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Abstract. In this paper, we investigate the design of a safe hybrid con-
troller for an aircraft that switches between a classical linear quadratic
regulator (LQR) controller and a more intelligent artificial neural net-
work (ANN) controller. Our objective is to switch safely between the
controllers, such that the aircraft is always recoverable within a fixed
amount of time while allowing the maximum time of operation for the
ANN controller. There is a priori known safety zone for the LQR con-
troller operation in which the aircraft never stalls, over accelerates, or
exceeds maximum structural loading, and hence, by switching to the
LQR controller just before exiting this zone, one can guarantee safety.
However, this priori known safety zone is conservative, and therefore,
limits the time of operation for the ANN controller. We apply reach-
ability analysis to expand the known safety zone, such that the LQR
controller will always be able to drive the aircraft back to the safe zone
from the expanded zone (“recoverable zone”) within a fixed duration.
The “recoverable zone” extends the time of operation of the ANN con-
troller. We perform simulations using the hybrid controller corresponding
to the recoverable zone and observe that the design is indeed safe.

1 Introduction

Different types of controller designs have been investigated for aircraft control,
such as Linear Quadratic Regulators [28], Fuzzy Logic (FL) [8], and Artificial
Neural Networks [26]. The LQR controllers provide an optimal controller for
linear time invariant (LTI) systems that minimizes a quadratic cost function
and guarantees stability and robustness. Though the LQR design is not directly
applicable to non-linear systems, often non-linear systems are approximated by
linear systems via linearization around the equilibrium point, thus enabling the
application of the LQR based design. Although the LQR controller provides
good performance for LTI systems [28], studies have shown that the ANN con-
trollers have better performance in the presence of uncertain environments [26].
The ANN controller is especially suitable for adaptive flight control applications,
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where system dynamics are dominated by unknown nonlinearities [19]. An air-
craft can experience a number of issues that may cause failures in the system.
Things like over-acceleration can cause the aircraft to gain too much energy and
enter into unstable modes, while rapid de-acceleration and hard maneuvers will
cause increased structural loading, leading to broken lifting platforms. Another
issue is that of stall, in which the airflow over the lifting section crosses a “criti-
cal angle of attack”, compromising the lift generation. All of these problems can
occur as a function of the control input or as external disturbances, such as high
wind gust, further complicating the problem. Though ANN-based adaptive con-
trollers are capable of handling these situations, guaranteeing safe functionality
of these systems remains a challenge due to the complexity of these controllers.
So, we have LQR-based controllers on one hand, that are efficient in nominal
conditions, and are simple enough to be amenable to analysis, and sophisticated
ANN-based controllers on the other hand that can handle difficult environmental
conditions, but are, at the same time, too complex to be amenable to analysis.
Our solution is a “hybrid controller” consisting of a simplex like architecture [7],
wherein, we switch between the ANN and LQR controller in such a way that
safety is guaranteed by the switching logic, that is, the aircraft is always recov-
erable from a stall within a fixed amount of time if it occurs.

Our broad objective is to find an ANN-based controller that can improve
performance in uncertain environments. To achieve this goal, we need to train
the ANN-controller, however, it is risky to train an ANN controller during a real
flight test as it poses a safety risk. Hence, the solution we propose is to switch
between a traditional LQR controller and the ANN controller in such a way that
safety is guaranteed. More precisely, we allow the ANN controller to operate
while the aircraft remains within a “safe zone” from which the LQR controller
can guarantee that the aircraft never stalls. When the ANN controller is on the
verge of leaving the safe zone, we switch to the LQR controller. However, these
expert determined safe zones are often too conservative (small), thereby not
providing sufficient time of operation for the ANN controller. A longer duration
of operation for the ANN controller is desirable for the learning process, so we
provide a method to extend the safe zone to a larger set (“recoverable zone”),
which guarantees that the aircraft recovers within a fixed amount of time if a stall
occurs. The recoverable zone computation is performed using formal methods
based reachable set computation, thereby providing a formally verified switching
component decision procedure that guarantees the safe operation of the aircraft.

We consider a dynamic model of a fixed-wing aircraft, with six-degrees-of-
freedom (6-DOF), which is used as an experimental platform to employ a hybrid
controller that consists of an intelligent and automatic switching between an
LQR and an ANN based controller. The aircraft dynamics consists of a decoupled
longitudinal and lateral linear time invariant dynamics, with a decoupled state-
feedback LQR controller for each component. For our simulations, we consider
an ANN controller that combines aircraft guidance and control systems and
performs end-to-end mapping from error states to control surface values, in order
to fly along a straight line with steady state wings-level and altitude hold.



568 R. Lal et al.

We have performed Hardware in The Loop (HITL) simulation of the hybrid
controller in conjunction with the the 6-DOF differential equations, on the air-
craft avionics using the open source software, QGroundControl. Our simulations
exhibit that the number of sample iterations for which ANN controller actions
are performed while ensuring safe flying, increases as the learning space (recov-
erable zone) is expanded.

2 Related Work

Artificial Neural Networks have been widely used in many control applications,
such as automatic generation control of interconnected power systems [41],
irrigation scheduling [37], micro-turbine power plant [36], solar binding [4],
robotics [1,6], and aircraft control [17]. ANN is popularly used in flight con-
trol [19], robot control [25] as well as for non-linear systems [42].

Verification has been extensively applied to dynamical systems, and focus
on over-approximation based methods including predicate abstraction [3,22],
state-space exploration based fix-point computation [14], Hamilton-Jacobi based
methods [2], symbolic state space exploration based methods [16], Satisfiabil-
ity Modulo Theory (SMT) based methods [20,21,23,38], and counter-example
guided abstraction-refinement based methods [24,31,32].

Recent studies [40] compare several neural network verification algorithms.
Formal verification of feedforward neural networks with different activation func-
tions, such as ReLU [18] and Lipschitz-continuous functions [33], have been
studied. Different verification problems have been considered including output
range analysis [10], and robustness analysis [15]. Verification methods include
those based on reduction to satisfiability solving [18], optimization solving [12],
abstract interpretation [35], abstraction-refinement [30], and linearization [13].
Verification of ANN with feedback controllers has been explored [11].

In this paper, one of the problems we study is stall. The stall could occur
due to many reasons. Researchers have developed different techniques to avoid
or recover from the stall. Deep stall has been studied [27], which is an uncon-
trollable state at which the angle of attack (AOA) increases automatically and
will be locked at a certain AOA which is far beyond the critical angle of attack.
A stall due to wing has been studied [39]. The stall avoidance/recovery have
been studied [9]. Here, we present a hybrid controller consisting of ANN and
LQR controller similar to simplex design [7], which will not only recover, but
also provide more learning space for the ANN controller to explore. Our hybrid
controller is different from the simplex design [7] in many perspectives. Our
hybrid controller makes the decision between ANN and LQR control input via
safety checking performed based on an under-approximation reach set, which is
computed off-line. However, in the work [7], the analysis is performed based on
an over-approximation reach set. Also, in the work [7], an initial set is known;
however, in our work, a target set (“safe zone”) is known and the initial set is
unknown.



Formally Verified Switching Logic for Recoverability of Aircraft Controller 569

3 Hybrid Controller Architecture

In this section, we provide details of the hybrid controller architecture which is
shown in Fig. 1. It has mainly four components: (a) Aircraft dynamics, (b) LQR
controller (c) ANN controller, and (d) Switching logic. For the aircraft dynamics,
we consider a 6-DOF model of the fixed wing aircraft. The hybrid controller
consists of the LQR and the ANN controller, and the switching logic; the LQR
and the ANN controller each receive the state of the aircraft periodically (which
is obtained from the aircraft dynamics model in the simulations) and compute
the inputs to the aircraft. The switching logic decides which input is fed back to
the aircraft (dynamics) at each sample time, based on the current state of the
system. The state of the system (dynamics) is updated according to the input
selected. We note that the details of the ANN controller is not important for
the correctness of this work, since the safety is guaranteed even when the ANN
control is considered as a black box. However, we adapt the ANN controller
from the work [34] for the ANN component of the hybrid controller. We briefly
describe the important aspects of the aircraft dynamics, LQR controller and the
switching logic.

Fig. 1. Hybrid controller architecture Fig. 2. Switching Logic for LQR
and ANN controller

3.1 Aircraft Dynamics

We start with a brief description of the aircraft states and motion. The aircraft
has 3 axes, the roll axis (I), pitch axis (J) and yaw axis (K) as shown in Fig. 3.
Motion occurs in two planes, the longitudinal, axes (I) and (K), and lateral,
axes (I) and (J), which are often considered to be decoupled.

In the longitudinal plane, the states are, velocity (V ), angle of attack (α),
pitch angle (θ) and pitch rate (q), and control inputs are thrust (δt) and elevator
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Fig. 3. Overview of aircraft

deflection δe. All the states and control inputs are shown in Fig. 3. The angle
of attack (α) is the angle between the roll axis (I) and the direction of velocity
(V ). The pitch angle (θ) is the angle between the roll axis (I) and the horizontal
axis. The pitch rate (q) is the rate of change in the pitch angle θ. When the
pitch angle (θ) changes, the lateral plane rotates and the roll and yaw axes will
change to I1 and K1, respectively. The thrust (δt) generates a force that is used
to move the aircraft forward along the roll axis, and the elevator deflection (δe)
is a control surface located at the rear of the aircraft which primarily controls
the pitch angle (θ). The longitudinal dynamics is a linear dynamics of the form
ẋlon = Alonxlon + Blonulon, where xlon = [V, α, θ, q]′, ulon = [δt, δe]′, and Alon

and Blon are specific matrices.
In the lateral plane, the states are, side-slip angle (β), roll angle (φ), roll rate

(p) and yaw rate (r), and control inputs are aileron deflection (δa) and rudder
deflection (δr). The states and control inputs are shown Fig. 3. The angle of
side-slip (β) is the angle between the roll axis (I) and the direction of incoming
airflow. When the roll axis I rotates, the pitch axis (J) and the yaw axis (K)
will change to J2 and K2, respectively. The roll angle (φ) is the angle between J
and J2. The roll rate (p) is the rate of change in the roll angle (φ). The yaw rate
(r) is the rotational rate of change in the yaw axis (K). The aileron deflection
(δa) is the control surface which is used to control the rotation of the roll axis
(I). The rudder deflection (δr) is the control surface which is used to control the
rotation of the yaw axis (K). The lateral dynamics is a linear dynamics of the
form ẋlat = Alatxlat + Blatulat, where xlat = [β, φ, p, r]′, ulat = [δa, δr]′, and Alat

and Blat are specific matrices.
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3.2 LQR Controller

Linear Quadratic Regulator (LQR) controller for a linear dynamics ẋ = Ax+Bu
is an optimal controller that minimizes a quadratic cost function (J). It is a linear
state feedback controller of the form −Kx, where K is referred to as the gain
matrix. The closed loop dynamics is given by ẋ = (A − BK)x; which is the
system behavior when controller by the LQR controller. Since the longitudinal
and lateral dynamics of the aircraft are decoupled, we have an LQR controller
for each component with gains Klon and Klat, resulting in corresponding closed
loop systems, ẋlon = (Alon − BlonKlon)xlon and ẋlat = (Alat − BlatKlat)xlat.

3.3 Switching Algorithm for the Safety of ANN Controller

Stall is one of the important issues for any aircraft. Stall is a condition in which
the angle of attack surpasses a critical bound and greatly decreases lift genera-
tion. Consequently, the aircraft will start rapidly descending. Additional prob-
lems occur when the aircraft encounters large accelerations, primarily about the
roll and yaw axes, which can lead the aircraft into an unstable spiral mode, a
dangerous and usually unrecoverable event. Finally, rapid maneuvers can lead to
large loads on the aircraft structure, causing permanent deformation or breaking
the structure altogether. Generally, exact constraints for these problems cannot
be found due to the complexity of aircraft motion. However, a set of safe con-
straints has been generated for the testbed aircraft by examining previous flight
test data in which problems did not occur.

The objective of the switching logic is to arbitrate the switching between the
LQR and ANN based controllers, while maintaining safety and at the same time
providing ANN controller the maximum opportunity to operate, and thereby
learn. Our premise is that we have some known safe zone S give by an expert
in which LQR controller actions are safe, that is, if we apply control input u =
−Kx, when x ∈ S, to the LTI dynamics of the aircraft, then the aircraft never
stalls. However, if we apply control input u′ obtained by the ANN controller at
a state x ∈ S, we cannot ensure that the system never stalls. Computing such
a safe zone for an ANN controller would be computationally hard. Hence, the
switching algorithm computes the effect of applying u′ computed by the ANN
controller, and decides to pass it on to the system, if it infers that the system
will be safe in the next step. Otherwise, it outputs the input suggested by the
LQR controller. In either case, it ensures that the system is in the S region at all
times during the operation of the flight. The details of the switching algorithm
are provided in Fig. 2.

The performance of the hybrid controller depends on the safe zone. The safe
zone obtained by expert advice is often conservative. Hence, we provide a method
to extend the safe zone (“recoverable zone”) for which the switching algorithm
guarantees that the system is always recoverable within the fixed duration if it
occurs. Next, we provide the details of computing the recoverable zone.
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4 Computation of Recoverable Zone

In this section, we provide the details of computing a recoverable zone for the
fixed time T > 0. Our broad goal is to compute all those states from which the
given safe zone S can be reached within the time T > 0 for an LTI dynamics
of aircraft which is in the form of ẋ = (A − BK)x, where K is an LQR control
gain matrix. This is the problem of computing the backward reach set of a linear
system

ẋ = Cx (1)

where C = A − BK. The solution of a linear system ẋ = Cx is given by
x(t) = eCtx(0), where x(t) is the state of the system at time t. Hence, we define
the backward reach set for a given linear closed loop system as follows:

Definition 1. [Backward Reach Set] Given a linear closed loop system ẋ = Ax,
a time horizon T > 0, and a final set of states Xf , the backward reach set
ReachB(Xf , A, [0, T ]) is defined as follows:

ReachB(Xf , A, [0, T ]) = {x | ∃ t ∈ [0, T ], eAtx ∈ Xf}.

Next, we formally define the recoverable zone in terms of backward reach set.

Definition 2. [Recoverable Zone] Given system in Eq. (1), a time horizon T >
0, and a safe zone S, a recoverable zone S ′ is defined as follows:

S ′ = ReachB(S, C, [0, T ]).

The computation of the recoverable zone S ′ can be alternatively tackled using a
forward reachability analysis on the following transformed equation.

ẋ = −Cx (2)

We define forward reach set for a given linear closed loop system as follows:

Definition 3. [Forward Reach Set] Given a linear closed loop system ẋ = Ax, a
time horizon T > 0, and an initial set of states X0, forward reach set ReachF (X0,
A, [0, T ]) is defined as follows:

ReachF (X0, A, [0, T ]) = {eAtx0 | ∃ t ∈ [0, T ],∃ x0 ∈ X0}.

Equation (2) is obtained from Eq. (1) by negating the right hand side. The
effect of the transformation is that the system now evolves backward in time.
We notice that the set of states that can reach S within time T from Equation
(1) (ReachB(S, C, [0, T ])) is equal to the set of states reached using Equation (2)
from S in a given time horizon T > 0 (ReachF (S, C, [0, T ])). Next, we formulate
this equivalence of forward and backward reach sets of the two systems, namely
Equations (1), (2) in Theorem 1.
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Theorem 1. Given systems in Equation (1) and Equation (2), a time horizon
T > 0, a safe zone S, we have ReachF (S,−C, [0, T ]) = ReachB(S, C, [0, T ]).

The computation of the exact recoverable zone is complex because the solu-
tion of Equation (2) consists of exponential function, and there are no known
algorithms for solving constraints with exponential functions, unlike solvers for
linear and polynomial functions. Hence, several over-approximation methods
have been investigated [5,16,20,29,31,32]. An over-approximated recoverable
zone violates the property of the recoverable zone, that is, it contains point
that are not guaranteed to reach the safe zone within the time bound. In this
situation, the stall may not be recoverable if it occurs. Therefore, we compute
an under-approximation of the exact recoverable zone S ′ which is conservative,
nevertheless, ensures the safety of the switching algorithm.

4.1 Under-Approximation of Recoverable Zone

In this section, we provide a method to compute an under-approximation of the
exact recoverable zone S ′. While computing under-approximations are in general
hard, we use a simple idea that provides a practically viable under-approximation
for our purposes. Our broad approach is based on sampling, and consists of an
under-approximate reach set which is the union of the reach set at certain time
points, as opposed to all the points in the given interval. We sample the time
interval [0, T ] at sample times that are multiples of r. Then, we compute forward
reach set from safe zone S under Equation (2) at sample times r, 2r, . . . , kr = T
and take their union, that is, the under-approximation of the recoverable zone

denoted Approx(S) is
k⋃

i=0

ReachF (S,−C, ir), where Reach(S,−C, ir) denotes the

forward reach set from S at time ir. Next, we show that Approx(S) is an under-
approximation of the recoverable zone S ′. We formulate this in Theorem 2.

Theorem 2. Given system in Equation (2), a time horizon T > 0, a safe zone
S, we have Approx(S) ⊆ ReachF (S,−C, [0, T ]).

Note that Approx(S) converges to the exact recoverable zone S ′ as r → 0.

5 Experimental Analysis

In this section, we provide the details of our implementation of hybrid controller
architecture. Then, we present the experimental results.

5.1 Experimental Setup

The experimentation method for preliminary concept testing is a Hardware in
The Loop (HITL) simulation. The HITL runs the 6-DOF differential equations,
on the aircraft avionics, which are then propagated using a Runge-Kutta fourth
order integration method.
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Fig. 4. AFS 6.0 Fig. 5. HITL aggressive trajectory

This technique generates all aircraft states and control inputs that are nec-
essary to the operation of the switch. The main advantage of conducting these
simulations as an HITL rather than software simulations is that all the codes
will be tested on the actual hardware used for flight, showcasing any shortcom-
ings in computation power or integration missteps, which may impact flight test
success.

The current avionics, Autopilot Flight System (AFS) 6.0, consists of three
main components. Sensor data and outputs are handled by the Pixhawk 2.1 cube.
The onboard computer which runs the in-house designed guidance, navigation
and control (GNC) algorithms, as well as handles the state emulation is the
Nvidia Tegra Nano. The Tegra Nano is a low cost system, with a quad-core
CPU and a 128 core GPU. The final component is a 900 MHz telemetry unit
which serves as the communication between the aircraft and the ground station,
where the ground station provides a visual representation of the current aircraft
state as well as relevant GNC information. The ground station used for these
simulations is a modified version of the open source software, QGroundControl,
which is also used to generate way-points for the given area of operation. Figure 4
shows both the front and back sides of the custom avionics boards.

While in HITL, the ANN controllers are very stable due to being trained
with similar dynamic models to those that are used to propagate the simulation.
This makes it unlikely to see the switching logic in action as no control inputs
would be deemed unsafe, especially in grid or racetrack patterns that make
up the majority of flight test operations. To circumvent this, an oddly shaped
trajectory, shown in Fig. 5, with multiple sharp turns is used to ensure previously
un-visited states are achieved. The simulation is run for approximately one lap
of the given trajectory for each value of the time horizon shown in the following
section.

5.2 Experimental Results

In this section, we present the simulation results for the performance of hybrid
controller. For the simulation, we consider the safe zone provided by experts,
which are given in Table 1. We run the simulation for different recoverable zones,
which are computed for different values of time horizon T , namely, T = 0.05,
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T = 0.15, T = 0.25, and T = 0.35 with time step τ = 0.05 unit. The simulation
results are shown in Figs. 6 and 7. The simulation results are plotted in Fig. 6
and Fig. 7 for longitudinal velocity and lateral angle of side-slip, respectively.

Fig. 6. Switching between ANN and LQR controller for the longitudinal velocity

Table 1. Safe zone for longitudinal and lateral state variables

Safe Zone V (Feet/sec.) α (Radians) θ (Radians) Q (Radians/sec.) β (Radians) φ (Radians) P (Radians/sec.) R (Radians/sec.)

Min −15 −0.087 −0.262 −0.262 −0.122 −0.785 −0.873 −0.349

Max 15 0.087 0.262 0.262 0.122 0.785 0.873 0.349

In both Figs. 6 and 7, we observe that the recoverable zone expands when
the time horizon T increases.

Fig. 7. Switching between ANN and LQR controller for the lateral angle of side-slip

Also, we observe that the number of sample iterations in which ANN con-
troller actions are performed, increases when the recoverable zone is expanded.
For instance, in Figs. 6 and 7, for T = 0.35, ANN controller actions have been
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performed from the sample iteration 1500 to 3000, which was not the case for
T = 0.25. For clarity, in Table 2, we present the number of sample iterations N
for both ANN and LQR controller in which their actions have been performed,
for different values of time horizon T .

Table 2. Number of sample iterations for ANN and LQR controller

N for T = 0.05 N for T = 0.15 N for T = 0.25 N for T = 0.35

ANN 3181 3269 3295 3345

LQR 220 132 106 56

Total 3401 3401 3401 3401

In Table 2, we observe that N grows for ANN controller when the time horizon
T increases, that is, the recoverable zone is expanded. However, N decreases for
LQR controller when T increases. This validate the fact that hybrid controller
framework provides ample time for the ANN controller to learn while ensuring
a safe flight.

5.3 Practical Challenges

The implementation of the hybrid controller proved to be complex in two ways.
First, the timing of the switching logic was important to the overall safety of the
project. When delays are introduced into the system, the current state of the
aircraft and the information the switch is making the decision on can become out
of sync. If the switching logic is behind the aircraft states it can make incorrect
calls on whether or not the aircraft is still safe, and cause the ANN to overextend
its operation, leading to a loss of control. This is made worse as aircraft have
large inertias and relatively slow time constants on control inputs meaning they
can become uncontrollable much quicker than most dynamic systems. This need
for extreme low latency operation caused many changes in the code structure
including a rewrite from Python to C++ and parallelization of applicable code.
The second practical problem is that the lack of full state feedback and low-
quality sensor data. Two of the aircraft states, angle of attack and sideslip angle,
cannot be directly measured by low cost systems. The easiest solution is to
employ a Kalman filtering technique to estimate these two states. However, if
the aircraft is experiencing a large perturbation away from the trim point, the
Kalman Filter can diverge very rapidly and feed incorrect information to the
switch about the relevant states. On top of this, many of the measured states
are taken using low-cost, off the shelf components. In a similar way, the use of
these components may introduce noise or a bias which could allow the aircraft
to go into the uncontrollable region without alerting the switch or the aircraft
operator. Low pass filtering is applied to attempt to deal with the noise, but the
imparted delay to the sensor data must also be taken into consideration.
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6 Conclusions

We have developed a hybrid controller for an aircraft dynamics which provides
considerable amount of time to the ANN controller to operate and learn, while at
the same time guarantees the safe operation of the flight at all times. In future,
we will consider more sophisticated ANN controllers and investigate methods for
computing larger recoverable zones that allow for further increase of the ANN
operation time. Additionally, experimentation will be done with real flight tests,
moving past HITL simulations.
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