{2
% CourseSource
Lesson

s

OPEN 8 ACCESS Freely available online

A Fun Introductory Command Line Lesson: Next
Generation Sequencing Quality Analysis with Emoji!

Rachael M. St. Jacques', William M. Maza'!, Sabrina D. Robertson?, Andrew Lonsdale®, Caylin S. Murray’, Jason
J. Williams*, and Ray A. Enke'*"

'Department of Biology, James Madison University

*Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill

*ARC Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne

“Cold Spring Harbor Laboratory, DNA Learning Center

*Center for Genome & Metagenome Studies, James Madison University

Abstract

Radical innovations in DNA sequencing technology over the past decade have created an increased need for computational
bioinformatics analyses in the 21st century STEM workforce. Recent evidence however demonstrates that there are significant
barriers to teaching these skills at the undergraduate level including lack of faculty training, lack of student interest in
bioinformatics, lack of vetted teaching materials, and overly full curricula. To this end, the James Madison University, Center
for Genome & Metagenome Studies (MU CGEMS) and other PUI collaborators are devoted to developing and disseminating
engaging bioinformatics teaching materials specifically designed for streamlined integration into general undergraduate
biology curriculum. Here, we have developed and integrated a fun introductory level lesson to command line next generation
sequencing (NGS) analysis into a large enrollment core biology course. This one-off activity takes a crucial but mundane
aspect of NGS quality control (QC) analysis and incorporates the use of Emoji data outputs using the software FASTQE to pique
student interest. This amusing command line analysis is subsequently paired with a more rigorous research-grade software
package called FASTP in which students complete sequence QC and filtering using a few simple commands. Collectively,
this short lesson provides novice-level faculty and students an engaging entry point to learning basic genomics command
line programming skills as a gateway to more complex and elaborated applications of computational bioinformatics analyses.

Citation: St. Jacques RM, Maza WM, Robertson SD, Lonsdale A, Murray CS, Williams JJ, Enke RA. 2021. A fun introductory command line lesson: Next generation sequencing quality analysis
with Emoji! CourseSource. https://doi.org/10.24918/cs.2021.17

Editor: Srebrenka Robic, Agnes Scott College
Received: 8/22/2019; Accepted: 2/24/2021; Published: 4/13/2021

Copyright: © 2021 St. Jacques, Maza, Robertson, Lonsdale, Murray, Williams, and Enke. This is an open-access article distributed under the terms of the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source
are credited.

Conflict of Interest and Funding Statement: None of the authors has a financial, personal, or professional conflict of interest related to this work. This work was supported by James Madison
University 4-VA funding as well as National Science Foundation, Improving Undergraduate STEM Education Grant #1821657 awarded to R.A.E and the JMU College of Science and
Mathematics.

Supporting Materials: Supporting Files S1. FASTQE — Pre-class assignment; S2. FASTQE — Male5-oral1.fastq file; S3. FASTQE — Male5-oral2.fastq file; S4. FASTQE — Female2-oral1.fastq file; S5.
FASTQE — Lecture slides; S6. FASTQE — Jupyter Notebook alternative implementation instructions; S7. FASTQE — Instructor version of lesson; and $8. FASTQE — Student version of lesson.

*Correspondence to: Ray Enke, Department of Biology, James Madison University, Harrisonburg, VA, USA. Email: enkera@jmu.edu

Learning Goals

Students will:

* Appreciate how Next Generation Sequencing (NGS) data supports
biological research.

e Learn the importance of the FASTQ file format and quality control
in NGS Data Analysis.

e Understand how basic command line scripts and bioinformatics
tools are used to assess and enhance the quality of NGS FASTQ files.

Learning Objectives

Students will be able to:

e Write basic command line scripts and use simple command-line
bioinformatics tools.

e Explain how next generation sequencing data is used to generate
and address hypotheses in biological research.

e Discuss the importance of assessing the quality of sequencing data.

e Identify the components of a FASTQ file.

® Assess sequencing read quality using command-line to generate
FASTQE and FASTP reports.

e Trim and filter low quality reads in a FASTQ file.

e Compare and contrast FASTQE and FASTP tools.

CourseSource | WWW.Coursesource.org

2021 | Volume 08

A Fun Introductory Command Line Lesson: Next Generation Sequencing Quality Analysis with Emoji!

INTRODUCTION

The rise of Big Data acquisition and analytics in the 21st
century continues to permeate into a growing number of
professional domains. Since the advent of commercial Next
Generation Sequencing (NGS) technology about 12 years ago,
genomics data represents one of the most proliferative Big
Data domains with unprecedented growth projected by the
year 2025 (1). Exponential growth of the genomics Big Data
domain has already begun to shift the needs of the modern
STEM workforce with an increased demand for combined
training in the life sciences as well as computational
bioinformatics (2). A recent nation-wide survey study of biology
faculty in the US conducted by the Network for Integrating
Bioinformatics into Life Sciences Education (NIBLSE) group
identified nine consensus bioinformatics core competencies
recommended for ubiquitous integration into undergraduate
life sciences education (3). However, significant barriers to
integrating these competencies have been well documented
including lack of faculty training, lack of student interest in
bioinformatics, lack of vetted teaching materials, and overly
full curricula (4). Furthermore, a disproportionately lower
number of faculty teaching at minority-serving institutions
(MSls) report integration of bioinformatics into their teaching
compared to faculty at non-MSls (4).

Several notable examples of courses have been developed to
address bioinformatics analysis in undergraduate curriculum.
These courses, however, typically require extensive faculty
expertise in bioinformatics to implement (5-6), require large
portions of instructional time devoted to bioinformatics
analysis (7-10), or focus mainly on web-based point and click
introductory bioinformatics tools rather than more advanced
programming-based analysis (11,12). To help overcome these
barriers, a variety of open access resources have also been
developed such as the GOBLET training portal and the QUBES
platform (13,14). These platforms offer educators a variety of
well-vetted introductory bioinformatics materials available
for free download and facile implementation into a variety of
teaching contexts. Even with these available resources, there
is a shortage of introductory materials to introduce computer
scripting applicable to life sciences, particularly in large
enrollment introductory courses.

Here we report on the development and integration of a
unique in-class introduction to genomics command line coding
lesson that reinforces several of the NIBLSE core competencies
while also surmounting reported barriers to integration. This
short, one-off lesson is designed to fit into a single class period
aimed at both novice students and educators with little to
no coding experience. Additionally, to pique student interest
in the methodology and subject matter, the lesson takes a
crucial but typically mundane aspect of NGS quality control
(QC) analysis and incorporates amusing Emoji data outputs
in place of typical QC output metrics using the command
line software package FASTQE (https:/fastge.com). FASTQE
analysis is followed by more rigorous research-grade analysis
in which students complete sequence QC and filtering with
the command line software package FASTP (15; https:/github.
com/OpenGene/fastp). Collectively, this short lesson provides
novice-level students and faculty an engaging entry point to
learn basic genomics command line coding skills as gateway
to stacking more complex principles and applications of

CourseSource | WWW.Coursesource.org

computational bioinformatics analyses. Our implementation
of this lesson into a large enrollment 200 level Genetics Lab
course provided the opportunity to introduce command line
scripting to a variety of students across academic years from
multiple academic majors.

Intended Audience

This lesson can be effective for a wide variety of audiences,
including life science undergraduates and faculty with a
baseline knowledge of DNA Biology and next generation
sequencing (NGS) techniques but who are novices to
command line scripting. Here, we focus on implementation of
this lesson into a large enrollment core curriculum laboratory
course at a 4-year public school (James Madison University).
Bio 240 Genetics is a 200 level course required for all JMU
Biology, Biotechnology, and Health Sciences majors. During
the fall 2019 semester, this course enrolled 278 students all
of whom had taken at least two introductory biology courses
as prerequisites. The course is usually taken during the 2"
year of the Biology/Biotechnology core curriculum sequence,
but also serves juniors and seniors in other majors as well.
Ideally, this short lesson can also be incorporated into other
life science courses to supplement student learning of modern
NGS technology as well as to introduce concepts in computer
programming at scale early in student’s undergraduate careers.
Additionally, this lesson can be effectively implemented
in a traditional in person lab as well as a synchronous or
asynchronous online formatted course.

Required Learning Time

This lesson is designed for a 45-60 minute class period.
Incorporation of optional extended learning questions will
increase the length of the lesson by approximately 15-30
minutes, however this portion of the activity can be assigned
as either an in-class or take-home assignment or removed
altogether based on instructor preference. A short 20-30 minute
pre class assignment is also necessary to ensure that students
have the required computing capabilities prior to class if they
are using their own personal computers for the lesson. Refer
to Table 1 for more details on lesson timing. An alternative
implementation using a cloud-based Jupyter Notebook
that does not require additional software installation is also
available (Supporting File S6. FASTQE — Jupyter Notebook
alternative implementation instructions).

Prerequisite Student Knowledge

This lesson focuses on teaching basic command line coding
to analyze genomics NGS data. A basic understanding of
DNA biology is recommended for students (i.e., a full year
of introductory biology). No prior experience with command
line scripting is required as this lesson is aimed at novices;
however, a basic understanding of Illumina or other similar
NGS techniques and data output is suggested for most effective
learning.

Prerequisite Teacher Knowledge

This lesson assumes that the instructor has some baseline
knowledge of genomics and NGS technology. Prior experience
with command line scripting is not required, though it is
recommended that the instructor be comfortable enough
with the materials to help students troubleshoot any technical
issues with their command line scripts. By completing the
lesson prior to implementation, instructors will be able to test
their level of comfort.

2021 | Volume 08

https://fastqe.com
https://github.com/OpenGene/fastp
https://github.com/OpenGene/fastp

A Fun Introductory Command Line Lesson: Next Generation Sequencing Quality Analysis with Emoji!

SCIENTIFIC TEACHING THEMES

Active Learning

During the in-class lesson, students can work either
individually or in groups to follow a step-by-step tutorial and
actively explore how to use Linux commands and view FASTQ
data with Emoji. Students participate in hands-on exercises
and work on the corresponding problems alternatively and at
their own pace. The problems are intentionally inserted into
the tutorial. Peer and/or instructor guidance and discussions
are provided when needed. Extended learning questions are
available for students pursuing advanced learning.

Assessment

Students are assessed primarily via successful completion of
required tasks and the scores received by answering questions
inserted into the tutorial. An answer key is provided in the
instructor version of the activity (Supporting File S7. FASTQE —
Instructor version of lesson).

Inclusive Teaching

To help students with diverse learning methods achieve a
complete understanding, lesson materials are presented in
multiple ways: traditional lecture with visual aids combined
with a group hands-on learning activity. The hands-on activity
is supplemented with formative assessment questions in which
students reflect on the activity to formulate answers based
on their in-class analysis. Furthermore, nation-wide survey
data indicates that barriers to integrating bioinformatics into
undergraduate life sciences curriculum are disproportionately
greater to faculty teaching at minority-serving institutions
(MSls) compared to faculty at non-MSls (4). This disparity
increases the value of engaging STEM undergraduates in
computational bioinformatics, where there is evidence of
a diversity gap. Additionally, this lesson can be effectively
implemented in a traditional in person lab as well as a
synchronous or asynchronous online formatted course.

LESSON PLAN

Student Pre-Class Preparation

The degree of required student pre-class preparation
depends on the computers that will be used for the lesson.
Ideally, classroom computers preloaded with required software
are provided to groups or pairs of students. In this instance
no pre-class preparation is required. If students use their own
computers however, they will need to complete a short pre-
class assignment ensuring that an Anaconda software bundle
required for the command line lesson is downloaded and
installed on their machines (Supporting File S1. FASTQE — Pre-
class assignment) This activity requires a high-speed internet
connection and should take 20-30 minutes to complete (Table
1). It should be noted that students using their own computers
typically raises the probability of encountering user-specific
problems with the lesson that may be more difficult to
troubleshoot (Table 2). An alternative implementation using a
cloud-based Jupyter Notebook that does not require additional
software installation is also available (Supporting File S6.
FASTQE - Jupyter Notebook alternative implementation
instructions).

Instructor Pre-Class Preparation

Instructors should also prepare by completing the pre-class
assignment to ensure that all required software are installed

CourseSource | WWW.Coursesource.org

on the computer they will use for the lesson (Supporting File
S1. FASTQE - Pre-class assignment). Ideally, this will be a Wi-
Fi enabled laptop allowing the instructor to move around the
classroom to demonstrate and troubleshoot lesson specifics
during the instruction period. Alternatively, an internet-ready
stationary computer connected to an overhead projector
will suffice. To best prepare for our command line lesson,
instructors should run through the entire activity in advance of
the class. To do this, instructors will need to download the three
provided FASTQ files (Supporting File S2. FASTQE — Male5-
orall.fastq file, Supporting File S3. FASTQE — Male5-oral2.
fastq file, and Supporting File S4. FASTQE — Female2-oral1.
fastq file) or alternative FASTQ files for analysis. An instructor
version of the lesson provides solutions to the activity question
and problems (Supporting File S7. FASTQE — Instructor version
of lesson). If classroom computers will be provided for the
lesson, instructors may choose to download required software
and FASTQ files on individual machines to eliminate the need
for the student pre-class assignment. If student computers will
be used, instructors will need to make zipped FASTQ files
available for download via institutional learning management
systems (i.e., Canvas, Blackboard, etc.) or Cloud storage (i.e.,
GoogleDrive, Microsoft OneDrive, etc.). Alternatively, a
Jupyter Notebook web-based implantation of this lesson can
be used with classroom and/or student computers in which
FASTQ files are bundled and do not need to be provided by
instructors (Supporting File S6. FASTQE — Jupyter Notebook
alternative implementation instructions). Instructors should
also print copies of the student version of the assignment to
hand out to each individual student participating in the lesson
(Supporting File S8. FASTQE — Student version of lesson). Table
2 outlines the most common problems encountered with this
lesson and tips for troubleshooting.

In-Class Command Line Lesson

Prior to the hands-on activity, a short slide-assisted lecture
is presented to orient students to background information
on FASTQ file format, NGS quality analysis, and FASTQE
software (for lecture slides see Supporting File S5. FASTQE
— Lecture slides). The lecture explains how NGS sequencers
such as [llumina and lon Torrent rely on Phred probability
scores for each individual base call in a sequencing read
to determine the read’s accuracy (Figure TA). Since NGS
sequencers typically read millions-billions of sequences per
sample simultaneously, the popular software package FastQC
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)
is commonly used to visualize the quality of all reads in a
sample by plotting the average Phred score at each base
position to create a Per Base Quality plot (Figure 1B). The
novel software package FASTQE (https:/fastqe.com) performs
a similar analysis to FastQC; however, rather than plotting
the average Phred score at each base position, an emoji
symbol correlated with a quality score is plotted (Figure 1C).
Following the introductory lecture, students work in pairs or
small groups at their own pace walking through the hands-
on activity (Supporting File S8. FASTQE — Student version of
lesson). FASTQE software equates each Phred score between
0-41 to an individual emoji symbol (Figure 1D).

During FASTQE analysis, students output amusing and
somewhat informative Per Base Quality plots visualizing a
FASTQ file’s overall quality (Figure 2A). Due to their relevance
in popular culture, students intuitively understand the
implication of various emoji symbols and their relationship to

2021 | Volume 08

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://fastqe.com

A Fun Introductory Command Line Lesson: Next Generation Sequencing Quality Analysis with Emoji!

A. | Phred Quality Score | Probability of incorrect base call | Base call accuracy D. Plivadiseore: Enmofiseals
10 1in 10 90% 610 216 @
20 1in 100 99% 17X |27 @
‘30 1in 1000 99.9% 2 # ' 23 8 @
‘40 1in 10,000 99.99% 3 $ Q’ 24 9 ©
50 1in 100,000 99.999% 4% & |25 : @

Y pr— - Ry s serovs s s ooro Tarios 19 Sneadi) “llIrlH Sa e |26 ; @
ﬁ’\s«qy%w I e -
. il 7(% [28=©
: -l g =
. 9 * | (30 ? &
s TR R ITI | 10 + @131 @ @
. i THH 11 , @32 A @
0 e il 112 - ®|33 8 @
" 13 . ¥3ace@
: 14 / ¥|35 D @
B e ke | -~ |

C e, 0000009 16 1 : 37F @

@ ©||17 2 38 G ©
voveeeeeveee| |19 4 A|40 1 ©
AOALAALDAAAAADDADOOOOOOOY et S L

Figure 1. Overview of the command line program FASTQE. A Phred quality score designates the probability of accuracy for each individual base call produced by
DNA sequencers (A). Example of a FastQC Per Base Quality plot for the female_oral2.fastq file (B). Example FASTQE plot of the same FASTQ file (C). FASTQE equates
an emoji output associated with the averaged Phred score at each base position of the sequencing read (D).

base call quality at a given position. FASTQE analysis certainly
lacks research grade rigor but is very effective at engaging
students in the practice of scripting and understanding NGS
quality analysis. Introducing FASTQE is therefore an effective
primer for having students then move onto more rigorous
command line analysis in the second part of the activity. After
visualizing their Per Base Quality plots in FASTQE, students
then use a second command line program called FASTP (https:/
github.com/OpenGene/fastp) to trim and filter FASTQ files.
FASTP is a research grade bioinformatics tool that removes low
quality sequence reads and base calls from a FASTQ file. With
a single command, FASTP filters FASTQ files outputting pre
and post filtered Per Base Quality plots for each file analyzed
as well as a filtered FASTQ file for subsequent analysis (Figure
2B). Students then rerun FASTP-filtered FASTQ files again in
FASTQE to generate filtered versions of the emoji Per Base
Quality plot to compare to pre filtered versions (Figure 2C).
Collectively, this short in class activity takes novice students
from introductory command line scripts through research-
grade command line bioinformatics analysis in a single class
period.

Common Mistakes and Sticking Points

For many students, this will be their first experience
typing scripts into the command line prompt. Therefore, this
activity can be intimidating, particularly when error messages

CourseSource | WWW.Coursesource.org

are returned after entering commands. Even though most
problems students encounter with this activity are simple,
troubleshooting can often be difficult for instructors that are
also new to scripting, compounding student frustrations.
Though there are many different specific problems students
encounter during this activity, Table 2 lists the most common
types of mistakes that should be informative for instructors
trying to troubleshoot.

Post-class Assessment (optional)

Questions and problems are embedded into the in-class
activity. Ideally, these problems are designed for students to
work on during the in-class activity; however, instructors may
choose to have students work on problems as a take home
assignment. Additional extended learning problems are added
at the end of the lesson. These problems are recommended for
students to work on outside of class either individually or in
pairs/groups. Solutions to student questions and problems are
available in the instructor version of the lesson (Supporting File

S7. FASTQE - Instructor version of lesson).

TEACHING DISCUSSION
Projected estimates for continued exponential growth of

the genomics Big Data domain have created an increased
need for updating undergraduate life sciences curriculum to

2021 | Volume 08

https://github.com/OpenGene/fastp
https://github.com/OpenGene/fastp

A Fun Introductory Command Line Lesson: Next Generation Sequencing Quality Analysis with Emoji!

. |$ fastge female oral2.fastqg

female_oral2.fastq YO YYYYYYLYLYYLYYYYYOYOYLLLLL G
DOWOVOVOVOVYVOVLOVVWVYOLVLVLVLVYVLVLVVLVLVLVLOLVLVLVLVLVLVLOLLOLOLOLOLLLOLLE
PDOUVOOOOLOOLOODVLOLOVLOLOVLOLIVIVVLDODOIVIODODOIVOIIVIVDODODVODOLVLODOLVY
POOOOOOOOOLLALLLLLAALALALAALALAALAALALLAAALAALAALL
202220002200 000000000008

mean

TR,

w

w
&

w
]

bk (L
vl

, 1

|, i
"H

wm.

|l> \M‘

“

‘,1

1

H
|

N
1

N

b

" V 'H.

quality
quality

h ” "’

" N
o 3
=———
]
=
)
—

50

position position

$ fastge out.female oral2.fastqg

out.female oral2.fastq mean

QLVLOVVLOLLLOOLODLPIOLBIVLVWOLLLLOYVLBLLEVYLUDLLLLLLBLOBLBLBY

OBBLBLOBOO®

0o

Figure 2. Example of a FASTQE-FASTP genomics command line analysis pipeline. Per base quality of the female_oral2 fastq file is first visualized with FASTQE (A)
Low quality bases and sequences are trimmed/filtered from the FASTQ file using the FASTP software package which outputs pre (left) and post (right) adjusted per base

quality plots (B

include more robust computational bioinformatics training (1).
In particular, there is an increased demand for life scientists
to develop competencies in computer programming to deal
with this data deluge (16-17). Isolated examples of innovative
life sciences courses with a programming-based focus have
been developed and deployed with successful results (5-10).
Unfortunately, these examples reflect the exception rather
than the norm in the current landscape of undergraduate
life science curriculum. Significant barriers to wide-spread
implementation of computational bioinformatics into
undergraduate biology courses have limited progress in this
area, in particular, lack of faculty training, lack of student
interest in bioinformatics, lack of vetted teaching materials,
and overly full curricula (4). Alarmingly, this disparity is more
prevalent among faculty at minority-serving institutions (MSls)
compared to faculty at non-MSls (4).

Here we report on the development and integration of a
one-off, in-class introductory lesson to genomics command
line coding analysis that reinforces several of the NIBLSE
core bioinformatics competencies and also surmounts
previously reported barriers to curriculum integration (4). Our
implementation was in a large enrollment core curriculum
genetic course with 278 undergraduate students primarily in
the JMU Biology, Biotechnology, and Health Sciences majors.
The lesson was specifically designed to reinforce several
NIBLSE core competencies including C1. Explain the role of

CourseSource | WWW.Coursesource.org

). FASTQE is then used again to visualize the trimmed/filtered FASTQ file (C)

computation and data mining in addressing hypothesis-driven
and hypothesis-generating questions within the life sciences,
C7. Use command line bioinformatics tools and write simple
computer scripts, and C8. Describe and manage biological
data types, structure, and reproducibility. (3; https:/qubeshub.
org/community/groups/niblse/core_competencies).

Of the 183 undergraduate students who completed an
optional post course assessment survey, the majority (82.5%)
had no substantial training in coding or scripting prior to this
lesson. This observation is independent of student’s academic
level and for the most part academic major demonstrating
the general need for increased exposure to scripting in JMU
STEM curriculum (Figure 3A, 3D). The outlier group observed
in the data is JMU Biotechnology major students who reported
higher levels of prior scripting experience (Figure 3D). Only
18 Biotechnology students participated in the survey however,
so the validity of this observation will be monitored in future
implementations of this lesson. We assessed the effectiveness
of achieving our learning outcomes by asking students two
additional survey questions at the completion of the lesson.
37.7% of students positively reported that the lesson helped
them to better understand complex biological questions
(Figure 3B, 3E). Additionally, 31.1% positively reported that the
lesson piqued their interest in using command line coding for
a future genomics analysis (Figure 3C, 3F). These observations
are also independent of student’s academic level (Figures

2021 | Volume 08

https://qubeshub.org/community/groups/niblse/core_competencies
https://qubeshub.org/community/groups/niblse/core_competencies

A Fun Introductory Command Line Lesson: Next Generation Sequencing Quality Analysis with Emoji!

i"h' e
R

YU
o

wd

prior_scripting

e

scripting_interest

scripting_utility

..

.‘.;J';Z.

Sophomore

Freshman

Freshman

prior_scripting
scripting_utility

‘4 . ol .

£ 3 75 3 .. o1l o 2- bl .,
s N :

1 . o g o7 O 1 ey .

Ol
R : PR

Health Sciences Biotechology

Major

Bikogy Biotechnology

Major

scripting_interest

ol

. .o

Health Sciences

Figure 3. Individually plotted responses of undergraduate student cohort (n = 183) organized by academic year and major to the following post lesson assessment
prompts: 1) “Prior to taking this class, I've had adequate training writing simple computer scripts to analyze genomics data (A and D)”; 2) “In class analysis using
command line coding helped me to examine and understand complex biological questions.” (B and E); 3) “This lesson has made me more interested in conducting
future analyses using command line coding.” (C and F). Student responses were measured using a 5-point Likert scale ranging from 1-“strongly disagree to 5-“strongly

agree” and were plotted in RStudio using the ggplot2 package.

3B, 3C). Students majoring in Biology, Biotechnology, and
Health Sciences reported higher levels of understanding and
interest than students in majors such as Chemistry, Nursing,
Kinesiology, and other non-STEM majors (Figure 3E, 3F). Only
20 students reporting as these “Other” majors participated in
the survey however, so the validity of this observation will
be monitored in future implementations of this lesson. These
data reflect the polarizing nature of exposing STEM students
to computer scripting. Representative anecdotal student
reflections to the lesson are provided in Table 3.

Technical Limitations & Alternative Implementations

A limitation of this lesson is that Windows operating
systems do not support the use of emoji symbols; therefore,
the FASTQE portion of the command line activity only works
on computers running Mac OSX or Linux. To circumvent this
technical issue, our team has developed a Jupyter Notebook
alternative implementation of this lesson available through
the CyVerse cyberinfrastructure platform. This version of
the lesson requires setting up a free CyVerse account and
launching a Jupyter Notebook web application through
CyVerse using step by step instructions which will add
approximately 15-20 minutes to the time needed to complete
the activity (Supporting File S6. FASTQE — Jupyter Notebook
alternative implementation instructions). The upside to this
implementation is that instructors and students can run the
FASTQE and FASTP portions of the activity from any machine
with identical results. Additionally, this implementation is
particularly amenable to virtual instruction where instructors
have no control over what type of machines will be used.

Several other alternative implementations may also be
effectively used. Instructors may choose to demonstrate
the FASTQE portion of the lesson to students on a Mac or
Linux machine prior to students completing the remainder

CourseSource | WWW.Coursesource.org

of the lesson using FASTP QC and filtering software, which
is machine agnostic. Alternatively, instructors can substitute
the FASTQE portion of the lesson with another widely
used command line software such as FastQC (https:/
www.bioinformatics.babraham.ac.uk/projects/fastqc/). ~ This
lesson works particularly well in classrooms equipped with
Anaconda-installed Mac machines. Students can effectively
work in pairs or groups of 2-4 on this lesson alternating turns at
the keyboard to cut back on the number of machines required.
In this situation, providing each student with a different
FASTQ file to analyze would sufficiently give each group
member a significant portion of the lesson project to manage.
Alternatively, this lesson can be effectively implemented into
online or hybrid in person/online courses using the Jupyter
Notebook implementation maximizing flexibility for both
students and instructors (Supporting File S6. FASTQE — Jupyter
Notebook alternative implementation instructions). As part of
this lesson, we have provided three FASTQ files from an in-
class microbiome Illumina sequencing project investigating
sexually dimorphic metagenomes associated with garter
snake tissues (Supporting File S2. FASTQE — Male5-orall.
fastq file, Supporting File S3. FASTQE — Male5-oral2 fastq
file, and Supporting File S4. FASTQE — Female2-oral1.fastq
file). However, any FASTQ-formatted data files can be easily
substituted into this lesson providing an opportunity for
instructors to link learning outcomes to previously established
course topics and/or research project. For more advanced
students with some coding experience, this lesson would be
an effective take home assignment to reinforce basic principles
of command line coding.

Our assessment data suggests that this lesson can be an
effective early exposure to genomics command line coding
(Figure 3; Table 3). Given that the lesson requires minimal or no
prior coding experience of both students as well as instructors

2021 | Volume 08

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

A Fun Introductory Command Line Lesson: Next Generation Sequencing Quality Analysis with Emoji!

and that the lesson can be fit into a single class period, several
of the most commonly reported barriers to implementing
computational bioinformatics into undergraduate curriculum
are circumvented (4). Additionally, the novelty of using Emoji
data outputs gives students an entertaining hook to help tackle
the commonly reported barrier that life science undergraduates
find bioinformatics analysis boring or uninteresting. Notably,
85% of upper level undergraduate students (juniors and
seniors) in our implementation reported that this was their first
exposure to command line analysis (Figure 3A). These data
suggest an opportunity to use implementation of our lesson
into large-enrollment core curriculum life sciences courses
to achieve much broader impact earlier in undergraduate
student’s academic careers.

SUPPORTING MATERIALS

e S1. FASTQE — Pre-class assignment

¢ S2. FASTQE — Male5-oral1 .fastq file (included in Zip file with
all fastq files: S2, S3, and S4)

* S3. FASTQE — Male5-oral2 fastq file (included in Zip file with
all fastq files: S2, S3, and S4)

® S4. FASTQE — Female2-oral1 fastq file (included in Zip file
with all fastq files: S2, S3, and S4)

¢ S5. FASTQYE — Lecture slides

® S6. FASTQE - Jupyter Notebook alternative implementation
instructions

¢ S7. FASTQE - Instructor version of lesson

¢ S8. FASTQYE - Student version of lesson

ACKNOWLEDGMENTS

The authors would like to thank students in R.A.E's
BIO481/581 Genomics course for helping to develop this
lesson. The authors also thank all BIO240 students and
instructors who participated in this study as well as Yasmeen
Shorish and Guoqing Lu for providing comments on the
manuscript, and M. Rockwell Parker for assisting in sample
collection for the in-class garter snake metagenomics project.
This work was supported by James Madison University 4-VA
funding as well as National Science Foundation, Improving
Undergraduate STEM Education Grant #1821657 awarded to
R.A.E and the JMU College of Science and Mathematics. All
student surveys were conducted with prior approval from the
JMU Institutional Review Board for Human Subjects of IRB
protocol #17-0307.

REFERENCES

1. Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron M), lyer R, Schatz
MC, Sinha S, Robinson GE. 2015. Big data: Astronomical or genomical?
PLOS Biology. 12(7), e1002195-e1002195. https://doi.org/10.1371/journal.
pbio.1002195

2. Levine AG. 2014. An explosion of bioinformatics careers. Science.
344(6189), 1303-1306. https://doi.org/10.1126/science.344.6189.1303

3. Sayres MAW, Hauser C, Sierk M, Robic S, Rosenwald AG, Smith TM, Triplett
EW, Williams JJ, Dinsdale E, Morgan W, Burnette JM, Donovan SS, Drew
JC, Elgin SCR, Fowlks ER, Galindo-Gonzalez S, Goodman AL, Grandgenett
NF, Goller CC, Jungck J, Newman JD, Pearson W, Ryder E, Tosado-Acevedo
R, Tapprich W, Tobin TC, Toro-Martinez A, Welch LR, Wright R, Ebenbach
D, Olney KC, Mcwilliams M, Pauley MA. 2017. Bioinformatics core
competencies for undergraduate life sciences education. Cold Spring Harbor
Laboratory. https://doi.org/10.1101/170993

4. Williams JJ, Drew JC, Galindo-Gonzalez S, Robic S, Dinsdale E, Morgan
W, Triplett EW, Burnette J, Donovan S, Elgin S, Fowlks ER, Goodman AL,

CourseSource | WWW.Coursesource.org

Grandgenett NF, Goller C, Hauser C, Jungck JR, Newman JD, Pearson W,
Ryder E, Sayres MAW, Sierk M, Smith T, Tosado-Acevedo R, Tapprich W, Tobin
TC, Toro A, Welch L, Wright R, Ebenbach D, Mcwilliams M, Rosenwald AG,
Pauley MA. 2017. Barriers to integration of bioinformatics into undergraduate
life sciences education. PloS One, 14(11), €0224288-e0224288. https:/doi.
org/10.1371/journal.pone.0224288

Rubinstein A, Chor B. 2014. Computational thinking in life science
education. PLoS Computational Biology 10(11), e1003897-e1003897.
https://doi.org/10.1371/journal.pcbi. 1003897

Zhan YA, Wray CG, Namburi S, Glantz ST, Laubenbacher R, Chuang
JH. 2019. Fostering bioinformatics education through skill development
of professors: Big genomic data skills training for professors. PLOS
Computational Biology 15(6), e1007026-e1007026. https://doi.org/10.1371/
journal.pcbi. 1007026

Tartaro A, Chosed RJ. 2015. Computer scientists at the biology lab
bench. Proceedings of the 46th ACM Technical Symposium on Computer
Science Education. Paper presented at the 120-125. https://doi.
org/10.1145/2676723.2677246

Mariano D, Martins P, Santos LH, Melo- Minardi RCD. 2019. Introducing
programming skills for life science students. Biochemistry and Molecular
Biology Education 47(3), 288-295. https://doi.org/10.1002/bmb.21230
Libeskind-Hadas R, Bush E. 2013. A first course in computing with
applications to biology. Briefings in Bioinformatics 14(5), 610-617. https://
doi.org/10.1093/bib/bbt005

Madlung A. 2018. Assessing an effective undergraduate module teaching
applied bioinformatics to biology students. PLOS Computational Biology.
14(1), e1005872-e1005872. https:/doi.org/10.1371/journal.pcbi.1005872
Hyman O, Doyle E, Harsh J, Mott J, Pesce A, Rasoul B, Seifert K, Enke RA.
2019. CURE-all: Large scale implementation of authentic DNA barcoding
research into first-year biology curriculum. CourseSource 6. https:/doi.
org/10.24918/cs.2019.10

Berndsen CE, Young BH, Mccormick QJ, Enke RA. 2016. Connecting
common genetic polymorphisms to protein function: A modular project
sequence for lecture or lab. Biochemistry and Molecular Biology Education
44(6), 526-536. https://doi.org/10.1002/bmb.20976

Corpas M, Jimenez RC, Bongcam-Rudloff E, Budd A, Brazas MD, Fernandes
PL, Gaeta B, Gelder CV, Korpelainen E, Lewitter F, Mcgrath A, Maclean D,
Palagi PM, Rother K, Taylor J, Via A, Watson M, Schneider MV, Attwood TK.
2014. The GOBLET training portal: a global repository of bioinformatics
training materials, courses and trainers. Bioinformatics 31(1), 140-142.
https://doi.org/10.1093/bioinformatics/btu601

Donovan S, Eaton CD, Gower ST, Jenkins KP, Lamar MD, Poli D, Sheehy R,
Wojdak JM. 2015. QUBES: a community focused on supporting teaching
and learning in quantitative biology. Letters in Biomathematics 2(1), 46-55.
https://doi.org/10.1080/23737867.2015.1049969

Chen S, ZhouY, ChenY, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ
preprocessor. Bioinformatics. Cold Spring Harbor Laboratory. https:/doi.
org/10.1101/274100

Stevens SLR, Kuzak M, Martinez C, Moser A, Bleeker P, Galland M. 2018.
Building a local community of practice in scientific programming for
life scientists. PLOS Biology 16(11), €2005561-e2005561. https://doi.
org/10.1371/journal.pbio.2005561

Baker M. 2017. Scientific computing: Code alert. Nature 541(7638), 563-
565. https://doi.org/10.1038/nj7638-563a

Jacques R, Maza M, Robertson S, Lonsdale A, Enke RA. 2019. A fun
introductory command line exercise: Next generation sequencing quality
analysis with Emoji! QUBES_FASTQE. QUBES.

2021 | Volume 08

A Fun Introductory Command Line Lesson: Next Generation Sequencing Quality Analysis with Emoji!

Table 1. Introduction to Command Line Scripting Lesson Timeline.

Preparation for Class
Student pre-class | Short pre-class assignment to download & | 20-30 min See S1. FASTQE — Pre-class assignment.
activity install Anaconda software bundle necessary Students should complete prior to class.

for lesson. . Lo .

Requires a working internet connection.
This step can be eliminated if using classroom-
dedicated computers with Anaconda pre-
installed.
Instructor 1. Make copies of the lesson handout for | 15 min See S7. FASTQE — Instructor version of lesson
preparation students or provide electronic copy. and S8. FASTQE - Student version of lesson.

2. Ensure Wi-Fi or wired internet Providing electronic copies of the handout
connections are functional in allows students to copy/paste script if desired.
classroom. Using classroom dedicated computers reduces

3. Testrun lesson using in class variability of scripting issues student will
computers (optional). encounter.

Class Period 1
Lecture overview | Lecture includes brief background of 15 min See S5. FASTQE — Lecture slides.
of lesson FASTQ file format, FastQC analysis, and
command line scripting.
In-class activity 1. Students walk through the command | 30-45 min See S2. FASTQE — Male5-oral1 fastq, S3.
line activity viewing the quality of FASTQE — Male5-oral2.fastq, and S4. FASTQE —
three FASTQ files using FASTQE, Female2-oral1.fastq files.
then trim/filter files using FASTP, and Any FASTQ files can be substituted into this
recheck file quality with FASTQE. activity.

2. Stude.nts complete activity reflection This activity works well with students working
questions as they walk through the in pairs and taking turns at the command line.
assignment.

Post-Class Assignment (optional)
Extended learning | Assign more advanced extended learning 30-45 min See S7. FASTQE — Instructor version of lesson
questions questions as a follow up post assessment to and S8. FASTQE - Student version of lesson.

the lesson. This assignment can be completed in class or as

a take home assignment.
CourseSource | www.coursesource.org 8 2021 | Volume 08

A Fun Introductory Command Line Lesson: Next Generation Sequencing Quality Analysis with Emoji!

Table 2. Common mistakes and pitfalls of FASTQE-FASTP activity.

Syntax errors: By far the most common problem. Students
inadvertently misspell a command or leave out/include
incorrect spacing/punctuation in commands.

Have students recheck exact spelling/spacing of commands and reenter
them.

Students often misspell “fastq” as “fastg”
Students often leave out the “.” in commands such as “fastqe *.fastq).

Students often leave out required spaces in commands such as “pip install
fastqe” (spaces in between the three words are required).

Incorrect directory: Students often enter the correct
command but are in a different directory than the files they
are trying to analyze.

Instructors can ask students to enter the “pwd” command at any time to
list out their current directory to see if it matches the directory they're
supposed to be in.

Students can enter the “cd Desktop” command at any time to default back
to the desktop directory and proceed from there.

Anaconda software not preinstalled: Students sometimes
think they have preinstalled the required Anaconda
software but actually haven't. In this case FASTQE cannot
be successfully installed.

Have students search their machine for “Anaconda” software to verify if
they have installed it or not.

If they have not installed have them repeat the pre-class assignment.

Thinking there is a problem when there isn’t: Students are
sometimes confused when nothing appears to happen after
entering a command.

Have students check their working directories to see if files extensions
have changed (i.e., when unzipping files) or if new files appear (i.e., after
running FASTP analysis) following commands.

Table 3. Anecdotal student feedback on Introduction to Command Line Programming lesson.

because | have never had that experience before.”

“It was interesting to be able to learn how to code in general,

“It can be frustrating getting error messages when you don't
understand what you did wrong. If you don’t know what you're
doing, it can be difficult to work command line.”

“Getting emojis at the end!”

“Coding in general.”

Being able to say | accomplished something in command line is
cool.”

“I had no idea about any sort of programming coming into this class.

“I found some of the coding frustrating since it didn’t always work. |
also don’t know how useful emojis are for analyzing data.”

“l was not even aware that this was a thing, and found it very
interesting how you could use the command line to work with DNA
and its quality, | wouldn’t have thought it could be that easy.”

“Frustrating aspects would be trying to make sure command syntax
was proper and trying to figure out how to make sure the right
packages were installed.”

CourseSource | WWW.Coursesource.org

2021 | Volume 08

