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Abstract

Load balancers are pervasively used inside today’s clouds
to distribute network requests across data center servers at
scale. While load balancers were initially built using dedi-
cated and custom hardware, most cloud providers now use
software-based load balancers. This allows the implementa-
tions to be more agile and also enables on-demand provi-
sioning of load balancing workload on generic servers, but
it comes with increased provisioning and operating costs.

We explore offloading load balancing onto programmable
SmartNICs. To fully leverage the cost and energy efficiency
of SmartNICs, our design proposes three key ideas. First, we
argue that a full and complex TCP/IP stack is not required
even for L7 load balancers and instead propose a design that
uses a lightweight forwarding agent on the SmartNIC. Sec-
ond, we develop connection management data structures
that provide a high degree of concurrency with minimal
synchronization when executed on multi-core SmartNICs.
Finally, we describe how the load balancing logic could be
accelerated using custom accelerators on SmartNICs. Our
proof-of-concept implementations and preliminary results
show that SmartNIC is a promising choice for navigating
the underlying performance-cost tradeoffs.
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+ Networks — Programmable networks; Transport pro-
tocols.
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1 Introduction

Load balancers are a fundamental building block for data-
centers as they allow the service load to be balanced across
a collection of application servers. Load balancers were ini-
tially built as specialized hardware appliances but are now
typically deployed as software running on commodity servers
or VMs. This deployment model provides a greater degree
of customizability and adaptability than the older hardware-
based designs, but it also can result in significant costs for
cloud providers and application services given the purchase
costs and the energy consumption of general-purpose servers.

Recently, data center operators are embracing the techno-
logical transition enabled by SmartNICs. These SmartNICs
provide a cost-effective computing substrate for end-host
network functionality, ranging from virtualization to secu-
rity and storage. SmartNICs enclose cheap, energy-efficient
(but relatively wimpy) multi-core processors that are aided
by a rich array of accelerators. A SmartNIC’s architecture
not only places the SmartNIC’s computing cores closer to
the network but also enhances the computing capability with
packet manipulation and cryptographic accelerators. Given
the increasing relevance of this technological transition, we
explore the question of how much we can accelerate the
load-balancing network capability using SmartNICs.

There are a number of challenges that have to be addressed
in offloading load-balancing functionality to SmartNICs.
First, SmartNIC cores are wimpy, equipped with limited mem-
ory, and aren’t suitable for running general-purpose compu-
tation. To the extent possible, we should use lightweight net-
work stacks as opposed to generic, full-functionality stacks
such as what is present inside OS kernels. Second, efficient
multicore processing on the SmartNICs presumes lightweight
synchronization for access to concurrent data structures, and
this is particularly relevant as we slim down the network
processing functionality. Third, effective use of accelerators
both for packet transformations as well as network layer
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operations, such as encryption/decryption, is necessary to
enhance the computing capability of SmartNICs.

In this paper, we begin examining how to effectively ac-
celerate different types of load balancers on different kinds
of SmartNICs. We provide a preliminary design, called LB-
NIC, that addresses the challenges raised above. We show
that it is feasible to have a lightweight networking stack
even for L7 load balancers, which are typically implemented
using networking stacks that include generic TCP layer pack-
et processing. We develop connection management data struc-
tures that are highly concurrent and minimize expensive
mutual exclusion operations. We also discuss how abstract
packet matching and packet manipulation accelerators can
enhance the performance of load balancers.

We acknowledge that our work is preliminary, and we
raise more questions than what we can answer now, given
that our work is in progress. Our hope is that our designs
and the associated discussions would spur not only work
on SmartNIC-based acceleration of networking components
but also aid in studying what primitives should be supported
by accelerators on SmartNICs. This is particularly relevant
as many of the commercially available SmartNICs are still
in flux concerning hardware support and are grappling with
what should be supported in hardware and how to provide
adequate access to some of their accelerators. Further, based
on some preliminary data, we propose a flipped model where-
in the SmartNIC cores serve as the primary compute ele-
ments, offloading packet rewrite operations to ASIC pipelines
and expensive asymmetric cryptographic operations to the
host cores. Our goal with this work is to spur the discus-
sion on how to effectively use SmartNICs in the context of
applications such as network load-balancing.

2 Background

2.1 Programmable Multi-core SmartNICs

We consider programmable SmartNICs equipped with multi-
core processors. A typical SmartNIC is equipped with on-
board memory, DMA engines, accelerators (e.g., engines for
crypto, compression, and packet rewriting), in addition to
the multi-core processor. Below, we discuss the two domi-
nant categories, on-path and off-path SmartNICs [12].
On-Path SmartNICs are SmartNICs where the NIC pro-
cessing cores are on the data path between the network port
and the host processor (see Figure 1. Consequently, every
packet received or transmitted by the host is also processed
by the NIC cores. The performance of the NIC cores is criti-
cal to the throughput and latency characteristics of the NIC.
To address this issue, these NICs typically augment the tra-
ditionally wimpy cores on the SmartNIC with specialized
hardware support that enhances the packet processing capa-

bilities of the core. For example, packet contents are prefetched
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Figure 1: Common SmartNIC architectures

and placed in a structure similar to the L1 cache, and there
are hardware mechanisms for managing packet buffers. Fur-
ther, the NIC cores can invoke specialized accelerators for
tasks such as crypto and compression. Marvell LiquidIO [13]
and Netronome NICs [14] are on-path SmartNICs.
Off-Path SmartNICs are SmartNICs where the NIC’s
processing cores are off the data path connecting the host
to the network. Instead, a NIC-level switching fabric (re-
ferred to as NIC-switch) provides connectivity between the
network port, the host cores, and the NIC cores. The NIC-
switch is a specialized hardware unit with match-action en-
gines for selecting packet fields and rewriting them based
on runtime-configurable rules. The NIC-switch rules can be
used to route packets received from the network either to
the host or the NIC, as well as rewrite them and immedi-
ately transmit them back into the network. Mellanox Blue-
field [15] and Broadcom Stingray [1] are off-path SmartNICs.
While the on-path SmartNICs have only one type of com-
puting (i.e., NIC cores), the off-path SmartNICs contain both
general-purpose cores and packet match-action engines, and
the packet processing logic could thus be split across them.
However, in the case of on-path SmartNICs, the hardware
constructs for packet buffers and packet prefetching enable
more efficient communications and, therefore, greater effi-
ciency for packet processing running on the NIC cores [12].

2.2 Load balancers

Load balancers operating at different network layers are widely

deployed inside data centers to deliver traffic to services.
They fall into two categories: layer 4 (L4) and layer 7 (L7).

2.2.1 L4 load balancer The primary function of an L4
load balancer is to map a virtual IP address (VIP) to a list of
backend servers, with each server having its own dynamic
IP address (DIP). As the L4 load balancers operate on the
transport layer, the routing decision is solely based on the
packet headers of the transport/IP layers (i.e., the 5-tuple of
IP addresses and ports) without touching the payload.
There are several L4 load balancers designed and deployed
by cloud providers (e.g., Ananta [17], Maglev [2], and Ka-
tran [4]). These load balancers differ in terms of the imple-
mentation strategy, e.g., user-level [2] or inside the kernel
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using a driver [17] or eBPF code [4]. Most L4 load balancers,
except Beamer [16], use a connection table data structure to
provide per-connection consistency, i.e., route all packets
within a flow to the same backend.

2.2.2 L7 load balancer L7 load balancers operate on the
application layer of the OSI model, and application content
(e.g., HTTP data) could be used for routing. Many services
inside a data center, including microservices, may share a
common application gateway implementing the L7 load bal-
ancing functionality. The L7 load balancer dispatches requests
to the corresponding backend servers based on the service
requested, e.g., different services are commonly differenti-
ated by the URL [7]. The load balancer would then reassem-
ble the stream, match the URL against various patterns to
route the request to the corresponding services.

It is common for an L7 load balancer to modify the streamed
application data, e.g., insert an x-forwarded-for header to
inform the backend server of the real IP address of the client.
The load balancer may also modify the reply from the server
to inject a cookie into the response. As a result, for further
requests from the same client, the load balancer can then
route them to the same backend server based on the cookie.
L7 load balancers also support transport layer security (i.e.,
TLS) to guarantee privacy and data integrity properties.

As the L7 load balancer works at the application layer of
the networking stack, often parsing and modifying stream
content and routing based on it, it is typically implemented
on top of the TCP layer provided by the operating system.
There are plenty of feature-rich L7 load balancers, includ-
ing Nginx [3], Envoy [6], HAProxy, etc. However, given the
overheads of the OS’s networking stack, 50% to 90% of pro-
cessing time is spent inside the kernel [8, 10].

3 SmartNIC-based Load Balancers

We consider offloading the load-balancing logic onto Smart-
NICs, given the cost and energy efficiency of the SmartNICs
compared to host processors. Our work targets both L4 and
L7 load balancers. We identify three key challenges to be
addressed in order to make effective use of SmartNICs.
Lightweight networking stack: SmartNIC cores have lim-
ited processing power, e.g., the LiquidlO ARM cores have
about 0.3x the processing power of host x86 cores (see Sec-
tion 4). To cope with this, we provide a lightweight design
that avoids the use of TCP layer processing even for L7 LBs.
Lightweight synchronization: As we streamline the pro-
cessing logic, the synchronization costs for concurrent ac-
cess to shared data structures would limit performance. We,
therefore, design highly concurrent connection table man-
agement mechanisms for both L4 and L7 load balancers.
Effective use of accelerators: Our design considers the
NIC-switch on off-path SmartNICs as a packet processing
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accelerator on which we can offload L4 and L7 load-balancing
logic. Further, both on-path and off-path SmartNICs have ac-
celerators for crypto that can be utilized for TLS processing.

3.1 Lightweight Networking Stack

As discussed above, L7 load balancers typically rely on the
OS’s kernel TCP stack to provide reliable and sequenced de-
livery channels that are responsive to congestion. As this
approach results in significant overheads, especially if we
were to deploy it on the SmartNIC cores, we propose an al-
ternate design that utilizes a lightweight packet forwarding
stack on the LB and relies on the end-hosts themselves to
achieve the desired end-to-end properties. We focus on two
desired functionalities of L7 LBs.

Routing based on the fields inside the HTTP header. The L7
LB can be configured to route an HTTP request based on the
URL prefix. L7 load balancers buffer the entire HTTP header
and then identify the backend using configured match rules.
Modify HTTP headers.L7 load balancers update HT TP header
requests and responses by adding specific header values. For
example, headers protect against XSS or CSRF attacks. An-
other common usage is to insert the client’s IP address into
the request header or a server identifier into a response cookie
to enable a consistent level of service per client.

LB-NIC utilizes a simple forwarding agent whose oper-
ations are limited to constructing a limited portion of the
stream, for routing, and buffering only the modified stream
content. For reliable delivery, the forwarding agent falls back
on end-host logic for reliable delivery of the rest of the stream
and end-to-end congestion control.

3.1.1 State maintained We maintain a table entry for ev-
ery connection that maintains a state machine for the con-
nection. The connection state is one of the following.
FRONT_ESTABLISHED: the client has created a TCP connec-
tion with the load balancer, but a backend has not deter-
mined; SYN_SENT: The backend has been identified, but the
connection hasn’t yet been fully set up; and ESTABLISHED:
the connection to the backend has been set up.

LB-NIC also maintains a shallow buffer for each connec-
tion to buffer the packets received before the backend con-
nection is established. This buffer is required to construct
the HTTP headers so that the forwarding agent can use in-
formation such as the URL to route the request.

At its core, the forwarding agent splices two TCP connec-
tions and simply relays packets after rewriting the packet
and ACK sequence numbers appropriately. The forwarding
agent has to maintain the mapping between the sequence
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number spaces of the two connections. Since the load bal-
ancer can insert new header fields that will change the se-
quence number mappings, we maintain an array of “inser-
tion points”. Each insertion point records two pieces of in-
formation: the data offset where content is inserted and the
size of the inserted data. For each packet, the load balancer
performs a linear scan through the array, computes the total
amount of inserted data before the packet, and uses this size
value as an offset to adjust the sequence and ACK numbers.

3.1.2 Connection setup Figure 2 demonstrate the work-
flow of the entire connection establishment process.

Client’s SYN received: The load balancer sends an SYNACK
packet with a sequence number chosen according to the
SYN cookie and the same TCP options as backend servers.

Client data received: LB-NIC buffers the packets received from
the client till it can determine a backend. In particular, the

load balancer will buffer client packets until it can recon-

struct and parse the header fields, e.g., the hostname and

the URL of the request. A connection table entry is created

when the first client packet with payload is received.

Backend connection setup: After the load balancer has received
sufficient client data, it can determine the backend. It then
sends a SYN to the backend and completes the three-way
handshake. The sequence and ACK numbers are recorded
in the connection table. The buffered client packets are then
forwarded to the backend server, possibly after implement-
ing any desired header modifications. If the headers were
modified, the forwarding agents holds on to the buffers un-
til it receives the ACKs from the server; or else it releases
them immediately. In the latter case, it will pass along du-
plicated ACKs to the client, which will then retransmit the
data.

Relay established: From this point, both the connection to
the client and the connection to the backend server are es-
tablished and bridged. The subsequent packets will be for-
warded directly without any buffering, as we discuss next.

3.1.3 Packet processing We discuss how the forwarding
agent relays packets by appropriately modifying the sequence
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and ACK numbers. With HTTP 1.1 [5], a persistent connec-
tion can convey multiple HT TP requests over the same TCP
connection. As a result, content insertion or modification at
different locations of a TCP flow (i.e., sequence numbers) is
required to support the modification of multiple requests.

Figure 3 shows an example of a TCP connection handled
by the load balancer. The sender sends a flow of 1500B to
the receiver, which contains two locations where we need to
perform content insertions. For simplicity, we number the
sequence number space starting from zero. The insertion lo-
cations are at 100B and 1000B when viewed from the sender
side and at 100B and 1100B when viewed from the receiver.

When the load balancer performs an insert, it records the
insertion point’s sequence numbers, as viewed by the sender
and the receiver. Further, it splits the original packet at the
point of insertion and transmits the original packet frag-
ments and the inserted content as separate packets.

We need to be careful about how the ACK numbers are
rewritten by the forwarding agent in the presence of multi-
ple insertions. There are several cases to consider. If the re-
ceiver’s ACK is far beyond the inserted location (i.e., if the
ACK number is higher than 1200+ MTU in our example), we
simply use the last offset stored in the connection table and
rewrite the ACK using this offset. If the ACK is between two
insertion points (i.e., it is in the range of (201 + MTU, 1100)
in our example), we use the offset of the previous insertion
point to calculate the ACK sent to the sender. If the ACK
number is exactly before an insertion point and if multiple
such duplicate ACKs have been received, then the load bal-
ancer retransmits the inserted content. The last case is that
the ACK number is exactly after an insertion point (e.g., 201
or 1201 in our example), in which case we suppress the ACK
as opposed to relaying it and triggering duplicate ACK pro-
cessing on the sender. ACK packets are also used as the sig-
nal to garbage collect all the buffers buffered at the load bal-
ancer. The load balancer will check the ACKs against the
stored buffers and release those that have been ACKed.

Note that the ACK number transformations ensure that
the sender can use duplicate ACKs to detect lost packets and
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retransmit them. The forwarding agent is responsible for re-
liable delivery of only the inserted content, with the sender
being responsible for the reliability of all other content.

3.2 Lightweight synchronization for shared data

We now address the issue of providing lightweight and ef-
ficient synchronization for the load balancer’s data struc-
tures, e.g., the connection table. Ideally, we would employ
a scheme such as receive-side scaling (RSS), which would
allow each NIC core having exclusive and lock-free access
to its shard and avoid sharing of data structures across NIC
cores. This is hard in the context of both L4 and L7 LBs as
the connection table state would be accessed by traffic from
both directions, and RSS would invariably map the forward
and reverse directions to different cores. Thus, we need to
develop lightweight synchronization techniques.

We focus first on the L4 load balancer. The primary opera-
tion of the L4 load balancer is to select a backend server, up-
date the IP and port attributes in a packet header, and then
send the packet to the chosen destination. The load balancer
records the IP and port information of each flow in a con-
nection table. A flow entry can be garbage-collected if the
connection is idle beyond a configured TTL (time to live).
Other than TTL, all other attributes in a flow entry are im-
mutable during a connection’s lifetime; the TTL is updated
as we receive new packets in either direction for a flow.

We present a design guided by the following principles.
First, we avoid the use of locks for the common path. Once a
backend is selected for a new flow, the majority of the pack-
ets in that flow only perform lookups, and we need to ensure
that this is lock-free. Second, we reduce the scope of critical
sections. Instead of locking multiple entries or even the en-
tire table, LB-NIC utilizes fine-granularity locking and uses
critical sections sparingly even during inserts. Third, we use
domain-specific knowledge to pursue safe but approximate
updates for connection table states such as TTL.
Concurrent connection table design. We develop a con-
current connection table design based on the cuckoo hash
table [11]. A cuckoo hash table allows for hash conflicts and
bounds the number of entries that have to be probed during
lookup. In a cuckoo hash table, if a key exists, it can only
be stored in one of two buckets, with one primary and the
other secondary. If a key cannot be accommodated in its
primary or secondary bucket, one of the current residents
would have to be moved out. Each bucket has a configurable
number of slots for collision resolution, with the number
of slots providing a tradeoff between lookup cost and fre-
quency of data movement in the presence of conflicts.

Lookup: We do not obtain a lock during the lookup oper-
ation, which means that there is a possibility that the un-
derlying record might be concurrently moved. LB-NIC per-
forms the following sequence of operations to avoid reading
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inconsistent data. It first locates a key, reads the value associ-
ated with the record (e.g., the destination IP/port), and then
checks the record’s key again to confirm that a concurrent
move operation hasn’t occurred. If the key has changed in
the meantime, LB-NIC repeats the entire process of locating
the record and reading its value. Upon a successful lookup,
the TTL is updated to a value A seconds into the future using
a blind write, followed by a further check that a concurrent
move hasn’t occurred. LB-NIC could spuriously update the
TTL of a different record, thereby delaying its garbage col-
lection, but it ensures that a received packet would always
bump up the corresponding flow’s TTL.

Insert: To insert a flow entry, we need a free slot in the pri-
mary or secondary buckets. If all of the slots are occupied
in these two buckets, one of the existing records must be
moved to its primary/secondary bucket, possibly triggering
additional movements. We use a breadth-first search to iden-
tify a sequence of record moves that can help accommodate
the new record. The search phase is performed without ac-
quiring any locks on the examined records. Once a sequence
of moves has been determined, LB-NIC transitions to the
move phase, which will sequentially move the elements in
reverse order to eventually generate an empty slot for the
record that is to be inserted. During each move in this se-
quence, LB-NIC locks the destination slots, checks that the
destination slot is still empty, verifies the source unchanged
during the move and then commits. If the destination slot
isn’t empty, LB-NIC reenters the search phase to identify
a new plan. Further, while performing a move, the record
fields are written in a specific order: the record’s key field is
written and flushed to the memory system (using a memory
fence operation) before the rest of the record data is writ-
ten. This allows a concurrent lookup performed without a
lock to infer that an unmodified key field also means that
the record values correspond to the desired key.

L7 extensions: The L7 load balancer poses several addi-
tional challenges due to its complex logic. First, the data
in a connection table entry contains a state machine, and
the state transitions require synchronization. We observe
that some state transitions are performed before the back-
end connection is fully established, and we execute them
without needing locks. Second, since there are more forms
of concurrent state access, a connection table entry now
maintains pointers to the flow data structures instead of
inlining them like in the L4 load balancer. Finally, the in-
sertion point list has a producer-consumer relationship be-
tween the sender and the receiver, so we use lock-free mech-
anisms for appending to and reading from this list.
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3.3 Hardware acceleration

Packet rewrite engines: On off-path SmartNICs, the NIC-
switch or the flow engine can play a dominant role in packet
processing. Abstractly, it works similar to a P4 capable switch,
though there are differences between hardware vendors. Mul-
tiple match-action tables can exist in the hardware. Match
and rewrite rules for various packet fields of a packet can be
inserted dynamically.

For L4 LBs, our design only transfers the initial packets
to a general core for figuring out the destination. Once the
backend is determined, LB-NIC inserts flow engine rules to
match the flow’s 5-tuple and rewrites the destination IP/port.
Future packets can be directly processed by the fast-path
flow engine and transmitted back into the network. To evict
stale flow entries, we have a background thread that will
periodically determine the timed-out flow entries and then
remove the corresponding rules. For L7 LBs, a flow engine
with the ability to do simple arithmetic calculations to off-
set the sequence and ACK numbers is required. Some of the
SmartNICs do have this functionality, but the software sup-
port to expose this capability is currently unavailable.
Crypto accelerators: SmartNICs provide crypto accelera-
tors that can be used to optimize TLS. Unlike prior work
that offloads just the TLS handshake onto SmartNICs [9], we
take a different approach that advocates a “flipped model”;
asymmetric crypto for the handshake is onloaded onto the
host, and symmetric crypto is accelerated using SmartNIC’s
crypto engines. This is motivated by the performance of asym-
metric and symmetric operations on the x86 host and the
SmartNIC. Since x86 has beefy powerful cores, it can handle
a higher number of TLS handshakes than lio3 cores (almost
6.3x as shown in Figure 4a). On the other hand, although
x86 supports efficient AES-NI sets for speeding up symmet-
ric crypto, using the SmartNIC’s accelerators for symmetric
operations can still achieve significant benefits, especially
for large packets (see Figure 4b). The lio3 crypto device is
about 2x faster than x86 AES-NI for 1024B packets and about
3.3x faster for 8192B jumbo packets. We therefore advocate
utilizing SmartNIC’s accelerators for symmetric crypto and
onloading asymmetric operations onto the host.
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4 Evaluation

Our implementations are in progress, and we report prelim-
inary results on only some aspects of our system. In our ex-
perimental setup, we use two servers. One server contains a
2x50GbE Marvell LiquidIO3 with 24 2.2GHz ARM cores and
16GB DDR4 DRAM. Both servers have two Intel Xeon CPUs
(16 cores, 2.3GHz) and 96GB DDR4 DRAM, with a 100GbE
Mellanox CX5 NIC. The other server acts as the client for
evaluation. Both servers connect to the same 100G switch.
Hash table performance with a microbenchmark: We
first evaluate the LB-NIC hash table performance by com-
paring it against the DPDK hash table implementation. To
eliminate the performance impact from other factors such
as NIC bandwidth and overhead, we pre-generate the access
requests inside the test server and then show how fast the
hash table performance can be. In Figure 5, LB-NIC can lin-
early increase the performance until the maximum through-
put of 20 million packets per second with just 8 cores for
the lookup operation. However, with the same number of 8
cores, the DPDK library only reaches half the performance.
For inserts with 50% capacity occupation, LB-NIC can lin-
early increase up to 10 million packets per second, signifi-
cantly better than the DPDK library, thanks to fine-grained
locks and minimal critical sessions.

Hash table performance with real traffic: We next mea-
sure the performance of the L4 load balancer with real traf-
fic. As Figure 6 shows, LB-NIC can reach the maximum NIC
bandwidth of 50Gbits/s for 1024B packets with a single core.
Even 64B packets can quickly scale up to the maximum speed
with just 7 cores. However, the implementation based on the
DPDK hash table scales badly. For small packet sizes, adding
more cores sometimes even degrades performance. Even for
1024B packets, it takes 3 cores to reach the link bandwidth.
Performance gap with lio3 and x86 architectures: Fi-
nally, we compare the LB-NIC performance on two differ-
ent architectures - Marvell’s lio3 and x86. Figure 7 shows the
throughput ratio of lio3 vs. x86, with the x86 performance as
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Figure 7: Performance ratio for LB-NIC: lio3 versus x86

a baseline. Note that the lio3 cores are wimpy. We character-
ize using the CoreMark benchmark score, which shows that
the performance of lio3 cores is about 0.3x of the x86 cores
(red dashed line). For the load balancing work, LB-NIC on
lio3 gets much higher performance than this generic perfor-
mance ratio. In fact, lio3 sometimes outperforms x86, which
is significant since lio3 is cheaper and more energy-efficient

than a blade server.

5 Conclusion

We examine the possibility of offloading load balancers onto
SmartNICs. To leverage SmartNICs effectively, we propose
a design that includes a light-weight networking stack, fast
concurrent data structures, productive use of packet rewrite
engines on some SmartNICs, and a flipped model for crypto
traffic hardware acceleration. Our preliminary evaluations
show that SmartNIC-based offload of load balancers is a promis-

ing avenue to explore.
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