closed-loop system satisfies the speci-
fication. Formal synthesis is a well-studied problem in the
area of formal methods with the focus mainly on discrete
finite-state systems, wherein automata-theoretic methods
are used to compute controllers for objectives ranging
from safety to general linear-time properties specified us-
ing logics such as Linear Temporal Logics or automata-
based formalisms such as Büchi automata Grädel et al.
(2002); Baier and Katoen (2008). Correct-by-construction
synthesis for dynamical systems has gained momentum
in recent years, which consists of an abstraction-based
approach. First, an abstraction of the dynamical system
ẋ(t) = f(x(t), u(t)) is constructed, typically, as a finite-
state game, and an abstract controller is synthesized for
the finite-state game using automata-theoretic methods. A
concrete controller u(t) is then extracted from the abstract
controller. This approach has been investigated extensively
with applications to robot path planning Wongpiromsarn
et al. (2011); Belta et al. (2017); Rungger and Zamani
(2016); DeCastro and Kress-Gazit (2013).
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In this paper, we consider a robust version of the con-
troller synthesis problem, wherein, we desire to synthesize
a controller u(t) such that the closed loop system satisfies
the given specification even in the presence of state mea-
surement errors/sensor noise, actuation errors and delays,
as well as uncertain dynamics, which are practical issues
that arise in an embedded control system. The objectives
of this paper are two fold. First, we intend to formulate
the different notions of robustness required to capture the
deviations introduced in the controller design and imple-
mentation process in the general setting of metric transi-
tion systems that can capture “hybrid dynamical systems”
resulting from the interaction of complex continuous phys-
ical systems and digital controllers. Secondly, the design
of software-controlled physical systems is computationally
complex, and can lead to undecidability for relatively sim-
ple classes of system dynamics Henzinger et al. (1995).
Hence, it is crucial to incorporate abstraction-based de-
sign. However, existing literature on robust controller syn-
thesis using an abstraction-based approach is limited (See
Section 1.1 for a discussion of some of the related work on
robust controller synthesis). Our objective is to develop
the foundations for the abstraction-based design of robust
controllers by understanding the relation between a given
concrete system and an abstract system such that robust
controllers are preserved. Pre-orders such as alternating
simulations and bisimulations Alur et al. (1998) provide
the foundations for abstraction-based design and analysis
of systems. More precisely, if there is an alternating simu-
lation from T1 to T2, then the existence of a controller for
T2 implies the existence of a controller for T1. Here, T2, the
simulating system is interpreted as the abstract/simplified
system on which the controller synthesis is performed.
Our objective is to define pre-orders that, in addition to
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the preservation of controllers, guarantee the preservation
of robustness of the controllers. Our focus in not on the
algorithmic aspects of abstractions, but on the foundations
for the design of abstraction algorithms, namely, to un-
derstand the relation between the given dynamical system
(concrete system) and the abstract system that preserves
the existence of robust controllers. The proofs in the paper
have been eliminated due to lack of space.

1.1 Related Work

Robustness plays a central role in control design, because
imperfections are ubiquitous in the modelling, sensing,
computation, communication, and actuation aspects of
practical control systems. For this reason, robust control
has become a standard topic in control theory Dullerud
and Paganini (2013); Zhou and Doyle (1998). In the
context of embedded and cyber-physical systems, how
to design robust control software has been identified as
one of the major challenges Henzinger (2008). For limited
class of systems modelled as finite-state systems or timed
automata, decision procedures for synthesizing robust con-
trollers have been studied Bloem et al. (2014); Sankur et al.
(2013); Topcu et al. (2012); Majumdar et al. (2011). In
this paper, we are interested in the robust controller syn-
thesis problem for a general class of systems that include
switched and hybrid systems.

One of the promising approaches for effective design of con-
trol software for switched and hybrid systems is through
abstraction-based methods and using notions such as ap-
proximate alternating simulations. Belta et al. (2017);
Kloetzer and Belta (2008); Pola and Tabuada (2009);
Rungger and Zamani (2016); Tabuada et al. (2002);
Tabuada (2009); Nilsson et al. (2017); Reissig et al. (2017);
Zamani et al. (2012). We note that earlier work on approx-
imate alternating simulations Pola and Tabuada (2009);
Zamani et al. (2012) did not directly address robustness
issues as pointed out in Liu and Ozay (2014); Reissig et al.
(2017). We also note that a different quantitative robust-
ness notion (similar to input-output gain) is proposed in
Tarraf et al. (2008) and abstractions that preserve such
robustness notions have also been introduced in Tarraf
(2012); Rungger and Tabuada (2014). These results are
complementary to the results of this paper, because we
focus on robustness of controllers satisfying linear time
properties.

2. PRELIMINARIES

In this section, we introduce formally some preliminary
concepts related to transition systems and controllers.

Given a set A, we use A∗ to denote the set of finite
sequences over A, that is, all sequences w = a0a1 . . . ak,
where ai ∈ A for all 0 ≤ i ≤ k. The i-the element of the
sequence w, namely, ai is denoted by w(i), and the last
element of w, ak, is denoted by last(w). We use |w| to
denote the length of sequence w, namely, k. We use A ·B
to denote the set of all finite sequences ab, where a ∈ A
and b ∈ B.

2.1 Metric Transition Systems.

We will consider transition systems enriched with metric
on both the state space as well as the action space, that can
capture perturbations on the states, inputs, and sampling
times. The actions can be used to model both the control
inputs as well as time delays in a dynamical system. The
correct behaviors of a system are specified as properties
on observable states and inputs and hence, we introduce
both state labels and action labels.

Definition. A metric transition system is a tuple T =
(Q, dQ,A, dA,−→,ΠQ,ΠA,LQ,LA), where

• Q is a set of states;
• dQ : Q×Q → R∞

+ is a (pseudo)-metric on Q;
• A is a set of actions;
• dA : A×A → R∞

+ is a (pseudo)-metric on A;
• −→⊆ Q×A×Q is a transition relation;
• ΠQ is a set of state labels;
• ΠA is a set of action labels;

• LQ : Q → 2Π
Q
is a state labelling function; and

• LA : A → 2Π
A
is an action labelling function.

We will often refer to a metric transition system as just a
system or a transition system. A transition (q, a, q′) ∈−→
states that a system in state q upon taking action a reaches
the state q′; the action a can capture control inputs and/or
time elapse. We will also denote a transition (q, a, q′) ∈−→
as q

a−→ q′. The sets ΠQ and ΠA consist of state and
action labels, respectively, that are interpreted as the
observable part/feature of the state/action. We specify the
correctness of a controlled system using these observations.
We will often use subscripts to refer to the components of a
transition system, for instance, QT will refer to the states
of T and LQ

T will refer to the state labelling function of
T . When it is clear from the context, we will drop the
subscript.

An execution of T is an alternating sequence of (finite or
infinite) states and actions that correspond to a sequence
of transitions, that is, of the form ρ = q0a0q1a1q2a2 . . .,
where (qi, ai, qi+1) ∈−→ for all i ≥ 0. We will also

represent it as ρ = q0
a0−→ q1

a1−→ q2 . . .. We refer to the
sequence of states appearing in an execution as a path,
that is, the path associated with the execution ρ above is
Path(ρ) = q0q1q2 . . .. We refer to the sequence of state and
action labels of an execution as a trace; it is the observable
behavior the system. The trace of the execution ρ is defined
by

Trace(ρ) = LQ(q0)LA(a0)LQ(q1)LA(a1)LQ(q2) . . . .

The executions, paths and traces can be finite or infinite.

We define the states that can be reached from a state q
by applying an action a, using the predicate PostT (q, a)
as follows:

PostT (q, a) = {q′|(q, a, q′) ∈−→T }

We say that an action a is enabled at a state q if
PostT (q, a) �= ∅, that is, there is a q′ such that
(q, a, q′) ∈−→. We denote the set of all actions that are
enabled at q by EnableT (q).
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In this section, we introduce formally some preliminary
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Given a set A, we use A∗ to denote the set of finite
sequences over A, that is, all sequences w = a0a1 . . . ak,
where ai ∈ A for all 0 ≤ i ≤ k. The i-the element of the
sequence w, namely, ai is denoted by w(i), and the last
element of w, ak, is denoted by last(w). We use |w| to
denote the length of sequence w, namely, k. We use A ·B
to denote the set of all finite sequences ab, where a ∈ A
and b ∈ B.

2.1 Metric Transition Systems.

We will consider transition systems enriched with metric
on both the state space as well as the action space, that can
capture perturbations on the states, inputs, and sampling
times. The actions can be used to model both the control
inputs as well as time delays in a dynamical system. The
correct behaviors of a system are specified as properties
on observable states and inputs and hence, we introduce
both state labels and action labels.

Definition. A metric transition system is a tuple T =
(Q, dQ,A, dA,−→,ΠQ,ΠA,LQ,LA), where

• Q is a set of states;
• dQ : Q×Q → R∞

+ is a (pseudo)-metric on Q;
• A is a set of actions;
• dA : A×A → R∞

+ is a (pseudo)-metric on A;
• −→⊆ Q×A×Q is a transition relation;
• ΠQ is a set of state labels;
• ΠA is a set of action labels;

• LQ : Q → 2Π
Q
is a state labelling function; and

• LA : A → 2Π
A
is an action labelling function.

We will often refer to a metric transition system as just a
system or a transition system. A transition (q, a, q′) ∈−→
states that a system in state q upon taking action a reaches
the state q′; the action a can capture control inputs and/or
time elapse. We will also denote a transition (q, a, q′) ∈−→
as q

a−→ q′. The sets ΠQ and ΠA consist of state and
action labels, respectively, that are interpreted as the
observable part/feature of the state/action. We specify the
correctness of a controlled system using these observations.
We will often use subscripts to refer to the components of a
transition system, for instance, QT will refer to the states
of T and LQ

T will refer to the state labelling function of
T . When it is clear from the context, we will drop the
subscript.

An execution of T is an alternating sequence of (finite or
infinite) states and actions that correspond to a sequence
of transitions, that is, of the form ρ = q0a0q1a1q2a2 . . .,
where (qi, ai, qi+1) ∈−→ for all i ≥ 0. We will also

represent it as ρ = q0
a0−→ q1

a1−→ q2 . . .. We refer to the
sequence of states appearing in an execution as a path,
that is, the path associated with the execution ρ above is
Path(ρ) = q0q1q2 . . .. We refer to the sequence of state and
action labels of an execution as a trace; it is the observable
behavior the system. The trace of the execution ρ is defined
by

Trace(ρ) = LQ(q0)LA(a0)LQ(q1)LA(a1)LQ(q2) . . . .

The executions, paths and traces can be finite or infinite.

We define the states that can be reached from a state q
by applying an action a, using the predicate PostT (q, a)
as follows:

PostT (q, a) = {q′|(q, a, q′) ∈−→T }

We say that an action a is enabled at a state q if
PostT (q, a) �= ∅, that is, there is a q′ such that
(q, a, q′) ∈−→. We denote the set of all actions that are
enabled at q by EnableT (q).

A strategy for a transition system T is a partial func-
tion µ:(Q · A)∗Q → A, such that the the action
µ(q0a0q1a1 . . . an−1qn) is enabled at qn. A µ-controlled
execution of a transition system T is an execution of T ,
where for each i ≥ 0, the action ai is chosen according
to the control strategy µ. That is, ρ = q0a0q1a1q2a2 . . . ,
is a µ-controlled execution of T if µ(q0a0q1 . . . ai−1qi) =
ai for all i. µ-controlled paths and traces will be
paths and traces corresponding to µ-controlled execu-
tions. We say that a strategy µ is complete for q if
µ(q0a0q1a1 . . . an−1qn) is defined for every µ-controlled
finite execution q0a0q1a1q2a2 . . . an−1qn, where q0 = q.
Hence, the system does not get stuck if it is following a
certain strategy because of the controller action not being
defined. We will assume that all strategies are complete
with respect to the state under consideration and hence,
will not explicitly state it.

Given a set X, let Xω denote all the infinite sequences
over X. A property over X is a subset of Xω. In general,
the control problem is to construct a strategy µ, given a

system T and a property P over 2Π
Q×ΠA

, such that all
the µ-controlled traces of T are in P.

Definition.[Winning strategy under Ideal assumptions]
Given a transition system T , a state q0 and a property
P, a strategy µ is a winning strategy for T , q0 and P, if
the traces of all µ-controlled executions of T starting at
q0 are in P.

Problem.[Control problem under ideal assumptions] Given
a transition system T , a state q0 and a property P, con-
struct a winning strategy µ for T , q0 and P.

The above control problem is formulated under the ideal
assumption that there are no sensing/actuation errors,
delays or uncertain dynamics. In Section 3, we formulate
control problems which incorporate these imperfections.

2.2 Switched Systems

A switched system S = {fm}m∈M , where M is a finite
set of modes, and for each m, fm : Rn → Rn defines the
dynamics associated with mode m. A function x : [0, T ] →
Rn is said to be a solution of dynamics fm if

dx

dt
(t′) = fm(x(t′)), ∀t′ ∈ [0, T ]. (1)

We say that x is an execution starting from x(0).

We can represent the switched system S as a metric transi-

tion system. Let LQ : Rn → 2Π
Q
and LA : Rd+1 → 2Π

A
be

given labelling functions. The corresponding metric tran-
sition system TS = (Q, dQ,A, dA,−→,ΠQ,ΠA,LQ,LA),
where:

• Q = Rn is the set of states;
• dQ is the Euclidean distance on Q;
• A = R+ ×M is the set of actions;

• dA is a metric onA defined as dA((t1,m1), (t2,m2)) =
|t1 − t2| if m1 = m2, and ∞ otherwise; and

• −→⊆ Q × A × Q is the transition relation that is
defined by

(q, (t,m), q′) ∈−→ if there exists a solution x : [0, t] →
Rn of fm such that x(0) = q, and x(t) = q′.

A switching control is a piecewise constant signal σ :
[0,∞) → M , where for any t, σ(t) specifies the mode in
which the system operates at time t. A periodic switching
control with period τ is a switching control σ such that
σ(t) is constant in the interval [iτ, (i+ 1)τ) for every i. A
switching control σ with period τ can be captured by a
strategy µ such that µ(q0a0q1a1 . . . ai−1qi) = (τ, σ(iτ)).

3. ROBUST CONTROLLER SYNTHESIS PROBLEMS

We defined the control problem under ideal assumptions
where we seek a strategy such that the traces of the exe-
cutions conformant with the strategy satisfy a given prop-
erty. However, a practical implementation of the strategy
will not satisfy the assumptions under which the strategy
guarantees the property. In this section, we propose several
notions of robust strategies that are intended to capture
controllers that are robust to sensor/actuator noise, com-
putation/communication delays and uncertain dynamics.
More precisely, we define three notions of robust strategies:

• 1, δ-robust strategies : Strategies robust to δ-(state)
measurement errors.

• 2, δ-robust strategies : Strategies robust to δ-action er-
rors, that can capture strategies robust to δ-actuation
errors as well as strategies robust to δ-delays.

• 3, δ-robust strategies : Strategies robust to δ-uncertainty
in the dynamics.

Our main result is that under certain constraints on the
transition relation, 3-robust strategies are stronger than
1 and 2-robust strategies in that if there is 3, δ-robust
winning strategy for a system, then there is a 1, δ1 and
a 2, δ2-robust winning strategy for some δ1 and δ2. Next
we formulate control problems which incorporate these
imperfections.

3.1 Control problem with measurement errors

The objective is to synthesize a controller that is robust
to state measurement errors up to a bound δ. More pre-
cisely, we are interested in synthesizing a control strategy
that suggests the next action based on the observed state
sequence ρ̂ = q̂0a0q̂1a1 . . . ak−1q̂k instead of an actual
execution ρ = q0a0q1a1 . . . ak−1qk, where the sensor mea-

surement errors are bounded by δ, that is, dQ(q̂i, qi) ≤ δ
for all i.

Definition. Given a system T , a strategy µ and δ ≥
0, a sequence ρ̂ = q̂0a0q̂1a1 . . . ak−1q̂k is said to be µ-
observable under δ measurement errors in T , q0, if there
is an execution ρ = q0a0q1 . . . ak−1qk of T such that

dQ(q̂i, qi) ≤ δ and µ(q̂0a0q̂1a1 . . . ai−1q̂i) = ai for all
0 ≤ i < k. We call ρ a witness for ρ̂.

Definition. Given a system T , a strategy µ and δ ≥
0, an execution ρ = q0a0q1a1 . . . of T is said to
be δ-measurement error µ-conformant if there is a se-
quence ρ̂ = q̂0a0q̂1a1 . . . such that dQ(q̂i, qi) ≤ δ and
µ(q̂0a0q̂1a1 . . . ai−1q̂i) = ai for all i ≥ 0.
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Definition.[Strategy robust to sensor measurement er-
rors] Given a system T , a state q0 and a property P, a
strategy µ is said to be a 1, δ-robustly winning for T , q
and P if

• for all ρ̂ that is µ-observable under δ-measurement
errors in T , q0, µ(ρ̂) is defined and enabled at all states
in Bδ(last(ρ̂));

• the trace of every δ-measurement error µ-conformant
execution ρ of T from q0 is in P.

The robust control problem with respect to measurement
errors seeks a controller that is robustly winning with
respect to sensor measurement errors.

Problem.[Control problem with measurement errors]
Given a transition system T , a state q0, δ ≥ 0, and a
property P, construct a 1, δ-robust winning strategy µ for
T , q0 and P.

3.2 Control problem with actuation errors and delays

Next, we consider the problem of controller synthesis
under actuation errors and delays. In our framework, the
control input and delays are both captured using actions,
hence, we formulate a controller synthesis problem under
perturbations to actions, wherein a small perturbation of
the action is applied to the plant instead of the action
suggested/computed by the controller.

Definition. Given a system T , a strategy µ and δ ≥
0, a sequence ρ̂ = q0â0q1â1 . . . âk−1qk is said to be µ-
observable under δ action errors in T , if there is an
execution q0a0q1 . . . ak−1qk of T such that dA(âi, ai) ≤ δ
and µ(q0â0q1â1 . . . âi−1qi) = âi for all 0 ≤ i < k.

Definition. Given a system T , a strategy µ and δ ≥ 0, an
execution ρ = q0a0q1a1 . . . of T is said to be δ-action error
µ-conformant if there is a sequence ρ̂ = q0â0q1â1 . . . such
that dA(âi, ai) ≤ δ and µ(q0â0q1â1 . . . âi−1qi) = âi for all
i ≥ 0.

Definition.[Strategy robust to actuation errors and de-
lays] Given a system T , a state q0 and a property P, a
strategy µ is said to be a 2, δ-robustly winning for T , q0
and P if

• for all ρ̂ from q0 that is µ-observable under δ-
action errors in T , µ(ρ̂) is defined and Bδ(µ(ρ̂)) ⊆
EnableT (last(ρ̂));

• the trace of every δ-action error µ-conformant execu-
tion ρ of T from q0 is in P.

The control problem with action errors seeks a a winning
strategy that is robust to action errors.

Problem.[Control problem with action errors] Given a
transition system T , a state q0, δ ≥ 0, and a property P,
construct a 2, δ-robust winning strategy µ for T , q0 and
P.

Remark. Note that actuation errors and delays can be

captured by appropriately defining the metric on the ac-
tion space R+ ×U of a dynamical system. More precisely,

considering dA((t1, a1), (t2, a2)) = |t1 − t2| if a1 = a2
and ∞ otherwise, captures time delays, while considering
dA((t1, a1), (t2, a2)) = ||a1 − a2|| if t1 = t2 and ∞, oth-
erwise, will capture input perturbations, that is, actuator
noise. If we want to consider both delays and actuator
noise simultaneously, we could consider the metric, where
dA((t1, a1), (t2, a2)) = max{|t1 − t2|, ||a1 − a2||}.

3.3 Control problem with uncertain dynamics

Our final notion of robustness intends to capture robust-
ness with respect to measurement errors and action errors.
We consider strategies that are robust to perturbations in
the dynamics which are modelled in our framework using
transitions in a metric transition system.

Definition.[δ-perturbed metric transition system] Given

a metric transition system T = (Q, dQ,A, dA,−→,ΠQ,
ΠA,LQ,LA) and a number δ ≥ 0, define the δ-

perturbation of T , denoted by Tδ, as Tδ = (Q, dQ,A, dA,
−→δ,Π

Q,ΠA,LQ,LA), where −→δ {(q1, a, q2) : ∃(q1, a′,
q′2) ∈−→ s.t. dQ(q1, q

′
1) ≤ δ, dA(a, a′) ≤ δ}.

Definition. Given an execution ρ = q0a0q1a1 . . ., Bδ(ρ) =

{ρ′ | ρ′ = q′0a
′
0q

′
1a

′
1 . . . , ∀i, d

Q(qi, q
′
i) ≤ δ, dA(ai, a

′
i) ≤ δ}.

Definition. Given a system T , state q0 and property P,
a control strategy µ is said to be a 3, δ-robustly winning
strategy for T , q0 and P, if Trace(ρ′) is in P for every
ρ′ ∈ Bδ(ρ) for some µ-controlled execution ρ of Tδ from
q0.

The control problem with uncertain dynamics seeks a a
3, δ-winning strategy.

Problem.[Control problem with uncertain dynamics]
Given a transition system T , a state q0, δ ≥ 0, and a
property P, construct a 3, δ-robust winning strategy µ for
T , q0 and P.

4. RELATION BETWEEN ROBUST CONTROL
PROBLEMS

In Section 3, we defined three robust controller synthesis
problems, and establish the relationship between the three
problems. We show that the control problems with mea-
surement errors and action errors can be transformed to
the control problem with uncertain dynamics.

4.1 Transformation from control problem with measure-
ment errors to that with uncertain dynamics

The broad intuition is that the measurement error can
be embedded into the uncertainty in the dynamics if the
behaviors from the actual state and the measured state
are close.
Definition. We say that T is uniformly continuous with
respect to states, if for any ε > 0, there exists some γ > 0
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Definition.[Strategy robust to sensor measurement er-
rors] Given a system T , a state q0 and a property P, a
strategy µ is said to be a 1, δ-robustly winning for T , q
and P if

• for all ρ̂ that is µ-observable under δ-measurement
errors in T , q0, µ(ρ̂) is defined and enabled at all states
in Bδ(last(ρ̂));

• the trace of every δ-measurement error µ-conformant
execution ρ of T from q0 is in P.

The robust control problem with respect to measurement
errors seeks a controller that is robustly winning with
respect to sensor measurement errors.

Problem.[Control problem with measurement errors]
Given a transition system T , a state q0, δ ≥ 0, and a
property P, construct a 1, δ-robust winning strategy µ for
T , q0 and P.

3.2 Control problem with actuation errors and delays

Next, we consider the problem of controller synthesis
under actuation errors and delays. In our framework, the
control input and delays are both captured using actions,
hence, we formulate a controller synthesis problem under
perturbations to actions, wherein a small perturbation of
the action is applied to the plant instead of the action
suggested/computed by the controller.

Definition. Given a system T , a strategy µ and δ ≥
0, a sequence ρ̂ = q0â0q1â1 . . . âk−1qk is said to be µ-
observable under δ action errors in T , if there is an
execution q0a0q1 . . . ak−1qk of T such that dA(âi, ai) ≤ δ
and µ(q0â0q1â1 . . . âi−1qi) = âi for all 0 ≤ i < k.

Definition. Given a system T , a strategy µ and δ ≥ 0, an
execution ρ = q0a0q1a1 . . . of T is said to be δ-action error
µ-conformant if there is a sequence ρ̂ = q0â0q1â1 . . . such
that dA(âi, ai) ≤ δ and µ(q0â0q1â1 . . . âi−1qi) = âi for all
i ≥ 0.

Definition.[Strategy robust to actuation errors and de-
lays] Given a system T , a state q0 and a property P, a
strategy µ is said to be a 2, δ-robustly winning for T , q0
and P if

• for all ρ̂ from q0 that is µ-observable under δ-
action errors in T , µ(ρ̂) is defined and Bδ(µ(ρ̂)) ⊆
EnableT (last(ρ̂));

• the trace of every δ-action error µ-conformant execu-
tion ρ of T from q0 is in P.

The control problem with action errors seeks a a winning
strategy that is robust to action errors.

Problem.[Control problem with action errors] Given a
transition system T , a state q0, δ ≥ 0, and a property P,
construct a 2, δ-robust winning strategy µ for T , q0 and
P.

Remark. Note that actuation errors and delays can be

captured by appropriately defining the metric on the ac-
tion space R+ ×U of a dynamical system. More precisely,

considering dA((t1, a1), (t2, a2)) = |t1 − t2| if a1 = a2
and ∞ otherwise, captures time delays, while considering
dA((t1, a1), (t2, a2)) = ||a1 − a2|| if t1 = t2 and ∞, oth-
erwise, will capture input perturbations, that is, actuator
noise. If we want to consider both delays and actuator
noise simultaneously, we could consider the metric, where
dA((t1, a1), (t2, a2)) = max{|t1 − t2|, ||a1 − a2||}.

3.3 Control problem with uncertain dynamics

Our final notion of robustness intends to capture robust-
ness with respect to measurement errors and action errors.
We consider strategies that are robust to perturbations in
the dynamics which are modelled in our framework using
transitions in a metric transition system.

Definition.[δ-perturbed metric transition system] Given

a metric transition system T = (Q, dQ,A, dA,−→,ΠQ,
ΠA,LQ,LA) and a number δ ≥ 0, define the δ-

perturbation of T , denoted by Tδ, as Tδ = (Q, dQ,A, dA,
−→δ,Π

Q,ΠA,LQ,LA), where −→δ {(q1, a, q2) : ∃(q1, a′,
q′2) ∈−→ s.t. dQ(q1, q

′
1) ≤ δ, dA(a, a′) ≤ δ}.

Definition. Given an execution ρ = q0a0q1a1 . . ., Bδ(ρ) =

{ρ′ | ρ′ = q′0a
′
0q

′
1a

′
1 . . . , ∀i, d

Q(qi, q
′
i) ≤ δ, dA(ai, a

′
i) ≤ δ}.

Definition. Given a system T , state q0 and property P,
a control strategy µ is said to be a 3, δ-robustly winning
strategy for T , q0 and P, if Trace(ρ′) is in P for every
ρ′ ∈ Bδ(ρ) for some µ-controlled execution ρ of Tδ from
q0.

The control problem with uncertain dynamics seeks a a
3, δ-winning strategy.

Problem.[Control problem with uncertain dynamics]
Given a transition system T , a state q0, δ ≥ 0, and a
property P, construct a 3, δ-robust winning strategy µ for
T , q0 and P.

4. RELATION BETWEEN ROBUST CONTROL
PROBLEMS

In Section 3, we defined three robust controller synthesis
problems, and establish the relationship between the three
problems. We show that the control problems with mea-
surement errors and action errors can be transformed to
the control problem with uncertain dynamics.

4.1 Transformation from control problem with measure-
ment errors to that with uncertain dynamics

The broad intuition is that the measurement error can
be embedded into the uncertainty in the dynamics if the
behaviors from the actual state and the measured state
are close.
Definition. We say that T is uniformly continuous with
respect to states, if for any ε > 0, there exists some γ > 0

such that for all states q0, q1, if d
Q(q0, q1) ≤ γ, then for

each (q0, a, q
′
0) ∈−→, there exists (q1, a, q

′
1) ∈−→ such that

dQ(q′0, q
′
1) ≤ ε.

Theorem. Let T be a metric transition system that is
uniformly continuous with respect to states, q0 be a state
of T and δ > 0. If µ is a 3, δ-robust winning strategy
for T , q′0 and P for every q′0 ∈ Bδ(q0), then there exists
a δ′ > 0 and a strategy µ′ such that µ′ is a 1, δ′-robust
winning strategy for T , q0 and P.

4.2 Transformation from control problem with action
errors to that with uncertain dynamics

Again, the broad intuition is that the action errors can
be embedded into the uncertainty in the dynamics if
behavior of the system in reaction to the actual action
and perturbed action are close.

Definition. We say that T is uniformly continuous with
respect to actions, if for any ε > 0, there exists some γ > 0
such that for all actions a0, a1, if d

A(a0, a1) ≤ γ, then for
each (q0, a0, q

′
0) ∈−→, there exists (q0, a1, q

′
1) ∈−→ such

that dQ(q′0, q
′
1) ≤ ε.

Theorem. Let T be a metric transition system that is
uniformly continuous with respect to actions, q0 be a state
of T and δ > 0. If µ is a 3, δ-robust winning strategy for
T , q0 and P, then there exists a δ′ > 0 and a strategy µ′

such that µ′ is a 1, δ′-robust winning strategy for T , q0 and
P.

Remark. In fact, the proof of Theorem 4.1 only requires
perturbations on the target states in the definition of
Tδ, and similarly, the proof of Theorem 4.2 only requires
perturbations on the actions in the definition of Tδ.

Remark. Note that the computation of δ′ corresponding
to δ in Theorems 4.1 and 4.2 relies on being able to
compute the γ corresponding to ε = δ in Definitions 4.1
and 4.2. If we replace uniform continuity with Lipschitz
continuity, we can get an explicit relation between ε and
γ. Further, note that the strategy µ′ is essentially the same
as µ, hence, 1, δ′ and 2, δ′ strategies can be computed given
a 3, δ strategy.

5. PRE-ORDERS PRESERVING ROBUST
CONTROLLERS

The objective of this section is to investigate pre-orders on
transition systems that “preserve” the robust controllers.
Theorems 4.1 and 4.2 suggest that a 1-robust and a
2-robust strategy can be constructed from a 3-robust
strategy if certain parameters of the uniform continuity
of the transition system can be computed as explained
in Remark 4.2. Hence, we focus on synthesis of 3, δ-
robust winning strategies, that is, the control problem with
respect to uncertain dynamics.

Abstractions are key toward scalable verification and syn-
thesis; the foundations of abstractions lie in understanding

relation between systems that preserve property satis-
faction and existence of controllers. We explore notions
similar to simulations that preserve the existence of robust
controllers.

Definition. Given two metric transition systems T1 =
(Q1, d

Q
1 ,A1, d

A
1 ,−→1,Π

Q
1 ,Π

A
1 ,LQ

1 ,LA
1 ), and T2 = (Q2, d

Q
2 ,

A2, d
A
2 ,−→2,Π

Q
2 ,Π

A
2 ,LQ

2 ,LA
2 ), a pair of relations R =

(RQ,RA), where RQ ⊆ Q1 × Q2 and RA ⊆ A1 × A2,
is said to be an alternating simulation relation from T1
to T2, denoted, T1 �R T2, if the following conditions are
satisfied:

(i) for all (q1, q2) ∈ RQ, LQ
1 (q1) = LQ

2 (q2);
(ii) for all (a1, a2) ∈ RA, LA

1 (a1) = LA
2 (a2); and

(iii) for all (q1, q2) ∈ RQ, for all a2 ∈ EnableT2
(q2), there

exists a1 ∈ EnableT1
(q1) such that (a1, a2) ∈ RA,

and for every q′1 ∈ PostT1
(q1, a1), there exists q′2 ∈

PostT2
(q2, a2) with (q′1, q

′
2) ∈ RQ.

The following definition captures when two executions are
related by an alternating simulation relation.
Definition. Given metric transition systems T1 and T2,
an alternating simulation relation R = (RQ,RA) from
T1 to T2 and two executions ρ = q0a0q1a1 . . . and ρ′ =
q′0a

′
0q

′
1a

′
1 . . . from T1 and T2, respectively, we say that ρ

and ρ′ are related by R, denoted R(ρ, ρ′), if |ρ| = |ρ′|, and
RQ(qi, q

′
i) and RA(ai, a

′
i) for all i ≥ 0.

Alternating simulation guarantees that if states q1 and
q2 are related by RA, then a winning strategy from q2
for a property P guarantees the existence of a winning
strategy from q1. However, a robust winning strategy
from q2 does not necessarily translate to a robust winning
strategy from q1. Hence, we explore pre-orders that can
enforce preservation of robust controllers. We define the
notion of a uniformly continuous alternating simulation
relation inspired by the definition of uniformly continuous
simulations in Prabhakar et al. (2017). First, we define a
uniform continuity of a relation.

Definition. A relation X ⊆ A × A on a metric space
(A, d) is said to be uniformly continuous if for every ε > 0,
there exists a δ > 0, such that for all (a1, a2) ∈ X and
a′1 ∈ Bδ(a1), there exists a′2 ∈ Bε(a2) with (a′1, a

′
2) ∈ X.

A uniformly continuous alternating simulation relation
from T1 to T2 is an alternating simulation relation, such
that the corresponding relations on the states and actions
are uniformly continuous.

Definition. An alternating simulation relation R =
(RQ,RA) from T1 to T2 is said to be uniformly continuous
if both RQ and RA are uniformly continuous relations.

The next theorem essentially states that if two systems are
related by a uniformly continuous alternating simulation
relation, then it preserves robust controllers with respect
to uncertain dynamics.
Theorem. Let T1 = (Q1, d

Q
1 ,A1, d

A
1 ,−→1,Π

Q
1 ,Π

A
1 ,LQ

1 ,

LA
1 ) and T2 = (Q2, d

Q
2 ,A2, d

A
2 ,−→2,Π

Q
2 ,Π

A
2 ,LQ

2 ,LA
2 ) be

metric transition systems and P be a property. Let R =
(RQ,RA) be a uniformly continuous alternating simula-
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tion relation from T1 to T2. Let q1 ∈ Q1 and q2 ∈ Q2 be
two states such that (q1, q2) ∈ RQ. If there is a 3, δ2-robust
winning strategy for T2 with respect to P from q2 for some
δ2 > 0, then there is a 3, δ1-robust winning strategy for T1
with respect to P from q1 for some δ1 > 0.

6. CONCLUSION

In this paper, we formalized the robust controller synthe-
sis problems with respect to sensor measurement errors,
actuation errors and processing delays using a generalized
framework of metric timed transition systems. We showed
that a robust controller with respect to the above pertur-
bations can be computed by synthesizing a controller that
is robust to perturbations in the transitions of the system.
Next, we investigated preorders on systems that preserve
robust controllers, and proposed the notion of uniformly
continuous alternating simulation relations. This will serve
as the foundation for abstraction-based synthesis of ro-
bust controllers. In the future, we intend to investigate
abstraction techniques, including finite-state abstractions,
for the purpose of robust controller synthesis based on
these foundations.
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