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ABSTRACT other extreme, one can analyze agents individually, assuming all

In this paper, we present a compositional condition for ensuring
safety of a collection of interacting systems modeled by inter-
triggering hybrid automata (ITHA). ITHA is a modeling formal-
ism for representing multi-agent systems in which each agent is
governed by individual dynamics but can also interact with other
agents through triggering actions. These triggering actions result
in a jump/reset in the state of other agents according to a global res-
olution function. A sufficient condition for safety of the collection,
inspired by responsibility-sensitive safety, is developed in two parts:
self-safety relating to the individual dynamics, and responsibility
relating to the triggering actions. The condition relies on having an
over-approximation method for the resolution function. We further
show how such over-approximations can be obtained and improved
via communication. We use two examples, a job scheduling task on
parallel processors and a highway driving example, throughout the
paper to illustrate the concepts. Finally, we provide a comprehen-
sive evaluation on how the proposed condition can be leveraged
for several multi-agent control and supervision examples.
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1 INTRODUCTION

Proving safety or designing controllers guaranteeing safety in a
multi-agent setting is a challenging task for multiple reasons. On
one extreme, one can try to come up with a monolithic safety
rule, which may be hard to verify due to scalability issues, and
hard to follow at run-time without a central coordinator. On the
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of the remaining agents act adversarially, in which case safety is
hard to attain, if at all possible. Several frameworks have been
developed between these two extremes to capture various notions
of coordination, collaboration, or contracts [5, 6, 9, 14, 17, 23, 25, 28].

An alternative viewpoint is presented by responsibility-sensitive
safety [7, 11, 24, 27], in the context of autonomous driving, where
some hard safety constraints are replaced by a notion of not causing
a crash and avoiding one whenever possible. This is particularly
well-suited for scenarios where some of the agents are human-
controlled, which can lead to unpredictable behaviors. From this
viewpoint, we expect autonomous agents to act in a well-behaved
fashion as long as others reciprocate, and we should not punish the
autonomous agents for failures that are out of their control.

In this paper, we consider multi-agent systems modeled by inter-
triggering hybrid automata (ITHA), a modeling framework for
interacting parallel processes and multi-agent systems [20]. ITHA
consist of a collection of agents, where each agent is modeled with
a discrete-time dynamical system locally. In addition to their local
dynamics, agents are equipped with triggering actions as a means
to interact with other agents in the collection. In particular, these
triggering actions can collectively induce a reset (i.e., jump) in the
dynamics of other agents. For this class of systems, we propose a
simple two part condition for each agent to follow that is shown to
be sufficient to guarantee safety of the overall collection. The two
parts pertain to self-safety (in the local dynamics) and responsibility
(in the interactions), jointly called responsibility-sensitive safety.
Controlled invariant sets for the individual dynamics [3] are used for
both parts of the condition. Intuitively, each agent aims to remain
in their corresponding invariant set, and when they use a triggering
action that affects another agent, they do so in a “responsible way",
by trying to ensure that the other agent’s state does not leave its
invariant set due to this action. The responsibility-sensitive safety
conditions, being based on local invariant sets, enable us to use the
same conditions either for proving the safety of other policies, for
supervising existing policies, or for designing new control policies
for guaranteed safety.

A central component of the ITHA is what we call a global res-
olution function, which determines the reset induced on a given
agent based on all agents’ triggering actions. This function’s value
cannot be known, in general, to any of the agents at run-time due
to its dependence on the triggering actions chosen by all agents.
To overcome this issue, we introduce over-approximations of the
resolution functions that can be used within the responsibility
rule. We also show how individual agents may compute such over-
approximations, and how the conservativeness in this computa-
tion can be reduced if (local) communication between agents is
allowed. We apply our proposed framework on several multi-agent
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Figure 1: An example directed graph G that we use to demon-
strate potential links between processors in a server farm.
control problems, including task coordination on a server farm
and autonomous highway driving, empirically verifying the safety
guarantees of our method and also demonstrating how different
over-approximations can lead to differing levels of conservative-
ness. Finally, we evaluate the conservativeness of our framework
by employing it as a safety supervisor on trajectories drawn from
a real-world highway driving data-set [13] and demonstrate that
we experience few safety overrides, suggesting that ITHA is suffi-
ciently permissive to be used to supervise system safety without
excessive intervention. In sum, our contributions are:

e We refine the inter-triggering hybrid automata model: a
flexible modeling formalism for representing multi-agent
interactions, vastly expanding on the initial ideas in [20].

e We design compositional conditions which are sufficient for
global safety, provided that each agent ensures it remains self-
safe and responsible with respect to the agents it triggers.

o For tractability, we provide practical over-approximations
of the collective triggering behavior and show how they can
be made less conservative with local communication.

e We perform a comprehensive evaluation of our method on a
variety of multi-agent control and supervision tasks.

2 PRELIMINARIES

In this section, we introduce the graph, dynamical system, and
invariant set notation which will be used throughout the paper.

2.1 Graph notation
A directed graph G = (V, &) is a tuple containing a set V of
vertices and a set & of directed edges. Each edge is an ordered pair
(v1,v2) € & of vertices with v1, v € V. We say that a vertex v;
is connected to a vertex v if and only if (v1,v7) € &. Within a
directed graph the inward connections of a vertex v can be defined
as follows:

ing(v) ={v" € V| (@, v)e &}
The outward connections of a vertex v can be defined similarly:

outg(v) ={v’ € V| (v,0") € E}.

2.2 Invariant sets

Consider a discrete-time dynamical system 2 : (X, U, D, f) where
X is the state space, U is the set of control inputs, D is the set of
disturbances, and f : X X U X D — X is the state update function.
The state of the system ¥ evolves according to

x(t+1) = fx(2), u(t), d(1)). 1)
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Controlled invariant sets play an important role in ensuring
safety of systems with dynamics of the form (1). Formally, a robust
controlled invariant set Cj,y inside a given safe set Xg,fe € X (i€,
Cinv € Xgafe) 1s a set of states that satisfies:

X€ECpy=TueU VdeD f(x,u,d) € Ciyy- (2)

In words, this means that if the state x(#) is in Cy,y, there is an input
u(t) to ensure that x(¢ + 1) will be in Cj,y, for any disturbance within
given bounds, thus allowing the states to stay in Ci,y indefinitely.

3 A MODELING FORMALISM FOR
INTERACTING SYSTEMS

We introduce inter-triggering hybrid automata (ITHA), a hybrid
modeling formalism for collections of discrete-time hybrid systems
with a special form of interaction between them. In particular, these
interactions are such that they induce jumps or resets on the state
evolution of individual agents.

DEFINITION 1. An inter-triggering hybrid automaton is a collec-
tion {H;};c 1 of systems together with a function p = (p1,...,p 1),
which we refer to as a resolution function, with each Hj, i.e., agent i,
being a hybrid automaton of the form H; = (Z;, Ti, Ri), where:

o 3; = (Xi,U;, Di, fi) are the individual dynamics for agent i;
o 7} is the set of triggering actions of agent i, including a null
triggering action € € 7; that indicates that agent i is not
triggering a reset on any other agent;
o R : NxX;xU;x2! — 2% isthe (potentially time-varying)
reset map for agent i';
and where each p; : NXT1 X+ -XT| 7| — 27 is the resolution function
of agent i that takes the triggering inputs of the entire collection and
determines the set of agents that trigger a reset on agent i.

For notational simplicity when referring to an ITHA, we will
omit the resolution function and simply say “an ITHA {H;};c 7"
We assume the resolution function p satisfies the following property,
which essentially says if agent i is using a null triggering action
at a given time, it will not appear in the output of the resolution
function of any agents at that time.

AssumPTION 1. For all i, for all t such that 7;(t) = €, we have
i ¢ pj(t,...,7(t),...) for all j, which implies, as a special case,
pi(t,€e,...,e)=0.

DEFINITION 2 (EXECUTION OF AN ITHA). Given sequences of
control inputs u; = u;(0),u;(1)... and triggering inputs v; =
7i(0), 7;(1) ... for each agent i, an execution of {H;};c s is a col-
lection of sequences {e;};c 1, each a sequence of alternating states
and actions e; = x;(0),u;(0), 7;(0), x;(1), u; (1), 7;(1), ... such that:

xi(0)e X; VieTl (3a)

(ui(t), 7i(t)) e Ui xT; VYieI,Vt=0 (3b)

wt 4 D) {ﬁ(x,»(txu,-(t), D) =0
Ri(t, xi(t), ui(t), pi(t)) otherwise.

where p;(t) £ pi(t, 11 (1), 2a(0), ... 1) 7| (1)).

'With a slight abuse of notation, the last argument of the reset map is shown as an
index set, but the actual reset value depends on the state, input, and triggering action
of the agents in that set.
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For an element e; of an execution, we denote the corresponding
state trajectory by x; = x;(0), x;(1),.. ..

We consider problems related to safety of an execution of an
ITHA, where we require the state trajectory of each agent H; to
remain in a safe set X; 4, € X for all times. We use an ex-
ecution {e;};c7 remaining in a collection of sets {X; sqfc}icr
inter-changeably with the corresponding state trajectories {X;};c s
remaining in the same collection.

To make the definition of inter-triggering hybrid automaton
concrete, we present two examples used throughout the paper.

ExAMPLE 1 (PARALLEL PROCESSORS ON A SERVER FARM). A col-
lection of processors in a server farm can be treated as a collection
of agents where each agent’s state is the number of jobs it has left
to compute. In other words, agent i’s state x; € N, where there is a
limit of jobs, noyerfiow. over which the processor will create a stack
overflow and fail. External jobs d; for processor i are passed into the
server according to a protocol that blocks new jobs from coming in
ifxi 2 Nthrottle where Nthrottle < Noverflow and the processor
always can take the action to address a job in its queue or do nothing.
Thus, the individual dynamics can be visualized as shown in Fig. 2. In
addition, the processors can be recruited by other processors according
to a directed graph G that indicates which processors can send jobs
to which other processors, i.e. processor i can recruit processor j if
(i,)) € &. An example of such a graph is shown in Fig. 1. This scenario
can be modeled with the representation {H;};c r, where each agent
H; = (Zi, Ti, Ri) is composed of the following parts:

e Dynamics X; where X; = N is the queue of jobs to be done
by agent i; U; = {0,—1} represents processor i’s choice to
do nothing (i.e. u;(t) = 0) or to address one of the jobs in its
queue (i.e.ui(t) = —1); D; € {0, 1, 2} represents the number
of external jobs passed into processor i, and f;, given by

fiGei ui, di) = {xi +ui ifxi 2 .nthrottle

xi +uj +d; otherwise,
describes how the queue of jobs is changing for agent i in the
absence of it being recruited;

o 7; = 20utg(D) represents the possible sets of agents that agent
i recruits to help it with its queue, with null element € = 0,
according to its outgoing edges in G;

o Reset map R; describes how the queue for agent i changes if it
was recruited by or recruited another agent. To each agent in
the recruit set (i.e. Vj € 7;(t) € 7;), agent i sends 1 job from its
queue to that processor:

0 ifsi(t) <0,

si(t)  otherwise,

Ri(t, xi(t), ui(t),S) = { 4)
where s;i(t) = xi(t) — |7i(t)| + ui(t) + |S| + di(t), where S is
the set of agents recruiting agent i.

Furthermore, we can write the i'" component of the resolution
Sfunction pi(t) = {j € I | i € 7;(t)}; that is, the set of agents
triggering agent i at time t is the set of agents which contain i in its
triggering action at time t. Concretely, for agent 1 in Fig. 1, p1(t) C
{2,4}, for all t. If ro(t) = € and ©4(t) = {1,6}, then p1(t) = {4},
regardless of the triggering actions of the remaining agents.
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Note that each processor can avoid the overflow states indefinitely if
it is within a robust control invariant set that is completely contained
in the safe set {x € N | x < noyerfiow}. Under the individual
dynamics, the maximal control invariant set in the safe set (i.e. C C
{x € N | x < ngyerfiow}) can be quickly shown to be C = {x €
N | x < noverfiow—1} Depending on the objectives of the processors,
i.e. maximizing throughput, each processor may need to trigger other
agents, and without adequate precaution the triggering can reset the
states of some processors above Noyerfiow leading to unsafe behavior.

ExaMPLE 2 (HIGHWAY DRIVING). Consider a collection of vehicles
travelling in the same direction on a highway (see Fig. 3). This col-
lection can be represented by an inter-triggering hybrid automaton
{Hi}icr where each agent H; = (Z;, Ti, R;) is composed of:

o Dynamics X; with Xj = [0, Umax] X [0, 00) X [0, Umax |, where
state x; = [vj, hi, v{‘]T contains v; (velocity of current agent i,
henceforth referred to as the ego vehicle), h; (headway between
this agent and the nearest car in front of it on the same lane,
henceforth referred to as the lead vehicle), and ’UZL (the velocity
of the lead vehicle), U; is the set of allowed inputs, with input
u; = a; being the acceleration of the ego car, D; is the set
of allowable disturbances, with disturbance d; = a{.“ being
the acceleration of the lead vehicle, and the system dynamics
fi : Xi XxU; X D; — X; is such that

1 0 0 At 0
filxi,uj,di)=|-At 1 At|x;j+|0|u;+]|0|d; (5)
0 0 1 0 At

where At is the sampling time;

o i = {stay, left, right} is the set of possible lane change deci-
sions, with null element € = stay;

o Areset Ri(t,xi(t), ui(t), pi(t)) is triggered on agent i if one of
the following happens (1) 7;(t) # €, (2) if their lead car is j and
7j(t) # € and/or (3) a car becomes the current agent’s lead car
(i.e. lead car was j at time t — 1 but the lead car becomes k # j
at time t). The value of the reset depends on the triggering
actions of all agents p;(t), which can possibly affect agent i at
time t. This determines the new lead car and hence the new
values of h; and v{“, while v; evolves according to individual
dynamics in (5).

Controlled invariant sets for the system defined in (5) can be com-
puted using polyhedral set computation methods such as those dis-
cussed in [18, 25]. An example of such a set is shown in Fig. 4.

To further illustrate how the reset map is defined for highway
driving, the value of R; will be explained for some vehicles in Fig. 3.
First, suppose that the current time is t and vehicles E and F, have
states Xxg = [vE,hE,vé]T and xp, = [sz,th,vIﬁz]T, respectively,
and apply control inputs ug and ur,. Suppose that the ego vehicle
makes a left lane change at time t; this action triggers a reset of its own
continuous state as well as that of F» (leading to changes in headway
and lead car velocity for both vehicles). Formally, if tg(t) = {left},
then

vE + Atug
Rg(t,xp, up. {E}) = o0

Umax
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Figure 2: The individual dynamics for a processor in the collection specified in Example 1. The processor is unable to accept
as many jobs when x;(t) > n;prot17c and it experiences a stack overflow (i.e. it fails) if x;(t) > noverfiow-

Figure 3: A collection of vehicles on the highway, as de-
scribed in Example 2. The ego vehicle E is marked in blue,
and longitudinal distances between the ego vehicle and car
i are marked as h™®l,

Figure 4: The controlled
invariant set for the car-
following system defined
in (5) for parameters used
in [18, 25].

and
UF, + Atqu

h;le + (vg — UFZ)At
v + Atug

Rp,(t, xF,, up,, {E}) =

where we assume by convention that resetting an agent to have no
lead car results in a headway of 0o and a lead car velocity of Umax.

As concrete examples, we overview a subset of possible values that
the resolution function may take in the highway setting. We can
write pg(t, te(t) = left,tp,(t) = €,15,(t) = €,11,(t) = right) =
{E, L3}, as both the ego vehicle and vehicle L3 changing lanes re-
sets the continuous state of the ego vehicle. Likewise, we can write
pE(t,TE(t) = €,11,(t) = €, 7R, (t) = right, 1, (t) =€) = 0, as F>
will not trigger a state reset on the ego vehicle. Vehicle L1 can also
trigger a reset on the state of the ego vehicle by changing lanes, i.e.
pE(t, Te(t) = €,11,(t) = left, tg,(t) = €, 11, (t) = right) = {L1}. A fi-
nal, more complicated case occurs when vehicles E and L1 both make a
left lane change, while L3 makes a right lane change at the same time:
pE(t, Te(t) = left, 7, (t) = left, 1p, (t) = €, 71,(t) = right) = {E,L3};
in this case, L1 does not end up factoring into the resolution function
as L3 becomes the ego vehicle’s lead car instead.

4 COMPOSITIONAL SAFETY RULES

In general, not all executions of an inter-triggering hybrid automa-
ton are safe. To render the executions safe, control policies may need
to restrict the possible control inputs and triggering actions of indi-
vidual agents. In this section, we develop sufficient conditions on
local control policies that collectively guarantee safety. To do this,

robust controlled invariant sets are found for the inter-triggering
hybrid automaton’s individual dynamics and then responsibility-
sensitive safe controllers are defined with respect to these individual
invariant sets. This section shows that safety can be guaranteed
when all agents in the collection use such responsibility-sensitive
safe controllers and then discusses how conservativeness can be
further reduced via a communication scheme.

4.1 Control Policies and Safety Control
Problem for ITHA

At run-time each agent i picks its control inputs u;(t) and triggering
actions 7;(t) based on the information available to it by time t.
Formally, for a given set Y; of possible observations of agent i, a
memoryless local controller (or, control policy) is a function y; :
Y; — U;xT;. Similarly, a local controller with memory is a function
Yi : Y — U;xT;, where the superscript + denotes finite non-zero
repetition. If agent i’s decisions only depend on its own state or
the state of all agents, we have Y; = Xj or Y; = X1 X ... X X|1|,
respectively. Also, if an agent can access a (potentially time-varying)
subset of other agents’ states, we have Y; = Ur/ c7{Xj}jer. In
addition to states, Y; can incorporate observations of actions of
the other agents, which would be relevant when introducing the
communication scheme in section 4.3.2.

DEFINITION 3 (CONTROLLED EXECUTION OF AN ITHA). Given
a collection of controllers {yi};c 1, {yi}icr-controlled executions
of {H;};cr are the set of executions where control inputs u; and
triggering inputs t; are produced according to the function y; for all
i.

Given a collection of local safe sets {X; s47¢}ic 7 and informa-
tion Y; available to each agent, synthesizing local controllers for
each agent to guarantee global safety is a distributed synthesis
problem [21]. Verifying existence of such controllers is known to
be undecidable in general even when the sets X, U;, D; are fi-
nite [4, 8]. Any architecture defining the information flow in a
distributed synthesis problem can be captured by choosing some
I/ and setting ; = {Xj}je 17, therefore synthesis in the ITHA
setting cannot be easier. Given this hardness result, we instead
search for sufficient conditions on local controllers under which
global safety is guaranteed. These conditions can be checked locally
and instantaneously in time. Moreover, instead of working with a
fixed observation structure, we will deduce the sets Y; each local
agent should have access to in order to be able to comply with the
conditions.
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4.2 Responsibility-Sensitive Safety

Responsibility-sensitive safety consists of two rules. The first rule
handles safety of the individual dynamics and the second rule han-
dles safety during triggering interactions. Consider the first rule:

DEFINITION 4 (SELF-SAFETY). A control policy y; renders agent
H; self-safe on a set Xj,c C X; if for all states in Xj ¢, the control
input guarantees H;’s own safety assuming a reset will not happen
in the next step. In math, for all t, if x;(t) € Xj ¢, then u;(t) produced
by yi is such that

filxi(), u;(t), D;) € Xj,c. (6)

It is clear from (2) that for the existence of a self-safe controller
on Xj ¢, Xi,¢ should be a robust controlled invariant set. Moreover,
the controller would only need information on the agent’s own
state to be in ;. Though even when X; .’s are robust controlled
invariant sets for X;’s, adopting a controller that renders Xj ¢ invari-
ant, an agent H; cannot be guaranteed to remain in X; . because
its state trajectories depend on both f; and R;. To incorporate the
potential resets of agent #; into an invariance condition, any agent
Jj contributing to a reset on agent i, i.e., j € p;(t), should some-
how make guarantees about R; on the same set. While it may be
problematic to expect agents to know p in a distributed setting, an
over-approximation of the value of p at each time step, as defined
next, can be obtained locally in many practical scenarios.

DEFINITION 5 (RESOLUTION OVER-APPROXIMATION). A function

A I, . .
Pi :NXTIX Ty XX T|7| = 2% is an over-approximation of the
ith component of the resolution function if and only if:

’ ’ o ’ ’
pi(t»Tpsz' e ,T|I‘) € pi(t,TpTz," ' ’T|I|)'

for all values of t and all t] € T; for all i.

Similarly, we say p is an over-approximation of the resolution
function p, denoted as p 2 p, if and only if each p; is an over-
approximation of corresponding p;.

For notation convenience, when the triggering action argu-
ments of p are clear from the context or are irrelevant, we simply
write p; (t). We discuss how resolution over-approximations can
be obtained locally by each agent in Section 4.3. In general, differ-
ent agents j might have different resolution over-approximations
p9 2 p depending on their local information. With this in mind,
to enable safety through resets, we define a responsibility rule that
uses such over-approximations.

DEFINITION 6 (-RESPONSIBILITY). Given an over-approximation
p of the resolution function and a collection {Xj,c}icy of sets, a
controller y; renders an agent H; p-responsible with respect to the
sets {Xi ¢ }icr if, when agent j triggers a reset on other agents, agent
J’s triggering action does not lead to safety violations for any other
agent that it could induce a reset on according to p, possibly including
itself. In math, the controller y; renders Hj p-responsible, if for all t,
7j(t) and uj(t) produced by the controller are such that if Tj(t) # €
and x;(t) € Xj,c Vi € I , then foralli € I and S € p;(t) withj € S
we have:

ifi # j,and

fiz ™

Ri(t, x;(t), U;,S) € Xi ¢
Ri(t, xi(t),ui(t),S) € Xic
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We use controller being p-responsible (or, self-safe), agent being
p-responsible (or, self-safe) and controller rendering an agent p-
responsible (or, self-safe), interchangeably. With all of the above
the following theorem can be stated, which provides a recursive
safety guarantee.

THEOREM 1. Consider an inter-triggering hybrid automaton
{H;}icz, an accompanying collection of sets {Xj ¢};cy that are
robustly controlled invariant for respective X;’s in their respective
safe sets {X; safe}icr and a collection P Ner of resolution over-
approximations. Then,

(1) there exists local controllers y; for each agent H; that render
them self-safe and ﬁ(i)-responsible with respect to the sets
{Xiclier and

(2) if each agent uses a controller y; that renders itself self-safe and
ﬁ(i)—responsible with respect to the sets {Xj,c}icr, the state
trajectories corresponding to any {yi};c r -controlled execution
of {H;}ier beginning in {Xj c}icy always remain within
these sets.

Proor. To prove statement (1), consider, for each H;, a controller
that produces an input u;(t) € {u | f(x;(t),u, D) € X; ¢} and the
triggering action 7;(t) = € for all time ¢ for which x;(t) € Xj .. With
the triggering action 7;(t) = €, the controller y; trivially satisfies the
definition of p-responsibility. Also, X; ¢ being a robust controlled
invariant set guarantees u;(¢) exists whenever x;(t) € Xj . and
with this u;(t) the controller satisfies (6).

To show statement (2), we use induction on time. In the base
case (¢ = 0), by assumption, all agents satisfy x;(0) € X; c. Assume
at time t = k, each agent’s state x;(k) is in its corresponding set
Xi,c. The controller y; either produces (i) 7;(k) = € or (ii) 7;(k) # €.

First, consider case (i). Since controller y; renders H; self-safe,
ui(k) € U; produced by it satisfies (6). With this choice of u](k),
there are two possibilities for state evolution. If p;(k) = 0, the
state x; evolves with the first line of Eq. (3c) and we have x;(k +
1) € X by (6). If pi(k) # 0, state x; evolves with the second
line of Eq. (3¢), that is, x;(k + 1) € Ry(k, x;(k), uj(k), pi(k)). Let
je pilk) e ﬁ?)(k). By Assumption 1, 7j(k) # €. By agent j being
ﬁO)—responsible with 7j(k) # €, for any S € ﬁg’)(k) with j € S, and,
in particular for S = p;(k), the first line of (7) is satisfied. Since
Ri(k, xi(k), uj(k), pi(k)) S Ri(k,x;(k), Ui, pi(k)) and j € p;(k) was
arbitrary, x;(k + 1) € X; ¢ follows.

Now, consider case (ii). By assumption, the controller y; produces
7} (k) # € and u] (k) such that both conditions in (7) and condition
(6) are satisfied. Then, if p;(k) = 0, the state x; evolves with the
first line of Eq. (3c) and we have x;(k + 1) € X; ¢ by (6). If p;(k) # 0,
state x; evolves with the second line of Eq. (3¢), that is, x;(k +
1) € Rilk, xi(k), u;(k), pi(k)). Let j € pi(k) € pY) (k). If j # i, the
reasoning in case (i) above holds. If j = i € p;(k), by assumption,
u} (k) also satisfies the second line of (7) for any S € ﬁg’)(k) with
i € S, and in particular for S = p;(k). Therefore, x;(k + 1) €
Ri(k, xi(k), u; (k), pi(k)) € Xic. o

This theorem essentially says for ITHA, existence of controlled
invariant sets for individual dynamics is a sufficient condition for
ensuring global safety. However, this is not a necessary condition
and our results do not apply to the cases where the only way to
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ensure safety is via triggering. The next result relates the self-
safety and responsibility conditions to “not being at fault" as in
[24] in the sense that if an agent’s control policy is self-safe and
p-responsible, there exists controllers for the remaining agents such
that the overall system stays safe.

CoroLLARY 1. Consider an inter-triggering hybrid automaton
{Hi}ic1, an accompanying collection of sets {X; ¢}icy that are
robustly controlled invariant for respective X;’s in their respective
safe sets {X; safeticr and a collection (PN} ier of resolution over-
approximations. If some subset {Hj}jcr with I’ C I of agents

have controllers yj which are both self-safe and ﬁ(f)-responsible on
the sets {Xi, c}icr, then there exists controllers y; for all of the other
agents {Hi};c 1\ 1 such that the state trajectories corresponding to
any{yi};er-controlled execution of {H;};c y beginning in{Xi,c}icr
always remain within these sets.

Proor. For each i € I \ I’, consider the controller y; that
produces an input u;(¢) € {u | f(x;(t), u, D) C Xj ¢}, which exists
by Xi, ¢ being robust controlled invariant, and triggering action
7i(t) = € for all time ¢ for which x;(¢) € Xj . As shown in the proof
of Theorem 1 statement (1), such y; is self-safe and ﬁ(i)-responsible
on Xj,c. Since y; for j € I’ are given to be self-safe and /30)-
responsible on Xj ¢, with the above choice of controllers for agents
in 7 \ 7', all the controllers are self-safe and p-responsible, which
by statement (2) of Theorem 1 ensures safety of the executions. O

One can try to verify self-safety and responsibility for given
sets {Xj, ¢ }icr, controllers y; and resolution over approximations
p. Conditions (6) and (7) can also be used to synthesize controllers
that render an ITHA self-safe and p-responsible or to supervise
existing controllers at run-time. The latter two are the use cases
we demonstrate in Section 5 using robust controlled invariant sets
for {X; c};cr- Given p, the basic idea is to construct the set of all
triggering actions and control inputs that together satisfy condi-
tions (6) and (7). This set is always non-empty when {X; c};er
are robust controlled invariant sets and it can be constructed at
run-time. Then, for synthesis, a pair (u;, 7;j) is picked from this set
and for supervision, we check if the controller’s u;, 7; is in this set
or not. A few comments are in order as to what information, in
general, is needed to construct this set, which also prescribes what
observations should be included in Y; to implement a controller y;
constructed this way. In general, the states of all agents i, for which
Jj appears in the sets in §;(t) should be included in ;. However, we
note that the reset maps together with the collection {Xj,¢};c 7 of
sets in practice have more structure that can simplify checking for
p-reponsibility or the amount of observations needed. For instance,
for the processor example, for all S C 7, R;(, -, -, S) C Xj ¢ implies
for all $” with |S’| < [S|, Ri(*,,-,S") € Xi,¢. In words, if the proces-
sor i is safe when recruited by a number of other processors, it will
be safe when recruited by a smaller number of processors. This im-
plies that it is enough to check the condition (7) only for the largest
cardinality S containing j instead of all such sets. Similarly, for the
highway example, for all S C I, there is an S:’i C S such that

R;(t,-, -,S’; i
S C S. This is because there is a “worst-case" lane switching leading

to a “worst-case" reset. In a sense, it does not matter what switching

) € Xi ¢ implies R;(t, -, ,8) ¢ Xi, ¢ for all non-empty
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actions an arbitrary agent takes; only agents close to agent j matter.
Thus, an ego vehicle can reason over the set of agents switching
lanes nearest to itself while still being able to guarantee safety. It
is also worth remarking that when either R; or Xj ¢ is not known
exactly, an over-approximation of R; and an under-approximation
of Xj, ¢ can be used in (7) while still guaranteeing overall safety of
the ITHA per Theorem 1. Moreover, as discussed in the next section,
ﬁ(i) can be constructed on the fly, meaning ﬁ(i) is only known up to
ﬁ(i)(t) at a given time ¢ but this is enough to construct a controller
that is self-safe and ﬁ(i)-responsible at time .

4.3 Finding Resolution Over-Approximations

Both complexity and conservativeness can be exacerbated if the
over-approximation ﬁ(i) is “far" from the true p. The task of identify-
ing proper over-approximations of p is thus a vitally important one.
Insights into the structure of the problem can be used to generate
good over-approximations.

We start this section with a relatively easy to compute, yet pos-
sibly conservative, over-approximation. Then, we define an order
between agents through which they can communicate and substan-
tially reduce conservatism. Along the way, we also discuss how
these over-approximations look for our running examples.

4.3.1 Trivial Over-Approximations: If we assume each agent
knows the resolution function p, a trivial over-approximation of
the resolution function can be locally computed at each time step
by considering every possible choice of triggering inputs for all
other agents. In math, agent i computes the j'# component of a

trivial over-approximation pﬁ.i) as:

P (0 = 5 (0) =
{, 7| I eT Veel\ {j}: } 8)
preal | 7
p = pj(t, Tlyenns Ti(t), . 9T\I|)
It can be easily shown that ﬁ(i), components of which are con-
structed as above is an over-approximation of p.

ExaMmpLE 3 (CONT'D EXAMPLE 1). For the server farm in Fig. 1,
we revisit the case where 12(t) = € and t4(t) = {1, 6}, which leads
to p1(t) = {4}, regardless of the triggering actions of the remaining
agents. Using the trivial over-approximation, processor 1 has ﬁgl)(t) =
{0, {2}, {4}, {2,4}}, processor 2 has ﬁgz)(t) = {0,{4}} and processor

4 has ,[354)()}) = {{4}, {2, 4}}. Note that no estimates depend on 71(t),
as agent 1 cannot recruit itself.

ExampPLE 4 (CoNT'D ExaMpLE 2). Consider the trivial over-
approximation from the perspective of the ego agent, in the case
where Tg(t) = €: the only possible resets depend on if L1 does or
does not trigger a reset on E; that is, ﬁ%E)(t) ={0,{L1}}. If instead
tg(t) = left, it is more complicated: ﬁ%E)(t) ={{E},{E,Ls3},{E,L1}}.
The first case occurs if neither L1 nor L3 changes to the center lane
simultaneously, the second case occurs if L3 changes to the center lane,
regardless of the triggering action of L1, and the last case occurs if L
makes a lane change and L3 does not.

4.3.2  Ordered Actions. In some situations, agents in an inter-
triggering hybrid automaton {#;};c; can communicate their
planned actions with one another. If such communication is done
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in an “orderly” manner, it can allow agents to obtain much refined
over-approximations as they no longer need to consider all possible
actions of the other agents.

We again assume each agent knows the resolution function p.
Moreover, we assume at each time that there is a total order >;
among the agents that all agents know and use to communicate
their planned triggering inputs.?

Given such an order, we propose Algorithm 1 for each agent to
construct their resolution over-approximation at each time ¢. With
abuse of notation and without loss of generality, we assume that the
automaton {H;};c 7 is (re)ordered/(re)indexed (by keeping track
of their associated overestimates computed so far) at each time
t so that {H;};er = {H1, Ha, -+ ,H 7|} and the index of each
agent represents its ranking according to >;. Then, Algorithm 1 is
called starting with H; to compute resolution over-approximations
/3(1) and to choose a triggering action 71(t) for which a self-safe
and ﬁ(l)—responsible control input u; (¢) exists. Then, 71(t) is shared
with the next agent and agent H calls the algorithm with {71(2)},
and so on, until all agents compute their triggering actions for time
t. Then these actions are executed and time progresses.

Algorithm 1: Resolution over-approximation construction
with ordered actions
Result: pU)(t, 7;), 7j(1)
Input: ;. {ri(D}_). (xi(D}ier
1 ;].; —0
2 for 7; € 7j do

3 ﬁ(f)(t, 7j) «— 0

4 for(Tj+1,~--,T|]|)€7}+1X-~-X7Tj|d0

5 S« p(t, Tl(t), Tg(t), e, Tj_l(t), Tjy " s Tlfl)
6 if Vuj e U;, Rj(t, Xj(t),uj,S) Q Xj,c then

7 ‘ continue;

8 if 3i # j s.t. Ri(t, xi(¢), Uy, S) € Xi,c then

9 ‘ continue;

10 POt 7)) — pV(zj) U {S})

1 ;7;- — ;73 U{zk

12 7j(t) € ‘7}

This scheme, and particularly the method for constructing p =
{pi}ier can be shown to produce an over-approximation.

LEmMMA 1. Calling Algorithm 1 at each time step according to order
>t produces functions /5(/), each of which is an over-approximation
of p at every time step.

Proor. Note that p(t) = {pi(t,n1(t), 2(t), -, 77| () }ier-
Thus, when {7;(¢)};c s is completely known, we explicitly know
p(t). At the |71t call of Algorithm 1 at time ¢, after 7)7(?) is
chosen then {7;(¢)};c s is completely known. This indicates that
p(t) € pUED(t) for all £.

Now, consider an arbitrary call k of the Algorithm 1
at time t. By definition, ﬁgk)(t) contains all resolutions

pilt,r1(t), 2(t), -+ Tpm1 (8, T Tf o s rl'Il)Where T Th s

2The assumption of >; being a total order can be relaxed. In particular, agents can
still get an over-approximation for a class of partial orders >, for which the Hasse
diagram of the partially ordered set ({H; };cr, =) is a rooted forest at each time, i.e.,

an agent does not receive information from two incomparable agents at a given time.
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are arbitrarily chosen. Similarly, ﬁgk_l) contains all resolutions
pilt, (), 12(0), -+ T (0, T _ o7 T e T )
are arbitrarily chosen. By observation one can see that

where
’ ’
vl
ﬁgk_l) 2 ﬁgk). Therefore, by induction p;(t) € ﬁgk) for any k and
any i. Therefore, the functions ﬁO) produced by Algorithm 1 are
an over-approximation of p at every time step. m]

ExAMPLE 5 (ORDER IN HIGHWAY EXAMPLE). In the highway ex-
ample, one can assume that any vehicle (e.g. vehicle E in Fig. 3) on the
highway sees the actions of the vehicles in front of it (or on a slower
lane when two agents are aligned) and can use those to inform its
own lane change decisions. In this way, a time-varying ordering is
implemented where H; >; H; if and only if H; is in front of H; or
they are aligned and H; is on a slower lane compared to H;. This
gives a total order across agents at each time t.

For example, in Fig. 3 the ordering is Hy, > Hy, > Hg > Hp,.
This choice is motivated by the intuition that the ego vehicle HE is
behind vehicles Hy, and Hr,, so it can see their actions. As concrete
examples of what Algorithm 1 outputs in this case, if Tg(t) = €, then

P(®) = AL} when 1, (1) # € and (1) = 0 otherwise; that is,

ﬁ%E)(t) is not conservative, as it will observe the triggering action of Ly.

Similarly, if tg(t) = left, ﬁg)(t) = {pg(t)}, since E sees the triggering

actions of both L3 and L1 and thus there is no conservativeness.

5 EXPERIMENTS

We evaluate the flexibility and applicability of ITHA by using it
to perform single-agent control in the highway driving scenario
(Section 5.1) and multi-agent control in the parallel processing sce-
nario (Section 5.2). Finally, we evaluate the conservativeness of
the ITHA-based responsibility-sensitive safety rules on a real high-
way driving data-set (Section 5.3). Our software implementation is
published at [1].

5.1 Single-agent control: highway driving

We demonstrate ITHA on the highway driving scenario, as de-
scribed in Example 2, where only the ego vehicle is controlled and
seeks to remain safe and responsible with respect to the uncon-
trolled vehicles. The ego vehicle E seeks to track a nominal velocity
Unom = 15m/s, formally solving the following receding horizon
control problem at each time-step:

to+H
. 2
Jmin 3 (o) = vnom
TE(’O) t=ty+1

st. xp(t+1) = fg(xe(t), ug(t), d1)), t=tg+2, ...,

to+H-1
xE(to + 1) € XE,c
xe(to +1) = fE(xE(%), up(t), d(t)), if re(to) = € (9)
xg(to+1) = Ré(to, xg(to), ug(to), U{pj(t0)}), if ze(ty) =1
Rh(to, x;(t0), uj(to), U{pj(t0)}) € Xj.cs

Vuj(to) € (L{j, Vj e ﬁ,E(to), if tp(t) =1

xg(to + 1) = Rp(to, xg(to), ue(to), U{p;(20)}), if 7(to) = r
Ri(to, xj(t0), uj(t0), U{p;j(t0)}) € Xj,c,

Yu;(tg) € Uj, Vj € p_g(to), if tg(to) = r

and executing ug(tp), where the prediction horizon H = 25, the
predicted disturbance d(t) = 0if t > tp and d(t) = —10if t = 1o,
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and the continuous dynamics fg(:, -, -) are as in (5), where At = 0.1.
Furthermore, U; = [—-10, 10] for all agents i, and we define p_g(t) =
{ie I|3jepi(t),in{E} # 0} as an over-approximation of the set
of all agents that E can trigger at time t. We will shortly describe the
specific p that we use in our experiments. Finally, we abuse notation
to define R§(~, -,+,+) and RJ’.(-, -, -, ) as functions which output the
reset state upon making a left and right lane change, respectively.

To interpret (9), we note that the first constraint enforces the
continuous dynamics from the second timestep onwards, and the
second constraint enforces self-safety. The third constraint enforces
the continuous dynamics at the first timestep if no triggering action
is taken, while the fourth and sixth constraints enforce an appropri-
ate state reset if the ego agent performs a left or right lane change,
respectively. Finally, the fifth and seventh constraints enforce that
all agents that are triggered by the ego vehicle’s lane change action
can remain safe by applying any control input.

Note that (9) can be represented as a mixed integer quadratic pro-
gram, where 7(tp) € {e, left, right} can be modeled with an integer
decision variable z € {0, 1, 2} used within a big-M formulation [2]
to determine the lane change choice. To improve performance, (9)
only seeks to enforce self-safety and responsibility at the first time-
step (the system remains safe as only the input from first time-step
is executed; hence, only safe actions are applied).

The uncontrolled vehicles are simulated using the Intelligent
Driver Model (IDM) [26]:

xi(t+1) = x;(t) + Ato;(t)
S
vilt+1) = vi(t) + Ata[1 - %¥2 -

1

(10)

s0 + 0i(t)Tyr + oi(t)(oi(t) — ved()) |
2Vab

with parameters § = 4,50 = 5,Tg = 1.5,a = b = 10 and randomly
sampled nominal velocities 0;. Here, vi.ead(t) refers to the velocity of
agent i’s lead car. We execute for 500 time-steps, solving (9) at each
time-step; see Fig. 5 for a visualization of an example execution.
To illustrate the impact of different over-approximations of p on
conservativeness, we compare control performance under these p:

(A) The trivial over-approximation (8)
(B) The ordered over-approximation described in Algorithm 1,
with the time-varying ordering as described in Example 5

A video showing the behavior of the p-responsible ego vehicle
when using the two different over-approximations is available here:
https://youtu.be/a5JTULWQYVzM. Under over-approximation (A),
the ego vehicle travels 351.9 meters, while it travels 415.3 meters
under over-approximation (B), averaged over 25 random initial-
izations of the uncontrolled vehicles. In all simulations for both
over-approximations, we did not experience any unsafe behav-
ior, as guaranteed by the theory. We note that the performance
improvement of the second over-approximation is a result of it
being less conservative than the first. For instance, consider the
example in Fig. 5. The simulation remains the same for both over-
approximations up until time t = 86. At time ¢ = 87, the ego agent
is unable to make an advantageous left lane change to lane 3 under
over-approximation (A), because if the car in lane 4 also changes to
lane 3 simultaneously, it would lead to a safety violation. However,
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‘ Avg. no. accepted jobs ‘ Avg. safety violations

p estimate (A) 268.6 0
p estimate (B) 262.2 147.64
p estimate (C) 302.72 0

Table 1: Parallel processor statistics, averaged over 25 runs.

under over-approximation (B), the ego agent can safely make that
lane change because the ordering implies that the car in lane 4 ob-
serves and should yield to the triggering action of the ego vehicle.
A similar event occurs at time ¢ = 201: under (A), the ego vehicle
cannot make an advantageous switch to lane 4, because if the car
in lane 5 is to simultaneously switch to lane 4, it would result in
safety violations. By the end, the ego vehicle travels 161 meters
further under (B) than under (A) (Fig. 5, bottom).

Finally, we note that while (B) outperforms (A) on average, (A)
can still possibly outperform (B) for specific assignments of the
uncontrolled vehicles. This occurs because (9) is restricted to a one-
step plan for triggering actions, so the ego vehicle can make extra
lane changes under (B) that can cause it to get trapped behind a slow
car without realizing that it can free itself using a long sequence
of lane changes; planning triggering actions over a longer horizon
would aid in escaping from these “local optima".

Overall, this experiment suggests we can use ITHA-based con-
trollers to control an agent in a multi-agent environment with safety
guarantees under limited communication, and that conservative-
ness of p can affect control performance.

5.2 Multi-agent control: parallel processors

We demonstrate ITHA on the parallel processor scenario, as de-
cribed in Example 1, where we control all agents (processors). Our
task is to maximize the number of accepted jobs over a finite hori-
zon. At each time-step, we indirectly achieve this in a decentralized,
receding-horizon fashion by computing control inputs and trigger-
ing inputs individually for each agent, which greedily minimize the
number of remaining jobs for that agent. Formally, for each agent i,
we solve the following integer program at each time-step t:
wi(B2a(0) wE+1)
st xi(t+1) = xi(t) - wilt) +dit) - 2} (1)

xi(t+1) e Xic

xi(t+1)20 (11)

7 (t) = 0, ¥j ¢ outg(i)

Rj(t, xj(t), uj(t), U{pj(1)}) € Xjc,

Yuj(t) € Up,Vj: ) (1) =1

where u;(t) € {0,1} and 7;(¢) € {0, 1} . Here, | T| = 10, Nihrottle =
3, and Ngyerflow = 5- We define an over-approximation of the set of
agents that agent i can trigger at time ¢, p_;(¢), in the same way as
in the highway example. Similar to the highway example, we will
compare performance between three p estimates:

(A) The trivial over-approximation (8). Here, p;(t) = 2ing (i),
(B) An under-approximation plf}d(t) C {i}, that is, when plan-
ning 7;(t), agent i assumes no other agent will recruit j.

(C) The ordered over-approximation described in Algorithm
1, with a time-invariant priority order sorted by processor
index, ie. Hy > ... > Hj.
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Figure 5: Highway driving example. Red: ego vehicle. Blue: uncontrolled vehicles. Arrow magnitudes are proportional to agent
velocity. Top row: the ego vehicle can make an advantageous change to lane 3 under (B), but not under (A) due to a hypothetical
simultaneous lane change from the lane 4 agent to lane 3. Middle row: the ego vehicle cannot make an advantageous lane
change to lane 4 under (A) due to a hypothetical simultaneous lane change from the lane 5 agent to lane 4. Bottom row: At the
end of the simulation, there is a large performance gap between using over-estimates (A) and (B).

We simulate 25 runs, each over a horizon of 50 time-steps, and
report the performance statistics in Table 1. In each run, we gen-
erate a random undirected connectivity graph G, where an edge
between agents i and j exists if a sample uniformly drawn from
[0,1] is greater than or equal to 0.1. Disturbances d;(t) are also
generated randomly. Note that using the p estimate (A) leads to
conservative performance, since there is no communication; thus,
for agent i to recruit agent j, it must guarantee that agent j can
remain safe if the rest of agent j’s neighbors also trigger it. This
overall leads to few recruitment actions, and thus many jobs are
rejected. On the other hand, (B) is less conservative, but as it is an
unsafe estimate of p (since it is an under-approximation), safety
violations can occur, such as when many other processors recruit
one processor during the same time-step, leading to the recruited
processor exceeding ngyerflow- As a side effect, the average number
of accepted jobs is also lower under (B) since many processors are
often over the throttle limit, limiting the number of incoming jobs.
With the ordered contract, we can avoid this mismanagement, more
efficiently allocating jobs among the processors and preventing jobs
from being unnecessarily rejected while remaining safe.

Overall, this experiment suggests that we can also use ITHA
to control multiple agents in a decentralized fashion with safety
guarantees, and that it is vital to select an appropriate p estimate
to ensure safety and good performance.

5.3 Supervision: Evaluation of ITHA on data

Several frameworks for autonomous driving have sought to su-
pervise a performance controller with a safety supervisor, which
overrides when the performance controller may lead the system
to an unsafe state. These supervisors often use invariant sets or
control barrier functions to detect these safety violations. How-
ever, the usefulness of a safety supervisor is often dependent on its
conservativeness, i.e. it should not unnecessarily override, as the

jerkiness of changing controllers may annoy or frighten the user.
To empirically demonstrate that the ITHA framework can serve as
a high-quality safety supervisor that provides rigorous safety guar-
antees while remaining sufficiently permissive, we demonstrate
that an ITHA-based supervisor achieves low override rates when
supervising on a real world highway driving data-set [13].

The HighD data-set consists of trajectories of each driver’s po-
sition with annotations, such as the vehicle lane and vehicle class
(motorcycle, truck, or car), with data recorded at six different lo-
cations on the German Autobahn at various times of day. We use
110516 trajectories from the HighD data-set, containing a total of
around 4 X 107 (x, u, d) data-point tuples. The state, input, and dis-
turbance trajectories for each car in the data-set under the dynamics
(5) (the v;, hj, vf‘, and d; trajectories) are generated as follows. v;,
h;, and viL are directly provided in the HighD data-set; we compute
d; via finite-differencing using the lead car velocities and At = 0.04
seconds, which is the provided time discretization of the data-set.

We hold out 20% of the data and use the remaining 80% as a
“training set" to compute disturbance bounds. These disturbance
bounds are used to compute invariant sets which are well-calibrated
to the driving behavior observed in the data-set. Let the set of all
disturbance trajectories in the training data-set for dynamics (5) be
denoted E4 = {gd,i}fil’ where N is the number of trajectories in
the data-set. While the data-set can be noisy, we do not perform any
de-noising in this step, and instead process outliers when computing
the disturbance bounds. Specifically, we process =Z; for outliers
by only keeping the data between the 0.025- and 0.975-sample
quantiles dAo,ozs, dAo,975; that is, we concatenate =4, sort the result
in increasing order (i.e. obtain the order statistics of =4, denoted
E4,(1)»Ed,(2)> - - -)» and remove all disturbances belonging in the
first 2.5 and last 2.5 percent of Z (this is possible, since d is scalar
in (5)). Formally, we define the y-sample quantile, y € (0,1), as
dAy = Egq,(1yN7), Where N is the number of elements in E. Let this
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Case ‘ Override percentage
Self-safety 10.09%
Responsibility: Trivial g 28.03%
Responsibility: Prioritized order p 2.30%

Table 2: Override statistics for HighD data-set supervision.

modified data-set be denoted éd ={deE;|de [(20,025,(20.975]}.
We compute an invariant set assuming disturbances d satisfy d €
D=D; = [40.025,(20,975], and use these invariant sets X ¢ = Ciny
within an ITHA-based supervisor.

To quantify the conservativeness of using ITHA-based
responsibility-sensitive safety rules to supervise highway driving,
we calculate the number of times our supervisor overrides the
human control input on the trajectories observed in the data-set.
Specifically, we calculate the fraction of datapoints in which self-
safety (as defined in Definition 4) and p-responsibility (as defined in
Definition 6) are violated; we denote this the override rate, reported
in Table 2. A low override rate indicates that our supervisor will
not frequently engage and is not excessively conservative, which is
desirable since there are no crashes in the data-set. As mentioned,
we compare between two different p over-approximations to eval-
uate responsibility: the first uses the trivial over-approximation
(8), while the second uses the ordering contract where any agent j
behind agent i in the direction of travel must yield to the triggering
actions of agent i (see Example 5 for more details).

Analyzing the override percentages in Table 2, we observe that
supervising self-safety with ITHA results in relatively low override
percentages, while the ordered contract outperforms the trivial
contract substantially. This is to be expected, since using the trivial
over-approximation leads to overrides being counted if the ego
car is changing lanes and there exists another car adjacent to the
new lane with similar longitudinal position as the ego car. This is
common behavior (i.e. many cars may simultaneously be at similar
longitudinal positions on the highway in different lanes). Note that
these override rates can be further improved by employing context-
dependent invariant sets generated with disturbance bounds com-
puted on different clusters of data (contexts), i.e. only on trajectories
recorded in the fast lane, or only on trajectories recorded at rush
hour. Further investigation of the impact of context-dependence on
the conservativeness of ITHA-based supervisor rules is an interest-
ing direction for future work.

Overall, this experiment suggests that an ITHA-based supervisor
can obtain low override rates on a real driving dataset, indicating
that driving data-sets can be used to calibrate an ITHA-based safety
supervisor and that such supervisors are permissive enough to avoid
excessive overrides (10% for self-safety and 2% for an appropriate
responsibility contract) and act as a useful safety supervisor.

6 DISCUSSION

In this section, we provide a few remarks on limitations and simple
extensions of our framework:

e ITHA is appropriate in modeling systems whose individ-
ual dynamics are decoupled but have additional triggering
actions for interaction. Our self-safety and responsibility
rules utilize this structure to provide sufficient conditions for
global safety. In comparison, existing compositional frame-
works, such as [5, 9, 14, 17, 19, 22, 23, 25], that give sufficient
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conditions for global safety allow agents’ dynamics to be
coupled but do not allow for triggering actions.

e We note that our approach can be extended to guarantee
safety for settings in which individual systems may have
communication delays or sensor noise by leveraging recent
advances in invariant set computation [10, 12, 15, 29] for
systems with these imperfections.

e The increased complexity of our method over other
responsibility-sensitive safety frameworks for driving (i.e.
[7]) can be attributed in part to analyzing “second-order”
triggers, i.e. reasoning about the set of agents which can have
their feasible triggering set modified by the triggering action
of another agent. In the two-lane highway driving setting,
such behavior does not exist (which is what is considered
in most existing responsibility-sensitive highway driving
frameworks) since there are no “second-order" neighbors;
however, to guarantee safety when there are more than two
lanes of traffic, it is vital to consider second-order behavior.

e While we show communication and ordered triggering ac-
tion selection can reduce conservativeness, it can be further
reduced by communicating control inputs. We assume that
agents evaluate responsibility using all inputs u that the trig-
gered agents can apply (see Eq. (7)); however, if agents can
communicate their state and input to the triggered agent,
we can relax this “for all inputs” condition to “there exists
an input" according to a similar priority.

e Finally, we note our framework allows for priorities between
agents which are not fixed a priori and dynamic orders can
be chosen to improve performance. For instance, in the pro-
cessor example, agents with the most remaining jobs can be
reassigned to have higher priority in recruiting other agents.
So, there is a potential to employ distributed algorithms to
select such dynamic orders.

7 CONCLUSIONS

In this paper, we introduce a novel modeling paradigm for multi-
agent systems, the inter-triggering hybrid automaton. We develop
sufficient conditions for proving safety of these systems using the
notions of self-safety and p-responsibility, which we show both the-
oretically and empirically result in guaranteed safe execution of the
entire collection of agents. We also describe methods for generating
practical approximations of the resolution function, and how local
communication can be leveraged to improve these approximations.
Finally, we demonstrate our approach on single- and multi-agent
control in the parallel processing and highway driving scenarios,
and furthermore evaluate the conservativeness of our approach on
a safety supervisor task using real highway driving data. In future
work, we wish to use assume-guarantee contracts between different
agents in an ITHA to allow more coordination during resets. Also,
we would like to extend our analysis to handle collections of agents
whose triggering actions take multiple time steps to complete (i.e.
non-instantaneous lane changes in the highway example) or have
a delayed effect on the rest of the collection. Finally, we conjecture
that ITHA is a special (less expressive) type of discrete-time hybrid
1/O automaton [16] where each individual agent and the resolution
function are hybrid I/O automata. This connection will be further
investigated.
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