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1 | INTRODUCTION

The ENIGMA-EEG working group was established to enable large-
scale international collaborations among cohorts who investigate
the genetics of brain function measured with electroencephalog-

raphy (EEG). EEG has been used for many decades to investigate
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cognitive processes and individual differences in brain function
and to discover biomarkers for neurological, psychiatric, sleep, and
other disorders (Berry et al., 2017; Hughes & John, 1999; Noachtar &
Rémi, 2009). Until the advent and widespread use of functional MRI,
EEG was the primary method for measuring activity of the brain, but

has remained an important part of neuroscientific research. EEG can
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FIGURE 1 The organization of the work required in our investigations of EEG genetics. Much of the work is performed by the
collaborating sites (columns in black), including EEG recording, preprocessing, phenotype extraction, and performing the genetic association.
The role of ENIGMA-EEG is to regularly hold teleconference calls to create the protocols for EEG analysis, QC, and genetics analyses (blue).
Lead groups of ENIGMA-EEG members are formed to perform centralized quality control (QC) of the EEG features and to meta-analyze

of the summary statistics provided by the sites. The summary statistics are then distributed to the individuals who will perform genetic
follow-up analyses. Finally, a manuscript is prepared. Note that most of the genetics work is not included in this workflow, thus excluding a
huge amount of work on taking biological samples (blood, saliva), DNA extraction and storage, sending for genotyping, data management,
imputation, quality control. EEG, electroencephalography; ENIGMA, Enhancing Neurolmaging Genetics through Meta-Analysis; GWAMA,
genome-wide meta-analysis; QC, Quality control; Sumstats, Genetic summary statistics from genome-wide association

directly measure synaptic processes with higher temporal resolution
(in the millisecond range), which makes it different from other imag-
ing modalities like functional MRI. It is also silent and more comfort-
able for the participant—that is, less intrusive, and less cramped and
noisy—thus affecting the subject less than functional MRI during the
recordings. It is also much less expensive and more convenient to
use, making it feasible for widespread research and clinical applica-
tion worldwide.

EEG research has a rich history of providing biomarkers for be-
havioral traits and mental health disorders. The primary interest of
ENIGMA-EEG is, however, not to repeat biomarker research in larger

samples. Individual variation in many of the EEG biomarkers has

been found to be under substantial genetic control, with twin and
family studies provided the crucial information that EEG trait vari-
ation is heritable. Early studies, dating back to the 1930s, pointed
toward nearly identical recordings of resting EEG in identical twins
(reviewed in van Beijsterveldt and Boomsma (1994)). The first large-
scale twin studies carried out by Friedrich Vogel (1958); described
in Vogel (1970) demonstrated that differences between monozy-
gotic twins did not exceed those seen in successive EEG recordings
from the same individual, leading to the conclusion that variability
in EEG features is nearly completely determined by a multifactorial
genetic system. Subsequent studies of other resting EEG features

in children, adolescents, and adults showed that EEG measures of
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oscillation power, oscillation dynamics, and connectivity are herita-
ble traits (Anokhin et al., 2001; van Beijsterveldt & van Baal, 2002;
van Beijsterveldt & van Baal, 2002; Chorlian et al., 2007; Posthuma
et al., 2005; Rangaswamy & Porjesz, 2008; Smit et al., ,,2005, 2010;
Tang et al., 2007; Zietsch et al., 2007).

At the same time, it is well known that the liability for neuro-
logical and psychiatric disorders is under genetic control (Polderman
et al.,, 2015). In the beginning of this century, many argued that in-
vestigating EEG as an intermediate phenotype (or endophenotype)
would aid in finding specific genes for behavioral traits and mental
health disorders (de Geus, 2010). This idea was surpassed by the
massive case-control genome-wide association studies (GWAS) per-
formed in human genetics (Bulik-Sullivan et al., 2015; Sullivan 2010).
However, the black box method of GWAS leaves unexplained how
specific risk variants exert their influence on the brain on a systems
level (de Geus, 2010). This is the main focus of our consortium: to
find how genetic variants influence individual variation in EEG phe-
notypes and to link these to variants affecting brain disorders.

In order to do so, we need to increase sample sizes sufficiently to
reach the statistical power required to detect and replicate genetic
associations of common variants with the EEG biomarkers. Genetic
variants typically have small effect sizes, thus requiring large sample
sizes. As in other ENIGMA workgroups, a core element of ENIGMA-
EEG is to perform our genetic studies using a meta-analytic ap-
proach, where participating cohorts analyze their data locally, after
which they are collected, scrutinized, and meta-analyzed, after
which they are linked to the disorders. This requires coordination
between participating cohorts in prioritizing subject of investigation,
the method of analysis, and coordination of the effort put in by each
site to reach the inevitable goal of science, the manuscript. Figure 1
shows the workflow of our consortium in more detail, illustrating
that collaborative efforts require extensive discussion and coordi-
nation. It shows how data/results are shared, what data/results are
shared, the role of each of the participating sites, and the role of
ENIGMA-EEG in coordinating this process. As Figure 1 shows, most
of the work is performed by the collaborating sites, including EEG
recording, preprocessing, phenotype extraction, and performing the
genetic association. The role of ENIGMA-EEG is to regularly hold
teleconference calls to discuss progress, provide support, and make
decisions that lead to the analysis plan. In doing so, we are supported
by ENIGMA (Thompson et al., 2014, 2017), who provide the infra-
structure for teleconferencing, sharing protocols, and results (http://
enigma.ini.usc.edu/). ENIGMA holds annual meetings (virtual or live)
to provide a platform for collaborations between the workgroups,
for sharing methods or any other type of collaboration (e.g., between
ENIGMA-EEG and ENIGMA-MEG, ENIGMA Epilepsy, and ENIGMA
Genetics).

In the following sections, we show our perspective on how to
tackle the open questions in the field of EEG genetics. We first argue
why EEG may be crucial for advancing understanding of synaptic and
circuit-level functioning of the brain in normal functioning and dis-
ease, and how oscillatory activity captures important characteristics

of information processing in the brain. Next, we focus on describing
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the challenges for international EEG genetics collaborations, es-
pecially those regarding analytic and methodological choices, and
homogeneity within and across cohorts. We also describe in more
detail the key scientific questions that we aim to address in our next
endeavors. This results in our future plans for investigating the ge-

netics of EEG-based brain activity.

2 | AFOCUS ON EEG OSCILLATIONS IN
NEURAL PROCESSING

EEG has provided the scientific community with a large range of
biomarkers and putative biomarkers for neurological and behavioral
disorders, offering insight into the localization and timing of cogni-
tive processes (Arns et al., 2013; de Geus, 2010; Hegerl et al., 2008;
Murias et al., 2007; Uhlhaas & Singer, 2010), and has provided bio-
markers that track brain development (Smit & Anokhin, 2016; Smit
et al., 2011, 2012). More recently, EEG has provided insight into
modes of communication in large-scale brain networks via synchro-
nous oscillatory activity (Cohen et al., 2012; Horschig et al., 2015;
Salinas & Sejnowski, 2001; Stam, 2014; Uhlhaas et al., 2010; Varela
et al., 2001). For clinical purposes, EEG is routinely used in the di-
agnosis of neurological disorders. It is the gold standard for sleep
staging, which is used to establish disruption of sleep patterns
(Berry et al., 2017; Coleman et al., 1982). EEG is also used to detect
epileptiform activity and epileptic seizures or their absence (Flink
et al., 2002; Niedermeyer, 1999a), or to monitor nonconvulsive sta-
tus epilepticus in critically ill patients (Abend et al., 2010). By con-
trast, EEG has only rarely found a way into clinical use for diagnosis
and evaluation of psychiatric disorders, although complementary
treatments that use EEG are being widely offered in the form of neu-
rofeedback training (Enriquez-Geppert et al., 2017). Many patents
have been filed for diagnostics or neurofeedback systems (patent
category A61B5/0482), but only a single method has achieved FDA
approval (theta/beta ratio for ADHD; see Arns et al., 2016).

EEG recordings from the scalp as well as intracranial record-
ings indicate that cortical communication is the result of neuronal
oscillations (Akam & Kullmann, 2014; Cohen, 2017; Stam, 2014,
Uhlhaas et al., 2010; Uhlhaas & Singer, 2010). Both intracranial and
scalp recordings show clear sinusoidal activity patterns, produced
by the oscillations that are caused by the concerted changes in volt-
ages across the postsynaptic membranes in the dendritic trees of
pyramidal neurons. These voltage changes either inhibit or sensi-
tize neurons to create action potentials. The unique orientation of
the pyramidal neurons—systematically perpendicular to the cortical
sheet—and the often strongly correlated coactivations across many
neurons result in a large collective dipole: the summed activity of
the local field potentials that is enough to propagate through the
surrounding tissues to reach externally attached electrodes (Buzsaki
et al., 2012). Although the activity on the microscopic scale of a sin-
gle neuron cannot be detected, there is enough information for re-
cording synchronous activity of patches of neurons, at the scale of a

few cm? of cortical tissue.
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Our primary focus is to analyze this oscillatory activity—mostly
from the eyes-closed resting state, the commonest condition ap-
plied during EEG acquisition. From these recordings, it is possible
to extract a near endless set of EEG features based on oscillatory
frequency, oscillatory power, the temporal dynamics of oscillations,
interactions across oscillatory frequencies, and spatial interactions
(connectivity). In the upcoming sections, we will highlight the stra-
tegic selection of EEG variables. Oscillatory responses to events and
event-related potentials (ERPs) in task data are another great source
of clinical biomarkers (Duncan et al., 2009). Most notably, ERP com-
ponents such as the P300 obtained in the oddball task, the mismatch
negativity, and the steady-state responses are among the most rele-
vant for clinical research. While ERPs are not reviewed in the current
perspective, they will be targeted in future work by our consortium.

Oscillations are not epiphenomenological features of brain ac-
tivity, but have functional relevance. Their synchronicity is a main
mode of meso- and long-distance communication between cortical
areas and from cortical to subcortical areas (Fries, 2005; Horschig
et al., 2015; Schnitzler & Gross, 2005). Coactivation in the form of
spike propagation can only take place when brain areas are in syn-
chrony, that is, are both sensitive to input in a depolarizing phase.
Different oscillation frequencies subserve different cognitive and af-
fective functions, while sharing the same anatomical network (Akam
& Kullmann, 2014; Klimesch, 1996). Such communication has proven
essential for executing a wide range of behavioral tasks, may also
be affected in behavioral disorders, and may to some extent explain
individual differences in behavior (Arns et al., 2013; Doppelmayr
et al., 2002; Jenkinson & Brown, 2011). The causal role neural oscil-
lations play in behavioral variation is becoming increasingly clear. For
example, blocking beta oscillations (13-30 Hz) in the subthalamic
nucleus (STN) of patients with Parkinson's disease during deep brain
stimulation treatment can result in relieving bradykinetic symptoms
(Engel & Fries, 2010; Swann et al., 2011); moreover, stimulation only
during periods of elevated beta activity in the STN is sufficient to
obtain symptom relief (Little & Brown, 2014). This finding led to
the conclusion that a surplus STN beta activity causes bradykinesia
(Brown, 2006). Other examples using optogenetic driving of oscil-
lations in the mouse brain further highlight the contribution of os-
cillatory activity to communication and behavior (Cho et al., 2015;
Karalis et al., 2016).

A further reason to investigate neural oscillations is that they
have been investigated well in the extant literature. Many of the par-
ticipating cohorts were established long ago as (twin) family study
cohorts.

3 | INITIAL ENIGMA-EEG FINDINGS

ENIGMA-EEG published their first article in November 2018 on
the genetics underlying the strength of oscillations present in EEG
brain activity signals (Smit et al., 2018). We associated genome-wide
SNPs to oscillation strength in the common delta, theta, alpha, and

beta frequency bands, and alpha peak frequency. All these brain

activity traits are under moderate to strong genetic control and
are to some degree biomarkers of behavioral traits and liability to
psychiatric illnesses (Boutros et al., 2008; Klimesch, 1996; Porjesz
& Begleiter, 2003). Our primary aim in this project was to increase
power to find genetic associations by increasing sample size.
The sample size of previous studies was modest, with the largest
study analyzing a sample of just over 4,000 individuals (Malone
et al., 2014). Malone et al. did not find any significant individual
SNPs, but detected associations at the gene level for delta power.
Our study of EEG data from 8,425 individuals found genome-
wide significant hits—that is, genetic variants associated with EEG
signal variation—although these did not remain significant when
correcting across the various EEG phenotypes tested (i.e., the five
oscillation frequency powers and alpha peak frequency). The asso-
ciation results are available upon request via http://enigma.ini.usc.
edu/ongoing/enigma-eeg-working-group/. Our application proce-
dure requires filling out a short form with contact information and
requires the requestor to agree with the ethical statement regarding
the download of genetic association data. The biological function
of the SNPs was investigated using several gene-based and gene
expression-based approaches. These results highlighted several
significant effects across the genome. One important region associ-
ated with alpha oscillations was found on 3p21.1, which holds many
genes associated with risk for schizophrenia and bipolar disorder
(Ripke et al., 2014; Stahl et al., 2019). Brain expression analysis found
significant effects on GNL3 and ITIH4 expression in prefrontal cor-
tices, explaining the observed aberrant brain activity in schizophre-
nia. Recently, a study found that the genetic variants in the 3p21.1
region affect expression of NEK4, GNL3, and PBRM1 in the frontal
cortices, which in turn affected dendritic spines, cognitive function,
schizophrenia, and bipolar disorder (Yang et al., 2020). This provides
evidence that frontal EEG alpha oscillations may indeed be a bio-
marker for schizophrenia (Merrin & Floyd, 1996; Nikulin et al., 2012),
although the effect has not always been consistent across studies of

oscillations at this frequency (Boutros et al., 2008).

3.1 | Follow-up inquiries into the genetic
contributions to EEG

Based on these genome-wide association results, several analyses
were performed to investigate interesting targets, brain expres-
sion of genes, and links to psychiatric and neurological phenotypes.
Alcohol dependence has been found to be linked to SNPs in gamma-
aminobutyric acid-receptor subunit alpha 2 gene (GABRA2) (Dick
et al., 2006; Edenberg et al., 2004; Porjesz et al., 2002; Rangaswamy
& Porjesz, 2008; Rangaswamy et al., 2002). GABRA2 and alcoholism
have been linked to individual differences in beta oscillation power
(12-28 Hz) (Edenberg et al., 2004; Porjesz et al., 2002; Rangaswamy
& Porjesz, 2008; Rangaswamy et al., 2002). We aimed to replicate
this last result using our genome-wide study of beta oscillation
power. The association was found to be present in the gene-based
test (Smit et al., 2018). Gene-expression analysis of the GABRA2
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FIGURE 2 Effect of reference on EEG coherence and power. We calculated power and coherence in the alpha band (8-12.5 Hz) for the
128 channels available in this sample of 39 subjects (data from (Smit et al., 2013)). Data were initially analyzed with average reference. (a)
Changing to mastoid reference biases alpha power upward (left inset bar graph). The correlation between mastoid and average reference

is very high (>0.90). Therefore, a GWAS of EEG alpha power will be marginally impacted despite the large bias. (b) Changing to mastoid
reference also biases channel average coherence upward (inset bar graph). The correlation across subjects is low (r < .30, right topoplot).
This will substantially affect genetic association and indicates that reference needs to be harmonized across studies. (c) Local bipolar
derivations show similar low correlation with the average reference setup (r < .28). (d) A selected channel pair (C3, C4) showed variable
connectivity between the reference setups. Markedly, mastoid reference showed negative correlation with the average reference and local

bipolar derivations

gene suggested that beta power was most strongly associated with
hippocampal expression. This suggests that hippocampal GABRA2
expression affects beta oscillations and may be linked to the pivotal
role hippocampal GABA plays in habit-forming and reward process-
ing in alcohol dependence (Enoch, 2008). Interestingly, this is in line
with ongoing work by ENIGMA's Addiction working group; a fine-
scale morphometric analysis alcohol dependence was associated
with abnormalities in a range of structures, but showed the strong-
est effects in the hippocampus (Chye et al., 2020), as well as in the
thalamus, putamen, and amygdala.

In a preprint manuscript (Stevelink et al., 2019), we explored the
genetic correlation between theta and beta power and the gener-
alized genetic epilepsy (GGE) GWAS of the International League
Against Epilepsy (ILAE Consortium, 2014). Beta power in particular
may prove to be a biomarker with links to GABA expression in inhibi-
tory interneurons (Hall et al., 2010; Porjesz et al., 2002; Rangaswamy
et al., 2002) and consequently may have a role in epilepsy when in-
hibition and excitation are imbalanced (Magloire et al., 2019). Beta
power is generally not considered interictal epileptiform brain ac-
tivity, which typically includes spike and sharp wave activity (Pillai
& Sperling, 2006). Significant positive genetic correlations were
found between beta power and liability for GGE, indicating shared
genetic architecture. In an independent Epilepsy GWAS (Epi25 con-
sortium), the genetic correlation remained significant. Since the par-
ticipants studied in ENIGMA-EEG were all nonepileptic (epilepsy in
all its forms is an exclusion criterion for most if not all EEG stud-
ies that do not focus on epilepsy), this provides some insights into
whether resting-state recordings can be used to determine neuro-
nal hyperexcitability below the clinical threshold, which may affect
psychological function and explain some of the comorbidities and
genetic correlations observed between behavioral disorders and
epilepsy (Anttila et al., 2018; Bulik-Sullivan et al., 2015; Gaitatzis
et al., 2004; Hesdorffer et al., 2012; Swinkels et al., 2005; Volkmar
& Nelson, 1990).

Despite the modest sample sizes—small when compared to the
very large GWASs of psychiatric disorders and other complex traits—
our initial GWAS of oscillation strength already found significant loci
for alpha band oscillations with plausible biological mechanisms.
These associations will continue to be followed up as we further in-
crease our sample sizes. Combining SNP results into gene-based and
gene-expression tests, we observed significant associations with
alpha oscillation strength and pointed to brain areas and genomic
loci previously linked to psychiatric disorders. EEG oscillatory pa-
rameters may be less polygenic than other complex traits—although
not to the degree as previously suggested or hoped for (see also de
Geus, 2010). Nevertheless, genetic analyses of EEG features are
starting to be helpful in explaining how specific psychiatric liability
genes affect the functioning brain, plotting the pathway from SNP
to expression to neural-level function, to systems-level function, and
finally to behavior (de Geus, 2010; lacono, 2018). Investigating these
pathways will be greatly aided by increase sample sizes and by estab-
lishing the EEG features' polygenicity (Holland et al., 2019), as well
as variant-level joint-polygenicity analyses that are currently being
developed (Frei et al., 2019) to investigate the nature of overlap be-
tween traits (in our case, EEG features and psychiatric/neurological

genetic overlap).

4 | PRACTICAL ISSUES IN HARMONIZING
EEG ANALYSES FOR GENETIC ANALYSES

To optimize detection of genetic associations, we can, in addition
to increasing sample sizes, invest in harmonizing the phenotype
and explore options for multivariate analyses as EEG features are
inherently multidimensional. In this article, we highlight our efforts
to extract harmonized EEG features, the steps we have taken, and
the future steps we would like to take. Equally important is the

harmonized analyses of the genetic information. For genotyping,
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imputation, and quality control of genetic data, we closely follow
the recommendations and pipelines from our colleagues in the
ENIGMA Genetics working group described online (http://enigma.
ini.usc.edu/protocols/genetics-protocols/) (Grasby et al., 2018;
Hibar et al., 2015; Stein et al., 2012). These guidelines and protocols,
which we consider just as important as high-quality neurophysiologi-
cal biomarker extraction, will not be further covered in the current
article, since there is a large specialized body of literature describing
QC and methodology for genetic association, genetic meta-analysis,
and polygenic score calculation (e.g., Lam et al., 2020; Marees
et al., 2018; Privé et al., 2020; Ni et al., 2021).

Genetic studies typically investigate how individual differences
in phenotypes are affected by genetic variants—specifically for our
consortium, individual differences in EEG parameters. Therefore, the
quality of EEG feature extraction needs to be assessed against the
background of the variability of the EEG features in the population
being measured. This means that apparatus, data quality control, and
sampling/cohort characteristics must not greatly affect the individ-
ual participants' rank ordering on the EEG features extracted and
should largely capture the same variation. Some aspects of record-
ing are not likely to affect the variability of the EEG features, that is,
when they cause a fixed bias. For example, the recording filter set-
tings, with their mostly linear effects on oscillation power and when
applied constantly across individuals, will not affect the relative
score between individual participants on EEG power. Other aspects
of recording, on the other hand, may greatly affect the rank ordering
of individual data. For example, if a subset of participants were to
fall asleep during the resting recordings, this would greatly affect
their average power of oscillatory activity (Niedermeyer, 1999b). To
avoid such problems, strict protocols are needed to prevent partic-
ipants from falling asleep. Experience teaches us that—for younger

participants—it is wise to record shorter intervals in the eyes-closed
resting state, as they tend to fall asleep faster than adults. Many
more challenges exist in the creation of repeatable recordings within
individuals and consistent recordings across individuals. This has led
to the creation of guidelines for the application, recording, and anal-
ysis of EEG data, often with a special focus on clinical recordings
(Babiloni et al., 2020; Flink et al., 2002); see https://www.acns.org/
practice/guidelines.

4.1 | Apparatus

The actual recording of scalp potentials—picking up the minute
voltages—may be one of the lesser worries for homogeneity across
participating cohorts, given today's high-quality research EEG
equipment. Large individual differences in oscillatory amplitudes
and other biomarkers exist in EEG signals that will not be affected
crucially by amplifier quality, especially when enough data are avail-
able per subject for stable estimates. Likewise, active versus pas-
sive electrodes—the use of which is generally linked to the choice of
apparatus—is not expected to show large effects on EEG parameters
as long as dry electrodes are avoided (Laszlo et al., 2014; Mathewson
etal., 2017).

There are, however, many other possible sources of heteroge-
neity that do affect individual scores on EEG features differentially,
affecting the rank ordering of individual subject data and, conse-
quently, genetic associations. We identified several sources of het-
erogeneity that could substantially affect the individual differences
in EEG features. These range from methodological systematicity, to

analytical systematicity, to sampling variability.

BOX 1 Data-driven frequency band definition for connectivity analysis of EEG

For our connectivity analysis, we decided to follow a bottom-up approach to frequency band definitions. For a full description of the

methodology, we refer to the online supplementary information. In short, the cutoff frequencies separating the frequency bands

were based on the ability of the bands to reproduce the relevant features of the unbanded data (in this specific case, the coherence

spectrum at full 0.5 Hz resolution). This was assessed by finding a vector of frequency separation points such that a linear combina-

tion of the banded data was best able to reconstruct the unbanded data. The reconstruction fit was measured by the relative matrix

distance (Frobenius distance) between the unbanded data and the reconstructed data.

A dataset comprising 240 adult subjects from the COGA cohort (Table 1) was used to calculate coherence between channel pairs at

0.5 Hz resolution (Chorlian et al., 2009). The coherence spectra were limited to 3-28 Hz. An adapted Nelder-Mead function minimi-

zation procedure was used to identify optimal separation points between frequency bands using the above criterion of providing the

best reconstruction of individual band power, which was then averaged over subjects. This approach yielded separation frequencies

as specified in the table. Our empirically derived definition is very near the definitions for theta, lower alpha, upper alpha, lower beta,

and upper beta coherence, although specific boundaries deviated slightly from those used regularly. Note that a six band definition

was also calculated which provided an additional beta band (see supplement). Only the five-band definition is shown below.

Table. Optimized band separation frequencies.

band theta low alpha

high alpha low beta high beta

boundary (Hz) 3 8

10.5

13 20.5 28

Note. The lower and upper bounds of 3 and 28 Hz were not estimated but defined by input data selection.


http://enigma.ini.usc.edu/protocols/genetics-protocols/
http://enigma.ini.usc.edu/protocols/genetics-protocols/
https://www.acns.org/practice/guidelines
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TABLE 1 Overview of ENIGMA-EEG GWAS samples with eyes-closed resting recordings
Age range Recorded time Number EEG Sampling Population based/ Dominant
Cohort N (years) (eyes closed) channels frequency case-control ancestry
BATS 971 15.4-19.2 5 min 15 500 Hz Population based EUR
COGA 2,835 10.4-74.1 4.25 min 19/31/61 256 Hz Case-control (alcoholism) EUR/AFR
LIFE 3,138 41.0-79.9 20 min 30 1,000 Hz Population based EUR
MTFS 5,319 16.6-65.3 5 min 5/61 128 Hz Population based EUR
NORMENT 416 18-86 5 min 64 2,048 Hz Case-control (psychotic) EUR
NTR 839 5.2-70.9 3 min 14/19 250 Hz Population based EUR
TSSC 127 5years-46 2-3 min 128 500 Hz Population based EUR
BENEPEG 1,166 218 years 3 min 64 500 Hz Case-control (various EUR

psychiatric)

Abbreviations: BATS, Brisbane Adolescent Twin Study; BENEPEG, Belgium-Netherlands study of Psychiatric EEG and Genetics cohort; COGA,
Collaborative studies on the genetics of alcoholism; LIFE, Leipzig Research Centre for Civilization Diseases; MTFS, Minnesota Twin Family Study;
NORMENT, Norwegian Centre for Mental Disorders Research; NTR, Netherlands Twin Register; TSSC, Tennessee Synchrony & Speech Cohort.
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FIGURE 3 Spherical interpolation for quality control of a dataset of 765 subject in a 17 channel montage with A1/A2 reference using
the data from (Smit et al., 2005), eyes-close resting condition, and cleaned by visual inspection, filtering 1-30 Hz, and ICA decomposition
with visual rejection (Pion-Tonachini et al., 2019). Theta power (4-8 Hz, left), beta power (13-21 Hz, middle), and theta-beta ratio (right)
were calculated for channel Cz. Next, the same power values are calculated for a spherical interpolation of channel Cz using 16 remaining
channels (implemented in EEGLAB (Delorme & Makeig, 2004)). Even at this low-density montage, oscillatory power is generally quite

well imputed (r 2 .97), and outliers easily detected by statistical methods (false discovery rate). For theta power, ten observations were
considered suspect at FDR g = 0.01. For beta power, three observations were considered suspect. These values may be replaced with the
imputed values. For theta-beta ratio, five values were considered suspect. Retracing the subjects' signals revealed that three of these were
affected by some residual artifacts in channel Cz, and their values replaced by the interpolated values. It shows that highly automated
algorithms of multichannel EEG data can produce high-quality data and flag errors in visual cleaning

4.2 | Methodological issues

One particular methodological challenge for our meta-analytic ap-
proach is that not all cohorts use the same electrode layout and
reference electrode during recording. From the 1990s onwards, the
number of recording channels has steadily increased, with the most
recent cohorts measuring at least 30 channels or more. It is hardly
debated that increased density provides highly valuable informa-
tion on individual differences in brain function, in both health and
disease. The earlier studies, however, recorded with 5, 7, 14, or 15
channels. Sparse layouts such as these greatly reduce the possibility
to provide more localized brain activity measures.

Data cleaning may be a greater challenge, as methods such as
independent component analysis (ICA) for removing eye movement
and other artifacts from the EEG signal may not be applicable for the
sparsest of montages. For the slightly less sparse montages, sepa-

rating brain from nonbrain source signals in the recorded traces may

be difficult. It often involves a comparison of loading patterns of in-
dependent components onto nearby electrodes: If source activity
is observed on a single EEG electrode, it cannot come from a brain
source however close to the skull and dura. Brain sources project
their electrical activity to an area of the scalp which generally con-
tains several electrodes in a recording array of 30 channels or more,
due to the high relative impedance of the skull compared to the brain
and scalp tissues. The denser the electrode layout, the better it can
be evaluated whether a source signal stems from a brain source or
outside.

Another notable issue is the sampling frequency and the as-
sociated change in the low-pass hardware filter. These filters
are implemented with specific hardware (rather than the digital
filtering applied in the postacquisition data cleaning phase) and
are required to avoid so-called aliasing effects in the analog-to-
digital conversion phase where high-frequency oscillations can

be mistaken for low-frequency oscillations. Unfortunately, these
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anti-aliasing hardware filters also affect the oscillatory amplitude
and phase of oscillations near the filter boundary, which is set in
relation to the sampling frequency. When the sampling rate is too
low (e.g., 256 Hz with an anti-aliasing filter at 64 Hz), this will af-
fect EEG power well below the 64 Hz cutoff frequency. Moreover,
causal filters substantially affect the phase of oscillations, which
will subsequently affect cross-frequency amplitude-phase cou-
pling and phase-locking values. These issues are easily avoided
by increasing sampling frequency and the causal low-pass filter
settings.

Perhaps the most influential issue with regard to recording is
the choice of reference electrode (mastoids, earlobe, nose, average
reference, local derivations, dura imaging), affecting how each sig-
nal represents shallower and deeper sources. For oscillation power,
the effects may be not as crucial, however, for connectivity mea-
sures like coherence, substantial effects are expected (Peterson
et al., 2019). Figure 2 shows how a change in reference from aver-
age to mastoid affects oscillation power and coherence in the alpha
band. This required us to make explicit choices in the reference setup
to harmonize the results across cohorts for studying the genetics of
functional brain connectivity.

Finally, it is widely acknowledged that EEG consists of a myriad
of oscillations at various frequencies that all serve different func-
tional purposes (Akam & Kullmann, 2014; Klimesch, 1996). EEG is
generally separated into oscillation frequency bands that reflect
these functional differences; however, the choice of cutoff fre-
quencies separating these bands is generally taken for granted and
reflects commonly accepted fixed definitions. For example, where
many studies have captured alpha oscillations as a single entity to
be analyzed across the 8-12 Hz frequency band (Palva et al., 2013;
Smit et al., 2013), many others have used separate upper and lower
bands as they found these to be informative for the functional prop-
erties investigated (Doppelmayr et al., 2002; Klimesch et al., 1997;
Stam, 2000). Arguably, a frequency band definition can be performed
in a more bottom-up fashion, using the data to optimize information
content in the frequency band definition. For our upcoming func-
tional connectivity project, we have used such an approach. The Box
1 below explicates how this analysis was performed, with further
specifics provided in the supplementary information. By using this
approach, we decrease the heterogeneity induced by suboptimal
frequency band definition, while increasing the stability of our es-
timates and power of our tests by averaging coherence across mul-
tiple frequencies.

4.3 | Analytic consistency

At ENIGMA-EEG, our efforts to produce homogenous results for
meta-analysis were mostly focused on analytic techniques and post-
processing of the EEG data. Our customized scripts for extraction of
the EEG features were written in MATLAB, passed to participating
cohorts, and then applied to the cleaned EEG data. These protocols
are available on Github (dirkjasmit/ENIGMA-EEG).

We are currently extending the EEG feature extraction proce-
dures by providing techniques for postextraction quality control.
Although EEG is known for the relative high time investment re-
quired to produce clean, artifact-free stretches of data, it is also quite
unique for applying quality checks because of the large number of
signals that are recorded from each subject. Each of these signals'
extracted parameters can be matched against those of neighboring
signals. Using spherical interpolation, signals can be recreated based
on a fixed weighted average of all remaining electrodes, the EEG fea-
ture in question recalculated and matched against the original value
(Junghofer et al., 2000). Alternatively, machine learning can be used
to establish an empirically estimated relation between the highly
correlated values across the electrode locations and compare the
actually obtained values to the values the model imputes from the
data. Values with a deviance greater than expected may be removed
or replaced by the imputed value. Figure 3 shows an example of how
interpolation was used to detect rogue data points in the theta-beta
ratio.

Artifact removal from the EEG traces is a constant focus for many
EEG researchers. Trained researchers are consistent among each
other with an ICC above 0.80 for the extraction of certain power
values (Hatz et al., 2015). With the increasingly expanding number of
datasets, much effort is being put into automated detection and re-
moval of artifacts. There are a variety of algorithms, based on either
statistical thresholding, either fixed or adaptive, or using Bayesian
approaches. Individual level ICA based on Blind Source Separation
(BSS) seems to have established a dominant position for removal of
various types of fixed-source artifacts (Delorme et al., 2007; Nolan
et al., 2010), with several methods for automated artifact IC detec-
tion (Nolan et al., 2010; Pion-Tonachini et al., 2019). Recent comple-
mentary methods such as Artifact Subspace Reconstruction (ASR)
propose solutions to remove transient large amplitude noise from the
data (Chang et al., 2019). Although many automated artifact removal
techniques still require visual confirmation, fully automated algo-
rithms may actually be in good agreement with visual inspection for
high density recordings (Hatz et al., 2015). This opens up possibilities
for large-scale endeavors such as ENIGMA-EEG to implement fully
automated pipelines such as the one implemented by one of us (SJB)
(https://github.com/sjburwell/eeg_commander) and others (https://
www.frontiersin.org/articles/10.3389/fnins.2018.00097/full;
https://www.frontiersin.org/articles/10.3389/fninf.2015.00016/
full). We note, however, that there is no agreed upon gold standard
for automated artifact removal yet.

Finally, our large datasets allow us to quantitatively investigate
the effect of data quality on some of the phenotypes that were col-
lected in the population-based and clinically ascertained samples.
Meta-data about the cleaning process—for example, data recording
length, number of channels lost, or the number of epochs rejected
after visual cleaning—could all be used to predict, for example, the
age of the subject, or any psychiatric or behavioral outcome. As such
variables of recording and processing quality may be associated with
phenotypes, this information could be invaluable to the whole field

of EEG and possibly result in specific thresholds for acceptable data.
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4.4 | Cohort sampling consistency

Age, ancestry, ascertainment, and disease status all play major roles
in heterogeneity across our cohorts. Table 1 shows an overview of
the cohorts currently contributing to ENIGMA-EEG. Sampling vari-
ability arguably leads to problems when meta-analyzing results and
could lead to reduced power. EEG features change substantially with
age (Niedermeyer, 1999b). The power of oscillations at specific fre-
quencies may reduce by as much as 10 dB (i.e., a 67% decrease in
amplitude) on average from childhood to adulthood (Vandenbosch
et al.,, 2019). Theta band oscillations show the most extreme change,
but alpha, beta, and gamma changes are observed as well as changes
in alpha peak frequency (Benninger et al., 1984; Gasser et al., 1988;
Marshall et al., 2002; Vandenbosch et al., 2019). Concurrent changes
are seen for other derived EEG features, such as sensor-level con-
nectivity and graph parameters (Boersma et al., 2011; Smit &
Anokhin, 2016; Smit et al., 2010, 2012, 2016).

Developmental and age-related changes do not necessar-
ily mean that different genes determine individual differences at
different ages. However, participants differ in the speed in which
their functional brain activity matures, and this difference is her-
itable (Vandenbosch et al., 2019). It is also evident that devel-
opmental changes occur with variable rate across time and space
(Niedermeyer, 1999b). For example, communication between brain
areas changes such that qualitatively different patterns in the func-
tional connectivity network appear, changing from a relatively ran-
dom to a more ordered network structure (Boersma et al., 2011; Smit
& Anokhin, 2016). During the same developmental period, the net-
work topology changes in the minimum spanning tree parameters of
graph diameter and maximum centrality (Tewarie et al., 2015).

In addition, it has become clear that gene expression changes
drastically during development, possibly to promote appropriate
maturation of the brain and other tissues. One of the gene-regulating
processes, methylation, shows well-timed changes that allow
the prediction of a subject's age (Bocklandt et al., 2011; Dongen
et al., 2016; Hannum et al., 2013; Simpkin et al., 2017); recent work
by ENIGMA's Epigenetics group has linked ongoing methylation
to hippocampal volume and other features of brain morphometry
(Jia et al.,, 2019). Such changes imply that different genes play a
role across developmental age groups. These observations indicate
that age is likely to induce heterogeneity across cohorts with age
differences and that particular care must be taken when including
childhood samples. Additionally, sex differences in developmental
genetic association studies of both resting-state EEG coherence and
event-related oscillations have been reported (Chorlian et al., 2017;
Meyers et al., 2019), consonant with other developmental genetic
studies (Cousminer et al., 2014). EEG features may also be modu-
lated by different stages of neurological and psychiatric diseases,
and these may impact the comparability of EEG recordings obtained
from patients with the same disorder at different stages of disease
progression (Douw et al., 2019).

Some cohorts in ENIGMA-EEG have multiple recordings of their

subjects in partial longitudinal study designs. Combined longitudinal/
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cross-sectional designs allow investigation of age modulation of ge-
netic risk. For example, the detrimental effect of the apolipoprotein
E epsilon 4 (APOE4) allele and the protective effect of the epsilon 2
(APOEZ2) allele on the brain can be investigated using such age mod-
ulation models. Multiple observations per subject increases power
and reduces confounding. However, the numbers do not quite reach
those required to perform genome-wide longitudinal genetic test-
ing. Consistent with other genome-wide studies, we therefore opted
to start out by selecting a single observation per individual for the
first runs of analyses. We hope and expect that with the increased
availability of EEG data in people with genetic profiles, this will
change in the future.

Large genetic studies have mainly focused on cohorts of
European descent. This European Ancestry bias is not unique to
many of the cohorts in ENIGMA-EEG, but systemic within the GWAS
literature (Peterson et al., 2019). Although the proportion of studies
including individuals of diverse ancestry has been increasing with
several ENIGMA-EEG cohorts including non-European individuals
(Meyers et al., 2017), this remains a critical issue that the field must
address (Popejoy et al., 2020).

In summary, to allow reliable meta-analysis of EEG genetic
association study data in ENIGMA, we encourage researchers to
use 64 lead recordings or more, use automated cleaning and QC
procedures, and perform sensitivity analyses to recording/analy-
sis choices in EEG parameter extraction to safeguard homogeneity
across cohorts. Additional phenotyping in the form of (family) his-
tory of neurological disorders, psychiatric disorders, and substance
use as well as measures of social-economic status and educational
attainment (Abdellaoui et al., 2019) would greatly help in provid-
ing additional covariates for the association analyses. EEG should
be measured in sufficient duration to yield reliable estimates. But
since many oscillatory parameters, even when measured over rel-
atively short periods, are strongly heritable (Linkenkaer-Hansen
et al., 2007; Smit et al., 2005, Smit et al., 2012), this indicates that
they generally are reliably estimated. We note, however, that for
measures dependent on dynamics changes in oscillatory activity,
such as vigilance, longer periods are needed to establish reliable
estimates (Jawinski et al., 2018).

5 | NEXT STEPS FOR ENIGMA-EEG

There is renewed interest in collecting EEG in large cohort stud-
ies. Several cohort studies within ENIGMA-EEG have initiated the
collection of EEG recordings in samples of over 1,000 participants,
using newer EEG equipment and higher density electrode montages.
These include cohorts from Germany (LIFE cohort) and the United
States (The Tennessee Synchrony & Speech Cohort). These high-
quality, high-density recordings provide additional opportunities to
investigate the relation between EEG and psychiatric/neurological
disorders. Most of the ENIGMA-EEG cohorts are population-based
samples, while some are samples ascertained for psychiatric disor-

ders or epilepsy.
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5.1 | Future measures

EEG research is increasingly mapping oscillatory function to bio-
logical and neurological mechanisms, with complex interactions
across space and frequency that subserve the integration of infor-
mation in a hierarchically organized brain (Bonnefond et al., 2017
Canolty & Knight, 2010; Jensen & Colgin, 2007; Tingley et al., 2018).
Oscillations at different frequencies are increasingly under-
stood not to have a one-to-one mapping with function (Wolfgang
Klimesch, 1999). Multiple functions may be present in oscillations,
such as the multiple function linked to alpha oscillations: inhibition
of sensory information during visual processing (Jensen et al., 2012;
Jensen & Mazaheri, 2010; Klimesch et al., 2007; Yao et al., 2019),
default mode function (Laufs et al., 2003; Mantini et al., 2007), and
cortico-subcortical communication (Horschig et al., 2015).

Oscillatory activity may be more directly linked to synap-
tic function than more indirect measures from imaging modal-
ities based on energy expenditure, such as functional MRI or
8F_fluorodeoxyglucose (FDG) PET. As indicated above, prior studies
have linked beta oscillations to GABA alpha receptor subunit genes
in alcohol use disorders (Edenberg et al., 2004; Porjesz et al., 2002).
Other studies have highlighted the role of GABA interneurons
for various EEG oscillations in schizophrenia (Edden et al., 2009;
Rowland et al., 2013). Investigating the ties between oscillations and
synaptic function may complete the circle, linking genetic variants to
behavioral disorders to brain function.

Among our next endeavors are genome-wide scans of measures
of oscillation-based communication between distant brain areas
(Fries, 2005; Stam, 2014) and oscillation dynamics (Linkenkaer-Hansen
et al.,, 2001). The importance of neural communication for behav-
ior and behavioral disorders is well documented (Paus et al., 2008;
Uhlhaas & Singer, 2010). EEG is widely used for establishing functional
connectivity and yields a wealth of information on the synchrony be-
tween distant brain areas (Lobier et al., 2014; Nolte et al., 2004; Stam
& van Dijk, 2002; Stam et al., 2007). The brain is a highly organized,
nonrandom network that balances substantial wiring costs with en-
hanced communication capacities (Bullmore & Sporns, 2009, 2012;
Stam, 2014). This optimization is obtained by a modular community
structure with an uneven importance distribution across the nodes
(van den Heuvel & Sporns, 2013). Areas of high importance (“hubs,” or
highly central nodes) are particularly vulnerable to impairments causing
large dysfunctions (Heuvel et al., 2013; Stam et al., 2009). The goal of
ENIGMA-EEG is to elucidate how genetic variants influence communi-
cation between brain areas and the connectivity patterns of the net-
work, matching those variants to neurological and psychiatric disorders.

Our ongoing investigation of functional connectivity is based on
detecting statistical patterns across a selection of EEG signals using
coherence. Since coherence is well known to show spurious connec-
tivity due to volume conduction effect (i.e., high coherence is ex-
pected for subjects with strong, deep oscillatory sources), we used
local bipolar derivations as a means to reduce this effect. Similar to
current source density (Babiloni et al., 2001; Hjorth, 1975; Nunez

& Westdorp, 1994), local bipolar derivations are proportional only

to local currents (Yao et al., 2019). Our procedure closely follows a
recent GWAS by one of our groups (Meyers et al., 2020), approxi-
mately doubling the sample size.

Temporal dynamics of oscillatory activity are a window into a brain
that keeps itself in an equilibrated state where activity neither dies
out quickly over time nor avalanches into uncontrolled spiking activ-
ity. Such states are generally obtained via self-organization, balancing
excitatory and inhibitory neuronal activity (Atallah & Scanziani, 2009;
Bak et al., 1987; Ferguson & Gao, 2018; Levina et al., 2007; Selten
et al., 2018). It has been shown that this balancing leads to maxi-
mal representational capacity of the neural network (Kinouchi &
Copelli, 2006). Temporal correlations in the oscillatory activity of the
brain reflect this balanced state (Linkenkaer-Hansen et al., 2001; Poil
et al., 2012), but also show quite some variation in the particular tun-
ing that result in variable levels in the signal autocorrelation. These
variable levels reflect the brain's tendency for faster or slower state
switching, with consequences for behavior (Palva et al., 2013; Prent
& Smit, 2019; Smit et al., 2013) and psychopathology (Linkenkaer-
Hansen, 2005; Montez et al., 2009; Moran et al., 2019; Nikulin
et al,, 2012). These fast or slow decaying temporal correlations are
measurable in EEG, show large individual variation, and are heritable
(Linkenkaer-Hansen et al., 2007). Our goal will be to elucidate how
genetic variants affect this oscillatory balance and determine whether
these variants are part of excitatory and inhibitory synaptic function-
ing (such as glutamate and GABA receptor genes). We will investigate
whether temporal dynamics vary for participants with a high genetic
liability for neurological disorders such as epilepsy, but also for par-
ticipants with high sensory sensitivity complaints in, for example,
autism spectrum disorder (American Psychiatric Association, 2013;
Robertson & Baron-Cohen, 2017) and tinnitus (Hébert et al., 2013).

Our very large EEG database allows us to not just investigate
the genetics of EEG parameters, but also to plot normative devel-
opmental curves across the wide age range available in our data-
sets (Table 1), possibly extended with other developmental samples
(Anokhin et al., 2017; Obeid & Picone, 2016; Smit & Anokhin, 2016).
These data are valuable to investigate neurodevelopmental disor-
ders and deviant brain development, such as ADHD and autism,
with ample power to detect differences. Further, polygenic risk
scores based on the ENIGMA-EEG discovery genome-wide associ-
ation meta-analysis (GWAMA) can be constructed to provide liabil-
ity indices that may be associated with mental disorders, individual
differences in cognition, brain development, and connectivity pat-
terns. The advantage of such an approach is that the subjects reflect
the full range of individual variation across the population (Martin
et al., 2018; Simmons & Quinn, 2014).

5.2 | Future methods

Multiple aspects of these new scientific ventures with EEG recordings
may prove useful for clinical purposes. With the advent of big data and
the successful application of machine learning techniques, EEG re-

search can start measuring up with other imaging modalities to perform
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disease classification and treatment outcomes. These predictive tech-
niques are maturing quickly (Janssen et al., 2018). In fMRI research,
imaging the activity of the brain pretreatment can successfully predict
electroconvulsive treatment (ECT) outcome for otherwise treatment-
refractory depressed patients (Waarde et al., 2015). Bridging such
findings to EEG research will require novel designs in artificial neural
networks tuned to the specific spatio-temporal aspects of EEG oscilla-
tions (Schirrmeister et al., 2017). These have so far largely been devel-
oped for detecting epileptic seizures, sleep staging, and brain computer
interfacing (BCl (Ding et al., 2015)). We foresee an expansion of such
models to many other areas of behavioral (dys)function.
Pharmaco-EEG can be used to evaluate drug targets and for drug
repurposing. For example, mecamylamine has recently been used as
an Alzheimer's disease model (Simpraga et al., 2018). The described
changes in behavior—as well as changes in EEG oscillations induced
by mecamylamine—are highly reminiscent of AD, but are fully re-
versible. Although the effectiveness of drugs reversing the effects
of such models is debatable, the systematic use of EEG during Phase
Il clinical trials could help in establishing a database that marks neu-
ronal changes induced by drugs. This, in turn, could help in repurpos-
ing drugs for neurological and psychiatric disorders by investigating

how changes in EEG patterns are resolved (Jobert et al., 2012).

5.3 | Future-omics

Genomics of human complex trait variation may be a first step in un-
derstanding the genetics underlying human trait variation. In the fu-
ture, we wish to explore other types of variation, for example, due to
rare variants or to other types of structural variants, affecting brain
function. Genetic studies addressing these traits are increasingly con-
sidering other -omics levels to address variation and the pathways
between genotype and phenotype. Methylation studies for cognition
and educational attainment (Dongen et al., 2018; Linnér et al., 2017)
have uncovered multiple genome-wide significant differences in
methylation at CpG sites. Genome-wide testing of epigenetic marks
has been explored within ENIGMA for subcortical volumes; differen-
tially methylated regions in the genome were suggested to be associ-
ated with hippocampal volume (Jia et al., 2019). DNA methylation at
these loci affected expression of proximal genes among other traits in
learning and memory (Jia et al., 2019). Other -omics that are promising
include transcriptomics and metabolomics (van der Lee et al., 2018),
possibly combined into multi-omics approaches (Wu et al., 2018). We
feel that these techniques are especially suitable for the investigation
of changes in brain maturation, behavioral, development, and decline

or resilience to decline in older age.

6 | CONCLUSION

In ENIGMA-EEG, we expect that large-scale studies of EEG data will
help to elucidate the causal mechanisms of liability genes affecting

the functioning brain, by identifying the genetics of EEG features.
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Given the wealth of EEG data available worldwide, and the prom-
ise of other imaging modalities such as structural measures of fMRI
in massive data collections such as available in the UK Biobank
(Manolio et al., 2012), there is still a huge incentive to collaborate
across cohorts that have collected EEG and genetic data to combine
their efforts and reach ever increasing sample sizes that have proven
so useful for other fields (Sullivan, 2010; Sullivan et al., 2017). Such
multisite and international alliances can boost power and may also
help in avoiding the small sample pitfalls that sometimes may have
stalled progress in areas of human neuroscience (Button et al., 2013).

What ENIGMA-EEG will be doing in the near future is to ex-
pand the investigations to increasingly complex EEG biomarkers and
diving ever more deeply into the functioning brain. Ever increasing
sample sizes will help us in finding more genetic variants affecting
brain activity—most likely a growing set that includes both common
and rare variants, as well as structural variation. The growing sample
sizes, analyzed using harmonized protocols, should also increase our
power to find significant genetic correlations with behavioral traits,
and further our understanding of the effect of neurological, psychi-
atric, and other liability genes on brain function. We therefore call
on additional cohorts with EEG and whole-genome scans to join our
effort. This can be done by simply emailing the first author (D.S.) or
via the ENIGMA-EEG website (http://enigma.ini.usc.edu/ongoing/
enigma-eeg-working-group/).
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