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M
endeleev's tabular organization
of the elements1,2 by atomic va-
lence3 has served for more than

140 years as a heuristic that relates proper-
ties of the atomic elements to how they
arrange in bulk structures. However, at-
tempts to understand how properties of
bulk structures relate to atomic properties
predate Mendeleev and, in fact, modern
science4 and are complicated by the fact
that the chemical manipulation of atoms is
prohibited by the quantization of both elec-
trical charge and angular momentum. For-
tunately for Mendeleev, this quantization
constrains Nature to only about 80 stable
elements and limits elemental properties
and bulk strutures so that the elements
can be tabulated by valence. In fact, starting
with technetium5 in the 1930s, new atomic
elements haveonly beenproducedartificially
(the name technetium comes from the Greek
for artificial6) by R-particle bombardment,

fusion, or other nuclear techniques that
finally realized the ancient alchemists' goal
of transmuting the elements.
In contrast, an inexhaustible array of new

“elements” can be synthesized as patchy
particles.7,8 However, the exploding diver-
sity of patchy particles8�10 or, more gener-
ally, collolidal “elements” means that there
are now so many types to synthesize and
study that synthesizing them all and deter-
mining their bulk structure is no longer
possible in practice. This fundamental im-
practicality means that for colloid science to
progress scientistsmust first ask and answer
the basic but daunting question, what ele-
ments should I make? Materials science that
starts with this question must be carried
out in a fundamentally different way than
traditional approaches, guided by the ques-
tion, what is the optimal building block
to make for a given structure, and why is it
optimal?
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ABSTRACT Starting with the early alchemists, a holy grail of science has been

to make desired materials by modifying the attributes of basic building blocks.

Building blocks that show promise for assembling new complex materials can be

synthesized at the nanoscale with attributes that would astonish the ancient

alchemists in their versatility. However, this versatility means that making a direct

connection between building-block attributes and bulk structure is both necessary

for rationally engineering materials and difficult because building block attributes

can be altered in many ways. Here we show how to exploit the malleability of the valence of colloidal nanoparticle “elements” to directly and

quantitatively link building-block attributes to bulk structure through a statistical thermodynamic framework we term “digital alchemy”. We use this

framework to optimize building blocks for a given target structure and to determine which building-block attributes are most important to control for self-

assembly, through a set of novel thermodynamic response functions, moduli, and susceptibilities. We thereby establish direct links between the attributes

of colloidal building blocks and the bulk structures they form. Moreover, our results give concrete solutions to the more general conceptual challenge of

optimizing emergent behaviors in nature and can be applied to other types of matter. As examples, we apply digital alchemy to systems of truncated

tetrahedra, rhombic dodecahedra, and isotropically interacting spheres that self-assemble diamond, fcc, and icosahedral quasicrystal structures,

respectively. Although our focus is on colloidal systems, our methods generalize to any building blocks with adjustable interactions.

KEYWORDS: digital alchemy . patchy particles . anisotropy dimensions . shape entropy . colloids . materials design .
structure�property relationships
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Unlike for atoms, colloid valence11�15 is not dis-
crete. Moreover, entropic colloid valence14,16 is a col-
lective effect17 that emerges only when colloids are
crowded.14,16 A first step in identifying a classification
scheme for colloidal elements was taken by heuristi-
cally classifying building blocks according to their
valence along anisotropy dimensions8,14 that system-
atically and orthogonally vary colloidal element attri-
butes. This sort of colloidal alchemy is now possible.
Here we present a statistical thermodynamic frame-

work that forms the basis for a new computational
approach to building-block design, which we term
digital alchemy. Using this framework: (i) We show
how to treat anisotropy dimensions8,14 or other parti-
cle interaction parameters as thermodynamic variables
and interpret their conjugate quantities. Treating par-
ticle interaction parameters thermodynamicallymeans
that the attributes of the colloidal “elements”we study
can change, sowe refer to ourmethods as “alchemy” in
analogywith prescientific attempts tomodify chemical
elements.4 The term alchemy has been used previously
in the modern era in the context of materials design,
and these uses either are different in spirit from the
present work18 or are focused on computing global
free energy differences in systems19,20 in which inter-
mediate state points are unphysical. A related investi-
gation was also carried out in ref 21, which considered
the effects of nonrigid colloid shape on crystallization
mechanically, whereas herewe study rigid colloids that
fluctuate thermally. Although there are many systema-
tic investigations of how particle shape or interactions
affect structure,10,14,22�45 we are aware of no work
that attempts to directly probe the thermodynamic
response of a system to a change in the attributes of its
constituent building blocks. (ii) We show how consti-
tutive relations between anisotropy parameters and
the thermodynamically conjugate variables we term
“alchemical potentials” encode a broad class of de-
tailed quantitative relations between building-block
attributes and bulk structure. Further, we define new
moduli and susceptibilities that describe stress�strain
relationships between bulk structure and particle attri-
butes. (iii) We show that these building block vs bulk
relationships persist in systems with entropy-driven,
emergent collective behavior. (iv) We show how the
relation between building block and bulk structure can
be used both to determine optimal particle shapes or
interactions for given structures and to compute the
relative importance of different particle attributes for
bulk structure. (v) We report a detailed, general micro-
scopic design rule for a macroscopic, entropy-driven,
emergent behavior. (vi) We demonstrate this design
rule in simulations that allowparticle shape to fluctuate
dynamically by showing that when particles are con-
strained to sit on a target lattice, they spontaneously
adopt their preferred shape, i.e., the shape that mini-
mizes the free energy of the target structure at a given

state point. Although our main focus is on colloidal
systems, our methods immediately generalize to any
system with building blocks that have adjustable
interactions, e.g., polymers and DNA origami.
Collectively, our findings demonstrate that although

atoms and colloids are both usefully classified by
valence, in colloidal materials the relationships that
exist between particle attributes and bulk structure are
very different from the building block vs bulk relation-
ships that the periodic table describes for atoms. We
show that whereas the periodic table provides infor-
mation for atomic materials that is complete, but
heuristic, for colloidal materials the building block vs

bulk relationships are incomplete but sufficiently
quantitative to both determine optimal building-block
attributes for bulk structures and explain why they are
optimal.

RESULTS AND DISCUSSION

Theoretical Results. In previous work,8 Glotzer and
Solomon showed how to classify colloidal elements
by describing particle valence in terms of anisotropy
dimensions. The particle valence encoded in terms of
anisotropy dimensions is usually considered to be fixed
for any given system. Here, instead of having fixed
particle attributes, we allow particle attributes to vary
in situ. We will allow variation in particle attributes for
a given set of particles along all relevant anisotropy
dimensions and show that doing so consistently within
the framework of statistical mechanics dictates that
each particle attribute has a thermodynamically con-
jugate quantity. We will then show that these ther-
modynamically conjugate quantities encode detailed
information about how building-block attributes affect
bulk structure and can be used to deduce optimal
building blocks for given structures.

We consider a family of “basic” elements that can be
described by a set of isotropic interaction potentials or
by anisotropy dimensions for enthalpic8 or entropic14

patches, with parameters {Ri}. Although the focus of
the present work is on colloidal systems, the basic
elements could be any type of material building blocks
that have adjustable interactions. The particles are
described by a classical Hamiltonian H that depends
on the Ri via a pair interaction between particles and
the rotational kinetic term in the Hamiltonian

H(fRig) ¼ p2

2m
þ 1
2
LT I�1

fRigLþUfRig(q, Q) (1)

where p are momenta, L are angular momenta, I is the
moment of inertia tensor, and U is the interaction
potential that depends on particle positions q and
orientations Q and where we have suppressed particle
indices. We consider systems in which the generalized
particle coordinates and their conjugate momenta
do not have explicit dependence on the Ri. [In this
case, the Ri have vanishing Poisson brackets with the
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Hamiltonian and are invariants of the system: {Ri,H}=0.
This is the case if, for example, a particle's shape is
independent of its generalized momentum and posi-
tion. This would not hold, for example, for systemswith
chemical gradients that cause a particle to swell in
some locations more than others. Furthermore, we
consider systems in which the Ri themselves are
mutually commuting; that is, the order in which opera-
tions are applied to modify the building blocks is not
important.] We regard the Ri as a set of mutually
conserved charges, and it has been shown46,47 that
there is a well-defined thermodynamic ensemble for
any set of mutually commuting conserved charges.

Formally, we consider a system where the Ri fluc-
tuate thermally about some averages ÆRiæ and the
energy fluctuates about an average ÆEæ. The partition
function for this ensemble can be found with various
methods. For brevity we start with the Shannon/
Jaynes48,49 entropy

S ¼�∑
σ

πσ ln(πσ)� β(πσH � ÆEæ�∑
i

μiN(πσRi � ÆRiæ))

" #

(2)

where we have set kB = 1, πσ is the probability of
finding the system in a state labeled σ, β and μi are
Lagrange multipliers enforcing the thermal averages,
N is the number of particles in the system (the factor of
N is included here so that both μi and Ri can be inten-
sive quantities), and the summation should be inter-
preted schematically. Also, unless otherwise noted we
will work in units where the particle volume l3 = 1.
To determine the partition function we maximize eq 2
with respect toπσ. This gives, up to somenormalization
constant Z ,

πσ ¼ 1
Z
e�β(H �∑ i

μiNRi ) (3)

and fixing the normalization ∑σ πσ = 1 gives

Z ¼ ∑
σ

e�β(H �∑ i
μiNRi ) (4)

We see that β = 1/T, the usual inverse temperature, and
μi are thermodynamic quantities conjugate to the Ri.
In the physics literature it has become standard prac-
tice to refer to all intensive quantities that enter a
partition function in a manner similar to, for example,
the pressure or chemical potential and do not have
pre-existing names as generalized “chemical poten-
tials” (see, for example, refs 46, 47, and 50�52). The
generalized chemical potentials that we introduce here
correspond not to a change in the number of particles,
but rather to a change in building-block attributes.
Modifying the properties of the atomic elements was
oneof the (failed) aimsof the ancient alchemists.We thus
refer to the generalized chemical potentialswe introduce
here to modify properties of colloidal “elements” as

“alchemical potentials”. As we show in this paper, al-
chemical potentials encode how a system responds to
changes in its building-block attributes.

We define the thermodynamic potential for the
ensemble in eq 4 as Z � e�βφ, which gives

ÆRiæ ¼ �1
N

Dφ
Dμi

� �
N,η, T,μj 6¼i

(5)

where η is the packing fraction or density. This
computes how the system responds to a change in
alchemical potential and in the thermodynamic limit
(hereafter we will drop the Ææ notation) establishes a
constitutive relation Ri(η,T,{μj}). It is convenient to
make a Legendre transformation F = φ þ ∑iμiNRi and
compute the constitutive relation μi(η,β,{Rj}) using the
expression

μi ¼
1
N

DF
DRi

� �
N,η, T,Rj 6¼i

(6)

For notational simplicity, especially in cases where we
consider a single Ri, it will sometimes be convenient to
drop the subscripts on R and μ.

The constitutive relation μ(R) quantifies the ther-
modynamic response of a system to a change in the
attributes of the constituent particles. If the alchemi-
cal potential μ > 0 at some state point NVTR, then
an infinitesimal increase in the alchemical param-
eter R would increase the free energy of the system.
Conversely if μ < 0, then an infinitesimal increase in
R would decrease the free energy of the system. This
has two important implications. (i) Locally optimal
particle attributes R* are determined by the roots of
the constitutive relation μ(R*) = 0 with positive slope.
We show in the SI that the locations of these roots are
invariant under reparametrizations of R. (ii) In hard
particle systems,where the free energy simplymeasures
the system entropy, μ directly measures how the num-
ber of states available to a system changes as a function
of the particle shape, and so it can be used to system-
atically determinewhich particle features aremost likely
to come into contact and provides explicit quantitative
guidance on how to design shapes for structures. We
demonstrate both of these implications below.

In the next section, we explicitly compute μ in three
example systems and interpret the meaning and
implications of each computation. We compute the
constitutive relation μi(η,T,{Rj}) at η,T,{Rj} numerically
using eq 6 with the Bennett acceptance ratio
method.53 Using this method, we compute μ at some
{Rj} by equilibrating several independent samples at
nearby values Rj þ νhj, where ν are constants chosen
for an appropriate finite differencing scheme and hj are
finite differences. For a full description of the computa-
tion, see the SI. To determine the valence for aniso-
tropic particles, we use the potential of mean force and
torque (PMFT), as described in ref 16.

A
RTIC

LE



VAN ANDERS ET AL . VOL. 9 ’ NO. 10 ’ 9542–9553 ’ 2015

www.acsnano.org

9545

In addition to constitutive relations between thermo-
dynamic quantities (i.e., first-order derivatives of the
free energy), physical systems are also frequently char-
acterized by higher free energy derivatives: suscept-
ibilities and moduli (see, for example, refs 54 and 55).
We define the alchemical modulus MR and suscep-
tibility χR as

MR � Dμ
DR

� �
N, η, T

, χR � DR
Dμ

� �
N, η, T

(7)

The extension to systems with several alchemical
parameters is straightforward. We note that, like stan-
dard moduli (e.g., bulk, shear, Young's),MR is a stress�
strain relationship,55 but the strain is in alchemical
space rather than real space. Accordingly, alchemical
modulus MR (eq 7) at R* measures how sensitive the
system is to deviations from the ideal particle prop-
erties. Similarly, like standard susceptibilities (e.g.,
compressibility),55 χR is a strain�stress relationship.
Physically,for example, by the fluctuation�dissipation
theorem (see, for example, ref 54) χR determines how
quickly a system of, say, fluctuating shape relaxes when
particles are perturbed from their equilibriumattributes.

Numerical Results and Discussion. We use our digital
alchemy methodology to optimize building blocks for
self-assembly in three different case studies. The first
two involve entropy-driven systems, which are among
the most conceptually difficult in which to connect
macroscopic and microscopic system properties
because the macroscopic behaviors are intrinsically
collective.14,16,58�60 In the third study, we investigate
an oscillating pair potential, which was recently
shown42 to self-assemble a one-component icosahe-
dral quasicrystal, one of the most complex crystal
structures known. In each case, the details of the
specific model are included in the discussion below.
Details and extended discussion of the methods used
in each case may be found in the SI.

Truncated Tetrahedra. We simulated a one-
parameter family of truncated tetrahedra at moderate
truncations known to self-assemble diamond lat-
tices.33 We parametrized the truncation between R = 0
(a tetrahedron maximally truncated so that it is an
octahedron) and 1 (an untruncated, regular tetra-
hedron). With this parametrization particles self-
assembled diamond at a packing fraction of η = 0.6
between truncations of 0.25 and 0.475 (see Figure 1a;
the reparametrization invariance of our results is dis-
cussed in the SI). For reference, the Archimedean
truncated tetrahedron33 has a truncation of 1/3.
We performed standard Monte Carlo (MC) simulations
(e.g., ref 61) of systems of N = 216 and 1000 particles at
fixed volume. Polyhedra overlaps were checked using
the GJK algorithm.62

For the truncated tetrahedra, we computed the
constitutive relation between vertex truncation R and

its conjugate alchemical potential μ. We first computed
μ in small systems of N = 216 particles and found
preliminary evidence for vanishing alchemical poten-
tial (here, a free energy minimum) for 0.35 < R* < 0.4
(Figure 1d, squares). To obtain higher precision and
to test for finite size effects, we simulated systems of
N = 1000 particles in the region surrounding the
putative free energy minimum (Figure 1d, circles).
From these alchemical potential computations we
extracted the free energy of the system as a function
of shape in the vicinity of the minimum (Figure 1d,
inset), which we estimated by performing a weighted
least-squares fit to

βμ ¼ βMR(R � R�) (8)

from which we find the free energy minimum is at

R� ¼ 0:3736( 0:0001 (9)

and the alchemical modulus MR is

βMR(R ¼ R�,η ¼ 0:6) ¼ 52:0( 0:3 (10)

We also constructed diamond densest packings
(Figure 1f) for truncated tetrahedra for all truncations
(in increments of 0.001) at which self-assembly into
diamond lattices was reported in ref 33 and find the
curve has a maximum consistent with the Archimedean
truncated tetrahedron at RA = 1/3.

To directly examine the effects of shape modifica-
tion on emergent valence,14,16 we computed the PMFT
for systems of N = 1000 truncated tetrahedra. For
details of this computation, see ref 16. We computed
the PMFT at a density of η = 0.6 for a truncation of
R = 0.25 (Figure 2a) and a truncation of R* (Figure 2b).
The results for the first neighbor shell show particles
have stronger tetrahedral valence at R* than at R =
0.25, which originates from the relatively larger hex-
agonal faces acting as stronger entropic patches.14

However, we see that at a fluid density of η = 0.5, in
the second neighbor shell when particles have the
optimal truncation R* (cyan spots in Figure 2c), the
next-to-nearest neighbors sit in an alternating arrange-
ment, whereas the next-to-nearest neighbors for per-
fect tetrahedra (blue spots in Figure 2d) are rotated by
π/6. This indicates a nonalternating arrangement that
coincides with polytetrahedral motifs not commensu-
rate with the diamond lattice, which arises from steric
constraints depicted in Figure 1c. To directly confirm
this result, we performed simulations in an NVTμ en-
semble (i.e., both thermostated and “alchemostated”)
to determine R(μ) at μ = 0 for N = 216 and 1000
truncated tetrahedra with fluctuating shape in a dia-
mond Einstein crystal. We initialized the system at low
packing fraction η = 0.2 with fully truncated (i.e.,
octahedral, R = 0) particles and slowly compressed
the system to the target packing fraction of η = 0.6, after
which we relaxed the spring constant. We observed
that the process drove the particles to spontaneously
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adopt a truncation consistent with our alchemical
potential calculations at fixed shape. See Figure 1e
and the SI movie.

Our computation of the constitutive relation μ(R)
for truncated tetrahedra that form a diamond lattice
reveals several findings. (i) By determining that μ(R)
has a root at R*≈ 0.37 we have demonstrated that it is
possible to find a thermodynamically optimal shape,
among a given family, for self-assembling the diamond
lattice. (ii) Our criterion of μ(R*) = 0 is both parameter-
free and independent of system kinetics, which are
highly dependent on simulation methods. Neverthe-
less, we find rough agreement between the thermo-
dynamic computation of the alchemical potential and
a measurement of the lower critical packing fraction
ηc reported in ref 33, which we reproduce in Figure 1f.
(iii) The fact that the optimal particle shape (R*≈ 0.37)

for diamond assembly at η = 0.6 is more tetrahedral
than the optimal shape for diamondpacking (RA = 1/3),
but not perfectly tetrahedral (R = 1), arises from a
competition between two effects. Particles must have
tetrahedral valence to form the diamond lattice, but
in the diamond lattice, particles are arranged in an
alternating motif (Figure 1c,d). Shape entropy con-
siderations16 suggest that as the system density is
lowered, particles must have larger entropic patches14

to maintain their emergent valence, as shown in
Figure 2. However, as illustrated in Figure 1d, if the
particles are too tetrahedral, then the alternating
diamond motif leads to overlapping next-to-nearest
neighbor particles, as shown in Figure 2. Hence, the
optimal truncation of a tetrahedron to self-assemble
diamond is more tetrahedral than packing would
dictate to preserve valence, but not too tetrahedral

Figure 1. Truncated tetrahedra at a range of truncations R (a) self-assemble a diamond lattice (b).33 A search for maximal
diamond packing density, ηd(g), would suggest optimal assembly at RA = 1/3, the Archimedean truncated tetrahedron. We
compute the constitutive relation (d) μ(R) (eq 6) for hard truncated tetrahedra at η = 0.6. Squares are results for systems with
216 particles, circles for systems with 1000 particles; where visible, error bars are one standard deviation. The alchemical
potential vanishes when the truncation is optimal for self-assembling diamond at this density when the truncation is
approximatelyR*≈ 0.37. In the inset plot we reconstruct the free energy curve in the vicinity of theminimum. The increase in
anisotropyR* above the geometric predictionRA arises because particles need to increase anisotropy to preserve tetrahedral
valence at lower packing fractions, but if particles are too anisotropic, the simultaneous coordination of neighboringparticles
is sterically prohibited (c, see also Figure 2). We demonstrate this design rule (e; see also the SI movie) by simulating
tetrahedra with fluctuating shape at μ = 0 in an Einstein crystal with spring constant k at packing fraction η = 0.6 and allowing
the particles to find their optimal shape. (e) Plot showing that at low k the average truncation ÆRæ is consistent with R* (N =
216 squares;N = 1000 circles). These findings fall near theminimumof the lowest observed assembly fraction as a function of
truncation (f).
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to prevent particles from having alternating valence.
(iv) We computed the alchemical modulus MR for
truncated tetrahedra at η = 0.6 and R = R*. In future
work it would be interesting to determine how this
modulus varies across system density in this system

and differs between systems/structures, or relates to
effects of polydispersity, and how it behaves at phase
boundaries. (v) The entropic assembly of anisotropic
hard shapes is driven by emergent valence,14,16 mani-
festing in directional entropic forces.33 A defining
feature of emergent behaviors is that their origin is
difficult to trace tomicroscopic attributes of the system
constituents.17 Here, we explicitly demonstrate the gen-
eral principle that it is possible to optimize building-
block attributes, by which we systematically control
emergent valence, in order to optimally assemble a
target structure. Moreover, our results suggest a gen-
eral design rule for entropic valence: that as system
density decreases, entropic patch size14 must increase
to optimally assemble a dense packing phase. This
design rule is supported by another recent result43

where it was found that for several families of dimpled
particles the peak in packing density occurs at an
entropic patch size that is below the critical size for
the onset of entropic assembly at low density. This is
particularly strong evidence for the design rule pro-
posed here because the optimal patch size cannot be
smaller than the patch size at onset. (vi) In practice, the
synthesis of anisotropic colloidal particles is often
driven by a growth process that yields particles in a
family of shapes. Here we have shown, in an example
family, how to optimally choose when to terminate
that growth process to obtain particles for assembling
a specific target structure.

Rhombic Dodecahedron. To (i) understand how to
contrast the relative importance of different shape
modifications of a given shape and (ii) determine
how this relative importance depends on system den-
sity, we studied a two-parameter family of truncations
of rhombic dodecahedra that leave them invariant
under the spheric triangle group Δ4,2,3.

63 The Δ4,2,3

invariant family of shapes is constructed with three
families of planes that make up the faces of a cube,
a rhombic dodecahedron, and an octahedron, all
oriented to preserve the necessary point group sym-
metry. The rhombic dodecahedron has two different
types of vertices: 4-fold vertices where four planes
come together and 3-fold vertices where three planes
come together. Moving the planes that make up the
faces of the cube toward the origin truncates the 4-fold
vertices, andmoving the planes thatmake up the faces
of the octahedron truncates the 3-fold vertices. We
performed simulations that examine the effects of
each type of truncation on a perfect rhombic dodeca-
hedron. We parametrize the vertex truncations so that
when R4 = 0 (4-fold vertex truncation) and R3 = 0
(3-fold vertex truncation), the particle is a perfect
rhombic dodecahedron. Maximal truncation R4 = 1
and R3 = 0 yields a perfect cube, and R4 = 0 and R3 = 1
yields a perfect octahedron.

We determined how systems of perfect rhombic
dodecahedra (R4 = R3 = 0) respond to infinitesimal

Figure 2. Emergent valence encoded in the PMFT for trun-
cated tetrahedra for a crystal at density η = 0.6 (a: R = 0.25, b:
R=R*≈ 0.37) andafluidatdensityη=0.5 (c:R=R*≈ 0.37, d:
R = 1.0). In the crystal we see that the particle at the optimal
truncation R* (b) shows greater specificity of tetrahedral
valence than at lower R (a), as expected. However, at fluid
densities, we see that if the particle is too tetrahedral (d), the
second neighbor shell is rotated byπ/6 comparedwith lower
truncations (c) and is incommensurate with the diamond
lattice.
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changes in R3 and R4. We computed the alchemical
potentials μ4 conjugate to R4 (4-fold vertex trun-
cations) and μ3 conjugate to R3 (3-fold vertex trun-
cations) for systems of N = 256 rhombic dodecahedra
at a series of packing densities η between 0.525 and
0.75 in increments of 0.025 at R4 = R3 = 0. As shown in
Figure 3, we find negative alchemical potentials for
both 3-fold and 4-fold vertex truncations (μ3, μ4 < 0) at
all densities studied, 0.525 e η e 0.75, implying that
both types of vertex truncation reduce the free energy
of the system. Moreover, we find that truncation of the
4-fold vertices results in a greater reduction in free
energy than the 3-fold truncation.

Our computation of the constitutive relations μi(η)
for rhombic dodecahedra explicitly demonstrates how
our methods can determine the relative importance of
various shape features. Determining the most impor-
tant shape features to control is crucial for anisotropic
particle synthesis techniques, and here we have de-
monstrated a general method for solving this problem.
In addition to providing this general proof-of-principle,
our results have several specific implications. (i) At all
densities studied, we observed μ4 < μ3 < 0, indicating
that both types of vertex truncation improve the
self-assembly of rhombic dodecahedra into a face-
centered cubic (fcc) lattice. Because vertex truncation
at fixed volume means the particles become slightly
more spherical, our result suggests that the structure is
further stabilized by particles exchanging some vibra-
tional degrees of freedom for rotational ones. More-
over, (ii) because μ4 < μ3 it suggests that the 4-fold
vertex truncations aremore important in restricting the

rotational motion than the 3-fold vertices. There are
eight 3-fold vertices and six 4-fold vertices in a rhombic
dodecahedron, but the centroid-to-vertex distance for
a 4-fold vertex is 4/3 the distance for a 3-fold vertex.
Wemight suspect that if a vertex type sticks out further
from the shape or is greater in number, it will provide a
greater steric constraint on themicrostates available to
the system. Our result that μ4 < μ3 suggests that for the
rhombic dodecahedron in an fcc lattice the vertex
distance is more important than the number of ver-
tices. It would be interesting to investigate whether
this design rule holds for other shapes or is specific to
rhombic dodecahedra. (iii) Because the slopes of both
μ(η) curves are positive for η J 0.6, it suggests that
particles give up rotational entropy faster than transla-
tional entropy as the systemdensity increases. We note
that the distinction between 4-fold and 3-fold vertices
becomes smaller at larger packing fractions, which
suggests, surprisingly, that as the particles increasingly
lose rotational entropy, the distinction between how

they lose it becomes less important. It would be inter-
esting to see if this result holds more generally in other
systems.

Oscillating Pair Potential. To demonstrate that our
alchemy approach is not limited to particle shapes, we
studied spherical nanoparticles (or point particles)
interacting isotropically using a truncated, intermedi-
ate range oscillating pair potential studied in ref 42,
which is inspired by Friedel oscillations. It can be
written in the form

U(r) ¼ E
r15

þ E
r3
cos(k(r � 1:25) � φ) (11)

This potential has been recently shown to self-assem-
ble an icosahedral quasicrystal for kBT = 0.25 for 0.78j
k j 0.82 and 0.52 j φ j 0.55.42 The potential is of
particular interest due to the possibility of realizing it in
systems of nanoparticles or colloids decorated with
appropriate ligands. For these computations, we work
in units with ɛ = 1. We performed molecular dynamics
(MD) simulations of N = 4096 particles using HOOMD-
Blue.64 For full simulation details, see the SI.

We computed the alchemical potentials μk conjugate
to k (wavenumber) andμφ conjugate toφ (phase shift) for
systems of N = 4096 particles interacting via the oscillat-
ing pair potential in eq 11. We studied the pair potential
in the range of parameter space that was shown
previously42 to self-assemble an intermediate-density
icosahedral quasicrystal. In this phase, we find that within
the entire parameter range over which we were able to
reliably nucleate the intermediate-density quasicrystal,
both μk and μφ are negative. We show this explicitly in
Figure 4a, wherewe form μk and μφ into the vector μB. We
plot �μB, which shows the direction that decreases the
free energy at a given point in parameter space.

This result alone does not indicate whether this
curious behavior is enthalpic or entropic in origin.

Figure 3. Rhombic dodecahedra have both 4-fold and
3-fold vertices (a). We determine the relative sensitivity to
the truncation of each type of vertex by computing the
constitutive relation μ(η) (b) according to the (exaggerated)
truncations shown in (a). We plot alchemical potentials for
4-fold truncations (μ4, squares) and 3-fold truncations (μ3,
triangles) at various densities for which the system self-
assembles an fcc lattice. We observed μ4 < μ3 < 0 at all
densities, indicating that both vertex truncations improve
assembly of the target crystal, but 4-fold vertex truncations
provide greater improvement.
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To understand the origin of this decrease in free energy
for increasing both k and φ, we computed the average
potential energy at each state point, which is plotted in
Figure 4b. We see that, at a given k, increasing φ

decreases the system's potential energy and that the
potential energy is lower at a given φwith increasing k,
which is consistent with the alchemical potential re-
sults shown in Figure 4a. This suggests that the effect
we observe in Figure 4a is enthalpic in origin.

Surprisingly, our result that μk and μφ are every-
where negative suggests that there is not a choice of
parameters for which μB = 0 (i.e., a local free energy
minimum) in the parameter regime where the inter-
mediate-density quasicrystal is the thermodynamically
preferred phase. (For an example of a simpler case
where there is a local free energyminimum in a system
with isotropic interactions, see the SI.) Rather it sug-
gests that, at least for systems of N = 4096 particles,
the optimal parameter choice for self-assembling the
intermediate-density quasicrystal lies along the bound-
ary separating the assembly of the intermediate-density
quasicrystal and the high-density quasicrystal, which
is the thermodynamically preferred phase at higher
values of k and φ.42

A general take-away message of ref 42 is that
controlling assembly in one-component systems via

isotropic interaction potentials involves two things. It
involves controlling the relative distances of potential
energy minima, which determines preferred relative
distances between particles. [Note that precise control
over this procedure is not straightforward, even at
T = 0. See the SI for an explicit demonstration in a toy
model system.] However, it also involves controlling
the relative depth of theminima, which determines the
number of particles that sit at the preferred relative
distances determined by the minima locations. Here,
we are able to directly compute the effects of changes
in potential control parameters on the system free
energy, and we find that they can be detected. In
the SI, we consider the pattern registration asmeasured
by comparing the locationsof thepotentialminimawith
the radial distribution function of the particles, and
we find no discernible difference across the range of
parameters we considered. This suggests that our
alchemical potential methods are sensitive to system
behavior that is not easily discernible via conventional
analysis. We believe this might be of particular value in
systems such as the oscillating pair potential system
where there is a very rich bulk phase structure that
depends sensitively on the choice of potential param-
eters controlling particle valence.42

CONCLUSION

We chose families of model systems to demonstrate
the power of our methods because of their structural
complexity (the icosahedral quasicrystal) or conceptual
complexity (the emergent behavior of hard shapes);

Figure 4. (a) Alchemical potential (�μB) for thewavenumber
k and phase φ parameter in systems of N = 4096 particles
interacting via a three-well oscillating pair potential over a
range of parameters that self-assemble an icosahedral
quasicrystal.42 The pair potential self-assembles icosahedral
quasicrystals of three different densities. Here, we examine
the region of parameter space that self-assembles the
intermediate-density quasicrystal (dashed lines indicate
the phase boundaries we observed for the self-assembly
of the intermediate-density quasicrystal). Surprisingly, we
find that, over the range of parameters we studied, in order
to thermodynamically improve the assembly of the inter-
mediate-density quasicrystal, we are driven toward the
region of parameter space that is dominated by the self-
assembly of the high-density quasicrystalline phase. This
suggests that the optimal choice of parameters to stabilize
the intermediate-density quasicrystal is buried in a region
that will spontaneously self-assemble the high-density
phase instead and suggests that the intermediate-density
phase will be difficult to stabilize in practice. The insets
show thebondorder diagramanddiffractionpattern froma
simulation snapshot of a 4096-particle system at k = 8, φ =
0.53. (b) In the same system we computed the average
potential energy per particle for different values of k as a
function of φ. We see a clear decrease in ÆUæ with increasing
k and φ. This finding suggests that the decrease in free
energy with increasing k and φ shown in panel a can be
attributed to enthalpic contributions from lower ground-
state energies.
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however our methods can be generalized straightfor-
wardly to systems of particles with other interactions or
shapes, as well as systemswith enthalpic patches7�9 or
multiple-particle species. Furthermore, though our
focus was on understanding macroscopic colloidal
behavior within a given region of phase space, our
methods can be applied to the crystallization of
other types of matter, e.g., polymers, and the study of
phase boundaries. One example where both are rele-
vant is in the investigation of the polymorphism65 or
supramolecular isomerism in crystals of small mole-
cules, which is relevant for pharmaceutical appli-
cations.66

Here we focused on solving the problem of deter-
mining optimal building-block attributes for target
structures among a range of building blocks, from
which we were able to extract design rules for emer-
gent behavior. As a result, most of our calculations
were of the constitutive relation μ(N,V,T,R). However,
for truncated tetrahedra we also considered (Figure 1e
and SI Movie) the constitutive relation R(N,V,T,μ)
for particles fixed to sit on a diamond lattice using a
simple extension of eq 2 (see the SI for details). All of
the foregoing discussion concerning interpretation
of alchemical potentials, including the relation to
building-block optimality, continues to hold, where
any quantities computed in extended ensembles
are, by design, conditional on the externally imposed
criteria. Using extended ensembles, it is straightfor-
ward (see the SI for details) to use our techniques for
the discovery of building blocks for bulk materials
given a suitable choice of external design criteria.
We leave a full numerical investigation of this class of
problems to future work.
Ourmethod for determining optimal building blocks

to self-assemble target structures was based on the
desire to make quantitative connections between
building-block attributes and bulk behavior. To make
our proof-of-principle demonstration explicit, we
ensured that the local minima we identified were bona
fide global minima by computing exhaustively over
relevant building-block attributes. Rather than com-
puting exhaustively as we have here, future investiga-
tions should reduce computational effort by
employing global optimization techniques. Indeed,
work aimed at optimizing building blocks for bulk
attributes has employed genetic or evolutionary algo-
rithms67�71 or gradient descent.72 Those approaches
are complementary to the optimization part of the
present work in three ways: (i) Our approach provides
a systematic, rigorous, first-principles method for con-
structing probability distributions needed to apply
the gradient descent method proposed in ref 72. (ii)
Genetic and evolutionary algorithms are powerful
techniques that use external fitness criteria to perform
nonlocal optimization. Our approach supplements
these nonlocal approaches by providing direct, precise

measurement of the physical response of a system to a
local change in the attributes of building blocks. (iii)
The ability to probe local changes in building-block
attributes is also important because, in addition to
optimizing attributes, we would like to be able to
derive generalizable design rules that extend beyond
specific systems of interest. Here we showed an ex-
ample of how to develop general design rules using
digital alchemy by showing that dense packing argu-
ments for anisotropic shapes can be extended to lower
density by increasing the size of entropic patches.
Although this result and our examples concerned
colloidal systems, there is nothing that precludes the
immediate extension of our techniques to materials
made of any type of building blocks that have adjus-
table interactions. We believe that a combination
of the methods we present here with existing tech-
niques67�70,72 will provide a powerful tool set for
materials design.
Although the periodic table has many functions, for

materials scientists it provides a useful, complete
heuristic for anticipating the bulk behavior of atomic
elements, based on atomic valence. A similar construct
for colloids that gives a complete, heuristic tabulation
of relationships between building-block attributes vs

bulk structures would be desirable. However, in sys-
tematically classifying particles, refs 8 and 14 showed
that particle valence can be described simultaneously
along several orthogonal anisotropy dimensions. The
intrinsically high dimensionality of this classification
means that any set of relationships between building
block attributes and bulk structure for colloids, unlike
those in the periodic table, cannot be complete. Never-
theless, work on enthalpically7,8 and entropically14

patchy particles has shown that projecting key struc-
tural features onto constituent particles, via anisotropy
dimensions, yields heuristic relationships between
building-block attributes and bulk structure. Here, we
showed that these relationships can be made quantita-
tive so that desired building-block attributes can be
precisely engineered. In summary, whereas the building
block vs bulk relationships predicted by the periodic
table are complete but heuristic, building block vs bulk
relationships for colloids are necessarily incomplete, but
are quantitative in a way that we have shown here both
provides general intuition and opens the possibility of
designing optimal building blocks.
Finally, we showed how to directly compute alchem-

ical response functions using numerical calculations on
model systems, but it is also interesting to speculate
how they might be measured in some example experi-
mental systems. Some experimental systems have
anisotropic colloidal particles that change their effec-
tive shape depending on the density of adsorbed
surface ligands.31,56,57 In systemswhere the adsorption
of surface ligands is reversible, one can imagine that
the density or distribution of adsorption depends on the
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macroscopic phase the particles are in. For example,
ligand adsorption frequently leads to particles becom-
ing effectively more spherical.31 Imagine taking spher-
oidal particles and organizing them into a non-close-
packed lattice. We would expect some ligands to
desorb from the particle surface to make the particles
less spherical so that they can accommodate the lattice

structure they are in. Measuring particle shape (or the
change in the reservoir concentration of ligands) for
particles in the bulk structure, one could directly
(indirectly) measure how particle anisotropy is affected
by bulk structure through R(μ = 0) and χR. In contrast,
to measure the alchemical potential, one could in-
crease the ligand reservoir concentration so that an
above-optimal density of ligands adsorbs on the par-
ticle surface and then determine the free energy
required to further increase adsorption. As another
example, in colloidal amphiphile or Janus particle
systems, effective patch size is determined by salt
concentration.44 One could imagine that if Janus par-
ticles are fabricated to self-assemble a structure but
have suboptimal patch size, the system could lower its
overall free energy by locally altering the salt concen-
tration near the Janus particles so that the effective
patch size is closer to the optimal one. Detecting such
an effect experimentally could involve measuring dif-
ferences in reservoir salt concentration between self-
assembled and disordered systems.

METHODS
To compute alchemical potentials we used standard MC

simulations (for truncated tetrahedra and rhombic dodecahe-
dra; see, for example, ref 61) or MD simulations performed with
HOOMD-Blue (for the oscillating pair potential; see ref 64) to
sample the equilibrium distribution of configurations for parti-
cles with given attributes in a given structure. We compared
series of configurations for particles of attributes {Ri} to con-
figurations of particles with perturbed attributes {Ri

0
}, and vice

versa, using the Bennett acceptance ratio method53 and an
appropriately chosen finite differencing scheme73 to extract the
alchemical potential. Full details, including the analysis of
statistical and systematic errors, can be found in the SI.
Simulations of fluctuating shape at fixed alchemical potential

were performed with HPMC,74 an in-house HOOMD-Blue64

plugin for hard particle MC simulations. In addition to standard
MC moves, particles were confined to an Einstein crystal lattice
and subjected to collective trial moves on their shape. Full
simulation details and a discussion of detailed balance for
ensembles with fluctuating particle attributes can be found in
the SI. Lowest assembly fractions were computed from 10
independent simulations of 2000 particles at a series of packing
fractions at each truncation.
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