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Abstract

Photoswitches are molecules that undergo a reversible, structural isomerization af-
ter exposure to different wavelengths of light. The dynamic control offered by molecular
photoswitches is favorable for applications in materials chemistry, photopharmacology,
and catalysis. Ideal photoswitches absorb visible light and have long-lived metastable
isomers. We used high throughput virtual screening to predict the absorption maxima
(Amax) of the E-isomer and half-lives (t;/2) of the Z-isomer. However, computing the
photophysical and kinetic properties of each entry of a virtual molecular library contain-
ing 103-10° entries with density functional theory is prohibitively time-consuming. We
applied active search, a machine learning technique to intelligently search a chemical
search space of 255991 photoswitches based on 29 known azoarenes and their deriva-
tives. We iteratively trained the active search algorithm based on whether a candidate

absorbed visible light (Apax > 450 nm). Active search was found to triple the discovery
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rate compared to random search. Further, we projected 1962 photoswitches to 2D using
the Uniform Manifold Approximation and Projection (UMAP) algorithm and found that
Amax depends on the core, which is tunable with substituents. We then incorporated a
second stage of screening with to predict the stabilities of the Z-isomers for the top 1%
of candidates. We identified four ideal photoswitches that concurrently satisfy Apax >
450 nm and ¢1/o > 2 hours; the range of Amax and 1/, range from 465 to 531 nm and

hours to days, respectively.

Introduction

Light is an ideal external stimulus to promote organic reactions. Photoswitches are a class
of molecules that absorb light and reversibly interconvert between their thermodynamically
stable and meta-stable forms to create photostationary states. Azobenzenes are a class of
well-studied photoswitches that undergo efficient isomerization from their thermodynami-
cally stable form (i.e., F) to their metastable form (i.e., Z) using ultraviolet light (314 nm).!
The Z — E isomerization is promoted with 365 nm light.! This relatively high-energy
light (e.g., ultraviolet) may promote undesired side reactions that compete with the iso-
merization pathway (e.g., electrocyclic ring-closing reactions). UV light can also promote
[2-+2]-dimerizations that alter the structure and function of nucleotides and has a limited
(epidermal depth, 0.1 mm)? tissue penetration depth, thus limiting the therapeutic potential
of photoswitches in photopharmacology. The Z-isomer of azobenzene has a thermal half-life
(t1/2) of 4.7 hours, which prevents the establishment of photostationary states. Ideal photo-
switches feature long absorption wavelengths and long ¢, /»; unfortunately, the simultaneous
optimization of these parameters is challenging and has been empirically observed to com-
pete. Functionalizing the phenyl rings has been shown to shift the A, of azobenzene-based
photoswitches into the visible range. Konrad et al.?® recently demonstrated that function-
alizing the phenyl rings with halogens at the ortho positions led to a substantial red shift

to 410 nm. This functionalization strategy also increased the (t1/2) to 16 hours. Another



strategy involves replacing one or both phenyl rings with heteroaryl ring(s), thus creating
a more general class of photoswitches, azoarenes. Azoarenes are substantially more diverse
than azobenzenes, and multiple examples show Ay.y in the visible range and ¢/, exceeding
1.5 hours. Figure 1 highlights some of the most promising synthesized azoarenes with respect
0 Amax and ¢1/9.%7

Previous work
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Figure 1: 14 azoarene photoswitches used to generate a new molecular library.

While this relatively new class of azoarene photoswitches is attractive, the full enumer-
ation of the chemical space approaches 10°. Density functional theory (DFT) calculations
are used to predict structures and photophysical properties at a relatively low computa-
tional cost.!%! Thus, DFT has been previously used in high throughput virtual screening
(HTVS) 21 for virtual libraries containing 500-500 000 molecules. The vastness of the chem-
ical space cannot be understated; conservative estimates suggest that 10% organic molecules
are theoretically possible.® This figure can be narrowed to roughly 10° for azoarenes by
focusing on those already experimentally realized. Abreha et al.'” recently published a suite
of HTVS tools and the Virtual Excited State Reference for the Discovery of Electronic Ma-
terials Database (the VERDE materials DB). The VERDE materials DB is unique because
it was the first open-access database to include excited state structures (S0, S1, and T1),

photophysical, and redox properties. Further, Adrion et al.'® published the EZ-TS code,



which predicts thermal Z — E activation barriers efficiently and accurately.

Even with high-performance computing and efficient quantum chemistry codes, comput-
ing the photophysical properties and stabilities of 10° photoswitches is a substantial under-
taking. We have employed the machine learning algorithm ‘active search’® to intelligently
search the vast chemical space (255991 candidates) of azoarene photoswitches. Active search
(AS) was created to discover as many target molecules as possible while balancing compu-
tational resources. AS uses the data observed at any given point throughout a search and
adaptively makes decisions informed by the latest observations. The prediction accuracy of
our predictive model improves as we frequently query from quantum chemical calculations.

We now combine these existing tools (the VERDE materials DB, EZ-TS,!® and active
search!) to automatically identify top photoswitch candidates featuring visible-light A ax

and long t;/5. Scheme 1 shows an illustration of the iterative processes used to identify ideal

photoswitches
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Scheme 1: The multipronged iterative procedure used to update the active search algorithm
with DFT results.

Phase 1: An initial screen of 50-100 molecules is processed through an automated compu-
tational workflow developed by Abreha et al. 7. RDKit?® is used to generate 3-D coordinates

from a simplified molecular-input line-entry system (SMILES)?! string, followed by a low-



mode conformational search where each conformer (4 total) is minimized with the Universal
Force Field.?? The lowest energy conformer is determined through semi-empirical optimiza-
tions and a single-point energy calculation. The lowest energy structure is optimized with
M0622/6-31+ G(d,p)?*?® and IEFPCMM“N 26 and a vibrational analysis confirms the sta-
tionary point as the true minimum if it has only positive frequencies. The A, is calculated
with a single point energy calculation using wB97XD?7 /6-31+G(d,p)//M06% /6-31+G(d,p).
Figure 2 shows the automated workflow of quantum chemical calculations used to compute

the excitation energies and corresponding A, for selected molecules from our virtual library.

Quantum Chemistry Workflow )
Molecule Generation PM7 M06/6-31G(d,p)
[C1{/N=N/C2=CC=CC=C2)=CC=CC=C1] Conformational Search RM1-D
) Optimization .
SMILES Strings (in vacuo)
TD-DFT Sy Optimization
wB97XD/6-31+G(d,p) M06/6-31+G(d,p) Mosésl;sl; g;d,p)
IEFPCMMeCN |EFPCMMeCN
AN J

Figure 2: Quantum chemical workflow for computing the A,., for all molecules considered
in this study.

Phase 2: An in-house Python script assigns a “core ID” (1-29) to each computed structure.
Cores are determined using a substructure analysis included in RDKit. True or False labels
are assigned to each smiles string based on the pre-determined threshold, A > 450nm.

Phase 3: A machine learning model is trained on the set of molecules that are labeled to

28 of each molecule and

guide the search algorithm. First, we generate the Morgan fingerprin
compute the Tanimoto similarity coefficient?” between each pair of molecules. We then build
a k-nearest neighbors (k-NN)3° predictive model that computes the probability of a given
unlabeled molecule having a positive label, given the data we have observed thus far. This
k-NN model is then utilized by the search algorithm. Note that the Morgan fingerprints and
Tanimoto similarity coefficients only need to be computed once, while the k-NN is updated

with newly labeled data at each iteration

Phase 4: The active search algorithm builds the set of 50 recommendations, selecting



among all unlabeled molecules. These recommendations are then sent to Phase 1 to be
computed and labeled. This procedure repeats for a total of 40 iterations, sampling 1962
molecules from the space. We include a more detailed description of our methods in the

following section.

Methods

We adapted the active search method, which has shown impressive performance in molecular
discovery in previous studies.?' 3% The method was first introduced by Garnett et al.'® and

extended to the batch setting by Jiang et al.3?

. Formally, suppose we have a large set of
elements X' = {x;}, among which there is a small subset R C X of valuable elements that
we wish to search for (i.e., molecules exhibiting a desired property). We do not know which
members of A belong to R a priori, but whether a specific element x belongs to R can be
determined by querying an oracle, requesting for the binary label y = 1{z € R}, where
1{-} is the indicator function. In this work, the binary label denotes whether a molecule
exceeds the \,.. threshold of 450nm. Further, we assume that at each iteration of the
search, b elements are inspected simultaneously, requiring that queries to the oracle be made
in batches of size b. This models experimental settings in which multiple experiments may be
run in parallel to maximize throughput, contrasting with the fully sequential setting where
queries are made one after another; here, b = 50. The goal is to design a sequence of queries
limited by a predetermined budget, such that the number of target elements uncovered by

querying the oracle is maximized. As such, we naturally define the utility of a given set of

observations D = {(x;,v;)} to be the total number of targets found:

u(D) = Z ;.

y; €D

We aim to determine the sequence of queries that maximizes our definition of utility in the

expected case using Bayesian decision theory. This framework first requires a classification



model that computes the posterior probability that an unlabeled point z belongs to R, given
the elements we have inspected thus far in D, Pr(y = 1| 2, D). The active search method
is model-agnostic and does not make any further assumptions about this predictive model.
In the next section, we describe the k-nearest neighbors model we use for this classification
task.

We denote T = tb to be the total number of queries allowed to be made given our
budget, where ¢ is the number of search iterations). We further denote by D; the observations
collected at the end of iteration i. At iteration i + 1 < ¢, the best batch of queries (of size
b) we can make, denoted as X, maximizes the expected value of the utility of the dataset
at termination D;:

Xit1 = arg maXE[u (Dr) | X,D;|.
X

Although this expected utility can be derived using the standard procedure of backward
induction, 3¢ it involves ¢t —i nested steps of sampling over unknown labels of candidate queries
and maximizing the future expected utility. This computation is prohibitively expensive for
horizons t — ¢ > 3, rendering the optimal query infeasible to calculate in practice.

We adopt the sequential simulation strategy proposed by Jiang et al.?> as an efficient
approximation to the optimal batch of queries. First, the strategy builds on the efficient
nonmyopic search algorithm ENS®* in the sequential setting where only one query is made
at each iteration. ENS itself approximates the optimal sequential strategy by assuming that
all future queries after the current iteration are made at the same time. Jiang et al.3*
demonstrated that ENS actively explores the search space when the remaining budget is
large, recommends increasingly promising molecules as the search progresses, and achieves
significant improvements in performance over greedy strategies Our sequential simulation
active search algorithm under the batch setting builds its recommendations by iteratively
adding elements to an initially empty set using the ENS algorithm until the desired size
(b = 50) is reached. As a new element is added, we assume that this element will return

a negative label (i.e., the element is assumed to lack the desired property). Jiang et al.



showed that by taking on this pessimistic view, the algorithm encourages the elements within
the same batch to be diverse, which helps explore the search space more effectively.

Finally, we aim to distribute our queries equally across the 29 cores. Our sequential
simulation strategy may be naturally modified in service of this goal as follows. As a new
element is added to the running batch in the iterative procedure described above, we tem-
porarily remove other candidates having the same core ID as the newest batch member from
the search space. When no candidate remains, we add all removed molecules back to our
search space. This simple procedure effectively forces each batch of queries to be constructed
to span the available cores equally.

As previously described, our active search algorithm requires a probabilistic model that
computes the probability that an unlabeled element has a positive label (i.e., exhibiting
the desired property), given the current set of observations we have made so far. We first

t28 of each molecule in our search space and compute the

generate the Morgan fingerprin
Tanimoto similarity coefficient?® between each pair of elements x and 2/, denoted as t(z, z’).
We then implement a k-nearest neighbor (k-NN)3° predictive model, which computes the

probability of an uninspected molecule being an active compound as:

Y + Zx’ENN(w) t(l’, ‘T/) y/

Pry=1 D) =
r (y | z, ) 14+ Zx/ENN(x) t(x,m') )

where NN(z) is the labeled subset of the k nearest neighbors of = in X. v is a parameter
of the model that acts as a “pseudo count” to define the prior probabilities for molecules
that do not have any labeled neighbor; we set v = 0.1. This k-NN performs well in previous
work, 1931323435 a5 well as in our experiment. It can further be rapidly updated in light of

new observations, allowing for efficient lookahead computations that are central in active

search.



Results and discussion

We generated a relatively small virtual molecular library of 1636 azobenzene, bisazopyrrole,
bisazothiophene, and bisazofuran photoswitches (Figure 3). The substituent sites (red cir-
cles) were replaced with the disubstituted alkenyl, alkynyl, or aryl (spacer) groups. The
unfunctionalized end of the growing molecule (-R) was substituted with functional (termi-
nal) groups. Figure 3 shows the sites where a set of 4 azoarene cores were substituted with

spacer and terminal groups to generate the initial training set.

Core

R = H, OH, SH, OCHg, OCF3, CHg, CF3, NO, F, CI, CN

Figure 3: The combinatorial method was used to generate an initial library of 1636 photo-
switches with four azobenzene and azoarene core structures. An in-house Python algorithm
symmetrically substitutes red circles with spacer groups and R with H, OH, SH, OCHs,
OCFg, CH3, CF3, NOQ, F, Cl, or CN.

From the 1636 initial azoarenes, 198 were selected to train the active search algorithm.
A histogram of the A\, of these 198 azoarenes is shown in Figure 4.

Figure 4 shows that the \,.. ranges from 301 to 541 nm for the selected 198 azoarenes.
To train the AS algorithm, we assigned each candidate a label of True or False, depending
on whether the following expression is satisfied, Ap.x > 450 nm. 62 of the 198 azoarenes

were assigned True and 136 were assigned False. We designed a virtual molecular library
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Figure 4: Distribution of the \,.x values of the photoswitch training set.

with 29 bisdiazoarene cores (Figure 5) to apply the trained algorithm. Each of these has at
least one functionalization site substituted with functional groups (i.e., terminals).

The cores were selected based on a literature search of previously synthesized azoarenes.
1-29 range from symmetric bisazoarenes to azoheteroarenes and known functionalization
strategies inspire the substitution sites. Figure 6 describes these positions for a smaller
subset of cores.

We then iteratively applied the algorithm 40 times on our new molecular dataset. Each
molecular batch featured 50 As-suggested candidates that would enter our computational
workflow. The first 20 iterations used an “equidistributed” policy, which equally sampled
molecules belonging to each core family of the 29. Since the AS selected 50 molecules for
each iteration, we sampled the 29 cores by constraining the algorithm to select at least one
molecule per core. The remaining 21 slots for each batch were selected in a similar fashion
where no more than two molecules were selected for each core. The remaining iterations
(21-40) used a “targeted” policy that only selected molecules from a subset of 15 cores that
had derivatives where the A, > 450 nm. Cores that did not show derivatives that fit the

criteria were excluded from the subset. After each iteration, we added a binary label to each
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Figure 6: A schematic representation of the substitution patterns of azoheteroarene cores. a)
a subset of 4 cores from the 29. b) The cores were substituted asymmetrically to enumerate
the chemical space systematically. Red circles indicate positions substituted asymmetrically
with terminal groups from Figure 2, H, OH, SH, OCHj3, OCF3, CHs, CF3, NO,, F, CI, or CN,
and X represents endocyclic heteroatoms (oxygen, nitrogen, or sulfur). The 11 substituents
are functional groups that range from electron-withdrawing (e.g., NO3) to electron-donating

(e.g., OH).

11



molecule based on whether A\ > 450 nm. Figure 3 summarizes this iterative procedure.
We compared the AS strategy to the performance of a random search strategy by sampling
three molecules selected at random from each of the 29 cores. Figure 7 shows the distribution

of the A\, values from AS and the random search.
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Figure 7: Distribution of the random search compared to active search. Three molecules are
sampled for each core, resulting in a total of 87 randomly selected molecules. Active search
calculations entail 1962 computed azoarenes. The values are normalized, and the bin size is
25nm.

The random search showed that 11 out of the 87 molecules (13%) had Ayax > 450 nm.
Figure 8 shows how the proportion of hits changes with respect to the first 20 iterations
using the equidistributed policy. We define the hit rate as the percentage of molecules with
a Amax > 450 nm from the current batch.

The dotted orange line indicates a random search hit rate of 13%. The black data points
indicate the hit rate as the active search is iteratively applied. The equidistributed search
shows a range of hit rates from [12% to 35% (batch 3 and 18, respectively)|. The slope is
+0.82; the hit rate is improved relative to the random search in nearly all iterations. We then
turned our attention to the targeted AS policy to maximize the number of hits corresponding

to the subset of cores with molecules that had a Ap., > 450 nm, shown in Figure 9.
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Figure 8: The hit rate of the first 20 iterations of the search with the reset policy. The
orange dotted line indicates the hit rate for the random search of 87 molecules which was

13%. A linear regression gave the following equation describing the correlation between the
hit rate and batch number, [AHR=0.82(batch) + 15.26] with an R? of 0.57.
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Figure 9: A subset of cores searched for the second half of iterations from 21-40. Cores
represented yielded at least one substituted molecule that had a A,., exceeding 450 nm.
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For iterations 21-40, the AS algorithm selected three derivatives corresponding to each
of the 15 cores for a total of 45 selected molecules. To keep the batch size consistent to 50,
AS chooses five more from the top-ranked derivatives of the 15 core subset. Figure 10 shows

the hit rate for iterations 21-40 with the targeted policy.
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Figure 10: The hit rate of the second 20 iterations of the search policy with 15 cores.

In the targeted policy, the hit rate varied from 44% to 56%; the average hit rate was
49%. Unlike the equidistributed policy, Figure 10 does not show an increase in hit rate as a
function of the batch number. The relatively high hit rate led to the rapid discovery of 485
candidates with A, .« > 450 nm in batches 21-40.

Overall, we identified a total of 717 photoswitches with A,., > 450 nm after the 40
batches (1962 molecules) of As-assisted virtual screening. The resulting hit rate is 37%,
corresponding to a tripling of the 13% hit rate from the random search. A two-sample z—test
rejects the null hypothesis that the two strategies result in equal hit rates with overwhelming
confidence, yielding a p—value of 5 x 107°.

We represented the complex molecular data with a Uniform Manifold Approximation
(UMAP)?" to visualize the molecular motifs responsible for candidates with Apa. > 450 nm.
Each of the 1962 structures was plotted based on the Tanimoto similarity?® in Figure 11.

The clusters are grouped based on structural similarity and color-coded based on computed

14



Amax results.

Figure 11a shows the UMAP results with each azoarene candidate overlaid with the color
corresponding to the A.x. The data points shown in grey correspond to the ultraviolet range
of the electromagnetic spectrum (Apayx < 400 nm). Cores 1-5, 17, 24, and 25 formed distinct
clusters, indicated by the dotted lines in the UMAP plot. These cores also had considerably
more derivatives with a A\, in the visible range, suggesting that these cores have especially
tunable A\, values and should be explored experimentally in the future.

We examined the influence of substituents on each core by plotting the distribution of
Amax- Figure 11b shows the range of \,.« for 1962 azoarenes. Spacings within each box
represent the degree of dispersion and skewness within the data. Cores with larger boxes
indicate a higher variation in absorbance due to the substitution pattern. We compared
unsubstituted cores 1-5, 17, 24, and 25 to the derivative with the highest A,.. These
values are summarized in Table S2 of the supporting information. 1 showed the highest Ajax
at 514 nm with a range of 139 nm. 2 had the largest \,.x value of 602nm and featured
an impressive range of 213 nm within the corresponding derivatives. This suggests that
the family of derivatives corresponding to 2 has the most tunable A\,... 3, 4, and 5 had
their highest absorbing derivatives at 584, 560, and 503 nm, with similar ranges at 193,
186, and 166 nm, respectively. 24 and 25 had their largest A,., values at 524 and 531 nm,
respectively. Their derivatives had ranges of 121 and 148 nm, respectively.

The ideal ¢, , of photoswitches depends on the desired application. The #;/5 and Apax are
typically in competition because the w-delocalization effects that generally red-shift the A\pax
also decrease the ;5 by lowering the transition state energies. However, longer t;/, values
are generally desirable; we chose those candidates with ¢/, > 2 hours as ‘hits.” Determining
t12 values requires the computation of Z — E thermal isomerization transition structures,

1.18 recently benchmarked 140 model

which inform the activation free energies. Adrion et a
chemistries to predict azoarene isomerization barriers and published the open-access code,

EZ-TS. We thus applied EZ-TS to compute the £/, of the Z-isomers of core derivatives
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Figure 11: a) Projection of 1962 azoarene photoswitches suggested by active search using
UMAP, computed with a 2048-bit Morgan fingerprint (radius 2), ten nearest neighbors, a
minimum distance of 0.1, and the Tanimoto similarity. b) Range of Apax of 1962 azoarene
photoswitches by core 1D. Lines within each box represent the median, while the box repre-
sents the interquartile range that includes 50% of values near the median. Tails of each box
show the high and low excitation energies of each core 1D. Black circles represent outliers.
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with the longest Ay, identified with active search. Figure 12 illustrates the candidate from
each family of cores subjected to transition state calculations with PBE036-D3/6-31+G(d,p)
to optimize the transition states. This was reported to give activation free energies that

approach chemical accuracy. Scheme 2 shows the 7 — FE isomerization transition state.
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Figure 12: Structures of the 29 highest absorbing azoarene photoswitches for each core.
Molecules are labeled by their core 1D (in bold), their Ay in nanometers, and activation
barrier in kcal mol™.

The Apax for these top 29 candidates ranges from 382 to 602 nm. The range of activation

free energies is 8.1 to 30.0 keal mol™'. We plotted the activation free energies (AGY) against
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Scheme 2: Ilustration of the Z — E thermal isomerization transition structure.

the A\nLax for these 29 candidates to determine if there was a relationship between these values

(Figure 13).
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Figure 13: The activation free energy against the A, of 29 azoarene photoswitches selected
by the active search. Their core ID indexes the data points. Quadrant B is where both
criterion for an ideal photoswitch (Amax > 450 nm and AG* > 23 kecal mol™') have been
satisfied. Quadrants A and D are where one criterion has been satisfied, and Quadrant C is
where none of the criteria have been satisfied. A linear regression gave the following equation
describing the correlation between the activation barrier and Apax, [Amax — 0.1189 AGH +
456] with an R? of 0.0002.

Figure 13 shows no linear relationship between the A, and activation free energy (R

of 0.0002). However, we divided the plot into four quadrants to highlight those candidates
that meet both, one, or none of the Ay. and #;/, optimization criteria. Quadrants A (red

tint) and B (green tint) contain molecules that have Ap.x > 450 nm or 2.6 eV. Quadrants

18



A and C (purple tint) are populated with molecules with an activation free energy less than
23.0 kcal mol™!. Quadrants C and D (blue tint) contain molecules that absorb UV light or
have A« greater than 450 nm. Quadrants B and D have molecules with an activation free
energy greater than 23.0 kcal mol™'. The ideal candidates fall in Quadrant B, denoted by
two checks that satisfy both criterion; Quadrant A and D are partially optimized; Quadrant
C has candidates that do not meet any of the requirements. Molecules 8, 10, 15, and 25
have a high A... value of 478, 465, 479, and 531 nm, respectively. They also have high

activation free energies of 24.5, 23.0, 30.0, and 26.5 kcal mol ™!, respectively.
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