
1.  Introduction
Water resource management in Northern California is uniquely tied to the occurrence of heavy and extreme 
precipitation events during the cold season (November to March). These events are not only responsible 
for major regional floods that threaten the state's water infrastructure (e.g., damaged Oroville Dam spill-
way in 2017; Vahedifard et al., 2017), but they also constitute over 40% of the annual precipitation total 
(Dettinger & Cayan, 2014). As temperatures rise and more water from extreme precipitation manifests as 
early season runoff rather than snowpack (Kapnick & Hall, 2012), it is increasingly important to effectively 
manage the hazards posed by these events while also capturing runoff for water supply later in the summer. 
The design and management of infrastructure for this purpose can benefit significantly from an improved 
understanding of the frequency of extreme precipitation events, including persistence at interannual to 
decadal time scales (Doss-Gollin et al., 2019). Better quantification of natural variability can also help to 
contextualize and interpret observed and anticipated trends in extremes due to climate change (Coumou & 
Rahmstorf, 2012). However, the quantification of extreme precipitation variability is limited by the rarity of 
these events and relatively short (∼100 years) instrumental records. The goal of this study is to reconstruct 
regional extreme precipitation occurrences in the Sacramento River Watershed (hereafter SRW) for the past 
several centuries using tree-ring based moisture proxies across the Western US.

Tree-ring widths are not a natural recorder of extreme precipitation events (Fritts, 1966; Meko & Wood-
house, 2010). Tree growth can saturate after enough precipitation has been delivered and moisture avail-
ability no longer limits growth. Excess runoff instead of soil moisture recharge and differences in the sea-
sonal timing of tree growth and extremes can also confound the relationship between ring widths and 
precipitation totals. However, our previous work (Steinschneider et al., 2016) showed that tree-ring based 
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moisture proxies are strongly related to interannual variability in the frequency of daily extreme precipi-
tation events in much of California, likely because (1) much of the available moisture for tree growth is 
delivered by a small number of extreme events and (2) cold-season extreme events enhance snowpack 
that recharges soil moisture throughout the early growing season (Stahle et al., 2020). Dannenberg and 
Wise (2016) also recently showed that many chronologies across the Western US can capture extreme wet as 
well as dry water-year precipitation totals. While tree-ring widths cannot capture individual extreme events 
in the same way as some other paleo-proxies (e.g., paleostage indicators, Benito & Thorndycraft,  2005), 
our previous work suggests that they can be used in locations like California to infer annual changes in 
the likelihood of such events over time. Such reconstructions may also be possible in other regions around 
the world where extreme precipitation contributes significantly to total precipitation and there is a suffi-
cient record of tree-ring chronologies, for example, basins across the western coastline of North America, 
mid-latitude South America, and the Iberian Peninsula (Gallego et al., 2006; Morales et al., 2020; Natalini 
et al., 2016; Viale et al., 2018).

The structure and path of storms responsible for extreme precipitation in Northern California further raises 
the potential to reconstruct the likelihood of these events using tree-ring proxies. Most extreme precipita-
tion events in Northern California are caused by atmospheric rivers (ARs) (Dettinger et al., 2011). ARs are 
long, narrow, and transient corridors of strong horizontal water vapor transport that are typically associated 
with a low-level jet ahead of the cold front of an extratropical cyclone (Ralph et al., 2018). When ARs are 
faced with orographic lift over the Sierra Nevada and Cascades, they can produce some of the most extreme 
precipitation events in the country (Lamjiri et al., 2017) and can induce significant mudslides and flooding 
(Ralph et al., 2006).

While not all extreme precipitation events in Northern California are caused by ARs, the association is 
strong enough so that spatial patterns of precipitation during ARs may bear significantly on the ability 
to reconstruct extreme precipitation occurrences. The most intense ARs often penetrate past the Sierra 
Nevada and Cascades through low-elevation corridors, delivering precipitation further into the interior of 
the Intermountain West (IMW) and particularly the western portion of the IMW (WIMW) (Rutz & Steen-
burgh, 2012). These low-elevation corridors steer penetrating ARs along preferential pathways, such that 
the location of their moisture delivery in the WIMW is somewhat predictable given the location of AR 
landfall along the coast (Alexander et al., 2015; Rutz et al., 2014, 2015; Swales et al., 2016). This presents 
an opportunity to improve reconstructions of extreme precipitation occurrences along the coast based on 
precipitation recorded in tree-ring chronologies along those preferential pathways, particularly from mois-
ture-sensitive chronologies in the dry interior of the WIMW. Recently, we demonstrated the promise of this 
approach for ARs impacting the Southwest US (Steinschneider et al., 2018). In that study, we showed that 
chronologies across northwestern Arizona, western New Mexico, western Colorado, and central Mexico 
helped develop robust reconstructions of AR landfalls and extreme precipitation occurrences along the 
southern California coastline.

It remains unclear if tree-ring based moisture proxies, especially those in the WIMW, can be used to re-
construct extreme precipitation occurrences in Northern California. In the Southwest, chronologies and 
tree-ring based moisture proxies (particularly those derived from total ring widths) are well suited to iso-
late cold-season precipitation, since warm-season precipitation delivered by the Southwest Monsoon often 
evaporates before reaching the root zone (St. George & Ault, 2014; St. George et al., 2010). In the interior of 
the Pacific Northwest, where many landfalling ARs in Northern California terminate, chronologies exhibit 
mixed signatures of warm- and cold-season precipitation (Dannenberg & Wise, 2016), complicating the 
extraction of a cold-season precipitation signal linked to coastal extremes. In addition, the pathways of ARs 
impacting Northern California are more varied than those in the Southwest US (Alexander et al., 2015). 
This presents unique challenges not faced in our previous reconstructions of precipitation extremes (Stein-
schneider et al., 2018).

Given the above knowledge gap, this study seeks to answer the following questions:

1.	 �Can tree-ring based moisture proxies be used to reconstruct the likelihood of regional extreme precipi-
tation occurrences across the SRW?

2.	 �Do tree-ring based data outside of the SRW, such as elsewhere along the West Coast or in the WIMW, 
improve our reconstruction of extreme precipitation occurrences in the SRW?
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To answer these questions, we first develop a gridded, tree-ring based re-
construction of cold-season precipitation across the Western US. We then 
use this product to reconstruct an index of cold-season extreme precipita-
tion frequency in the SRW. We assess model skill to help identify the ben-
efits and weakness across two model formulations with different spatial 
domains, and then examine the variability of SRW extreme precipitation 
back to 1400 CE.

2.  Data
2.1.  Precipitation

The station-based Global Historical Climatology Network (GHCN; 
Menne et al., 2012) forms the primary source of daily precipitation data 
used in this study. As a first step, any missing daily precipitation total is 
marked as zero if all other stations within 50 km with valid precipitation 
measurements that day reported zero precipitation. This data set is then 
used to gap fill a subset of stations within the SRW (Hydrologic Unit Code 
of 1802). These selected stations had, prior to gap filling, at least 75% of 
daily values in at least half of all calendar months during at least three 
of the four 26-year sub-periods over the period January 1, 1915–March 

31, 2020 (final period is 17.25 years). Thus, gap filling is only applied to stations that already had good data 
coverage throughout 1915–2020. The gap-filling procedure is based on a quantile mapping approach using 
nearby stations, and is described in detail in Text S1. After gap-filling, we ultimately retain 37 stations in 
the SRW (Figure 1) with non-missing daily values on at least 95% of days in each of the four sub-periods 
during 1915–2020.

In addition to the primary, gap-filled station-based data set above, we also employ two other gridded pre-
cipitation data sets. First, a long record (1895–2018) of monthly precipitation observations are taken from 
the 1/24° NOAA Climgrid data set in the continental United States (Vose et al., 2014) and the 0.5° CRU 4.04 
data set in southern Canada and northern Mexico (Harris et al., 2014) to support the cold-season precipita-
tion reconstruction. We aggregate the NOAA Climgrid data to a 0.5° geographic resolution and truncate to 
begin in 1901 for consistency with CRU 4.04. Second, we use daily gridded precipitation data available over 
a shorter period (1950–2013; Livneh et al., 2015) in a diagnostic analysis of extreme events. This product 
has a 6 × 6 km resolution and is scaled on a monthly basis to match the long-term mean PRISM data (Daly 
et al., 1994), which takes into account the extreme topography in the Western US.

2.2.  Tree-Ring Chronologies

For the cold-season precipitation reconstruction we use the same network of western North American 
tree-ring records used by Williams et  al.  (2020a), which is an update of the network used for previous 
hydroclimate reconstructions in western North America (Cook et al., 2010b; Stahle et al., 2020; Williams 
et al., 2020b). The network is composed of 1,620 chronologies of ring-width index (RWI) from the west-
ern North American domain of 24°N-56°N, 102°W-124°W and have continuous data coverage for at least 
1800–1983. Of these chronologies, 1,458, 866, 483, and 332 chronologies extend back to 1700, 1600, 1500, 
and 1400, respectively. An RWI chronology is an average record of standardized annual tree-ring widths 
that have been detrended to remove biological growth trends unrelated to climate (Fritts, 1976). The RWI 
chronologies are calculated from raw tree-ring width measurements, mostly obtained from the Interna-
tional Tree-Ring Databank hosted by NOAA. All chronologies for which the raw ring measurements were 
available are detrended using the state-of-the-art “signal-free” method, designed to preserve maximal dec-
adal-to-centennial growth variability common among individual tree-ring records and therefore due to 
climate (Melvin & Briffa, 2008). These methods are discussed further in other recent publications (Cook 
et al., 2015; Williams et al., 2020b).
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Figure 1.  The extreme precipitation threshold (99.5th percentile of daily 
precipitation in mm/day) at 37 stations across the Sacramento River 
Watershed (SRW).
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3.  Methodology
We first develop a gridded reconstruction of cold-season precipitation across the Western US (west of 100°W 
meridian), which will provide a spatially and temporally complete data set of covariates to predict extreme 
precipitation occurrences in the SRW. We then use an initial set of diagnostics over the instrumental re-
cord to establish the observed spatial patterns of daily precipitation anomalies across the Western US dur-
ing events that deliver extreme daily precipitation in the SRW. Daily extreme events in the SRW are then 
aggregated into a basin-wide cold-season index of regional extreme precipitation occurrences. Penalized 
regression is used to relate this index to the gridded reconstruction of cold-season precipitation over two 
different spatial domains in a cross-validated framework to determine whether paleo-proxy data from the 
coastal region and continental interior can support a reconstruction of SRW extremes. We use the regression 
models to reconstruct the index of SRW extremes back to 1400 CE.

3.1.  Reconstruction of Cold-Season Precipitation Across the Western US

We use the Climgrid-CRU monthly precipitation data set to develop a new gridded 0.5°-resolution recon-
struction of the 5-month standardized precipitation index (SPI; Guttman,  1999; McKee et  al.,  1993) for 
the cold-season (November to March) across the Western US between 1902 and 2018. The SPI expresses 
cold-season precipitation totals as standardized anomalies after the data have been normalized. Our recon-
struction is a direct extension of the SPI reconstruction developed by Williams et al. (2020a) and is similar 
to one produced by Stahle et al. (2020), but ours (and that of Williams et al., 2020a) incorporates a number 
of new RWI chronologies, including new precipitation-sensitive chronologies in the northern Sierra Nevada 
(Lepley et al., 2020). Our reconstruction also retains a higher effective spatial resolution (described below), 
which is important to our goal of detecting nuanced spatial signatures of regional precipitation events.

The SPI reconstruction is developed using the general point-by-point principal-components regression ap-
proach used for many other gridded hydroclimate reconstructions (Cook et al., 2010a; Cook et al., 1999; 
Cook et  al.,  2010b; Cook et  al.,  2015; Cook et  al.,  2004; Palmer et  al.,  2015; Stahle et  al.,  2020; Stahle 
et al., 2016; Williams et al., 2020b). We develop an ensemble of reconstructions with various combinations 
of search radii (the maximum distance between tree-ring chronologies and the center of the reconstruction 
grid cell was allowed to vary from 25 to 250 km), spatial smoothing of the target field (locally averaged SPI 
in a 0.5°, 1.5°, or 2.5° box around each 0.5° grid cell), and calibration period (water years 1902–1983, 1990, 
1995, 2000, or 2005). Our search radii of 25–250 km are small relative to the search radii of 500 and 1,000 km 
used in Stahle et al. (2020), reflecting our prioritization of spatial resolution over high skill in areas with few 
precipitation-sensitive RWI chronologies. In the final SPI reconstruction, we allow these parameters (i.e., 
combination of search radius, target smoothing, and calibration period) to be selected by grid cell so that 
each reconstruction yields the best verifying reconstruction over the maximum length of time. Our recon-
struction differs from that in Williams et al. (2020a) because we allow for multiple calibration periods to be 
considered; Williams et al. (2020a) only used 1902–2000.

The specific combination of calibration period, search radius, and spatial resolution of observations select-
ed for each grid cell is determined with a k-folds (leave-9-years-out) cross-validation approach. Validation 
reconstruction models are iteratively reproduced by withholding all sets of 9 consecutive years from the 
calibration period and reconstruction estimates are made for the withheld years until the full original cali-
bration period is represented by out-of-sample reconstruction estimates. The best verifying reconstruction 
is determined by relating the full calibration period's time series of out-of-sample reconstruction estimates 
to observations, based on the Akaike Information Criterion (Akaike, 1974; Hurvich & Tsai, 1989). Final 
reconstruction skill is reported as the cross-validated R2 between calibration-period observations and the 
corresponding out-of-sample estimates.

Our reconstruction is developed in a nested approach, where even though the reconstruction extends back 
to 1400 CE, it takes advantage of the many RWI chronologies that do not extend back that far. For a given 
grid cell, we initially reconstruct only for the period common to all available tree-ring records within the 
search radius (e.g., back to 1750). Then, the shortest tree-ring record is dismissed and the reconstruction 
process is repeated on the new common period among remaining tree-ring records (e.g., back to 1720), and 

BORKOTOKY ET AL.

10.1029/2020WR028824

4 of 18



Water Resources Research

the original reconstruction is then extended backwards with the new reconstruction values (in this case 
1720–1749).

The final gridded SPI reconstruction provides a spatially and temporally complete data set of covariates that 
can be used to reconstruct extreme precipitation occurrences in the SRW (see Section 3.3). The spatially 
complete nature of the data also allows us to identify spatial patterns in the tree-ring record that best relate 
to extreme precipitation in the SRW.

3.2.  Diagnostic Assessment of Western US Precipitation During Northern California Extremes

Our primary goal is to reconstruct the interannual variability of extreme precipitation frequency in the SRW 
based on reconstructed cold-season SPI across the Western US. To better understand the potential for such 
a reconstruction, we explore the observed (i.e., instrumental record based) space-time characteristics of 
precipitation anomalies across the Western US during and immediately after extreme precipitation events 
in the SRW. The goal is to understand how storms linked to SRW extremes of varying intensity influence 
precipitation over a broader spatial domain, which could be recorded in tree-ring chronologies over that 
broader domain and thus used to support reconstructions of SRW extremes.

This analysis is conducted using data for cold seasons from 1951 onward when daily gridded data are avail-
able across the Western US (Livneh et al., 2015). Extreme precipitation days based on the gap-filled GHCN 
product in the SRW are initially defined using criteria to isolate large-scale extremes that affected many 
stations in the basin. In particular, extreme precipitation days are defined as those days when more than 5%, 
10%, 20%, or 30% of the stations in the SRW exceed their 99.5th percentiles (defined using cold-season days 
with both zero and non-zero precipitation). This classification results in four separate (and nested) sets of 
extreme precipitation days. These sets are then culled to ensure they represent mutually exclusive sets of 
days. That is, the days based on the 30% threshold are removed from the days based on the 20%, 10%, and 
5% thresholds, the days based on the 20% threshold are removed from the days based on the 10% and 5% 
thresholds, and so on. Then, for each of the four mutually exclusive sets of days, extreme precipitation days 
are clustered into events, such that an event can consist of multiple days. If four or fewer non-extreme days 
fall between two extreme precipitation days, then all days in that sequence are considered part of the same 
event. Each event is then extended 2 days beyond the last extreme precipitation day of that event to account 
for the time required for ARs and other storms to penetrate inland.

For each set of mutually exclusive events defined using the GHCN data in the SRW, we characterize pre-
cipitation anomalies across the entire Western US using two metrics and the gridded Livneh data (Livneh 
et al., 2015). These metrics include (1) the percentage of total cold-season precipitation between 1951 and 
2013 for each Livneh grid cell that occurred on days associated with SRW extreme events (as defined above) 
and (2) the minimum precipitation for each Livneh grid cell that occurred during those SRW extreme events 
(expressed as a fraction of the daily average precipitation). We also examine the percentage of total cold-sea-
son precipitation (i.e., the first metric) associated with SRW extreme events inclusively across all sets of 
events (i.e., not separated by the four thresholds). The first metric helps to determine locations across the 
US West Coast and WIMW that receive significant percentages of total precipitation from storms that are 
associated with SRW extremes. The second metric helps identify locations that always receive some precipi-
tation during SRW extremes, ensuring that the percentages given by the first metric are driven by all storms 
associated with SRW extremes rather than just a subset of events. Tree-ring chronologies near locations that 
meet both of these criteria are more likely to record SRW extreme events, as such events consistently and 
significantly influence precipitation at those locations.

3.3.  Reconstruction of Regional SRW Extreme Precipitation Occurrences

3.3.1.  Annual Regional Extreme Occurrence (AREO) Index

The diagnostic assessment in Section 3.2 uses somewhat arbitrary thresholds to provide an intuitive as-
sessment of how precipitation across the Western US varies as extreme precipitation in the SRW becomes 
more regional in nature. Here, we define an index of annual regional extreme occurrence (the AREO) that 
represents the total annual count of extreme event days during the cold season across all 37 stations in the 
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SRW, which is used in our final reconstructions of extreme precipitation frequency. The AREO is calculat-
ed for each cold season simply by summing up the total number of times each of the 37 stations exceeds 
its 99.5th percentile in that year. The index captures regional extreme events because it increases as more 
stations across the region experience extreme precipitation days. The AREO has the benefit of avoiding the 
need to select a number of stations exceeding the 99.5th percentile threshold in order to define a regional 
extreme event day.

3.3.2.  Penalized Poisson Regression

After deriving the annual AREO index, we use a penalized Poisson regression to reconstruct the index using 
data in different spatial domains of the SPI reconstruction:

 
 

 AREO
!

z i
i

i
eP z
z

� (1)

   0log T
i ix� (2)

Here, xi is a K-dimensional column vector of tree-ring based SPI across K grid cells for the ith year ( T
ix  is the 

transpose), λi is the mean estimate for the AREO in year i, and β is a K-vector of regression coefficients. As is 
common in a Poisson regression, λi is log-transformed to ensure non-negativity in the count-based response 
variable (i.e., AREO). Uncertainty around the AREO reconstruction in each year is characterized using the 
fitted Poisson distribution.

We use a penalized Poisson regression to account for the high multi-collinearity between the grid cells 
of the SPI product. In particular, we use elastic net regression (Zou & Hastie, 2005), which is a balance 
between ridge regression (Hoerl & Kennard, 1970) and Least Absolute Shrinkage and Selection Operator 
regression (LASSO, Tibshirani, 1996). The elastic net regression is fit by minimizing the negative log-likeli-
hood function   | AREO,l X  subject to a penalty on the fitted regression coefficients β:
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Here,  2‖ ‖  and  1‖ ‖  are the Euclidean and Manhattan norms of  , respectively,   and α are penalization 
hyperparameters. The parameter   controls the degree of regularization, while α determines the weighting 
between the type of penalty (ridge vs. LASSO). Elastic net promotes group selection, that is, the inclusion or 
exclusion of groups of strongly correlated variables in the model. This penalization approach helps to avoid 
over-fitting but retains groups of potentially important predictors instead of arbitrarily assigning the effect 
to a single variable (as in LASSO). Still, elastic net regression tends to select a sparse number of covariates 
among the original set. The two penalization hyperparameters are selected using a 10-fold cross validation. 
The model is fit using the glmnet package in R.

3.3.3.  Intermodel Comparison and AREO Reconstruction

We fit two separate Poisson regression models using two spatial domains of SPI covariates. The first domain 
consists of SPI grid cells only in the SRW (hereafter SRW-only). The second domain consists of grid cells in 
five states along the Western US coast and the WIMW, including California, Oregon, Washington, Idaho, 
and Nevada (hereafter West Coast + WIMW). These states are chosen based on the diagnostic assessment in 
Section 3.2 and previous work showing the inland trajectories of ARs that make landfall in Northern Cali-
fornia (Rutz et al., 2014). By comparing the performance of these two models, we aim to determine whether 
tree-ring based data outside of the SRW can help improve the reconstruction of the AREO.

For the two models, we use a leave-K-years-out cross validation to assess the skill of these models at predict-
ing the AREO over the instrumental period. For each set of out-of-sample predictions, the entire elastic net 
regression is re-fit, including the penalization hyperparameters. We conduct the cross-validation using two 
K values (K = 1 and K = 9) over two time periods (1916–1983 and 1916–2018). The 1916–1983 time period is 
considered because the SPI reconstruction is based on varying calibration periods, with the earliest ending 
in 1983 (see Section 3.1). Prediction skill is quantified using the log-likelihood of the left-out years, which 
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is an appropriate measure of model skill for the Poisson regression structure used here. We also report the 
rank correlation between observed and cross-validated AREO predictions.

After comparing the out-of-sample fit of the regression models over the instrumental period, we use the 
regression models to reconstruct the AREO back to 1400 CE and assess patterns of low-frequency variability 
using a wavelet analysis. To provide an additional validation of the reconstruction, we evaluate the distri-
bution of the reconstructed AREO during pre-instrumental years (1840–1915) in which written records of 
past floods in the Sacramento Watershed are available (U.S. Army Corps of Engineers, 1999). We compare 
the distribution of the reconstructed AREO in flood and non-flood water years during this period and assess 
significance using a t-test. Large differences in the AREO distribution between flood and non-flood years 
suggests the reconstructed AREO is able to capture regional extreme events in the SRW.

We assess whether there are substantial differences between the reconstructions across the different regres-
sion models (SRW-only vs. West Coast + WIMW). In particular, we are interested in whether the models 
diverge in either the pre-instrumental or the instrumental records for large predicted AREO values, and if 
so, what drives the divergence. To support this assessment, we select the 20 years in which the two AREO 
reconstructions diverge by the greatest amount, but at least one of the reconstructions predicts a large 
AREO value (greater than one standard deviation of the instrumental period mean). For these years, we ex-
amine the spatial patterns of the gridded SPI to identify patterns that may cause the model reconstructions 
to diverge.

Finally, we consider how the model reconstructions change if they are conditioned on the reconstruction 
skill of the SPI being used as covariates. Specifically, we refit the models and repeat the intermodel compar-
ison, but only using as covariates (1) SPI grid cells with a cross-validated skill above a minimum threshold 
and (2) SPI reconstructed only using tree-ring chronologies that extend all the way (rather than partially) 
back to 1400.

4.  Results
4.1.  Validation and Reconstruction of Cold-Season SPI

Figure 2 shows the cross-validated reconstruction skill (R2) of the gridded, cold-season SPI. Skill is presented 
as the leave-9-out coefficient of determination between the reconstruction estimates and SPI observations 
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Figure 2.  Cross-validated R2 for the gridded, cold-season standardized precipitation index (SPI) based on leave-9-out predictions of the SPI between 1902 and 
1983. Results are shown for reconstructions using tree-ring chronologies that extend back to various points in time. The locations of the chronologies used in 
the reconstructions back to the various points in time are shown as points. White areas: Reconstructions were not feasible due to the unavailability of tree-ring 
chronologies extending back to a given map's year of focus. Parentheses: Average R2 within the SRW (violet boundary).



Water Resources Research

between 1902 and1983, and is shown for multiple versions of the recon-
struction only using tree-ring chronologies that extend back to various 
points in time. Locations of these chronologies are also shown.

Several insights emerge from Figure  2. First, the reconstructions that 
extend back to 1400 CE are skillful in multiple regions of the western 
United States, including southern and central California, central Oregon, 
and across much of the Southwest in Arizona, New Mexico, Colorado, 
and Utah. In some of these regions, including south-central California, 
R2 values exceed 0.75, and in the most southern portions of the SRW, R2 
values exceed 0.4. Second, as additional tree-ring chronologies become 
available over the centuries following 1400, SPI reconstructions become 
more skillful, particularly in areas of Northern California. This transition 
to enhanced skill is most apparent when tree-ring chronologies that ex-
tend back to 1550 are included due to the unique precipitation sensitivity 
of blue oak records in Northern California, which only extend back to 
the mid-1500s (Williams et al., 2020a). Finally, regions in central Idaho 
and northern Nevada consistently exhibit a low level of reconstruction 
skill, explaining approximately 10%–20% of the historic variability. This 
holds even when reconstructions utilize a large number of available 
chronologies and only extend back to 1750. This last result has impor-
tant implications for the reconstruction of SRW extremes using the West 
Coast + WIMW model, which will be discussed below.

4.2.  Diagnostic Assessment of Western US Precipitation During 
SRW Extremes

In the SRW, 99.5th percentile values of daily precipitation exceed 
100 mm/day at stations in the Sierra Nevada, while lower values occur 
across the Central Valley (see Figure 1). Based on these percentiles, we 
identify 126, 73, 57, and 23 (all mutually exclusive) days with extreme 
precipitation occurring across at least 5%, 10%, 20%, and 30% of the 37 
stations, respectively. We note that 87%, 88%, 100%, and 100% of these 
days were associated with ARs, based on a catalog of daily AR landfalls 
(Gershunov et al., 2017) along the Northern California coastline between 
37°N and 42°N (allowing for a 1-day lag between AR landfall and ex-
treme precipitation). The extreme precipitation days were clustered into 
events (described in Section 3.2), with some events lasting up to 7 days. 
During these events, there was substantial precipitation delivered across 
the Western US (Figure 3). Regardless of the threshold on the number 
of stations, there are regions in the Sierra Nevada with 5%–10% of total 
cold-season precipitation associated with regional SRW extreme events 
(Figures 3a–3d). In addition, similar ranges of total cold-season precipita-
tion are associated with all sets of extremes in certain areas of the WIMW, 

such as in the rain shadow of the Cascades, central Idaho, and northern Nevada. Importantly, if we include 
all days during events wherein at least 5% of the stations in the SRW crossed the threshold (i.e., all days con-
sidered in Figures 3a–3d), 25%–40% of the total cold-season precipitation is associated with SRW extreme 
events in regions of Northern California and parts of central Idaho (Figure 3e). This raises the potential that 
reconstructions of cold-season precipitation in regions beyond the SRW contain useful information about 
past SRW extremes.

The minimum precipitation delivered during SRW extreme events highlights similar locations (Figures 3f–
3i), particularly as the criterion for extreme events grows more stringent (i.e., a higher percentage of stations 
crossing their 99.5th percentile). For instance, during events when 30% of stations in the SRW exhibit ex-
treme precipitation, significant positive precipitation anomalies always occur in central Idaho and eastern 
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Figure 3.  (a–d) The percentage of cumulative, cold-season precipitation 
delivered by mutually exclusive events when precipitation at 5%, 10%, 20%, 
and 30% of SRW stations exceeded the station-specific 99.5th percentile 
calculated for cold seasons between 1951 and 2013. (e) The percentage of 
cumulative, cold-season precipitation delivered during all events in which 
precipitation in at least 5% of SRW stations exceeded the station-specific 
99.5th percentile (i.e., inclusive of all events in a–d). (f–i) The minimum 
precipitation amount delivered across the sets of extreme events, where 
different events can be selected for each grid cell and amounts are 
expressed as a (non-dimensional) factor of the daily mean value.
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Oregon (Figure 3i). It is worthwhile to note that the spatial structures in 
Figures 3e and 3i resemble the path of an inland penetrating AR striking 
Northern California (Rutz et  al.,  2015), emphasizing the link between 
the path of these ARs and moisture delivered further into the continen-
tal interior. The results in Figure 3i suggest that as extremes in the SRW 
become larger in spatial extent, there is a higher likelihood that precipita-
tion will be delivered to locations further inland in the WIMW. However, 
only ∼8% of all extreme event days identified in this work fall into the set 
with 30% of stations exhibiting extreme precipitation. If fewer stations 
in the SRW experience extreme precipitation, minimum precipitation 
anomalies significantly above zero are only seen in Northern California 
(Figures 3f–3h). This suggests that as extreme events become more local-
ized, locations in the WIMW do not always receive a precipitation signal 
from those events.

4.3.  Intermodel Comparison and AREO Reconstruction

To systematically characterize regional extremes in the SRW, we define 
the AREO index as the cold-season count of the total number of individ-
ual extreme precipitation days across all stations. The AREO index ranges 
from 0 to 126 with a standard deviation of ∼26, and its distribution is 
right-skewed. It is most strongly correlated with the monthly precipita-

tion totals of December to February, with weaker correlations during other cold season months (Figure S1). 
Figure 4 shows the Spearman rank correlation between the instrumental AREO and the gridded tree-ring 
based SPI extended through 2018 with observations. The highest correlation coefficients occur in the SRW 
region, with values reaching 0.75, suggesting a strong connection between the reconstructed SPI and num-
ber of SRW extremes. High correlation values (>0.5) also extend into eastern Oregon, northwestern Ne-
vada, and central Idaho, exhibiting a spatial structure that reflects the path of inland penetrating ARs (Rutz 
et al., 2015).

In the experimental design, two penalized Poisson regression models were developed for the AREO, each 
using data from the SPI over two different spatial domains (SRW-only or West Coast + WIMW). Figures 5a 
and 5b shows the selected regression coefficients from these two models (i.e., the β values in Equation 2). 
The penalized regressions select groups of SPI grid cells as covariates that tend to provide the best predic-
tions of the AREO while minimizing collinearity among the covariate set, which explains the relatively 
sparse number of covariates selected. For the SRW-only model, the largest positive regression coefficients 
are located in the central-eastern portion of the basin (Figure 5a). These grid cells fall in the Sierra Nevada 
range and exhibit some of the highest correlations with the AREO (Figure 4). In the West Coast + WIMW 
model, the strongest coefficients are also found in the SRW (Figure 5b). However, there are also selected grid 
cells far outside of California, including south-central Oregon and central Idaho. These locations align with 
those regions emphasized in Figure 4.

Figure  5c shows the leave-one-out predictions of the AREO from the two models. Table  1 presents the 
log-likelihood and Spearman rank correlation over two sets of years (1916–1983 and 1916–2018) of obser-
vations and out-of-sample predictions for both leave-one-out and leave-nine-out cross-validations. We note 
that these results are based on models fit between 1916 and 2018 (including instrumental data), but the 
results are largely unchanged if the models are refit only using data from 1916 to 1983.

Overall, both models exhibit good skill, with cross-validated Spearman rank correlations ranging between 
0.73–0.77 and 0.75–0.76 for leave-one-out and leave-nine-out predictions, respectively (Table 1). Few dis-
crepancies emerge when comparing the SRW-only and West Coast + WIMW regression models over the in-
strumental period. The West Coast + WIMW model has slightly better log-likelihood and correlation scores 
when tested over 1916–2018, but the SRW-only model has slightly better scores when tested over 1916–1983. 
During extreme years, the differences between models are small. For instance, using the 10 largest and 
smallest AREO years, the mean squared error for leave-one-out predictions under the SRW-only model and 
the 1916–2018 evaluation period are 10.1 and 3.55, respectively; for the West Coast + WIMW model, these 
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Figure 4.  Correlation (Spearman) between the instrumental annual 
regional extreme occurrence (AREO) index and the gridded SPI 
reconstruction extended with observations (1916–2018 CE). Regions in 
white represent areas where reconstructions of SPI back to 1400 CE were 
not feasible due to the unavailability of tree-ring chronologies.
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values are 10.71 and 3.91. Both models tend to underpredict the magnitude of some peak AREO values, 
particularly in 1956 and 1963, and overpredict others (1974 and 1978). However, the models are generally 
able to distinguish between low, average, and high AREO years. Overall, the two models perform similarly, 
which is not unexpected given their similar coefficient weighting of SPI data from the SRW (Figures 5a 
and 5b). The discrepancies that do emerge highlight how reconstructed SPI data outside of the SRW can 
modulate the signal from that region. This is explored further when examining the reconstruction of the 
AREO from both models, discussed next.
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Figure 5.  The regression coefficients of the elastic net Poisson regression for (a) the SRW-only and (b) the West Coast + WIMW models. Regions in gray have 
coefficients equal to 0, while regions in white were not included in the regression. (c) Time series of the observed and leave-one-year-out predicted AREO for 
the SRW-only and West Coast + WIMW models. The red faded region represents the 95% confidence interval of the Poisson distribution under the SRW-only 
model.

Model

Leave-one-out Leave-nine-out

1916–2018 1916–1983 1916–2018 1916–1983

SRW-only −637.33 (0.75) −421.74 (0.77) −641.46 (0.75) −430.53 (0.76)

West Coast + WIMW −629.52 (0.76) −456.93 (0.73) −632.84 (0.76) −457.42 (0.75)

Note. The regression models are developed using data from 1916-2018.

Table 1 
The Log-Likelihood (and Spearman Correlation) Calculated for Leave-One-Out and Leave-Nine-Out Predictions Over 
Two Different Time Periods
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Figure 6 shows the distribution of the reconstructed AREO between 1840 and 1915 from the two models 
during years in which floods were and were not recorded in the SRW over that period. Flood years include 
1850, 1853, 1862, 1868, 1878, 1881, 1896, 1890, 1907, and 1909 (U.S. Army Corps, 1999). Both models re-
construct significantly higher AREO values during known flood years compared to non-flood years (t-test 
p-values of 0.0005 and 0.001 for SRW-only and West Coast + WIMW models, respectively), with the mean 
AREO during flood years estimated to be approximately one standard deviation above the mean AREO in 
the instrumental period. The separation of median AREO values between flood and non-flood years is larg-
er for the SRW-only model, but that model also predicts larger AREO values for some non-flood years. Con-
versely, the West Coast + WIMW model predicts a smaller separation in the central tendency of the AREO 
distribution across flood and non-flood years, but reduces the values of the AREO in some non-flood years.

Figure 7 shows the reconstructed AREO using the two regression models, as well as their difference. The 
reconstruction is extended back to 1400 CE. A high AREO threshold of 60 (one standard deviation above the 
mean AREO in the instrumental period of 1916–2018) is also superimposed on Figure 7. This threshold was 
chosen to isolate the largest AREO values in the historic record (1916, 1938, 1940, 1956, 1963, 1967, 1982, 
1983, 1986, 1995, 1997, 2006, and 2017) and is used to highlight other extremes across the reconstruction.

Similar to their behavior in the instrumental record, the reconstructions from both models are consistent in 
terms of the timing of past extremes in the pre-instrumental record. Their correlation patterns against the 
SPI over the entire reconstruction period (1400–2018) are also quite similar (Figure S2). Both models identi-
fy a series of events that span from the mid to late 1500's to around 1700, and from the late 1700's to the early 
1900's. At least one of the reconstructions (and often both) identifies peak AREO events (greater 60) in 1587, 
1599, 1641, 1661, 1672, 1697, 1789, and 1825. There is a noticeable dearth of events between 1400 and 1550, 
a period reconstructed by Williams et al. (2020a) to have had remarkably little high-frequency variability in 
cool-season precipitation in the Sierra Nevada.

While the timing of AREO peaks is very similar between the two reconstructions, they do occasionally di-
verge (Figure 7c). The West Coast + WIMW model generally predicts lower AREO peaks as compared to the 
SRW-only model, as indicated by the tendency toward large positive differences. To better understand these 
differences, we selected 20 years with the highest discrepancy between the two reconstructions but also in 
which at least one of the reconstructions estimates the AREO to be higher than 60. We then clustered these 
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Figure 6.  Box plots of the reconstructed AREO during flood years and non-flood years in the Sacramento River 
Watershed between 1840 and 1915 for the (a) SRW-only and (b) West Coast + WIMW models.
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20 years of SPI data into three groups based on a visual inspection of their spatial patterns. Figure 8 shows 
composite maps of the SPI anomalies across these three groups of years (SPI maps for individual years 
are shown in Figure S3). The first group (Group a; Figure 8a) exhibits significant SPI anomalies along the 
West Coast, from Northern California through Oregon and into Washington (1582, 1587, 1599, 1641, 1672, 
1697, 1876, and 1974). The second group (Group b) exhibits a more southerly track of positive SPI anom-
alies along all of California and into Nevada, with negative SPI anomalies further to the north (Figure 8b; 
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Figure 7.  (a and b) The annual reconstruction of the AREO using the SPI from the two nested models. The annual reconstructions are also smoothed with a 
10-year rolling average (bold). The faded region represents the 95% confidence interval of the Poisson distribution. The colored horizontal lines represent the 
mean reconstructed AREO of each model. The dashed horizontal like represents the threshold used to identify large AREO values. (c) The difference between 
the reconstructed AREO between the two models (SRW-only minus West Coast + WIMW). The colored horizontal line is fixed at 0, and the bold line shows a 
10-year rolling average.

Figure 8.  Composites of SPI anomalies for 20 years in which the reconstructions from the two models diverge by the 
greatest amount and AREO estimates from at least one of the models exceeds 60. These 20 years are first clustered into 
three groups (a–c; see text for description) based on their spatial pattern of SPI.
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1661, 1734, 1878, 1890, 1914, and 1998). The third group (Group c) exhibits positive and mostly uniform 
SPI anomalies across the entire West Coast and WIMW (Figure 8c; 1557, 1596, 1825, 1866, 1982, and 1995).

Two major insights emerge from Figure  8. First, in all instances, significant positive SPI anomalies are 
predicted across the Western US, not just in Northern California. However, the positions of these posi-
tive anomalies vary significantly across the groups, and are often coupled with neutral values or negative 
anomalies elsewhere. In Group (a) years when positive SPI anomalies suggest a coastal track for wet condi-
tions, other regions of the WIMW (e.g., central Idaho) exhibit near-neutral or even negative SPI anomalies. 
During some of these years (1641, 1587, 1599, and 1697), the differences between the SRW-only and West 
Coast + WIMW models reach their highest levels (with SRW-only AREO predictions being much greater). 
In Group (b) years when SPI anomalies are most positive in the south, SPI anomalies in parts of Wash-
ington, Oregon, and Idaho are either neutral or negative. In both of these cases (Figures 8a and 8b), the 
SRW-only model always predicts larger AREO values than the West Coast + WIMW model. These results 
suggest that the SPI reconstruction likely captures multiple pathways for ARs delivering extreme precip-
itation to the SRW, and this causes the West Coast + WIMW model to predict lower values of the AREO 
compared to the SRW-only model.

The second insight relates to instances when the West Coast + WIMW model predicts larger AREO values 
compared to the SRW-model. These instances occur exclusively during Group (c) years when SPI anomalies 
are more uniformly positive across most of the West. Specifically, in some years, positive SPI anomalies in 
Northern California are weak compared to regions outside of California (1557, 1596), and in these years, 
the West Coast + WIMW model predicts larger AREO values (see Figure S3). Some years in the late 19th 
and early 20th centuries with known flood events exhibit a similar pattern (1862, 1938, 1983, and 1997; not 
shown), and the West Coast + WIMW model also predicts larger AREO peaks than the SRW-only model in 
those years. Therefore, there are instances when the tree-ring based reconstructions of SPI may be better 
able to identify extremes in the SRW using anomalies outside of California. However, this behavior is not 
consistent across most years, and the SRW-only model still predicts larger AREO values more frequently.

To characterize low-frequency variability within the two AREO reconstructions, Figure 9 shows the results 
of a wavelet analysis based on a Morlet wavelet (Torrence & Compo, 1998). The wavelet spectra are very 
similar across the SRW-only and the West Coast + WIMW reconstructions. In both reconstructions, the 
AREO exhibits significant low-frequency variability within the 2–8 year band. This mode of variability is 
most active between 1550–1650 and 1750 onwards, while it is reduced between 1650–1750 and noticeably 
absent prior to 1550. There is also a 10–20 year oscillation in the latter half of the 20th century in both time 
series, which also re-emerges in the West Coast + WIMW reconstruction directly prior to 1800 and to a 
lesser extent in the SRW-only reconstruction prior to 1600. This signal is consistent with the 13–15 year 
cyclicity in Western US cold-season precipitation evaluated by Johnstone (2011) and Williams et al. (2020a), 
and was shown by Dettinger and Cayan (2014) to coincide with an approximately 15-year periodic signal in 

BORKOTOKY ET AL.

10.1029/2020WR028824

13 of 18

Figure 9.  Wavelet power spectra for the SRW-only and the West Coast + WIMW AREO reconstructions. The areas within the shaded black boundary are 
significant at the 90% significance level.
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AR landfalls in Northern California. In addition, there is a 40-year signal in both reconstructions around the 
turn of the 20th century, but this oscillation is absent elsewhere in the time series.

Finally, as a sensitivity test we refit alternate AREO models based only on SPI grid cells for which the 
cross-validated R2 exceeded 0.25. This prevents the AREO reconstruction from being influenced by areas 
where SPI reconstruction skill is poor such as northern Nevada and central Idaho (see Figure  2). With 
these areas removed, the new West Coast + WIMW model primarily selects as covariates SPI grid cells in 
the SRW and central Oregon (Figure S4), causing the SRW-only and West Coast + WIMW reconstructions 
to become more similar (Figure S5). In addition, we note that these alternate versions of the models per-
form marginally better than our primary AREO models that were developed without a screening on the 
SPI grid cells. For example, SRW-only leave-one-out predictions for key peak AREO years improve (1938, 
1940, 1986, 1997, and 2017; see Figure S4), and the Spearman correlation and log-likelihood values reach 
0.77 and −625.84 for the 1916–2018 period, which is a modest improvement over the values in Table 1 (0.75 
and −637.33). In addition, we refit alternate AREO models using SPI reconstructions made only with RWI 
records that extend back to 1400. The leave-one-out Spearman correlation and log-likelihood values for this 
alternate SRW-only model are 0.7 and −797.8, similar to the values in Table 1, albeit with some loss of skill 
that is expected given that relatively few RWI chronologies extend back to 1400. Overall, the results of this 
latter sensitivity test add confidence that our final AREO reconstructions in Figure 7 maintain sufficient 
skill back to 1400 to be informative.

5.  Discussion and Conclusion
This study explored the feasibility of reconstructing the interannual variability of extreme precipitation fre-
quency in the SRW over the past several centuries. An analysis of instrumental-period precipitation across 
the Western US during SRW extremes highlighted key regions in California, the West Coast, and the WIMW 
(e.g., central Oregon and Washington, northern Nevada, central Idaho) that receive significant precipitation 
during these extreme events. This result underscored the possibility that precipitation-sensitive tree-ring 
chronologies from these regions might be useful in reconstructing SRW extreme precipitation events. To 
test this, we first created a gridded reconstruction of cold-season SPI across the West, which is an extension 
of the reconstruction presented in Williams et al.  (2020a). This gridded reconstruction filtered the tree-
ring chronologies into a spatially and temporally continuous data set useful for the reconstruction of SRW 
precipitation extremes, and serves as a stand-alone product useful for understanding past cold-season pre-
cipitation variability across the West. Results showed that the SPI reconstruction was skillful across much 
of the West back to 1400 CE, including southern portions of the Sacramento Valley and Central Oregon. 
Skill improved across the SRW when reconstructions began in 1550 CE. However, regions in the northern 
half of the West, including central Idaho, northern Nevada, and Washington, exhibited only modest skill 
throughout the reconstruction period.

We then developed an annual index of regional extremes (the AREO) and fitted penalized regression mod-
els using the reconstructed SPI within two nested regions (SRW-only vs. West Coast + WIMW). The two 
models performed similarly over the instrumental period, and were generally able to identify historical 
years with high, mid, and low occurrences of precipitation extremes. The models also were similar in their 
ability to separate flood from non-flood years in the 1840–1915 period, although the SRW-only model was 
arguably better at capturing extreme events. In the reconstruction, both models identified similar timing of 
extreme events over the last several centuries, but they diverged significantly in certain years.

The results from the pre-instrumental period lead to questions about why the West Coast + WIMW mod-
el generally under-predicted extremes compared to the SRW-only model, even though it did occasionally 
exhibit better AREO predictions in known extreme event years. The answer is likely related to two factors. 
First and most importantly, SPI reconstructions in central Idaho and northern Nevada exhibited relatively 
low skill, and this likely degraded the AREO reconstructions of the West Coast + WIMW model. In general, 
screening SPI covariates based on SPI reconstruction skill improved out-of-sample AREO predictions, and it 
reduced discrepancies between the SRW-only and West Coast + WIMW models. This highlights a limitation 
of the approach taken in this work that was not seen in a similar study in the Southwest US (Steinschneider 
et al., 2018): Cold-season precipitation totals in the continental interior that could be good proxies for the 
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likelihood of coastal extremes may not be reconstructed well enough for this purpose. Additional work 
should pursue improved reconstructions of cold-season precipitation in these regions, particularly central 
Idaho. The results of Figures 3e and 3i showed that instrumental precipitation in that region was particu-
larly useful for distinguishing the most spatially expansive extremes impacting the SRW, and so improved 
cold-season precipitation reconstructions in central Idaho could prove critical for reconstructing the largest 
ARs impacting the SRW.

Second, the nonlinearity between patterns of SPI and extreme AREO values likely played a role in the 
West Coast + WIMW underpredictions. As discussed above, there is a diversity of spatial patterns in the 
SPI that can be associated with extreme AREO values. When comparing these patterns, there are many 
instances when positive SPI anomalies in some regions of the West Coast and WIMW associated with SRW 
extremes are counterbalanced by neutral or negative SPI anomalies in other key regions. Because the West 
Coast + WIMW model is a linear, additive model (on the logarithm of the mean AREO estimate) with pos-
itive coefficients in central Oregon, central Idaho, and northern and central Nevada (see Figure 5b), there 
is a tendency for positive SPI anomalies in some of these regions to be muted or canceled out by neutral or 
negative anomalies in the other regions. That is, the West Coast + WIMW model tends to smooth out the 
signal across a large regional domain, which may be poorly suited to the distinct spatial patterns that can 
emerge in the reconstructed SPI. This highlights a second limitation of the approach taken in this work 
that was not seen in Steinschneider et al. (2018): When trying to use tree-ring based proxies across the West 
Coast + WIMW to reconstruct coastal extremes, it may be necessary to use a nonlinear model better suited 
for a diversity of spatial patterns that could indicate extreme precipitation events. For instance, a neural 
network may be better able to classify extreme AREO events when SPI patterns suggest either a coastal 
track of wet conditions northward into Oregon and Washington or an inland track toward central Idaho. 
This effort is left for future work.

Although the reconstructions of extreme precipitation occurrences in the SRW presented in this work show 
promise, there are additional limitations to the analysis that require discussion. First, extreme precipitation 
is modeled using proxies based on moisture sensitive tree-ring chronologies that can only reflect a change in 
the likelihood of extreme precipitation occurrences but cannot identify those events precisely. Some of the 
AREO reconstruction's under- and over-predictions relative to instrumental and written historical records 
highlight this limitation. Therefore, the reconstructions developed in this work should be used in tandem 
with other paleoclimate evidence to better determine periods over the past millennium with increased and 
decreased frequency of extreme precipitation events. In addition, the reconstructions here cannot provide 
information on the magnitudes of individual extreme storms because radial tree growth is an integrated 
signal of total seasonal precipitation. This study was able to detect a tree-ring signal of the frequency of 
extreme precipitation events only because such events account for a significant proportion of total cold-sea-
son precipitation. The availability of tree-ring chronologies also diminishes significantly prior to 1400 CE, 
thereby limiting the reliability of reconstructions developed prior to this date. Finally, we have assumed 
stationarity in the relationship between the AREO and moisture proxies over centennial time scales, which 
could limit the fidelity of our reconstructions.

This work focused exclusively on the annual counts of extreme cold-season precipitation events in a sin-
gle river basin in California and showed that tree-ring based proxies are indeed sensitive to these extreme 
events. Future work should explore the development of reconstructions of extreme event frequencies over 
the entire West Coast, using nonlinear regression models to identify the best spatial patterns of tree-ring 
based data that could inform reconstructions in each section of the coastline. This would help to synthesize 
the results presented here and in Steinschneider et al. (2018), and would provide a comprehensive analysis 
of past extreme events and the variability of landfalling ARs across the western coast of North America 
that would be of use to a wide range of water and environmental resource managers. Furthermore, the 
approach presented in this work should be extended to other regions, such as central Chile. That region 
has several similarities to Northern California, including: (1) a Mediterranean climate; (2) precipitation pri-
marily delivered in the cold season; (3) a dominant influence of atmospheric rivers that impinge on a high 
mountain chain (the Andes) and cause heavy precipitation events (Guan & Waliser, 2015; Viale et al., 2018); 
and (4) an extensive network of tree-ring chronologies both in Chile and further inland in Argentina (Le 
Quesne et al., 2006; Morales et al., 2020; Mundo et al., 2011; Urrutia et al., 2011). Certain portions of the 
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western coast of the Iberian Peninsula also share some of these qualities (Eiras-Barca et al., 2018; Gallego 
et al., 2006; Natalini et al., 2016; Ramos et al., 2015). We hypothesize that because of these similarities, 
extreme precipitation reconstructions of similar skill to those presented in this work would be possible in 
parts of South America and possibly in southwestern Europe. This is left for future work.

Data Availability Statement
The data used in this analysis are publicly available, including daily station data gathered from the GHCN 
gauging network (https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncd-
c:C00861), as well as gridded precipitation data from the Livneh et  al.  (2015) data set (https://climate-
dataguide.ucar.edu/climate-data/livneh-gridded-precipitation-and-other-meteorological-variables-con-
tinental-us-mexico), the NOAA Climgrid data set (https://www.ncei.noaa.gov/metadata/geoportal/rest/
metadata/item/gov.noaa.ncdc:C00332/html), and the CRU 4.04 data set (https://crudata.uea.ac.uk/cru/
data/hrg/cru_ts_4.04/). The cold-season SPI reconstruction is available at https://www.ldeo.columbia.
edu/∼williams/wrr2021data/borkotoky_et_al_2021/. The RWI chronologies used to produce the SPI recon-
struction are available at https://www.ldeo.columbia.edu/∼williams/wrr2021data/rwi_data/.
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