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ABSTRACT
There has been a recent wave of interest in intermediate trust

models for differential privacy that eliminate the need for a fully

trusted central data collector, but overcome the limitations of local

differential privacy. This interest has led to the introduction of

the shuffle model (Cheu et al., EUROCRYPT 2019; Erlingsson et

al., SODA 2019) and revisiting the pan-private model (Dwork et

al., ITCS 2010). The message of this line of work is that, for a

variety of low-dimensional problems—such as counts, means, and

histograms—these intermediate models offer nearly as much power

as central differential privacy. However, there has been considerably

less success using these models for high-dimensional learning and

estimation problems.

In this work we prove the first non-trivial lower bounds for high-

dimensional learning and estimation in both the pan-private model

and the general multi-message shuffle model. Our lower bounds

apply to a variety of problems—for example, we show that, private

agnostic learning of parity functions over 𝑑 bits requires Ω(2𝑑/2)
samples in these models, and privately selecting the most common

attribute from a set of 𝑑 choices requires Ω(𝑑1/2) samples, both of

which are exponential separations from the central model.

CCS CONCEPTS
• Theory of computation→ Distributed algorithms; • Math-
ematics of computing→ Information theory; • Security and
privacy→ Privacy-preserving protocols.
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1 INTRODUCTION
The most widely accepted way to ensure individual privacy in the

context of statistics and machine learning is differential privacy [23],
which provides a strong guarantee that no individual user’s data

has a strong influence on the output of the computation that are

visible to the attacker. Differentially private algorithms, however,

are designed for a variety of different trust models that determine

what output is visible. The strongest, and most commonly studied

trust model is the central model, in which a single party is entrusted

to collect raw data from the users, runs a differentially private com-

putation, and only the final output of this computation is visible. On

the other extreme, the weakest trust model is the local model [40],
where we don’t trust anyone to safeguard raw data, so each user

applies differential privacy locally to their own data to compute

a response, and each user’s response is visible. While the central

model allows for many powerful algorithms, the local model is

much less powerful ([8, 14, 19, 40] et seq.) and significantly limits

the accuracy of computations.

In principle there is no tradeoff between trust and power, as

the user’s can use cryptographic secure multiparty computation

to implement any algorithm designed for the central model with-

out any trusted party. However, general-purpose secure multiparty

computation has several drawbacks, such as large computation and

communication costs, multiple rounds of interaction, and requir-

ing all users to remain live throughout the computation. Although

there are more practical protocols implementing certain differen-

tially private algorithms ([22] et seq.) so far these are restricted to

relatively simple computations and are not practical for large-scale

applications.

Thus, a recent focus has been on intermediate trust models that
offer some of the best features of both the central model and the

local model. Two models that have received significant attention

are:

• The shuffle model [16, 29].1 In this model, users introduce

randomness into their own data, as in the local model. How-

ever the user’s responses are then passed through a secure
shuffler so the responses are visible but not identified with in-
dividual users. We consider the most general multi-message
shuffle model where each user can send multiple responses

that are shuffled independently. An equivalent model would

use secure aggregation to ensure that only a histogram of

1
More precisely, we consider a version of the shufflemodel with an additional robustness
property [3]. Although the property is not without loss of generality, and has not

always been formalized in the literature, it is satisfied by all known natural shuffle

protocols, and was one of the explicit motivations of studying the shuffle model [16].

For brevity we use only the term “shuffle model” in the introduction, and defer more

discussion of this issue to Section 2.
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the responses is visible. Secure shuffling and secure aggrega-

tion are significantly easier to achieve than general secure

computation, and Google’s prochlo system [9] is a scalable

realization of this model.

• The pan-private model [24]. In this model, the users’ data is

processed in an online fashion by a central party. We trust

this central party to process the data but not to store it in

perpetuity, so we assume that at any one point in the stream,

the party’s internal state may become visible. This model

captures, for example, a data collector who is well inten-

tioned, and can be trusted to see raw data during process,

but whose storage may be subject to breaches [1].

We visualize the models in Figure 1. At first glance, these two

models seem unrelated, however a recent result of Balcer, Cheu,

Joseph, and Mao [3] shows that, for a large class of problems that

includes all the problems we study, any protocol in the shuffle

model can be simulated in the pan-private model with only a small

reduction in accuracy. So for purposes of this work, we can think of

these models as being ordered from least powerful to most powerful

as local ⪯ shuffle ⪯ pan-private ⪯ central.
Both the shuffle model ([16, 29] et seq.) and the pan-private

model [1, 24, 44] provably allow much greater accuracy than the lo-

cal model, while also requiring weaker trust than the central model.

See Section 1.3 for a more specific overview of recent progress.

However, these positive results are mostly limited to relatively

simple functionalities, such as computing means and histograms

over the user’s data. We note that these are all problems that can

be solved efficiently in the local model with reasonable, although

larger, sample complexity. However, for problems such as learning

parities and selecting the most common attribute, where the local

model is most severely limited [19, 28, 40, 47], there is no evidence

that either the pan-private or shuffle model can overcome these

limitations. Our main contribution is to show that these limitations

are inherent:

For many high-dimensional learning and estima-
tion problems, the shuffle and pan-private models
incur an exponential cost in sample complexity
relative to the central model.

For those familiar with differential privacy, our results can be in-

terpreted as the statement there is no analogue of the exponential
mechanism in the pan-private or shuffle models, as we prove lower
bounds for problems that can be solved in the central model by

applying the exponential mechanism.

Our specific lower bounds follow from a new general lower

bound argument. We note that the two most common lower bounds

techniques for the local model cannot prove lower bounds for the

pan-private and shuffle models, so our lower bounds cannot be

proven by any straightforward extension of existing lower bound

techniques. Specifically, there is no non-trivial upper bound on the

mutual information between the algorithm’s inputs and outputs [2],

so information-theoretic arguments [19, 42] do not apply. Moreover,

these models can solve problems that would requite infinitely many

statistical queries to solve, so the simulation of the local model in

the statistical query model [40] cannot be extended to these more

general models.

1.1 Results
Ourmain results are lower bounds for many closely related learning

and estimation problems in both the pan-privacy and shufflemodels

of differential privacy. We note that throughout this work we adopt

the standard model for studying privacy for distributional problems

where we define the accuracy goal with respect to input satisfying

certain distributional assumptions, but define privacy for a worst-

case dataset. We begin by highlighting two important cases of our

results.

Learning Parities. In this canonical learning problem, we are

given a dataset consisting of 𝑛 labeled examples {(𝑥𝑖 , 𝑦𝑖 )} sampled

from some distribution P over the domain {±1}𝑑 × {±1}. The goal
is to output a parity function ℎ𝑆 (𝑥) =

∏
𝑗 ∈𝑆 𝑥 𝑗 that predicts the

labels nearly as well as any other parity function. Namely,

P
(𝑥,𝑦)∼P

(ℎ𝑆 (𝑥) = 𝑦) ≥ max

𝑇
P

(𝑥,𝑦)∼P
(ℎ𝑇 (𝑥) = 𝑦) − 𝛼.

In the central model this problem can be solved privately to any

constant level of accuracy with just 𝑂 (𝑑) samples [40], whereas in

the local model any algorithm solving this problem requires Ω(2𝑑 )
samples [28, 40].

2
We prove an exponential separation between the

central model and the pan-privacy and shuffle models, showing

that, for learning parities, these models are much more similar to

the local model.

Theorem 1.1. (Informal) Any differentially private algorithm that
leans parity functions in the pan-privacy model or the shuffle privacy
model requires Ω(2𝑑/2) samples in the worst-case.

We also consider learning sparse parities, where our goal is to
output some 𝑘-sparse parity function ℎ𝑆 , |𝑆 | ≤ 𝑘 that competes

with the best parity function on 𝑘 variables. That is,

P
(𝑥,𝑦)∼P

(ℎ𝑆 (𝑥) = 𝑦) ≥ max

𝑇 : |𝑇 | ≤𝑘
P

(𝑥,𝑦)∼P
(ℎ𝑇 (𝑥) = 𝑦) − 𝛼.

We show that learning𝑘-sparse parities requires Ω(
√︃( 𝑑
≤𝑘

)
) samples

where

( 𝑑
≤𝑘

)
denotes the number of 𝑘-sparse parities on 𝑑 bits.

Selection. One of the most celebrated tools in central-model dif-

ferential privacy is the exponential mechanism of McSherry and

Talwar [43], which is a very general and very accurate method for

optimizing a Lipschitz loss function over a discrete set of choices.

The canonical problem solved by the exponential mechanism is the

following selection problem: given a dataset consisting of 𝑛 samples

{𝑥𝑖 } from some distribution P over the domain {0, 1}𝑑 , select a
coordinate 𝑗 such that the expected value of the 𝑗-th coordinate is

as large as possible. Namely,

E
𝑥∼P

(
𝑥 𝑗

)
≥ max

𝑘
E

𝑥∼P
(𝑥𝑘 ) − 𝛼.

In the central model, the exponential mechanism solves this prob-

lem to any constant level of accuracy with just 𝑂 (log𝑑) samples,

whereas in the local model any algorithm solving this problem re-

quires Ω(𝑑 log𝑑) samples [19, 47]. Again, we show an exponential

2
For specificity, we state lower bounds for the non-interactive local model of differential

privacy, although, for every problem we consider, slightly weaker bounds are known

to hold for interactive variants of the local model as well.
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Figure 1: (Left) Themulti-message shufflemodel. The attacker’s view consists of the entire set ofmessages, randomly shuffled.
(Right) The pan-privacy model. The attacker’s view consists of the output and the internal state at any single step, which is 𝑠3
in this example.

separation between the central model and the pan-privacy and shuf-

flemodels, demonstrating that there is no general-purpose analogue

of the exponential mechanism in these intermediate models.

Theorem 1.2. (Informal) Any differentially private algorithm that
solves selection to constant accuracy in the pan-privacy model or the
shuffle privacy model requires Ω(

√
𝑑) samples in the worst-case.

Variants of Differential Privacy. We emphasize that all of our

lower bounds hold for the most general variant of differential pri-

vacy, (𝜀, 𝛿)-differential privacy for 𝛿 ≤ 1/𝑛1.1, and obtain lower

bounds for this variant is one of the main technical challenges

addressed by our work. Thus, our results imply essentially the

same lower bounds for pure differential privacy, concentrated dif-

ferential privacy [12, 25], truncated concentrated differential pri-

vacy [10], Rényi differential privacy [45], and Gaussian differential

privacy [18], none of which were known prior to our work.

More Applications. In our work we also prove tight lower bounds
for several closely related, natural problems that have been studied

in the literature on differential privacy:

• Estimating 𝑘-Sparse Parities for 1 ≤ 𝑘 ≤ 𝑑 . Here we are given

samples {𝑥𝑖 } from a distribution P ∈ {±1}𝑑 , and the goal is

to output a set of estimates {𝑎𝑇 }𝑇 ⊆[𝑑 ]
|𝑇 |≤𝑘

such that������𝑎𝑇 − E𝑥∼P©­«
∏
𝑗 ∈𝑇

𝑥 𝑗
ª®¬
������ ≤ 𝛼

for every 𝑇 .

• 𝑑-wise Simple Hypothesis Testing. Here we are given samples

{𝑥𝑖 } from a distribution P ∈ Q where Q = {Q1, . . . ,Q𝑑 } is a
known set of 𝑑 hypotheses satisfying dTV (Q𝑖 ,Q𝑗 ) ≥ 𝛼 , and

the goal is to determine which of these distributions is P.
• 1-Sparse Mean Estimation. Here we are given samples {𝑥𝑖 }
from a distribution P ∈ {±1}𝑑 with mean 𝜇, with the promise

that ∥𝜇∥0 = 1, and the goal is to output 𝜇 such that ∥𝜇 −
𝜇∥∞ ≤ 𝛼 .

We summarize our lower bounds and compare to the local and

central models in Table 1; due to page limits, we will only present

the analysis for simple hypothesis testing and parity learning. Our

analysis of the other problems (found in the full version of this

work) are similar to the analysis found here. We also stress that,

while the focus of this work is on lower bounds and not algorithms,

all of our lower bounds are easily seen to be tight up to logarithmic

factors with respect to trivial statistical query algorithms [41] that

can be implemented in both the pan-private and shuffle models of

privacy.

1.2 Techniques
Our results are all a consequence of a very general lower bound

for algorithms in these models. For simplicity, we will restrict this

discussion to pan-private algorithms, as lower bounds for shuffle

privacy will then follow from a general transformation from the

shuffle model to the pan-privacy model due to Balcer, Cheu, Joseph,

and Mao [3]. Also, in this discussion we will ignore the parameter

𝛿 for brevity, but, crucially, our results apply for moderately small

𝛿 > 0.

Let {P𝑣}𝑣∈V be some family of distributions over the domain

X, let 𝑉 be uniform overV , and let

U = E
𝑣∼𝑉
(P𝑣)

be the uniform mixture of these distributions. We will give lower

bounds that show no (𝜀, 𝛿)-differentially private algorithm in the

pan-private or shuffle models can distinguish 𝑛 i.i.d. samples from

U𝑛
from data drawn from the mixture P𝑛

𝑉
, where we chose 𝑣 ∼ 𝑉

uniformly and then sample from P𝑛𝑣 . We will, of course, choose

the family {P𝑣} so that any algorithm solving one of the problems

above, must distinguish U𝑛
from P𝑛

𝑉
, which is how we will obtain

sample-complexity lower bounds.
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Table 1: Summary of our sample-complexity lower bounds for the pan-privacy and shuffle privacy models, in comparison to
the local and central models. For brevity, all lower bounds are stated for accuracy 𝛼 = 1/100 and (1, 𝑛−2)-differential privacy.
See the formal theorems for more general statements. All our lower bounds are tight up to polylogarithmic factors. We use
the notation

( 𝑑
≤𝑘

)
=

∑𝑘
𝑖=1

(𝑑
𝑖

)
.

Problem Parameters Local Privacy Pan/Shuffle Privacy
(This Work) Central Privacy

Learning

Parities

Dimension 𝑑

Sparsity 𝑘

Ω(
( 𝑑
≤𝑘

)
log

( 𝑑
≤𝑘

)
)

[28]

Ω

(√︃( 𝑑
≤𝑘

) )
Thms 5.6/5.7

𝑂 (log
( 𝑑
≤𝑘

)
)

[40]

Selection Dimension 𝑑
Ω(𝑑 log𝑑)

[19]

Ω(
√
𝑑)

See full ver.

𝑂 (log𝑑)
[43]

Estimating

Parities

Dimension 𝑑

Sparsity 𝑘

Ω(
( 𝑑
≤𝑘

)
log

( 𝑑
≤𝑘

)
)

[28]

Ω

(√︃( 𝑑
≤𝑘

) )
See full ver.

𝑂̃ (
√
𝑑 log

( 𝑑
≤𝑘

)
)

[36]

𝑑-Wise Simple

Hypothesis Testing

𝑑 Hypotheses

Ω(𝑑 log𝑑)
[35]

Ω(
√
𝑑)

Thms 4.2/4.4

𝑂 (log𝑑)
[11]

1-Sparse

Mean Estimation

Dimension 𝑑
Ω(𝑑 log𝑑)

[19]

Ω(
√
𝑑)

See full ver.

𝑂 (log𝑑)
[Folklore]

For background, we recap the way to use this setup to prove

lower bounds in the (non-interactive) local model of differential

privacy. Here, one chooses the data from the mixture P𝑛
𝑉
, and a

lemma of Duchi, Jordan, and Wainwright [19] gives a bound on the

mutual information between the output of the protocol Π and the

identity of the random mixture component 𝑉 :

𝐼 (Π(P𝑛𝑉 );𝑉 ) = 𝑂 (𝑛 · 𝜀2 · ∥{P𝑣}∥2∞→2
) (1)

where

∥{P𝑣}∥2∞→2
= sup

𝑓 :X→[±1]
E

𝑣∼𝑉

((
E

𝑥∼P𝑣
(𝑓 (𝑥)) − E

𝑥∼U
(𝑓 (𝑥))

)
2

)
is the crucial quantity determining how hard these distributions

are to distinguish subject to local differential privacy. For intuition,

note that this quantity satisfies the relationship

∥{P𝑣}∥2∞→2
≤ E

𝑣∼𝑉

(
sup

𝑓 :X→[±1]

(
E

𝑥∼P𝑣
(𝑓 (𝑥)) − E

𝑥∼U
(𝑓 (𝑥))

)
2

)
= 4 · E

𝑣∼𝑉

(
dTV (P𝑣,U)2

)
,

but it can be much smaller than 4 · E𝑣∼𝑉 (dTV (P𝑣,U)2), which is

crucial for proving tight lower bounds.

Given this lemma, and a construction of a hard distribution

family such that ∥{P𝑣}∥2∞→2
is small, it is not hard to deduce a

lower bound on the number of samples 𝑛 required to identify the

specific mixture component𝑉 . It is also not too difficult to construct

a family of hard distributions for all of our problems of interest (see

Lemma 3.10 ). We note that all of the lower bounds in the “local

model” column of Table 1 are proven via this approach.

With this state-of-affairs, it is tempting to try to argue that a

mutual-information bound analogous to (1) holds for pan-private or

shufflemodel algorithms. However, Balcer and Cheu [2] constructed

a family of distributions and a pan-private algorithm such that the

mutual information 𝐼 (Π;𝑉 ) can be unbounded, showing that the

purely information-theoretic approach used to prove lower bounds

for the local model cannot work for pan-privacy.
3

Nonetheless, we prove the following indistinguishability lemma

for pan-private algorithms:

dTV (Π(U𝑛),Π(P𝑛𝑉 )) ≤ 𝑂 (𝑛 · 𝜀 · ∥{P𝑣}∥∞→2) (2)

Although this bound is quantitatively somewhatweaker than (1)—in

ways that are actually crucial to avoid proving false statements—it

is nonetheless sufficient to give tight lower bounds for all of the

problems we consider. The value of this lemma is that, even though

the information-theoretic bounds that are used in the local model

are false for the pan-private model, the exact same constructions

of hard distributions can be used to obtain lower bounds for pan-

privacy!

The proof of this lemma uses a hybrid argument, where we

transition between data sampled from U𝑛
and data sampled from

P𝑛
𝑉
. Namely, we fix a value of 𝑖 between 0 and 𝑛 and consider the

case where the first 𝑖 inputs are sampled from U𝑖
and the remaining

𝑛−𝑖 inputs are sampled from P𝑛−𝑖 . We then bound the total variation

distance between the 𝑖-th case and the (𝑖 + 1)-st case and apply the

triangle inequality. In each step, we carefully argue that the total

variation distance between the two cases follows from a careful

application of (1) to the algorithm that computes the internal state

after viewing the first 𝑖 inputs, which is why we ultimately get a

bound of a similar form.

3
The algorithm showing pan-private algorithms can have unbounded mutual informa-

tion crucially uses the full generality of (𝜀, 𝛿)-differential privacy for 𝛿 > 0, however,

even for stricter variants of differential privacy where the mutual information is

bounded, we don’t know how to obtain a mutual-information bound as strong as (1)

for any of these variants.
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1.3 Related Work

Comparison to the Concurrent Works of [15] and [7]. A con-

current and independent work of Chen, Ghazi, Kumar, and Manu-

rangsi [15] proves lower bounds for selection and learning parity

in the multi-message shuffle model. Their lower bounds depend on

the number of messages, and are only non-trivial when the number

of messages is relatively small, whereas our lower bounds do not

require any bound on the number of messages. For example, their

lower bound for selection is Ω(𝑑/𝑚), where𝑚 is the number of

messages, while our lower bound for selection is Ω(
√
𝑑) for any

number of messages, and our lower bound is matched by a trivial

algorithm that sends 𝑑 messages. Compared to ours, their lower

bounds do not require the shuffle protocol to be robust, although

robustness was a motivating feature of the shuffle model that is

discussed in the early work on the subject [16, 29]. Their work also

does not consider the pan-privacy model, and their arguments do

not seem to apply to that model.

Another concurrent and independent work of Beimel, Haitner,

Nissim, and Stemmer [7] proves lower bounds for multi-message

shuffle protocols that use a small number of messages. They show

that if an𝑚-message shuffle protocol is private when run with for 𝑛

users, then each user’s messages reveals at most ≈ 𝑛𝑚 bits of infor-

mation about their input, which allows them to prove non-trivial

lower bounds when 𝑚 is quite small. Beimel et al. also describe

shuffle protocols that use multiple rounds of communication; we

do not consider interactivity in this work.

The Shuffle Model. The shuffle model was introduced concur-

rently in works by Cheu et al. [16] and Erlingsson et al. [29].

These works were both inspired by Google’s prochlo system [9],

which implements a more general algorithmic paradigm called

encode, shuffle, and analyze. Much of the work in this model has

focused on constructing optimal algorithms for problems like bi-

nary sums [16, 30], real-valued sums [4, 5, 32–34], histograms and

heavy-hitters [2, 16, 31], and uniformity testing [3]. Another com-

plementary set of works have given general amplification theorems
showing that if each user applies a differentially private random-

izer to their data, then the shuffle protocol using the randomizer

satisfies differential privacy with stronger parameters [4, 29].

Almost all prior lower bounds for the shuffle model apply only

to a special case of the model where each user sends only a single

response, the so-called single-message shuffle model. Cheu et al. [16]

showed that if a protocol is private in this restricted model, then

each user’s response satisfies local differential privacy, for which we

already have strong lower bounds. Their approach was refined by

Ghazi et al. [31], who obtained stronger bounds for single-message

protocols. Balle et al. [4] proved a lower bound for computing real-

valued sums in the single-message model. In contrast, our lower

bounds hold for the general multi-message shuffle model, where
each user may send an arbitrary number of messages that are

shuffled independently. Note that in this model, the user’s individual

responses need not satisfy any local differential privacy [2]. An

early lower bound for the multi-message shuffle model is due to

Ghazi et al. [30], and applies to computing binary sums subject to

pure differential privacy and a strong communication constraint.

We emphasize that our lower bounds do not impose any restriction

on the number of messages or the amount of communication.

The Pan-Private Model. The pan-privacy model was introduced

by Dwork et al. [24] as a model of differential privacy for streaming

algorithms, and they constructed pan-private algorithms for classic

streaming problems like distinct elements. Their algorithm was

subsequently improved by Mir et al. [44], who also gave the first

lower bounds for this model. We note that their technique gives

lower bounds for worst-case inputs, whereas our technique gives

lower bounds for distributional problems.

More recently, Amin, Joseph, and Mao [1] revisited the model

from the perspective of finding an intermediate trust model be-

tween local and central privacy, which is the perspective we adopt

in this work. They also gave an algorithm for uniformity testing and
a matching lower bound for algorithms satisfying pure differential

privacy, which is (𝜀, 𝛿)-privacy with 𝛿 = 0. Theirs is the first lower

bound in this model for any distributional problem. As we discussed

above, their information-theoretic arguments are inherently lim-

ited to pure differential privacy, whereas ours apply to differential

privacy in general.

The initial work on pan-privacy considered amore general model

where the attacker can view the internal state at two or more

arbitrary steps, however [1] showed that this model is equivalent

to the local model with sequential interaction. Our lower bounds

apply to the weakest model, where the attacker can view the state

at just a single time step.

Lower Bounds Techniques in the Local and Central Model.
We briefly summarize the techniques for proving lower bounds

in the more well studied models of differential privacy. The first

lower bounds for local differential privacy were proven by Ka-

siviswanathan et al. [40], who proved that the local model is equiv-

alent, up to polynomial factors, to the statistical queries model [41].

Balcer and Cheu [2] showed that the shuffle and pan-private model

do not admit such a characterization. Recently Edmonds, Nikolov,

and Ullman [28] gave a nearly tight characterization of the sam-

ple complexity of query release and agnostic learning in the non-

interactive local model. Subsequent work led to stronger lower

bounds for specific problems in the local model [6, 8, 14, 19–21, 37,

38], including interactive variants of the local model. This line of

work primarily uses information-theoretic arguments that were

first introduced by McGregor et al. [42] in the context of two-party

differential privacy. However, as we discussed earlier, these ap-

proaches cannot give strong lower bounds for the pan-private and

shuffle model, and the main novelty in our work is finding alterna-

tive lower-bound arguments for these intermediate models that do

not require strong information bounds.

There are two main approaches to proving lower bounds for

high-dimensional problems in the central model of differential pri-

vacy. The first are reconstruction attacks, introduced by Dinur and

Nissim ([17] et seq.). These attacks only apply when computing

some statistics to very high accuracy, and thus cannot give non-

trivial lower bounds for distributional problems where the accuracy

can never be smaller than the sampling error. The other main ap-

proach is based on tracing attacks ([13, 27, 46] et seq.). Although

tracing attacks give tight lower bounds for the central model, but

the lower bounds we prove for more restricted models are exponen-

tially larger, and do not seem to be provable using tracing attacks.

We refer the reader to [26] for a survey of these lower bounds.
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2 PRELIMINARIES
2.1 Notational Conventions
We use boldface letters to denote probability distributions, capital

letters in plain math text denote random variables, and calligraphic

letters denote sets. We reserve𝑀 for randomized algorithms and Π
for distributed protocols. Throughout this work, we use the notation

[𝑘] := {1, 2, . . . , 𝑘}.

2.2 Differential Privacy
We define a dataset ®𝑥 ∈ X𝑛 to be an ordered tuple of 𝑛 rows where

each row is drawn from a data universe X and corresponds to the

data of one user. Two datasets ®𝑥, ®𝑥 ′ ∈ X𝑛 are neighbors, denoted as
®𝑥 ∼ ®𝑥 ′, if they differ in at most one row.

Definition 2.1 (Differential Privacy [23]). An algorithm𝑀 : X𝑛 →
R satisfies (𝜀, 𝛿)-differential privacy if, for every pair of neighboring

datasets ®𝑥 and ®𝑥 ′ and every event C ⊆ R,
P
(
𝑀 ( ®𝑥) ∈ C

)
≤ 𝑒𝜀 · P

(
𝑀 ( ®𝑥 ′) ∈ C

)
+ 𝛿.

The central model of differential privacy refers to the case where

the algorithm 𝑀 is allowed to depend arbitrarily on ®𝑥 with no

further restrictions.

2.3 The Pan-Private Model
A pan-private algorithm observes the data as a stream. At each step,

the algorithm receives a datapoint that it uses to update its internal

state, and this process repeats until the stream is exhausted and

a final output is computed. We say that two streams ®𝑥 and ®𝑥 ′ are
neighbors if they differ in at most one element. Pan-privacy models

an attacker who observes the final output of the algorithm, as well

as the internal state at any one step in the stream, and requires

that the joint distribution of these two pieces of information is

differentially private.

Definition 2.2 (Online Algorithm). An online algorithm 𝑀 is de-

fined by a sequence of internal algorithms𝑀1, 𝑀2, . . . and an output

algorithm 𝑀O . On input ®𝑥 , the first function 𝑀1 : X → I maps

𝑥1 to a state 𝑠1 and the remaining functions 𝑀𝑖 map 𝑥𝑖 and the

previous state 𝑠𝑖−1 to a new state 𝑠𝑖 . At the end of the stream, 𝑀

publishes a final output by executing 𝑀O : I → O on its final

internal state.

Definition 2.3 (Pan-privacy [1, 24]). Given an online algorithm𝑀 ,

let𝑀I ( ®𝑥) denote its internal state after processing stream ®𝑥 , and
let ®𝑥≤𝑡 be the first 𝑡 elements of ®𝑥 . We say𝑀 is (𝜀, 𝛿)-pan-private
if, for every pair of neighboring streams ®𝑥 and ®𝑥 ′, every time 𝑡 and

every set of internal state, output state pairs 𝑇 ⊆ I × O,
P
𝑀

( (
𝑀I ( ®𝑥≤𝑡 ), 𝑀O (𝑀I ( ®𝑥))

)
∈ 𝑇

)
≤ 𝑒𝜀 · P

𝑀

( (
𝑀I ( ®𝑥 ′≤𝑡 ), 𝑀O (𝑀I ( ®𝑥 ′))

)
∈ 𝑇

)
+ 𝛿. (3)

See Figure 1 for a diagram.

Note that any pan-private algorithm can trivially be implemented

in the central model. Our definition of pan-privacy is the specific

variant given by Amin et al. [1]. This version guarantees record-

level privacy (uncertainty about the presence of any single stream

element) rather than user-level privacy (uncertainty about the pres-

ence of any one data universe element). We use this variant because

for the problems we consider it is natural to model each user as

contributing a single element of the stream.

2.4 The Shuffle Model
In the shuffle model, each user individually randomizes their own

data to produce a series of messages. Unlike the local model, where

these messages would be identified with the user who produced

them, we allow the users to send their messages to a secure shuffler
that collects all the messages of all the users and randomly permutes

them.
4
The shuffle model captures an attacker who observes the

messages after they are shuffled, and we require this shuffled set of

messages to satisfy differential privacy. An equivalent model would

allow the attacker observes only a histogram of the messages.

Definition 2.4 (Shuffle Model [16]). A protocol Π in the shuffle
model consists of three randomized algorithms:

• A randomizer Π𝑅 : X → Y∗ mapping data to (possibly

variable-length) vectors. The length of the vector is the num-

ber of messages sent. If, on all inputs, the probability of

sending a single message is 1, then the protocol is said to be

single-message. Otherwise, the protocol is multi-message.
• A shuffler Π𝑆 : Y∗ → Y∗ that applies a uniformly random

permutation to all messages.

• An analyzer Π𝐴 : Y∗ → O that computes on a permutation

of messages.

As the shuffler is the same in every protocol, we identify each

shuffle protocol by Π = (Π𝑅,Π𝐴). We define the honest execution

on input ®𝑥 ∈ X𝑛 as

Π( ®𝑥) := Π𝐴 (Π𝑆 (Π𝑅 (𝑥1), . . . ,Π𝑅 (𝑥𝑛))).
We denote the output of the shuffler as

(Π𝑆 ◦ Π𝑛
𝑅) ( ®𝑥) := Π𝑆 (Π𝑅 (𝑥1), . . . ,Π𝑅 (𝑥𝑛)) .

We assume that users and the analyzer have access to 𝑛, as well as

an arbitrary amount of public randomness.

We remark that we focus on one-round or non-interactive shuffle

protocols: each user generates their messages in one time step,

the shuffler permutes the messages for the analyzer in the next

time step, and no other communication occurs between parties.

Concurrent work by Beimel et al. [7] define a form of multi-round

shuffle protocol but we do not consider it here.

It remains to define differential privacy in this model. We note

that the output of the shuffler only follows the distribution Π( ®𝑥) if
all users are following the protocol as specified. This assumption is

undesirable because it means each user is reliant on other users to

behave correctly. Thus we consider a robust variant of the shuffle

model, where we require that the protocol remains private when

only a constant fraction of users behave correctly, while the other

users may behave arbitrarily. We emphasize all known natural

protocols in this model satisfy the additional robustness condition,

and the need for robustness was explicitly discussed in [16] as a

feature of the model, so we consider the robust variant to be the

most appropriate version of the model.

Definition 2.5 (Robust Shuffle Differential Privacy [3]). Fix 𝛾 ∈
(0, 1]. A protocol Π = (𝑅,𝐴) is (𝜀, 𝛿,𝛾)-robustly shuffle differentially
4
See [9] for a discussion of various choices of how to implement such a secure shuffler.
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private if, for all 𝑛 ∈ N and 𝛾 ′ ≥ 𝛾 , the algorithm Π𝑆 ◦Π
𝛾 ′𝑛
𝑅

is (𝜀, 𝛿)-
differentially private. In other words, Π guarantees (𝜀, 𝛿)-shuffle

privacy whenever at least a 𝛾 fraction of the intended number of

users follow the protocol.

We remark that the above definition only explicitly handles

drop-out attacks, where malicious users send no messages. How-

ever, dropping out is the worst malicious users can do. Combining

arbitrary messages from malicious users with the messages of hon-

est users can be viewed as a post-processing of Π𝑆 ◦Π
𝛾𝑛

𝑅
. If Π𝑆 ◦Π

𝛾𝑛

𝑅
is already differentially private for the outputs of the 𝛾𝑛 users alone,

then differential privacy’s resilience to post-processing ensures that

adding other messages does not affect this guarantee. Hence, it is

without loss of generality to focus on drop-out attacks.

2.5 From Robust Shuffle Privacy to
Pan-Privacy

[3] prove a reduction from robust shuffle privacy to pan-privacy in

the context of uniformity testing and counting distinct elements.

Here, we note that the technique can be applied to essentially any

distributional problem, so we state it as a standalone theorem. Using

this theorem we will be able to obtain lower bounds for the shuffle

model from those we prove for the pan-private model.

We begin by establishing some notation. For any universe X, let
U denote any fixed distribution over X. For any distribution P over

X and any 𝑏 ∈ [0, 1], let P(𝑏) denote the mixture 𝑏 · P + (1 − 𝑏) · U.
Theorem 2.6 (Generalization of [3]). For any number of users

𝑛 and any (𝜀, 𝛿, 1/3)-robustly shuffle private protocol Π, there exists
an (𝜀, 𝛿)-pan-private algorithm𝑀Π such that

dTV (𝑀Π (U𝑛/3),Π(U𝑛)) = 0 (4)

and, for any P over X,
dTV (𝑀Π (P𝑛/3),Π(P𝑛(2/9) )) < exp(−Ω(𝑛)). (5)

In particular, if 𝑛 is larger than some absolute constant,

dTV (𝑀Π (P𝑛/3),Π(P𝑛(2/9) )) < 1/6.

Algorithm 1:𝑀Π
, an online algorithm built from a shuffle

protocol

Input: Data stream ®𝑥 ∈ X𝑛/3; a shuffle protocol

Π = (Π𝑅,Π𝐴) that expects 𝑛 inputs

1 Create initial state 𝑆0 ← (Π𝑆 ◦ Π𝑛/3
𝑅
) (U𝑛/3)

2 Sample 𝑁 ′ ∼ Bin(𝑛, 2/9)
3 Set 𝑁 ′ ← min(𝑁 ′, 𝑛/3)
4 For 𝑖 ∈ [𝑛/3]
5 If 𝑖 ≤ 𝑁 ′ : 𝑊𝑖 ← 𝑥𝑖 ;

6 Else𝑊𝑖 ∼ U;
7 Create the state 𝑆𝑖 by shuffling the messages from 𝑆𝑖−1

with those from Π𝑅 (𝑊𝑖 )
8 Create ®𝑌 by shuffling the messages from 𝑆𝑛/3 with those

from Π
𝑛/3
𝑅
(U𝑛/3)

9 Return Π𝐴 ( ®𝑌 )

Proof. We present a concise version of 𝑀Π
in Algorithm 1.

Although it does not explicitly take the form specified by Definition

2.2, it is straightforward to decompose it into a sequence

(𝑀1, . . . , 𝑀𝑛/3, 𝑀O) .

We give a high-level justification before detailing the proof. Prior

to reading user data, it simulates the execution of the shuffle pro-

tocol on 𝑛/3 data samples drawn i.i.d. from U. Upon reading each

user’s data, it generates messages using the local randomizer and

adds to the shuffled set of messages. Each state of the shuffled set is

private due to the robust privacy of the shuffle protocol: it contains

a uniformly random permutation of messages from at least 𝑛/3
executions of the local randomizer. After reading user data, the

algorithm injects 𝑛/3 more rounds of noisy messages. This serves

to ensure that the output of the protocol is private. And observe

that the shuffle protocol is run on a mixture between the true data

distribution and the public distribution U, where the mixture pa-

rameter is known to the algorithm. This means that the distribution

of the output is shifted by a known and bounded factor.

Pan-privacy: For any user 𝑖 and intrusion time 𝑡 , we prove that(
𝑀Π
I ( ®𝑥≤𝑡 ), 𝑀

Π
O (𝑀

Π
I ( ®𝑥))

)
—the adversary’s view—is (𝜀, 𝛿)-private

conditioned on arbitrary event 𝑁 ′ = 𝑛′. If 𝑖 > 𝑛′, observe that the
algorithm is completely independent of 𝑥𝑖 . Otherwise, we shall

leverage the robust privacy of Π.
We first consider the case where 𝑡 < 𝑖 . The state observed by

the adversary, 𝑆𝑡 , is independent of 𝑥𝑖 so it will suffice to prove

that𝑀Π
O (𝑀

Π
I ( ®𝑥)) is differentially private conditioned on any event

𝑆𝑡 = 𝑠𝑡 . Note that 𝑀
Π
O (𝑀

Π
I ( ®𝑥)) is obtained by running Π𝐴 on the

union of 𝑠𝑡 and

(Π𝑆 ◦ Πℎ
𝑅) (𝑥𝑡+1, . . . , 𝑥𝑖 ,𝑊𝑖+1, . . . ,𝑊𝑛/3,U, . . . ,U︸   ︷︷   ︸

𝑛/3 terms

), (6)

where ℎ = 2𝑛/3 − 𝑡 ≥ 𝑛/3. We can therefore invoke the robust

shuffle privacy of Π.
Now we consider the case where 𝑡 ≥ 𝑖 . Observe that𝑀Π

I ( ®𝑥≤𝑡 )
is equivalent to

(Π𝑆 ◦ Πℎ
𝑅) (UX, . . . ,UX︸        ︷︷        ︸

𝑛/3 terms

, 𝑥1, . . . , 𝑥𝑖 ,𝑊𝑖+1 . . . ,𝑊𝑡 ),

where ℎ = 𝑛/3+𝑡 > 𝑛/3. We again invoke the robust shuffle privacy

of Π. And, conditioned on any event 𝑀Π
I ( ®𝑥≤𝑡 ) = 𝑠𝑡 , we argue that

𝑀Π
O (𝑀

Π
I ( ®𝑥)) is independent of 𝑥𝑖 . This follows from our previous

observation that 𝑀Π
O (𝑀

Π
I ( ®𝑥)) is obtained by running Π𝐴 on the

union of 𝑠𝑡 and (6); 𝑥𝑖 is not an input to this function.

Bound on TV distance: In the case where the input ®𝑋 is drawn

from U𝑛/3
, observe that every execution of Π𝑅 made by𝑀Π

is on

an independent sample fromU. Because the output of the algorithm
is obtained by running Π𝐴 on 𝑛 such executions, we immediately

have𝑀Π (U𝑛/3) = Π(U𝑛).
Otherwise, consider 𝑛 samples from P(2/9) . The number of sam-

ples drawn from P is distributed as Bin(𝑛, 2/9). By Hoeffding’s

bound, P(Bin(𝑛, 2/9) > 𝑛/3) < exp(−Ω(𝑛)). This means the TV

distance between Bin(𝑛, 2/9) and the distribution of 𝑁 ′ is at most
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exp(−Ω(𝑛)). In turn, the TV distance between

Π(P𝑛(2/9) ) = Π𝐴 (Π𝑆 (

𝑛 terms︷                                            ︸︸                                            ︷
Π𝑅 (P), . . . ,Π𝑅 (P)︸                 ︷︷                 ︸
Bin(𝑛,2/9) terms

,Π𝑅 (U), . . . ,Π𝑅 (U)))

and

𝑀Π (P𝑛/3) = Π𝐴 (Π𝑆 (

𝑛 terms︷                                            ︸︸                                            ︷
Π𝑅 (P), . . . ,Π𝑅 (P)︸                 ︷︷                 ︸

𝑁 ′ terms

,Π𝑅 (U), . . . ,Π𝑅 (U)))

is at most exp(−Ω(𝑛)) as well. This concludes the proof. □

3 MAIN LOWER BOUND
Let𝑀 be a pan-private algorithm. Let {P𝑣}𝑣∈V be a family of distri-

butions, 𝑉 be uniform overV , and U = E𝑣∼𝑉 (P𝑣) be the uniform
mixture over the distributions. Let U𝑛

be the product distribution

consisting of 𝑛 copies of U and let P𝑛
𝑉
= E𝑣∼𝑉 (P𝑛𝑣 ) be the mixture

of product distributions. Note that U = P1
𝑉
.

An important quantity that we will show measures how hard

it is for pan-private algorithms to distinguish U𝑛
from P𝑛

𝑉
is the

(∞→2)-norm5
of {P𝑣}, which defined as

∥{P𝑣}∥∞→2 = sup

𝑓 :X→[±1]
E

𝑣∼𝑉

((
E

𝑥∼P𝑣
(𝑓 (𝑥)) − E

𝑥∼𝑈
(𝑓 (𝑥))

)
2

)
1/2

The main goal of this section is to prove the following theorem.

Theorem 3.1. If {P𝑣}𝑣∈V is a family of distributions and𝑀 is an
(𝜀, 𝛿)-pan private algorithm such that 6 𝛿 log |V |/𝛿 ≪ 𝜀2∥{P𝑣}∥2∞→2

and dTV (𝑀 (P𝑛𝑉 ), 𝑀 (U
𝑛)) is larger than a positive constant, then

𝑛 ≥ Ω

(
1

𝜀∥{P𝑣}∥∞→2

)
More generally, 𝑛 ≥ 1/𝑂 (𝜀∥{P𝑣}∥∞→2 +

√︁
𝛿 log |V |/𝛿)

The main tool we use to prove Theorem 3.1 is the following

information inequality.

Lemma 3.2. For any (𝜀, 𝛿)-pan private algorithm𝑀 ,

dTV (𝑀 (P𝑛𝑉 ), 𝑀 (U
𝑛)) ≤ 𝑛 ·

√︃
1

2
𝐼𝜀,𝛿 ({P𝑣})

where we define 𝐼𝜀,𝛿 ({P𝑣}) = sup𝑀 :X→R
(𝜀, 𝛿 ) -DP

𝐼 (𝑀 (P𝑉 );𝑉 )

Proof of Lemma 3.2. As a shorthand, let Q𝑖 denote the distri-

bution of 𝑀 (U𝑖 , P𝑛−𝑖
𝑉
). This is the distribution of the algorithm’s

output on a data stream where the first 𝑖 elements are sampled

i.i.d. from U and the rest from P𝑉 . Note that Q0 = 𝑀 (P𝑛
𝑉
) and

Q𝑛 = 𝑀 (U𝑛). By the triangle inequality we have

dTV (𝑀 (P𝑛𝑉 ), 𝑀 (U
𝑛)) = dTV (Q0,Q𝑛) ≤

𝑛∑︁
𝑖=1

dTV (Q𝑖−1,Q𝑖 ).

5
We call this quantity the (∞→2)-norm because it is equal to the better known

(∞→2)-norm, sup𝑧 ∥𝑀𝑧 ∥2/∥𝑧 ∥∞ , of the matrix 𝑀 defined by 𝑀𝑣,𝑥 = P𝑣 (𝑥) −
𝑈 (𝑥) .
6
We use 𝑥 ≪ 𝑦 to indicate that 𝑥 ≤ 𝑐𝑦 for a sufficiently small numerical constant

𝑐 > 0.

Thus, in order to prove the theorem it is enough to show that for

every 𝑖 = 1, . . . , 𝑛,

dTV (Q𝑖−1,Q𝑖 ) ≤
√︃

1

2
𝐼𝜀,𝛿 ({P𝑣}) (7)

Before proving (7), we give a simplified diagram of the relevant

random variables in the two distributions Q𝑖−1,Q𝑖 in Figure 2. For

the purposes of comparing Q𝑖−1 and Q𝑖 , we can group all of the

inputs 𝑋1, . . . , 𝑋𝑖−1 ∼ U𝑖−1
into one random variable and all of the

inputs 𝑋𝑖+1· · ·𝑛 ∼ P𝑛−𝑖
𝑉

into another random variable. Moreover, in

Q𝑖−1, 𝑋𝑖 is drawn from P𝑉 , for the same choice of 𝑉 as 𝑋𝑖+1· · ·𝑛 ,
whereas in Q𝑖 , 𝑋𝑖 is drawn from U.

Now, observe that the random variable 𝑆𝑖 has the same marginal

distribution in both Q𝑖−1,Q𝑖 . This also holds for 𝑋𝑖+1· · ·𝑛 . But in
Q𝑖−1, 𝑆𝑖 and 𝑋𝑖+1· · ·𝑛 are correlated by the shared choice of𝑉 , while

in Q𝑖 they are independent. Moreover, 𝑆𝑛 is a post-processing of

the pair (𝑆𝑖 , 𝑋𝑖+1· · ·𝑛). Thus, using (𝑆𝑖 , 𝑋𝑖+1· · ·𝑛) to denote the joint

distribution of 𝑆𝑖 (𝑉 ) and 𝑋𝑖+1· · ·𝑛 (𝑉 ) in Q𝑖−1, and applying the

data-processing inequality, we have

dTV (Q𝑖−1,Q𝑖 ) ≤ dTV ((𝑆𝑖 , 𝑋𝑖+1· · ·𝑛), (𝑆𝑖 ⊗ 𝑋𝑖+1· · ·𝑛))
= E

𝑠𝑖∼𝑆𝑖

(
dTV (𝑋𝑖+1· · ·𝑛 |𝑆𝑖=𝑠𝑖 , 𝑋𝑖+1· · ·𝑛)

)
where the last step uses the following fact.

Fact 3.3. For any random variables 𝐴, 𝐵,

dTV ((𝐴, 𝐵), (𝐴 ⊗ 𝐵)) = E
𝑎∼𝐴
(dTV (𝐵 |𝐴=𝑎, 𝐵))

Next, since 𝑆𝑖 and 𝑋𝑖+1· · ·𝑛 are independent conditioned on 𝑉 ,

we have

E
𝑠𝑖∼𝑆𝑖

(
dTV (𝑋𝑖+1· · ·𝑛 |𝑆𝑖=𝑠𝑖 , 𝑋𝑖+1· · ·𝑛)

)
≤ E

𝑠𝑖∼𝑆𝑖

(
dTV (𝑉 |𝑆𝑖=𝑠𝑖 ,𝑉 )

)
where we use the following fact.

Fact 3.4. If (𝐴, 𝐵,𝐶) are jointly distributed random variables and
𝐴 and𝐵 are independent conditioned on𝐶 , then for every𝑎 ∈ supp(𝐴),
dTV (𝐵 |𝐴=𝑎, 𝐵) ≤ dTV (𝐶 |𝐴=𝑎,𝐶).

We prove Facts 3.3 and 3.4 in the full version of this work. From

this point we can calculate

E
𝑠𝑖∼𝑆𝑖

(
dTV (𝑉 |𝑆𝑖=𝑠𝑖 ,𝑉 )

)
(8)

≤
√︂
E

𝑠𝑖∼𝑆𝑖

(
dTV (𝑉 |𝑆𝑖=𝑠𝑖 ,𝑉 )2

)
(Jensen’s Inequality)

≤
√︂
E

𝑠𝑖∼𝑆𝑖

(
1

2
· dKL (𝑉 |𝑆𝑖=𝑠𝑖 ∥𝑉 )

)
(Pinsker’s Inequality)

=

√︂
E

𝑠𝑖∼𝑆𝑖

(
1

2
· dKL ((𝑆𝑖 ,𝑉 )∥(𝑆𝑖 ⊗ 𝑉 ))

)
(chain rule for KL-divergence)

≤
√︃

1

2
· 𝐼 (𝑆𝑖 ;𝑉 ) (definition of mutual information)

Lastly, we argue that 𝐼 (𝑆𝑖 ;𝑉 ) ≤ 𝐼𝜀,𝛿 ({P𝑣}) using pan-privacy.

The intuition is that pan privacy requires 𝑆𝑖 to be (𝜀, 𝛿)-differentially
private as a function of the prefix𝑋1, . . . , 𝑋𝑖 . Moreover,𝑋1, . . . , 𝑋𝑖−1
are drawn from the fixed distribution U𝑖−1

that is independent from

𝑉 . Therefore, we can fix the distribution of 𝑋1, . . . , 𝑋𝑖−1 and view

𝑆𝑖 as an (𝜀, 𝛿)-differentially private function of just 𝑋𝑖 . Specifically,

given an (𝜀, 𝛿)-pan private algortihm𝑀 , and 𝑖 , define the function
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𝑋𝑖𝑋1· · ·𝑖−1 𝑋𝑖+1· · ·𝑛

𝑉

𝑆𝑖 𝑆𝑛

𝑋𝑖𝑋1· · ·𝑖−1 𝑋𝑖+1· · ·𝑛

𝑉

𝑆𝑖 𝑆𝑛

Figure 2: A simplified diagram of the relevant random variables in Q𝑖−1 (left) and Q𝑖 (right).

𝑓𝑖 : X → R as follows: 𝑓𝑖 (𝑥) samples 𝑋1, . . . , 𝑋𝑖−1 ∼ U𝑖−1
, com-

putes 𝑠1 = 𝑀1 (𝑋1), 𝑠2 = 𝑀2 (𝑋2, 𝑠1), . . . , 𝑠𝑖−1 = 𝑀𝑖−1 (𝑋𝑖−1, 𝑠𝑖−2),
and outputs 𝑟 = 𝑀𝑖 (𝑥, 𝑠𝑖−1). Pan-privacy guarantees that 𝑓𝑖 (𝑥) =
𝑀𝑖 (𝑋1, . . . , 𝑋𝑖−1, 𝑥) is (𝜀, 𝛿)-differentially private as a function of 𝑥 .

Note that 𝑆𝑖 |𝑋𝑖=𝑥 is distributed identically as 𝑓𝑖 (𝑥). Therefore√︃
1

2
𝐼 (𝑆𝑖 ;𝑉 ) =

√︃
1

2
𝐼 (𝑀𝑖 (P𝑉 );𝑉 ) ≤

√︃
1

2
𝐼𝜀,𝛿 ({P𝑣})

Combining with the previous calculations gives

dTV (Q𝑖−1,Q𝑖 ) ≤
√︃

1

2
𝐼𝜀,𝛿 ({P𝑣}),

as desired. □

To use Lemma 3.2 we need a bound on the mutual information

𝐼𝜀,𝛿 ({P𝑣}). A result of Duchi, Jordan, and Wainwright [19], gives

such a bound for the case of 𝛿 = 0.

Lemma 3.5 ([19]). 𝐼𝜀,0 ({P𝑣}) ≤ 𝑂 (𝜀2∥{P𝑣}∥2∞→2
).

We give a simple extension to the case of 𝛿 > 0.

Lemma 3.6. 𝐼𝜀,𝛿 ({P𝑣}) ≤ 𝑂 (𝜀2∥{P𝑣}∥2∞→2
+ 𝛿 log |V |/𝛿).

Therefore, we will obtain Theorem 3.1 as an immediate corol-

lary of Lemma 3.2 and Lemma 3.6. The proof of Lemma 3.6 from

Lemma 3.5 relies on the following statement, which is an easy con-

sequence of a structural result of Kairouz, Oh, and Viswanath [39].

Lemma 3.7. If 𝑀 : X → R is (𝜀, 𝛿)-differentially private, then
there is a (2𝜀, 0)-differentially private𝑀 ′ such that

∀𝑥 ∈ X dTV (𝑀 (𝑥), 𝑀 ′(𝑥)) ≤ 𝛿

We prove this lemma in the full version of this work.

Proof of Lemma 3.6. Let𝑀 be any (𝜀, 𝛿)-differentially private

function with input 𝑥 ∈ X. Lemma 3.7 guarantees that there exists

a mechanism𝑀 ′ that is (2𝜀, 0)-differentially private and satisfies

∀𝑥 ∈ X dTV (𝑀 (𝑥), 𝑀 ′(𝑥)) ≤ 𝛿

In particular, dTV (𝑀 (P𝑉 ), 𝑀 ′(P𝑉 )) ≤ 𝛿 . Therefore, there exists a

joint distribution (𝑀,𝑀 ′) such that𝑀 = 𝑀 (P𝑉 ),𝑀 ′ = 𝑀 ′(P𝑉 ) and
P(𝑀 ≠ 𝑀 ′) ≤ 𝛿 . Let 𝐵 be the binary random variable I{𝑀 ≠ 𝑀 ′}.
Thus, there is a joint distribution (𝑀,𝑀 ′, 𝐵) such that (𝐵 = 0 =⇒

𝑅 = 𝑅′) and P(𝐵 ≠ 0) ≤ 𝛿 . Therefore,

𝐼 (𝑉 ;𝑅)
≤ 𝐼 (𝑉 ;𝑀,𝑀 ′, 𝐵)
≤ 𝐼 (𝑉 ;𝑀,𝑀 ′ | 𝐵) + 𝐻 (𝐵)
= 𝐼 (𝑉 ;𝑀,𝑀 ′ | 𝐵 = 0) · P(𝐵 = 0)
+ 𝐼 (𝑉 ;𝑀,𝑀 ′ | 𝐵 = 1) · P(𝐵 = 1) + 𝐻 (𝐵)

≤ 𝐼 (𝑉 ;𝑀 ′) + 𝐻 (𝑉 ) · 𝛿 + 𝐻 (𝐵)
= 𝐼 (𝑉 ;𝑀 ′) +𝑂 (𝛿 log |V| + 𝛿 log(1/𝛿))
≤ 𝐼2𝜀,0 ({P𝑣}) +𝑂 (𝛿 log |V| + 𝛿 log(1/𝛿))
= 𝑂 (𝜀2∥{P𝑣}∥2∞→2

) +𝑂 (𝛿 log |V| + 𝛿 log(1/𝛿))

The lemma follows by rewriting the final line as𝑂 (𝛿 log |V |/𝛿). □

A Family of Hard Distributions. In order to apply Theorem 3.1 to a

learning or optimization problem, we need a family of distributions

{P𝑣} such that ∥{P𝑣}∥∞→2 is small and any accurate algorithm for

the problem distinguishes P𝑛
𝑉
from U𝑛

. This subsection describes

one such family we will use in most of our lower bound arguments.

Let X = {±1}𝑑 be the data domain. For a parameter 𝛼 ∈ (0, 1/2),
a non-empty set ℓ ⊆ [𝑑], and a bit 𝑏 ∈ {±1}𝑑 , we define the

distribution P𝑑,ℓ,𝑏,𝛼 to be uniform on {±1}𝑑 except biased so that

E𝑥∼P𝑑,𝛼,ℓ,𝑏,𝛼 (
∏

𝑖∈𝑡 𝑥𝑖 ) = 2𝛼𝑏. Its probability mass function is

P𝑑,ℓ,𝑏,𝛼 (𝑥) =
{
(1 + 2𝛼)2−𝑑 if

∏
𝑖∈𝑡 𝑥𝑖 = 𝑏

(1 − 2𝛼)2−𝑑 if

∏
𝑖∈𝑡 𝑥𝑖 = −𝑏

(9)

Note that, for every non-empty 𝑡 ′ ≠ 𝑡 , E𝑥∼P𝑑,ℓ,𝑏,𝛼 (
∏

𝑖∈𝑡 ′ 𝑥𝑖 ) = 0.

For dimension 𝑑 , a parameter 𝑘 ≤ 𝑑 , and 𝛼 ∈ (0, 1/2), we define
the family

P𝑑,𝑘,𝛼 = {P𝑑,ℓ,𝑏,𝛼 : 𝑡 ⊆ [𝑑], |𝑡 | ∈ [𝑘], 𝑏 ∈ {±1}} (10)

Fact 3.8. The size of P𝑑,𝑘,𝛼 is 2 ·
( 𝑑
≤𝑘

)
where

( 𝑑
≤𝑘

)
=

∑𝑘
𝑗=1

(𝑑
𝑗

)
.

Fact 3.9. The uniform mixture over P𝑑,𝑘,𝛼 is uniform over X.

The following lemma is implicit in many lower bounds for local

differential privacy (e.g. [19, 28, 47]), although we reprove it here

for completeness.

Lemma 3.10. For every 𝑑 ∈ N, 𝑘 ≤ 𝑑 , and 𝛼 ∈ (0, 1/2),

∥P𝑑,𝑘,𝛼 ∥2∞→2
≤ 4𝛼2( 𝑑
≤𝑘

)
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Proof. We first expand the definition of the (∞ → 2) norm. For

brevity, we write sup𝑓 in place of sup𝑓 :X→[±1] .

∥P𝑑,𝑘,𝛼 ∥2∞→2

= sup

𝑓

∑︁
P∈P𝑑,𝑘,𝛼

1

|P𝑑,𝑘,𝛼 |
·
(
E

𝑥∼P
(𝑓 (𝑥)) − E

𝑥∼U
(𝑓 (𝑥))

)
2

= sup

𝑓

∑︁
𝑡⊆[𝑑 ],|𝑡 |∈ [𝑘 ]

𝑏∈{±1}

1

|P𝑑,𝑘,𝛼 |
· ©­«

∑︁
𝑥 ∈{±1}𝑑

𝑓 (𝑥) · (P𝑑,ℓ,𝑏,𝛼 (𝑥) − U(𝑥))
ª®¬
2

= sup

𝑓

1

2

( 𝑑
≤𝑘

) ∑︁
𝑡⊆[𝑑 ],|𝑡 |∈ [𝑘 ]

𝑏∈{±1}

©­«
∑︁

𝑥 ∈{±1}𝑑
𝑓 (𝑥) · (P𝑑,ℓ,𝑏,𝛼 (𝑥) − U(𝑥))

ª®¬
2

(11)

Note that (9) is equivalent to P𝑑,ℓ,𝑏,𝛼 (𝑥) = (1 + 2𝛼𝑏 ·
∏

𝑖∈𝑡 𝑥𝑖 )2−𝑑
and, via Fact 3.9, U(𝑥) = 2

−𝑑
. Thus,

(11) = sup

𝑓

1

2

( 𝑑
≤𝑘

) · ∑︁
𝑡⊆[𝑑 ],|𝑡 |∈ [𝑘 ]

𝑏∈{±1}

©­«
∑︁

𝑥 ∈{±1}𝑑
𝑓 (𝑥) · 2𝛼𝑏 ·

∏
𝑖∈𝑡

𝑥𝑖 · 2−𝑑
ª®¬
2

= sup

𝑓

2𝛼2( 𝑑
≤𝑘

) · ∑︁
𝑡⊆[𝑑 ],|𝑡 |∈ [𝑘 ]

𝑏∈{±1}

©­«
∑︁

𝑥 ∈{±1}𝑑
𝑓 (𝑥) ·

∏
𝑖∈𝑡

𝑥𝑖 · 2−𝑑
ª®¬
2

= sup

𝑓

4𝛼2( 𝑑
≤𝑘

) · ∑︁
𝑡 ⊆[𝑑 ], |𝑡 | ∈ [𝑘 ]

©­«
∑︁

𝑥 ∈{±1}𝑑
𝑓 (𝑥) ·

∏
𝑖∈𝑡

𝑥𝑖 · 2−𝑑
ª®¬
2

≤ sup

𝑓

4𝛼2( 𝑑
≤𝑘

) · ∑︁
𝑡 ⊆[𝑑 ]

©­«
∑︁

𝑥 ∈{±1}𝑑
𝑓 (𝑥) ·

∏
𝑖∈𝑡

𝑥𝑖 · 2−𝑑
ª®¬
2

(12)

Define
ˆ𝑓 (𝑡) := E

𝑋∼U
(𝑓 (𝑋 ) ·∏𝑖∈𝑡 𝑋𝑖 ), the Fourier transform over

the Boolean hypercube. This is precisely the term being squared

above. So we have

(12) =
4𝛼2( 𝑑
≤𝑘

) · sup

𝑓 :X→[±1]

∑︁
𝑡 ⊆[𝑑 ]

ˆ𝑓 (𝑡)2

=
4𝛼2( 𝑑
≤𝑘

) · sup

𝑓 :X→[±1]
E

𝑋∼U

(
𝑓 (𝑋 )2

)
(Parseval’s identity)

≤ 4𝛼2( 𝑑
≤𝑘

)
This concludes the proof. □

The following is an immediate corollary of Theorem 3.1, Lemma

3.10, and Fact 3.8.

Theorem 3.11. Let P𝑑,𝐿,𝐵,2𝛼 denote a distribution chosen uni-
formly at random from P𝑑,𝑘,𝛼 (where 𝐿 is a uniformly random subset
of [𝑑] with size ≤ 𝑘 and 𝐵 is a uniformly random member of {±1}).
If 𝑀 is an (𝜀, 𝛿)-pan private algorithm such that 𝛿 log ( 𝑑≤𝑘)/𝛿 ≪
𝛼2𝜀2/

( 𝑑
≤𝑘

)
and dTV (𝑀 (P𝑛𝑑,𝐿,𝐵,𝛼 ), 𝑀 (U

𝑛)) is larger than a positive

constant, then

𝑛 ≥ Ω
©­­«
√︃( 𝑑
≤𝑘

)
𝛼𝜀

ª®®¬
4 LOWER BOUNDS FOR SIMPLE

HYPOTHESIS TESTING
In this section, we use Theorem 3.11 obtain lower bounds for the

problem of simple hypothesis testing. We first prove a lower bound

that holds under pan-privacy, then adapt it for robust shuffle privacy

via Theorem 2.6.

Definition 4.1 (𝑑-Wise Simple Hypothesis Testing). Let 𝑑 be any

integer larger than 1 and let 𝛼 be any real in the interval (0, 1/2). An
algorithm𝑀 solves 𝑑-wise simple hypothesis testing with error 𝛼 and
sample complexity 𝑛 if, for any set of 𝑑 distributions P satisfying

dTV (P, P′) ≥ 𝛼 for every distinct pair P, P′ ∈ P, when given 𝑛 in-

dependent samples from an arbitrary P ∈ P as input, the algorithm

outputs P with probability ≥ 99/100. This probability is over the

randomness of the samples and of𝑀 .

Theorem 4.2. If𝑀 is an (𝜀, 𝛿)-pan-private algorithm that solves
𝑑-wise simple hypothesis testing with error 𝛼 and 𝛿 log𝑑/𝛿 ≪ 𝛼2𝜀2/𝑑 ,
then its sample complexity is 𝑛 = Ω(

√
𝑑/𝛼𝜀).

Proof. Consider the set of distributions {U} ∪ P𝑑,1,𝛼 . Note that
this is a family of 2𝑑 +1 distributions. From Fact 3.8, its size is 2𝑑 +1.
In the full version of this work, we also prove the following lower

bound on pairwise distances:

Claim 4.3. For any P ≠ P′ ∈ {U} ∪ P𝑑,1,𝛼 , dTV (P, P′) ≥ 𝛼 .

The upshot is that {U} ∪ P𝑑,1,𝛼 is a valid set of distributions for

(2𝑑 + 1)-wise hypothesis testing. We now argue that the accuracy

of𝑀 for this problem instance implies that we can invoke Theorem

3.11.

To do so, let P𝑑,𝐿,𝐵,𝛼 denote a distribution chosen uniformly

at random from P𝑑,1,𝛼 . We show that the total variation distance

between𝑀 (U𝑛) and𝑀 (P𝑛
𝑑,𝐿,𝐵,𝛼

) is at least some positive constant.

dTV (𝑀 (U𝑛), 𝑀 (P𝑛
𝑑,𝐿,𝐵,𝛼

))

= max

P⊆{U}∪P𝑑,𝑘,𝛼

���P(𝑀 (U𝑛) ∈ P
)
− P

(
𝑀 (P𝑛

𝑑,𝐿,𝐵,𝛼
) ∈ P

)���
≥ P

(
𝑀 (U𝑛) ∈ {U}

)
− P

(
𝑀 (P𝑛

𝑑,𝐿,𝐵,𝛼
) ∈ {U}

)
≥ P

(
𝑀 (U𝑛) ∈ {U}

)
− 1

100

≥ 99

100

− 1

100

=
49

50

To obtain the second inequality, we first observe that P𝑑,𝑡,𝑏,𝛼 ≠ U
for every 𝑡, 𝑏 so U would be an incorrect output. Then we use the

fact that 𝑀 solves simple hypothesis testing: it is incorrect with

probability at most 1/100. The same reasoning yields the third

inequality.

From Theorem 3.11, we conclude that 𝑛 = Ω
(

1

𝜀 ∥P𝑑,1,𝛼 ∥∞→2

)
=

Ω
(√

𝑑/𝛼𝜀
)
.. This lower bound holds for a family of 2𝑑 + 1 distribu-

tions, so the claimed result follows by rescaling 𝑑 . □
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The next theorem adapts our proof to the robust shuffle privacy

setting:

Theorem 4.4. If Π is an (𝜀, 𝛿, 1/3)-robustly shuffle private pro-
tocol that solves 𝑑-wise simple hypothesis testing with error 𝛼 and
𝛿 log𝑑/𝛿 ≪ 𝛼2𝜀2/𝑑 , then its sample complexity is 𝑛 = Ω(

√
𝑑/𝛼𝜀).

Proof. As before, let P𝑑,𝐿,𝐵,𝛼 denote a distribution chosen uni-

formly at random from P𝑑,1,𝛼 . Let Π denote an algorithm in the

shuffle model that solves (2𝑑 + 1)-wise simple hypothesis testing

with accuracy 2𝛼/9.
Let𝑀Π

denote the (𝜀, 𝛿)-pan-private algorithm guaranteed by

Theorem 2.6. We will lower bound the total variation distance

between𝑀Π (U𝑛/3) and𝑀Π (P𝑛/3
𝑑,𝐿,𝐵,𝛼

).

dTV (𝑀Π (U𝑛/3), 𝑀Π (P𝑛/3
𝑑,𝐿,𝐵,𝛼

))

≥ P
(
𝑀Π (U𝑛/3) ∈ {U}

)
− P

(
𝑀Π (P𝑛/3

𝑑,𝐿,𝐵,𝛼
) ∈ {U}

)
≥ P

(
Π(U𝑛) ∈ {U}

)
− P

(
Π(P𝑛

𝑑,𝐿,𝐵,2𝛼/9) ∈ {U}
)
− 1

6

(Theorem 2.6)

≥ 49

50

− 1

6

=
61

75

The third inequality comes from repeating the analysis in the proof

of Theorem 4.2. Since𝑀Π
is an (𝜀, 𝛿)-pan-private algorithm such

that

dTV (𝑀Π (U𝑛/3), 𝑀Π (P𝑛/3
𝑑,𝐿,𝐵,𝛼

))
is at least a positive constant, we invoke Theorem 3.11 to conclude

that 𝑛 = Ω(
√
𝑑/𝛼𝜀). The claimed theorem follows by rescaling 𝛼

and 𝑑 . □

5 LOWER BOUNDS FOR LEARNING SIGNED
PARITY FUNCTIONS

In this section, we take X = {±1}𝑑+1 and interpret the bits at index
𝑑 + 1 to be labels of the strings. Our focus will be on signed parity

functions: given a tuple (ℓ, 𝑏) ∈ 2[𝑑 ] × {±1} and a string 𝑥 ∈ X, we
would like labels to predict the value 𝑏 ·∏𝑗 ∈ℓ 𝑥 𝑗 . Specifically, for
any distribution P over X, we define error function

errP (ℓ, 𝑏) := P
𝑋∼P

©­«𝑏 ·
∏
𝑗 ∈ℓ

𝑋 𝑗 ≠ 𝑋𝑑+1
ª®¬,

to be the probability of misclassifying a random test example.

Definition 5.1. Let 𝛼 ∈ (0, 1
2
) be a parameter and let 1 ≤ 𝑘 ≤ 𝑑 be

integers. An algorithm𝑀 learns width-𝑘 signed parities with error 𝛼
and sample complexity 𝑛 if it takes 𝑛 independent samples from a

distribution P over X and reports a tuple (𝐿, 𝐵) ∈ 2[𝑑 ] × {±1} such
that, with probability at least 99/100,

errP (𝐿, 𝐵) < min

ℓ,𝑏
errP (ℓ, 𝑏) + 𝛼.

This probability is taken over the randomness of the samples and

over𝑀 .

For this problem, we will use a variant of our family of distribu-

tions: for a parameter 𝛼 ∈ [0, 1/2], a set ℓ ⊆ [𝑑], and a bit 𝑏 ∈ {±1},

Algorithm 2:𝑀 ′, an online algorithm

Input: Data stream ®𝑥 ∈ X𝑚 ; access to online algorithm

𝑀 : X𝑛 → 2
[𝑑 ] × {±1}

Output: A random variable 𝑍 ∈ R
1 𝑆1 ← 𝑀1 (𝑥1)
2 For 𝑖 ∈ [2, 𝑛]
3 𝑆𝑖 ← 𝑀𝑖 (𝑥𝑖 , 𝑆𝑖−1)
4 For 𝑖 ∈ [𝑛 + 1,𝑚]
5 If 𝑖 = 𝑛 + 1 :
6 (𝐿̂, 𝐵̂) ← 𝑀O (𝑆𝑛)
7 𝐶 ∼ Lap(1/𝜀)
8 Else
9 (𝐿̂, 𝐵̂,𝐶) ← 𝑆𝑖−1

10 If
∏

𝑗 ∈𝐿̂ 𝑥𝑖, 𝑗 = 𝑥𝑖,𝑑+1 · 𝐵̂ :
11 𝐶 ← 𝐶 + 1
12 𝑆𝑖 ← (𝐿̂, 𝐵̂,𝐶)
13 𝐿 ∼ Lap(1/𝜀)
14 Return 𝑍 ← 𝐶 + 𝐿

we define the distributionQ𝑑,ℓ,𝑏,𝛼 to have probability mass function

Q𝑑,ℓ,𝑏,𝛼 (𝑥) =
{
(1 + 2𝛼)2−𝑑−1 if 𝑏 ·∏𝑗 ∈ℓ 𝑥 𝑗 = 𝑥𝑑+1
(1 − 2𝛼)2−𝑑−1 if 𝑏 ·∏𝑗 ∈ℓ 𝑥 𝑗 = −𝑥𝑑+1

(13)

Fact 5.2. For any (ℓ ′, 𝑏 ′) ≠ (ℓ, 𝑏),

P
𝑋∼Q𝑑,ℓ,𝑏,𝛼

©­«𝑏 ·
∏
𝑗 ∈ℓ

𝑋 𝑗 = 𝑋𝑑+1
ª®¬ =

1

2

+ 𝛼

P
𝑋∼Q𝑑,ℓ,𝑏,𝛼

©­«𝑏 ′ ·
∏
𝑗 ∈ℓ′

𝑋 𝑗 = 𝑋𝑑+1
ª®¬ ≤ 1

2

For dimension 𝑑 , a parameter 𝑘 ≤ 𝑑 , and 𝛼 ∈ [0, 1/2], we define
the family

Q𝑑,𝑘,𝛼 = {Q𝑑,ℓ,𝑏,𝛼 : ℓ ⊆ [𝑑], |ℓ | ≤ 𝑘, 𝑏 ∈ {±1}} (14)

Fact 5.3. The size of Q𝑑,𝑘,𝛼 is 2
( 𝑑
≤𝑘

)
+ 2.

Fact 5.4. The uniform mixture of Q𝑑,𝑘,𝛼 is uniform over X.

Lemma 5.5. For every 𝑑 ∈ N, 𝑘 ≤ 𝑑 , and 𝛼 ∈ [0, 1/2],

∥Q𝑑,𝑘,𝛼 ∥2∞→2
≤ 4𝛼2( 𝑑
≤𝑘

)
For brevity, we defer the proof of Lemma 5.5 to the the full

version of this work.

Theorem 5.6. If𝑀 = (𝑀1, . . . , 𝑀𝑛, 𝑀𝑂 ) is an (𝜀, 𝛿)-pan-private
algorithm that learns width-𝑘 signed parities with error 𝛼 and

𝛿 log ( 𝑑≤𝑘)/𝛿 ≪ 𝛼2𝜀2/
(
𝑑

≤ 𝑘

)
,

then its sample complexity is 𝑛 = Ω(
√︃( 𝑑
≤𝑘

)
/𝛼𝜀).
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Proof. Analogous to previous proofs, let Q𝑑,𝐿,𝐵,𝛼 denote a dis-

tribution chosen uniformly at random from Q𝑑,𝑘,𝛼 . We argue that

𝑀 implies an (𝜀, 𝛿)-pan-private algorithm 𝑀 ′ which takes 𝑚 =

𝑛+Θ(1/𝛼𝜀) values fromX as input and outputs a real number such

that dTV (𝑀 ′(U𝑚), 𝑀 ′(Q𝑚
𝑑,𝐿,𝐵,𝛼

)) is larger than a constant.

We specify 𝑀 ′ in Algorithm 2. Although it does not explicitly

have the structure in Definition 2.2, it is straightforward to decom-

pose it into a sequence of algorithms. At a high level, 𝑀 ′ has a
training and a testing phase. In the training phase, it will execute

𝑀 on the first 𝑛 samples to obtain a signed parity function (𝐿̂, 𝐵̂).
In the testing phase,𝑀 ′ will evaluate the function on the remain-

ing samples and maintain a pan-private estimate of the number

of correct predictions. If the samples are drawn from U, then any

choice of parity function makes a correct prediction with only 1/2
probability. But if the samples are drawn from any distribution

Q𝑑,ℓ,𝑏,𝛼 ∈ Q𝑑,𝑘,𝛼 , we know that (𝐿̂, 𝐵̂) = (ℓ, 𝑏) with ≥ 99/100 prob-
ability; conditioned on this event, our predictions will be correct

with probability 1/2 + 𝛼 . Thus, the count of correct predictions will
reliably differentiate between the two input cases.

Pan-privacy: We will first prove privacy for user 𝑖 and intrusion

time 𝑡 . Recall that the adversary’s view is (𝑀 ′I ( ®𝑥≤𝑡 ), 𝑀
′
𝑂
(𝑀 ′I ( ®𝑥)));

for brevity, we shall use the notation (𝑆𝑡 , 𝑍 ). If 𝑖 ≤ 𝑛 and 𝑡 ≤ 𝑛,

the tuple is a post-processing of (𝑀I ( ®𝑥≤𝑡 ), 𝑀𝑂 (𝑀I ( ®𝑥))) which
we know to be (𝜀, 𝛿)-private. If 𝑖 ≤ 𝑛 but 𝑡 > 𝑛, the adversary’s

view is a post-processing of𝑀I ( ®𝑥) which is again (𝜀, 𝛿)-private.
If 𝑖 > 𝑛 but 𝑡 ≤ 𝑛, the only influence 𝑆𝑡 has on 𝑍 is the choice

of (𝐿̂, 𝐵̂); it suffices to prove that 𝑍 is differentially private for any

choice of (𝐿̂, 𝐵̂). Let I(·) be the {0, 1} indicator function. Observe
that 𝑍 ∼ Lap(1/𝜀) +∑𝑚

𝑢=𝑛+1 I(
∏

𝑗 ∈𝐿̂ 𝑥𝑢,𝑗 = 𝑥𝑢,𝑑+1 · 𝐵̂) + Lap(1/𝜀).
𝜀-differential privacy follows the observation that the summation

is 1-sensitive and the privacy of the Laplace mechanism.

If 𝑖 > 𝑛 and 𝑡 > 𝑛, we consider two further cases. When 𝑡 ≥ 𝑖 ,

observe that 𝑍 is a post-processing of 𝑆𝑡 . Also observe that 𝑆𝑡 ∼
Lap(1/𝜀)+∑𝑡

𝑢=𝑛+1 I(
∏

𝑗 ∈𝐿̂ 𝑥𝑢,𝑗 = 𝑥𝑢,𝑑+1 ·𝐵̂). So we can again invoke
the privacy of the Laplace mechanism. When 𝑡 < 𝑖 , we can show

that 𝑍 is differentially private conditioned on any realization of

𝑆𝑡 = (𝐿̂, 𝐵̂,𝐶𝑡 ): because 𝑍 ∼ Lap(1/𝜀) +𝐶𝑡 +
∑𝑚
𝑢=𝑡+1 I(

∏
𝑗 ∈𝐿̂ 𝑥𝑢,𝑗 =

𝑥𝑢,𝑑+1 · 𝐵̂) and 𝑖 ∈ [𝑡 + 1,𝑚], we invoke the privacy of the Laplace

mechanism one more.

Bound on TV distance: Now we show that the total variation dis-

tance between𝑀 ′(U𝑚) and𝑀 ′(Q𝑚
𝑑,𝐿,𝐵,𝛼

) is larger than a constant.

Notice that, for any 𝜏 ∈ R,

dTV (𝑀 ′(Q𝑚
𝑑,𝐿,𝐵,𝛼

), 𝑀 ′(U𝑚))

≥ P
(
𝑀 ′(Q𝑚

𝑑,𝐿,𝐵,𝛼
) > 𝜏

)
− P

(
𝑀 ′(U𝑚) > 𝜏

)
(15)

We will focus our attention on the first term:

P
(
𝑀 ′(Q𝑚

𝑑,𝐿,𝐵,𝛼
) > 𝜏

)
=

∑︁
ℓ⊆[𝑑 ],|ℓ |≤𝑘

𝑏∈{±1}

P
(
𝑀 ′(Q𝑚

𝑑,ℓ,𝑏,𝛼
) > 𝜏

)
· P((𝐿, 𝐵) = (ℓ, 𝑏))

=
∑︁

ℓ⊆[𝑑 ],|ℓ |≤𝑘
𝑏∈{±1}

P
(
𝑀 ′(Q𝑚

𝑑,ℓ,𝑏,𝛼
) > 𝜏 | (𝐿̂, 𝐵̂) = (ℓ, 𝑏)

)
· P

(
(𝐿̂, 𝐵̂) = (ℓ, 𝑏)

)
· P((𝐿, 𝐵) = (ℓ, 𝑏))

≤
∑︁

ℓ⊆[𝑑 ],|ℓ |≤𝑘
𝑏∈{±1}

P
(
𝑀 ′(Q𝑚

𝑑,ℓ,𝑏,𝛼
) > 𝜏 | (𝐿̂, 𝐵̂) = (ℓ, 𝑏)

)
· 99
100

· P((𝐿, 𝐵) = (ℓ, 𝑏))

The final inequality comes from the fact that𝑀 learns parities. No-

tice that, conditioned on (𝐿̂, 𝐵̂) = (ℓ, 𝑏), Fact 5.2 implies𝑀 ′(Q𝑚
𝑑,ℓ,𝑏,𝛼

)
is a sample from the convolution Bin(𝑚 − 𝑛, 1/2 + 𝛼) + Lap(1/𝜀) +
Lap(1/𝜀) with probability ≥ 99/100.

Meanwhile, note that the equality P
𝑋∼U

(∏
𝑗 ∈ℓ 𝑋 𝑗 = 𝑋𝑑+1 · 𝑏

)
=

1/2 holds for any parity function (ℓ, 𝑏). Consequently, the output of
the algorithm𝑀 ′(U𝑚) is a sample from the convolution Bin(𝑚 −
𝑛, 1/2) + Lap(1/𝜀) + Lap(1/𝜀).

Because𝑚−𝑛 = Θ(1/𝛼𝜀), we can use a Chernoff bound to argue

that there is some 𝜏 where

P
(
𝑀 ′(Q𝑚

𝑑,ℓ,𝑏,𝛼
)
)
≥ 99

100

P
(
𝑀 ′(U𝑚) > 𝜏

)
≤ 1

100

By substitution,

(15) ≥
©­­­«

∑︁
ℓ⊆[𝑑 ],|ℓ |≤𝑘

𝑏∈{±1}

99

100

· 99
100

· P((𝐿, 𝐵) = (ℓ, 𝑏))
ª®®®¬ −

1

100

=
99

2 − 100
10000

Lemma 5.5 and Theorem 3.1 imply𝑚 = Ω

(√︃( 𝑑
≤𝑘

)
/𝛼𝜀

)
and, in

turn, 𝑛 = Ω

(√︃( 𝑑
≤𝑘

)
/𝛼𝜀

)
. □

The next theorem adapts our proof to the robust shuffle privacy

setting. For brevity, we defer the proof to the full version; the proof

techniques are essentially the same as previously.

Theorem 5.7. If Π is an (𝜀, 𝛿, 1/3)-robustly shuffle private protocol
that learns width-𝑘 signed parities with error 𝛼 and 𝛿 log ( 𝑑≤𝑘)/𝛿 ≪
𝛼2𝜀2/

( 𝑑
≤𝑘

)
, then its sample complexity is 𝑛 = Ω(

√︃( 𝑑
≤𝑘

)
/𝛼𝜀).
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