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ABSTRACT

There has been a recent wave of interest in intermediate trust
models for differential privacy that eliminate the need for a fully
trusted central data collector, but overcome the limitations of local
differential privacy. This interest has led to the introduction of
the shuffle model (Cheu et al., EUROCRYPT 2019; Erlingsson et
al., SODA 2019) and revisiting the pan-private model (Dwork et
al., ITCS 2010). The message of this line of work is that, for a
variety of low-dimensional problems—such as counts, means, and
histograms—these intermediate models offer nearly as much power
as central differential privacy. However, there has been considerably
less success using these models for high-dimensional learning and
estimation problems.

In this work we prove the first non-trivial lower bounds for high-
dimensional learning and estimation in both the pan-private model
and the general multi-message shuffle model. Our lower bounds
apply to a variety of problems—for example, we show that, private
agnostic learning of parity functions over d bits requires Q(24/2)
samples in these models, and privately selecting the most common
attribute from a set of d choices requires Q(d'/?) samples, both of
which are exponential separations from the central model.
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1 INTRODUCTION

The most widely accepted way to ensure individual privacy in the
context of statistics and machine learning is differential privacy [23],
which provides a strong guarantee that no individual user’s data
has a strong influence on the output of the computation that are
visible to the attacker. Differentially private algorithms, however,
are designed for a variety of different trust models that determine
what output is visible. The strongest, and most commonly studied
trust model is the central model, in which a single party is entrusted
to collect raw data from the users, runs a differentially private com-
putation, and only the final output of this computation is visible. On
the other extreme, the weakest trust model is the local model [40],
where we don’t trust anyone to safeguard raw data, so each user
applies differential privacy locally to their own data to compute
a response, and each user’s response is visible. While the central
model allows for many powerful algorithms, the local model is
much less powerful ([8, 14, 19, 40] et seq.) and significantly limits
the accuracy of computations.

In principle there is no tradeoff between trust and power, as
the user’s can use cryptographic secure multiparty computation
to implement any algorithm designed for the central model with-
out any trusted party. However, general-purpose secure multiparty
computation has several drawbacks, such as large computation and
communication costs, multiple rounds of interaction, and requir-
ing all users to remain live throughout the computation. Although
there are more practical protocols implementing certain differen-
tially private algorithms ([22] et seq.) so far these are restricted to
relatively simple computations and are not practical for large-scale
applications.

Thus, a recent focus has been on intermediate trust models that
offer some of the best features of both the central model and the
local model. Two models that have received significant attention
are:

e The shuffle model [16, 29].l In this model, users introduce
randomness into their own data, as in the local model. How-
ever the user’s responses are then passed through a secure
shuffler so the responses are visible but not identified with in-
dividual users. We consider the most general multi-message
shuffle model where each user can send multiple responses
that are shuffled independently. An equivalent model would
use secure aggregation to ensure that only a histogram of

More precisely, we consider a version of the shuffle model with an additional robustness
property [3]. Although the property is not without loss of generality, and has not
always been formalized in the literature, it is satisfied by all known natural shuffle
protocols, and was one of the explicit motivations of studying the shuffle model [16].
For brevity we use only the term “shuffle model” in the introduction, and defer more
discussion of this issue to Section 2.
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the responses is visible. Secure shuffling and secure aggrega-
tion are significantly easier to achieve than general secure
computation, and Google’s PROCHLO system [9] is a scalable
realization of this model.

The pan-private model [24]. In this model, the users’ data is
processed in an online fashion by a central party. We trust
this central party to process the data but not to store it in
perpetuity, so we assume that at any one point in the stream,
the party’s internal state may become visible. This model
captures, for example, a data collector who is well inten-
tioned, and can be trusted to see raw data during process,
but whose storage may be subject to breaches [1].

We visualize the models in Figure 1. At first glance, these two
models seem unrelated, however a recent result of Balcer, Cheu,
Joseph, and Mao [3] shows that, for a large class of problems that
includes all the problems we study, any protocol in the shuffle
model can be simulated in the pan-private model with only a small
reduction in accuracy. So for purposes of this work, we can think of
these models as being ordered from least powerful to most powerful
as local < shuffle < pan-private < central.

Both the shuffle model ([16, 29] et seq.) and the pan-private
model [1, 24, 44] provably allow much greater accuracy than the lo-
cal model, while also requiring weaker trust than the central model.
See Section 1.3 for a more specific overview of recent progress.
However, these positive results are mostly limited to relatively
simple functionalities, such as computing means and histograms
over the user’s data. We note that these are all problems that can
be solved efficiently in the local model with reasonable, although
larger, sample complexity. However, for problems such as learning
parities and selecting the most common attribute, where the local
model is most severely limited [19, 28, 40, 47], there is no evidence
that either the pan-private or shuffle model can overcome these
limitations. Our main contribution is to show that these limitations
are inherent:

For many high-dimensional learning and estima-
tion problems, the shuffle and pan-private models
incur an exponential cost in sample complexity
relative to the central model.

For those familiar with differential privacy, our results can be in-
terpreted as the statement there is no analogue of the exponential
mechanism in the pan-private or shuffle models, as we prove lower
bounds for problems that can be solved in the central model by
applying the exponential mechanism.

Our specific lower bounds follow from a new general lower
bound argument. We note that the two most common lower bounds
techniques for the local model cannot prove lower bounds for the
pan-private and shuffle models, so our lower bounds cannot be
proven by any straightforward extension of existing lower bound
techniques. Specifically, there is no non-trivial upper bound on the
mutual information between the algorithm’s inputs and outputs [2],
so information-theoretic arguments [19, 42] do not apply. Moreover,
these models can solve problems that would requite infinitely many
statistical queries to solve, so the simulation of the local model in
the statistical query model [40] cannot be extended to these more
general models.
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1.1 Results

Our main results are lower bounds for many closely related learning
and estimation problems in both the pan-privacy and shuffle models
of differential privacy. We note that throughout this work we adopt
the standard model for studying privacy for distributional problems
where we define the accuracy goal with respect to input satisfying
certain distributional assumptions, but define privacy for a worst-
case dataset. We begin by highlighting two important cases of our
results.

Learning Parities. In this canonical learning problem, we are
given a dataset consisting of n labeled examples {(x;, y;)} sampled
from some distribution P over the domain {+1}¢ x {+1}. The goal
is to output a parity function hg(x) = []es x; that predicts the
labels nearly as well as any other parity function. Namely,
=y) > =) —

(x,;Iin(hS(x) y) 2 max (x,5~p(hT(x) y) -«
In the central model this problem can be solved privately to any
constant level of accuracy with just O(d) samples [40], whereas in
the local model any algorithm solving this problem requires Q(24)
samples [28, 40].2 We prove an exponential separation between the
central model and the pan-privacy and shuffle models, showing
that, for learning parities, these models are much more similar to
the local model.

THEOREM 1.1. (Informal) Any differentially private algorithm that
leans parity functions in the pan-privacy model or the shuffle privacy
model requires Q(24/2) samples in the worst-case.

We also consider learning sparse parities, where our goal is to
output some k-sparse parity function hg, |S| < k that competes
with the best parity function on k variables. That is,

h = > P h = — .
~P( s(x) y)_T:rlr}aék (x’yw( T(x)=y) -«

P
(x,y)

We show that learning k-sparse parities requires Q(+/( sdk)) samples

where ( sdk) denotes the number of k-sparse parities on d bits.

Selection. One of the most celebrated tools in central-model dif-
ferential privacy is the exponential mechanism of McSherry and
Talwar [43], which is a very general and very accurate method for
optimizing a Lipschitz loss function over a discrete set of choices.
The canonical problem solved by the exponential mechanism is the
following selection problem: given a dataset consisting of n samples
{x;} from some distribution P over the domain {0, 1}4, select a
coordinate j such that the expected value of the j-th coordinate is
as large as possible. Namely,

E (x))

>max E (x;) — a.
x~P k x~P( k)

In the central model, the exponential mechanism solves this prob-
lem to any constant level of accuracy with just O(log d) samples,
whereas in the local model any algorithm solving this problem re-
quires Q(dlog d) samples [19, 47]. Again, we show an exponential

For specificity, we state lower bounds for the non-interactive local model of differential
privacy, although, for every problem we consider, slightly weaker bounds are known
to hold for interactive variants of the local model as well.
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Figure 1: (Left) The multi-message shuffle model. The attacker’s view consists of the entire set of messages, randomly shuffled.
(Right) The pan-privacy model. The attacker’s view consists of the output and the internal state at any single step, which is s3

in this example.

separation between the central model and the pan-privacy and shuf-
fle models, demonstrating that there is no general-purpose analogue
of the exponential mechanism in these intermediate models.

THEOREM 1.2. (Informal) Any differentially private algorithm that
solves selection to constant accuracy in the pan-privacy model or the
shuffle privacy model requires Q(Vd) samples in the worst-case.

Variants of Differential Privacy. We emphasize that all of our
lower bounds hold for the most general variant of differential pri-
vacy, (¢, 8)-differential privacy for § < 1/ nl1 and obtain lower
bounds for this variant is one of the main technical challenges
addressed by our work. Thus, our results imply essentially the
same lower bounds for pure differential privacy, concentrated dif-
ferential privacy [12, 25], truncated concentrated differential pri-
vacy [10], Rényi differential privacy [45], and Gaussian differential
privacy [18], none of which were known prior to our work.

More Applications. In our work we also prove tight lower bounds
for several closely related, natural problems that have been studied
in the literature on differential privacy:

o Estimating k-Sparse Parities for 1 < k < d. Here we are given
samples {x;} from a distribution P € {+1}¢, and the goal is

to output a set of estimates {ar} rc(q) such that
|T|<k

<«

ar XI?P ]1;[ Xjl| =
for every T.

o d-wise Simple Hypothesis Testing. Here we are given samples
{x;} from a distribution P € Q where Q = {Q1,...,Qy} isa
known set of d hypotheses satisfying drv(Q;, Q;) > «, and
the goal is to determine which of these distributions is P.

e 1-Sparse Mean Estimation. Here we are given samples {x;}
from a distribution P € {+1}¢ with mean y, with the promise

1083

that [|u]lo = 1, and the goal is to output /i such that ||y —

We summarize our lower bounds and compare to the local and
central models in Table 1; due to page limits, we will only present
the analysis for simple hypothesis testing and parity learning. Our
analysis of the other problems (found in the full version of this
work) are similar to the analysis found here. We also stress that,
while the focus of this work is on lower bounds and not algorithms,
all of our lower bounds are easily seen to be tight up to logarithmic
factors with respect to trivial statistical query algorithms [41] that
can be implemented in both the pan-private and shuffle models of
privacy.

1.2 Techniques

Our results are all a consequence of a very general lower bound
for algorithms in these models. For simplicity, we will restrict this
discussion to pan-private algorithms, as lower bounds for shuffle
privacy will then follow from a general transformation from the
shuffle model to the pan-privacy model due to Balcer, Cheu, Joseph,
and Mao [3]. Also, in this discussion we will ignore the parameter
¢ for brevity, but, crucially, our results apply for moderately small
>0

Let {Py}ycp be some family of distributions over the domain
X, let V be uniform over V, and let

U= E (P
E (Po)

be the uniform mixture of these distributions. We will give lower
bounds that show no (¢, §)-differentially private algorithm in the
pan-private or shuffle models can distinguish n ii.d. samples from
U™ from data drawn from the mixture Pg, where we chose v ~ V
uniformly and then sample from PJ. We will, of course, choose
the family {P,} so that any algorithm solving one of the problems
above, must distinguish U” from Pe, which is how we will obtain
sample-complexity lower bounds.
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Table 1: Summary of our sample-complexity lower bounds for the pan-privacy and shuffle privacy models, in comparison to
the local and central models. For brevity, all lower bounds are stated for accuracy a = 1/100 and (1, n~2)-differential privacy.
See the formal theorems for more general statements. All our lower bounds are tight up to polylogarithmic factors. We use

the notation (Sdk) = Zile ((li)

Problem Parameters | Local Privacy Pan/(,sl,}}l:ilf‘l:’ol?;; AY | Central Privacy
Learning Dimension d Q((sdk) log (sdk)) Q( (gdk)) O(log (sdk))
Parities Sparsity k [28] Thms 5.6/5.7 [40]
, , , Q(dlogd) Q(Vd) O(log d)
Selection Dimension d [19] See full ver. [43]
Estimating Dimension d Q((sdk) log (sdk)) Q( (sdk)) O(Vdlog (gdk))
Parities Sparsity k [28] See full ver [36]
d-Wise Simple Q(dlogd) Q(Vd) O(log d)
Hypothesis Testing d Hypotheses [35] Thms 4.2/4.4 [11]
1-Sparse . . Q(dlogd) Q(Vd) O(log d)
Mean Estimation Dimension d [19] See full ver. [Folklore]

For background, we recap the way to use this setup to prove
lower bounds in the (non-interactive) local model of differential
privacy. Here, one chooses the data from the mixture P?, and a
lemma of Duchi, Jordan, and Wainwright [19] gives a bound on the
mutual information between the output of the protocol IT and the
identity of the random mixture component V:

ITI(PR); V) = O(n - €% - [{Pu} 1% ,,) 1)
where
2
2 _ _
I{P}HI%_, = P UQEV((xgEi,U(f(x» ngU<f<x)>) )

is the crucial quantity determining how hard these distributions
are to distinguish subject to local differential privacy. For intuition,
note that this quantity satisfies the relationship

sup

( E
f:X—[£1] \X~Po

=4 E (dv(Pa0)?)

I{Po}I%,, < E
o~V

2
() - B )| )

but it can be much smaller than 4 - E,_y (dry(Py, U)?), which is
crucial for proving tight lower bounds.

Given this lemma, and a construction of a hard distribution
family such that ||{Pv}||§o _,p is small, it is not hard to deduce a
lower bound on the number of samples n required to identify the
specific mixture component V. It is also not too difficult to construct
a family of hard distributions for all of our problems of interest (see
Lemma 3.10 ). We note that all of the lower bounds in the “local
model” column of Table 1 are proven via this approach.

With this state-of-affairs, it is tempting to try to argue that a
mutual-information bound analogous to (1) holds for pan-private or
shuffle model algorithms. However, Balcer and Cheu [2] constructed
a family of distributions and a pan-private algorithm such that the
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mutual information I(IT; V) can be unbounded, showing that the
purely information-theoretic approach used to prove lower bounds
for the local model cannot work for pan-privacy.’

Nonetheless, we prove the following indistinguishability lemma
for pan-private algorithms:

drv (II(U"), IL(PY,)) < O(n - £ - [{Po}loom2) )
Although this bound is quantitatively somewhat weaker than (1)—in
ways that are actually crucial to avoid proving false statements—it
is nonetheless sufficient to give tight lower bounds for all of the
problems we consider. The value of this lemma is that, even though
the information-theoretic bounds that are used in the local model
are false for the pan-private model, the exact same constructions
of hard distributions can be used to obtain lower bounds for pan-
privacy!

The proof of this lemma uses a hybrid argument, where we
transition between data sampled from U” and data sampled from
P{.. Namely, we fix a value of i between 0 and n and consider the
case where the first i inputs are sampled from U? and the remaining
n—i inputs are sampled from P"~#, We then bound the total variation
distance between the i-th case and the (i + 1)-st case and apply the
triangle inequality. In each step, we carefully argue that the total
variation distance between the two cases follows from a careful
application of (1) to the algorithm that computes the internal state
after viewing the first i inputs, which is why we ultimately get a
bound of a similar form.

3The algorithm showing pan-private algorithms can have unbounded mutual informa-
tion crucially uses the full generality of (¢, §)-differential privacy for § > 0, however,
even for stricter variants of differential privacy where the mutual information is
bounded, we don’t know how to obtain a mutual-information bound as strong as (1)
for any of these variants.
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1.3 Related Work

Comparison to the Concurrent Works of [15] and [7]. A con-
current and independent work of Chen, Ghazi, Kumar, and Manu-
rangsi [15] proves lower bounds for selection and learning parity
in the multi-message shuffle model. Their lower bounds depend on
the number of messages, and are only non-trivial when the number
of messages is relatively small, whereas our lower bounds do not
require any bound on the number of messages. For example, their
lower bound for selection is Q(d/m), where m is the number of
messages, while our lower bound for selection is Q(\/E) for any
number of messages, and our lower bound is matched by a trivial
algorithm that sends d messages. Compared to ours, their lower
bounds do not require the shuffle protocol to be robust, although
robustness was a motivating feature of the shuffle model that is
discussed in the early work on the subject [16, 29]. Their work also
does not consider the pan-privacy model, and their arguments do
not seem to apply to that model.

Another concurrent and independent work of Beimel, Haitner,
Nissim, and Stemmer [7] proves lower bounds for multi-message
shuffle protocols that use a small number of messages. They show
that if an m-message shuffle protocol is private when run with for n
users, then each user’s messages reveals at most ~ n™ bits of infor-
mation about their input, which allows them to prove non-trivial
lower bounds when m is quite small. Beimel et al. also describe
shuffle protocols that use multiple rounds of communication; we
do not consider interactivity in this work.

The Shuffle Model. The shuffle model was introduced concur-
rently in works by Cheu et al. [16] and Erlingsson et al. [29].
These works were both inspired by Google’s PROCHLO system [9],
which implements a more general algorithmic paradigm called
encode, shuffle, and analyze. Much of the work in this model has
focused on constructing optimal algorithms for problems like bi-
nary sums [16, 30], real-valued sums [4, 5, 32-34], histograms and
heavy-hitters [2, 16, 31], and uniformity testing [3]. Another com-
plementary set of works have given general amplification theorems
showing that if each user applies a differentially private random-
izer to their data, then the shuffle protocol using the randomizer
satisfies differential privacy with stronger parameters [4, 29].

Almost all prior lower bounds for the shuffle model apply only
to a special case of the model where each user sends only a single
response, the so-called single-message shuffle model. Cheu et al. [16]
showed that if a protocol is private in this restricted model, then
each user’s response satisfies local differential privacy, for which we
already have strong lower bounds. Their approach was refined by
Ghazi et al. [31], who obtained stronger bounds for single-message
protocols. Balle et al. [4] proved a lower bound for computing real-
valued sums in the single-message model. In contrast, our lower
bounds hold for the general multi-message shuffle model, where
each user may send an arbitrary number of messages that are
shuffled independently. Note that in this model, the user’s individual
responses need not satisfy any local differential privacy [2]. An
early lower bound for the multi-message shuffle model is due to
Ghazi et al. [30], and applies to computing binary sums subject to
pure differential privacy and a strong communication constraint.
We emphasize that our lower bounds do not impose any restriction
on the number of messages or the amount of communication.

1085

STOC °21, June 21-25, 2021, Virtual, Italy

The Pan-Private Model. The pan-privacy model was introduced
by Dwork et al. [24] as a model of differential privacy for streaming
algorithms, and they constructed pan-private algorithms for classic
streaming problems like distinct elements. Their algorithm was
subsequently improved by Mir et al. [44], who also gave the first
lower bounds for this model. We note that their technique gives
lower bounds for worst-case inputs, whereas our technique gives
lower bounds for distributional problems.

More recently, Amin, Joseph, and Mao [1] revisited the model
from the perspective of finding an intermediate trust model be-
tween local and central privacy, which is the perspective we adopt
in this work. They also gave an algorithm for uniformity testing and
a matching lower bound for algorithms satisfying pure differential
privacy, which is (¢, §)-privacy with § = 0. Theirs is the first lower
bound in this model for any distributional problem. As we discussed
above, their information-theoretic arguments are inherently lim-
ited to pure differential privacy, whereas ours apply to differential
privacy in general.

The initial work on pan-privacy considered a more general model
where the attacker can view the internal state at two or more
arbitrary steps, however [1] showed that this model is equivalent
to the local model with sequential interaction. Our lower bounds
apply to the weakest model, where the attacker can view the state
at just a single time step.

Lower Bounds Techniques in the Local and Central Model.
We briefly summarize the techniques for proving lower bounds
in the more well studied models of differential privacy. The first
lower bounds for local differential privacy were proven by Ka-
siviswanathan et al. [40], who proved that the local model is equiv-
alent, up to polynomial factors, to the statistical queries model [41].
Balcer and Cheu [2] showed that the shuffle and pan-private model
do not admit such a characterization. Recently Edmonds, Nikolov,
and Ullman [28] gave a nearly tight characterization of the sam-
ple complexity of query release and agnostic learning in the non-
interactive local model. Subsequent work led to stronger lower
bounds for specific problems in the local model [6, 8, 14, 19-21, 37,
38], including interactive variants of the local model. This line of
work primarily uses information-theoretic arguments that were
first introduced by McGregor et al. [42] in the context of two-party
differential privacy. However, as we discussed earlier, these ap-
proaches cannot give strong lower bounds for the pan-private and
shuffle model, and the main novelty in our work is finding alterna-
tive lower-bound arguments for these intermediate models that do
not require strong information bounds.

There are two main approaches to proving lower bounds for
high-dimensional problems in the central model of differential pri-
vacy. The first are reconstruction attacks, introduced by Dinur and
Nissim ([17] et seq.). These attacks only apply when computing
some statistics to very high accuracy, and thus cannot give non-
trivial lower bounds for distributional problems where the accuracy
can never be smaller than the sampling error. The other main ap-
proach is based on tracing attacks ([13, 27, 46] et seq.). Although
tracing attacks give tight lower bounds for the central model, but
the lower bounds we prove for more restricted models are exponen-
tially larger, and do not seem to be provable using tracing attacks.
We refer the reader to [26] for a survey of these lower bounds.
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2 PRELIMINARIES

2.1 Notational Conventions

We use boldface letters to denote probability distributions, capital
letters in plain math text denote random variables, and calligraphic
letters denote sets. We reserve M for randomized algorithms and IT
for distributed protocols. Throughout this work, we use the notation

[k] :={1,2,...,k}.

2.2 Differential Privacy

We define a dataset X € X™ to be an ordered tuple of n rows where
each row is drawn from a data universe X and corresponds to the
data of one user. Two datasets X, X’ € X™ are neighbors, denoted as
X ~ %', if they differ in at most one row.

Definition 2.1 (Differential Privacy [23]). AnalgorithmM : X" —
R satisfies (¢, §)-differential privacy if, for every pair of neighboring
datasets ¥ and X’ and every event C C R,

P(M(%) €C) < e -P(M(X’) € C) +3.

The central model of differential privacy refers to the case where
the algorithm M is allowed to depend arbitrarily on ¥ with no
further restrictions.

2.3 The Pan-Private Model

A pan-private algorithm observes the data as a stream. At each step,
the algorithm receives a datapoint that it uses to update its internal
state, and this process repeats until the stream is exhausted and
a final output is computed. We say that two streams ¥ and X ” are
neighbors if they differ in at most one element. Pan-privacy models
an attacker who observes the final output of the algorithm, as well
as the internal state at any one step in the stream, and requires
that the joint distribution of these two pieces of information is
differentially private.

Definition 2.2 (Online Algorithm). An online algorithm M is de-
fined by a sequence of internal algorithms M, My, . .. and an output
algorithm Mp. On input X%, the first function M; : X — 7 maps
x1 to a state s; and the remaining functions M; map x; and the
previous state s;—1 to a new state s;. At the end of the stream, M
publishes a final output by executing My : 7 — O on its final
internal state.

Definition 2.3 (Pan-privacy [1, 24]). Given an online algorithm M,
let M7 (X) denote its internal state after processing stream X, and
let X<, be the first ¢ elements of X. We say M is (¢, §)-pan-private
if, for every pair of neighboring streams ¥ and X/, every time ¢ and
every set of internal state, output state pairs T C I X O,

E((M](fSt),MO(MI(f))) €T)

< e P((M7(FL,), Mo(M () € T) +6.

®)
See Figure 1 for a diagram.

Note that any pan-private algorithm can trivially be implemented
in the central model. Our definition of pan-privacy is the specific
variant given by Amin et al. [1]. This version guarantees record-
level privacy (uncertainty about the presence of any single stream
element) rather than user-level privacy (uncertainty about the pres-
ence of any one data universe element). We use this variant because
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for the problems we consider it is natural to model each user as
contributing a single element of the stream.

2.4 The Shuffle Model

In the shuffle model, each user individually randomizes their own
data to produce a series of messages. Unlike the local model, where
these messages would be identified with the user who produced
them, we allow the users to send their messages to a secure shuffler
that collects all the messages of all the users and randomly permutes
them.* The shuffle model captures an attacker who observes the
messages after they are shuffled, and we require this shuffled set of
messages to satisfy differential privacy. An equivalent model would
allow the attacker observes only a histogram of the messages.

Definition 2.4 (Shuffle Model [16]). A protocol IT in the shuffle
model consists of three randomized algorithms:

e A randomizer IIg : X — Y* mapping data to (possibly
variable-length) vectors. The length of the vector is the num-
ber of messages sent. If, on all inputs, the probability of
sending a single message is 1, then the protocol is said to be
single-message. Otherwise, the protocol is multi-message.

o A shuffler IIs : Y* — Y™ that applies a uniformly random
permutation to all messages.

e An analyzer I14 : Y* — O that computes on a permutation
of messages.

As the shuffler is the same in every protocol, we identify each
shuffle protocol by IT = (IIg, I14). We define the honest execution
on input X € X™ as

(%) = M (T (TR(x1), . .., TR (xn))).
We denote the output of the shuffler as

(Is © M) (%) := Mg (MR (x1), .. ., IR (xn)).
We assume that users and the analyzer have access to n, as well as
an arbitrary amount of public randomness.

We remark that we focus on one-round or non-interactive shuffle
protocols: each user generates their messages in one time step,
the shuffler permutes the messages for the analyzer in the next
time step, and no other communication occurs between parties.
Concurrent work by Beimel et al. [7] define a form of multi-round
shuffle protocol but we do not consider it here.

It remains to define differential privacy in this model. We note
that the output of the shuffler only follows the distribution I1(X) if
all users are following the protocol as specified. This assumption is
undesirable because it means each user is reliant on other users to
behave correctly. Thus we consider a robust variant of the shuffle
model, where we require that the protocol remains private when
only a constant fraction of users behave correctly, while the other
users may behave arbitrarily. We emphasize all known natural
protocols in this model satisfy the additional robustness condition,
and the need for robustness was explicitly discussed in [16] as a
feature of the model, so we consider the robust variant to be the
most appropriate version of the model.

Definition 2.5 (Robust Shuffle Differential Privacy [3]). Fixy €
(0,1]. A protocol IT = (R, A) is (&, 8, y)-robustly shuffle differentially

4See [9] for a discussion of various choices of how to implement such a secure shuffler.
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private if, for alln € Nand y’ > y, the algorithm ITg o Hgn is (& 9)-
differentially private. In other words, IT guarantees (¢, §)-shuffle
privacy whenever at least a y fraction of the intended number of
users follow the protocol.

We remark that the above definition only explicitly handles
drop-out attacks, where malicious users send no messages. How-
ever, dropping out is the worst malicious users can do. Combining
arbitrary messages from malicious users with the messages of hon-
est users can be viewed as a post-processing of IIg OH};H. IfIIg OH};"
is already differentially private for the outputs of the yn users alone,
then differential privacy’s resilience to post-processing ensures that
adding other messages does not affect this guarantee. Hence, it is
without loss of generality to focus on drop-out attacks.

2.5 From Robust Shuffle Privacy to
Pan-Privacy

[3] prove a reduction from robust shuffle privacy to pan-privacy in
the context of uniformity testing and counting distinct elements.
Here, we note that the technique can be applied to essentially any
distributional problem, so we state it as a standalone theorem. Using
this theorem we will be able to obtain lower bounds for the shuffle
model from those we prove for the pan-private model.

We begin by establishing some notation. For any universe X, let
U denote any fixed distribution over X. For any distribution P over
X and any b € [0, 1], let P(3) denote the mixture b - P+ (1) - U.

THEOREM 2.6 (GENERALIZATION OF [3]). For any number of users
n and any (&, 8, 1/3)-robustly shuffle private protocol I1, there exists
an (&, 8)-pan-private algorithm MY such that

drv(MIU™?), TI(U™) = 0 )
and, for any P over X,
dry(MI(PP3), TP 1)) < exp(—Q(n)). )

(2/9)
In particular, if n is larger than some absolute constant,

dry (MT(P"?), TI(PY, ) < 1/6.

Algorithm 1: M, an online algorithm built from a shuffle
protocol

Input: Data stream X € X"/3; a shuffle protocol
IT = (TIg,I14) that expects n inputs

Create initial state So « (IIg o HZ/ 3) (un/3)
Sample N’ ~ Bin(n, 2/9)
Set N’ < min(N’,n/3)
For i € [n/3]

Ifi<N: W« x;

Else W; ~ U;

Create the state S; by shuffling the messages from S;_;

with those from ITg(W;)
Create Y by shuffling the messages from S, /3 with those
from HZ/S (un/3)

Return IT4( 17)

1

8
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ProOF. We present a concise version of MII in Algorithm 1.
Although it does not explicitly take the form specified by Definition
2.2, it is straightforward to decompose it into a sequence

(M],...,Mn/3,M0).

We give a high-level justification before detailing the proof. Prior
to reading user data, it simulates the execution of the shuffle pro-
tocol on n/3 data samples drawn i.i.d. from U. Upon reading each
user’s data, it generates messages using the local randomizer and
adds to the shuffled set of messages. Each state of the shuffled set is
private due to the robust privacy of the shuffle protocol: it contains
a uniformly random permutation of messages from at least n/3
executions of the local randomizer. After reading user data, the
algorithm injects n/3 more rounds of noisy messages. This serves
to ensure that the output of the protocol is private. And observe
that the shuffle protocol is run on a mixture between the true data
distribution and the public distribution U, where the mixture pa-
rameter is known to the algorithm. This means that the distribution
of the output is shifted by a known and bounded factor.

Pan-privacy: For any user i and intrusion time ¢, we prove that
(M? (¥<t), Mg (M? (¥)))—the adversary’s view—is (¢, §)-private
conditioned on arbitrary event N’ = n’. If i > n’, observe that the
algorithm is completely independent of x;. Otherwise, we shall
leverage the robust privacy of II.

We first consider the case where ¢ < i. The state observed by
the adversary, S;, is independent of x; so it will suffice to prove
that Mg (M? (X)) is differentially private conditioned on any event
S; = s¢. Note that Mg(M?(J?)) is obtained by running I14 on the
union of s; and

AWz UL U), (6)
[ —

h
(s HR)(XHL o Xi, Wi,
n/3 terms

where h = 2n/3 —t > n/3. We can therefore invoke the robust
shuffle privacy of II.

Now we consider the case where ¢ > i. Observe that M? (X<t)
is equivalent to

(Ms o IR (U, .., Uxs X1, X1y Wi -, W),
N—————

n/3 terms

where h = n/3+t > n/3. We again invoke the robust shuffle privacy
of I1. And, conditioned on any event M? (X<t) = s¢, we argue that

Mg (M? (X)) is independent of x;. This follows from our previous

observation that Mg(M? (X)) is obtained by running I14 on the
union of s; and (6); x; is not an input to this function.

Bound on TV distance: In the case where the input X is drawn
from U"/3, observe that every execution of IIg made by M is on
an independent sample from U. Because the output of the algorithm
is obtained by running IT4 on n such executions, we immediately
have MIL(U™/3) = TI(U™).

Otherwise, consider n samples from P(,/9). The number of sam-
ples drawn from P is distributed as Bin(n, 2/9). By Hoeffding’s
bound, P(Bin(n,2/9) > n/3) < exp(—Q(n)). This means the TV
distance between Bin(n, 2/9) and the distribution of N’ is at most
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exp(—Q(n)). In turn, the TV distance between

n terms
(P, q)) = T4 (I (TR (P), ..., IR (P), IR (V), ..., IIg (U)))
————
Bin(n,2/9) terms
and

n terms

MI(P"/3) = T4 (s (TIR(P), . .., TIR(P), TIR(U), ..., TIr (U)))
N’ terms

is at most exp(—Q(n)) as well. This concludes the proof.

3 MAIN LOWER BOUND

Let M be a pan-private algorithm. Let {P;} ,c be a family of distri-
butions, V be uniform over V, and U = E,_y (P,) be the uniform
mixture over the distributions. Let U” be the product distribution
consisting of n copies of U and let P}, = E,.y (P) be the mixture
of product distributions. Note that U = P%,.

An important quantity that we will show measures how hard
it is for pan-private algorithms to distinguish U” from Py, is the
(00—2)-norm® of {P,}, which defined as

[{Po}lowos2z =  sup E

FiX—[x1]1 0~V

I\ 1/2
((xg, - B ()] )

The main goal of this section is to prove the following theorem.

THEOREM 3.1. If{Py} ey is a family of distributions and M is an
(e, 8)-pan private algorithm such that® §log |'V/5 < & ||{Pv}||(2w_)2
and dpy (M(PY,), M(U™)) is larger than a positive constant, then

1

nz Q(en{Pu}n«Hz)

More generally, n > 1/O(¢||{Py}lco—2 + /O log [V1/5)

The main tool we use to prove Theorem 3.1 is the following
information inequality.

LEMMA 3.2. For any (e, §)-pan private algorithm M,

drv(M(PY), M(U™)) < n- |31 5({Ps})

where we define I, 5({Py}) = sup mx—r I(M(Py); V)
(&,8)-DP

PrOOF OF LEMMA 3.2. As a shorthand, let Q; denote the distri-
bution of M (U, Pg_i). This is the distribution of the algorithm’s
output on a data stream where the first i elements are sampled
iid. from U and the rest from Py. Note that Qo = M(P,) and
Qp = M(U™). By the triangle inequality we have

dry (M(P}), M(U™) = d1v(Qo, Qn) < ) drv(Qi-1,Q0)-

i=1

SWe call this quantity the (co—2)-norm because it is equal to the better known
(c0—2)-norm, sup, [|Mz||2/||z]|co, of the matrix M defined by My = Py(x) —
U (x).
5We use x < y to indicate that x < cy for a sufficiently small numerical constant
c>0.
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Thus, in order to prove the theorem it is enough to show that for
everyi=1,...,n,

drv(Qi-1,Qi) < \/3L.s({Po}) ™)

Before proving (7), we give a simplified diagram of the relevant
random variables in the two distributions Q;_1, Q; in Figure 2. For
the purposes of comparing Q;_; and Q;, we can group all of the
inputs Xj,...,Xj—1 ~ Ui! into one random variable and all of the
inputs Xj41...n ~ P%"' into another random variable. Moreover, in
Qi—1, X;j is drawn from Py, for the same choice of V as Xj;1...n,
whereas in Q;, X; is drawn from U.

Now, observe that the random variable S; has the same marginal
distribution in both Q;_1, Q;. This also holds for Xj;;...,. But in
Qi-1, Si and Xj41...,, are correlated by the shared choice of V, while
in Q; they are independent. Moreover, Sy is a post-processing of
the pair (S, Xi+1...n). Thus, using (S;, Xj+1...n) to denote the joint
distribution of S;(V) and Xjt1...,(V) in Q;—1, and applying the
data-processing inequality, we have

drv(Qi-1,Qi) < drv((Si Xi+1--n), (Si ® Xiv1...n))
= E (dTV(Xi+1---n|Si:s,-in+1---n))

SiNSi

where the last step uses the following fact.
Fact 3.3. For any random variables A, B,

drv((A,B),(A®B)) = EA(dTV(BlAza, B))

Next, since S; and Xj41..., are independent conditioned on V,

we have
S_IE?S_(dTv(Xi+1---n|5i=si,Xi+1~~~n)) < S_INES_(dTV(Vlst,.,V))

where we use the following fact.

Fact 3.4. If (A, B, C) are jointly distributed random variables and
A and B are independent conditioned on C, then for everya € supp(A),

drv(Bla=a B) < d1v(Cla=a; ©).
We prove Facts 3.3 and 3.4 in the full version of this work. From
this point we can calculate

E (drv(Vls,=s; V)
Si’vSi

E (dry(Vls,=s; V)?)

Vo
EY
N

<3 I(SiV)

Lastly, we argue that I(S;;V) < I, s({Py}) using pan-privacy.
The intuition is that pan privacy requires S; to be (¢, §)-differentially
private as a function of the prefix Xi, ..., X;. Moreover, X, ..., Xj—1
are drawn from the fixed distribution U'~! that is independent from
V. Therefore, we can fix the distribution of X7, ..., X;—1 and view
S; as an (¢, §)-differentially private function of just X;. Specifically,
given an (¢, §)-pan private algortihm M, and i, define the function

®)

<

(Jensen’s Inequality)

IN
D=

Es - dir (Vs,=s |l V)) (Pinsker’s Inequality)

L da (S VIS 9 )
(chain rule for KL-divergence)

(definition of mutual information)
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e

X1.oi

Xi Xit1--

/

n

Vv

Figure 2: A simplified diagram of the relevant random variables in Q;_; (left) and Q; (right).

fi : X = R as follows: f;(x) samples X, ...,X;—; ~ U1, com-
putes s = Mi(X1), s2 = Ma(Xa,51), ..., sic1 = Mi—1(Xi-1,5si-2),
and outputs r = M;(x, sj—1). Pan-privacy guarantees that f;(x) =
M;(X1,...,Xi-1,x) is (& 9)-differentially private as a function of x.
Note that S;|x,=y is distributed identically as f;(x). Therefore

VEIS5V) = L MiPy): V) < 3 5((Po))

Combining with the previous calculations gives

drv(Qi-1,Qi) < y/3Ls({Po}).

as desired.

To use Lemma 3.2 we need a bound on the mutual information
I 5({Py}). A result of Duchi, Jordan, and Wainwright [19], gives
such a bound for the case of § = 0.

Lemma 3.5 ([19]). Leo({Po}) < O(2IH{Po}IZ, ).

We give a simple extension to the case of § > 0.

2
00—2

LEMMA 3.6. I, 5({Py}) < O(?||{Pu} I + dlog 1VI/s).

Therefore, we will obtain Theorem 3.1 as an immediate corol-
lary of Lemma 3.2 and Lemma 3.6. The proof of Lemma 3.6 from
Lemma 3.5 relies on the following statement, which is an easy con-
sequence of a structural result of Kairouz, Oh, and Viswanath [39].

LEmmA 3.7. If M : X — R is (¢ 0)-differentially private, then
there is a (2¢, 0)-differentially private M’ such that

Vx € X drv(M(x), M’ (x)) < 8

We prove this lemma in the full version of this work.

PROOF OF LEMMA 3.6. Let M be any (¢, §)-differentially private
function with input x € X. Lemma 3.7 guarantees that there exists
a mechanism M’ that is (2¢, 0)-differentially private and satisfies

Vx € X dry(M(x),M'(x)) < §

In particular, dty (M(Py), M’ (Py)) < 8. Therefore, there exists a
joint distribution (M, M’) such that M = M(Py ), M’ = M’(Py) and
P(M # M’) < 6. Let B be the binary random variable I{M # M’}.
Thus, there is a joint distribution (M, M’, B) such that (B=0—=
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R=R’) and P(B # 0) < &. Therefore,

I(V;R)
< I(V;M,M’, B)
<I(V;M,M’ | B) + H(B)
=I(V;M,M’ | B=0)-P(B=0)
+I(V;M,M’ | B=1) -P(B=1) + H(B)
<I(V;M')+H(V) -6+ H(B)
= I(V; M) + O(8log |'V| + 8 log(1/6))
< Leo({Po}) + O(Slog |V] + 51og(1/6))
= O([l{Pu}1%,,,) + O(Slog | V| + 5 log(1/6))

The lemma follows by rewriting the final line as O(élog |V1/s). O
A Family of Hard Distributions. In order to apply Theorem 3.1 to a
learning or optimization problem, we need a family of distributions
{Py} such that ||[{Py}||co—2 is small and any accurate algorithm for
the problem distinguishes Py, from U". This subsection describes
one such family we will use in most of our lower bound arguments.
Let X = {+1}9 be the data domain. For a parameter « € (0,1/2),
a non-empty set £ C [d], and a bit b € {£1}9, we define the
distribution Py 4,  to be uniform on {£1}4 except biased so that
Ex~Pyarpq (Ilies Xi) = 2ab. Its probability mass function is

(1+2a)27¢ if [[je;xi=b

(1-22)27% if [T;e;xi = —b ©)

Pyrba(x) = {

Note that, for every non-empty " # t, Ex-p,,,, ([Tjey Xi) = 0.
For dimension d, a parameter k < d, and « € (0, 1/2), we define
the family

Paka = Paeba:t € [d]|t] € [k],b € {£1}} (10)

. . d dy _ vk (d
FacT 3.8. The size of Py is2 - (sk) where (sk) = ZFI (j)
Fact 3.9. The uniform mixture over Py i o is uniform over X.

The following lemma is implicit in many lower bounds for local
differential privacy (e.g. [19, 28, 47]), although we reprove it here
for completeness.

LEmMA 3.10. Foreveryd € N, k < d, and a € (0,1/2),

4a?
2
1Pakalloss < ——

(d

<x)
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ProoF. We first expand the definition of the (co — 2) norm. For
brevity, we write sup  in place of supg.x_, [+1]-

1P 2z
1 2
=su | B (f(x) - E ( (X)))
fp PPy |7Dd,k,(x| (x~P f x~U f
2
1
= sup P ) - (Pg,gp,a(x) — Ux))
fectdien Pdkal xe{zil}d
be{x1}
2
=sip—— > | D f(x) (Pepa(x) - U)
£ 2(&) teldIIel \xe (21)4

(11)

Note that (9) is equivalent to Py pp, o (x) = (1+ 2ab - [[;¢; x;)274
and, via Fact 3.9, U(x) = 274, Thus,

2
1
(11) = sup ——-— - Z f(x)-2ab~l_[xi-2_d
f2(5)  rctdien xe{z1}4 ict
be{x1}
2
20(2 —d
=sup—— ) D, f@ -]z
f (gk) ecldlitlelk] \xe{=1}d ict
be{=1}
, 2
4o _
=sup—— ) D, f@ ] a2
(gk) tcld],|t|e[k]\xe{x1}4 iet
2
40 _
< sup ——- Z Z f(x)~l—[xi~2d (12)

(

Define f(t) = XIE,U(f(X) - [1;es Xi), the Fourier transform over

the Boolean hypercube. This is precisely the term being squared
above. So we have

k) tCd)\re(z1)d iet

40? N
(12)=—— sup > f(1)?

(Sk f:X—[+1] tC[d]
402

= % sup E ( f (X)z) (Parseval’s identity)
(Sk) Fix—[x1]X~U
40

S R

d
<)

—_

This concludes the proof. O

The following is an immediate corollary of Theorem 3.1, Lemma
3.10, and Fact 3.8.

THEOREM 3.11. Let Py oy denote a distribution chosen uni-
formly at random from Py o, (where L is a uniformly random subset
of [d] with size < k and B is a uniformly random member of {£1}).
If M is an (g, 8)-pan private algorithm such that §log (%)/s <

azez/(sdk) and dTV(M(PZ,L,B,a)’M(Un)) is larger than a positive
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constant, then
d
(<)
ae

4 LOWER BOUNDS FOR SIMPLE
HYPOTHESIS TESTING

In this section, we use Theorem 3.11 obtain lower bounds for the
problem of simple hypothesis testing. We first prove a lower bound
that holds under pan-privacy, then adapt it for robust shuffle privacy
via Theorem 2.6.

Definition 4.1 (d-Wise Simple Hypothesis Testing). Let d be any
integer larger than 1 and let @ be any real in the interval (0, 1/2). An
algorithm M solves d-wise simple hypothesis testing with error  and
sample complexity n if, for any set of d distributions P satisfying
drv(P,P’) > « for every distinct pair P,P’ € P, when given n in-
dependent samples from an arbitrary P € P as input, the algorithm
outputs P with probability > 99/100. This probability is over the
randomness of the samples and of M.

THEOREM 4.2. If M is an (¢, §)-pan-private algorithm that solves
d-wise simple hypothesis testing with error a and §log d/5 < a?€?/d,
then its sample complexity is n = Q(Vd/ac).

Proor. Consider the set of distributions {U} U P ; ,. Note that
this is a family of 2d + 1 distributions. From Fact 3.8, its size is 2d + 1.
In the full version of this work, we also prove the following lower
bound on pairwise distances:

Cramm 4.3. ForanyP # P’ € {U} U Py 4, drv(P,P') > a.

The upshot is that {U} U P, , is a valid set of distributions for
(2d + 1)-wise hypothesis testing. We now argue that the accuracy
of M for this problem instance implies that we can invoke Theorem
3.11.

To do so, let Py g, denote a distribution chosen uniformly
at random from #g ; ,. We show that the total variation distance
between M(U") and M (P(’;’ L B,a) is at least some positive constant.

dry (M(U™), M(PR )

= e P(M(U") € P) - P(M(PZ’L’B’a) c p)‘
> P(M(U) € {U}) - P(M(PZ’L’B,U() c {U})
> P(M(U") € {U}) - %
99 1 49
> - ==
100~ 100 _ 50

To obtain the second inequality, we first observe that Py ;5 , # U
for every ¢, b so U would be an incorrect output. Then we use the
fact that M solves simple hypothesis testing: it is incorrect with
probability at most 1/100. The same reasoning yields the third
inequality.

1 —
fllpd,l,allooﬂz) -
Q (\/E/ as).. This lower bound holds for a family of 2d + 1 distribu-
m]

From Theorem 3.11, we conclude that n = Q(

tions, so the claimed result follows by rescaling d.
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The next theorem adapts our proof to the robust shuffle privacy
setting:

THEOREM 4.4. IfII is an (¢, &, 1/3)-robustly shuffle private pro-
tocol that solves d-wise simple hypothesis testing with error a and
Slogd/s < a’e?/d, then its sample complexity is n = Q(Vd/ae).

PrOOF. As before, let Py g, denote a distribution chosen uni-
formly at random from Py ; . Let IT denote an algorithm in the
shuffle model that solves (2d + 1)-wise simple hypothesis testing
with accuracy 2a/9.

Let MU denote the (e, §)-pan-private algorithm guaranteed by
Theorem 2.6. We will lower bound the total variation distance

between M (U™/3) and MH(PZ,/LE,B,a)'

dry (M (U3, MR

)

> P(MI(U"P) € (uy) - (M@

) e (U})

1
> P(I(U") € (U}) ~ B(TIPS 50 0) € (U}) -
(Theorem 2.6)
49 1 61
>— - - =
50 6 75
The third inequality comes from repeating the analysis in the proof
of Theorem 4.2. Since M! is an (¢, §)-pan-private algorithm such
that

dry (M (U3, MIP L )

is at least a positive constant, we invoke Theorem 3.11 to conclude
that n = Q(Vd/ae). The claimed theorem follows by rescaling
and d. O

5 LOWER BOUNDS FOR LEARNING SIGNED
PARITY FUNCTIONS

In this section, we take X = {J_rl}dJrl and interpret the bits at index
d + 1 to be labels of the strings. Our focus will be on signed parity
functions: given a tuple (¢, b) € 2[4l x {+1} and a string x € X, we
would like labels to predict the value b - [] ;¢ x;. Specifically, for
any distribution P over X, we define error function

errp(£,b) := P Ib- ]_[ X; # Xga1 |
jet
to be the probability of misclassifying a random test example.
Definition 5.1. Let & € (0, %) be a parameter and let 1 < k < d be
integers. An algorithm M learns width-k signed parities with error o
and sample complexity n if it takes n independent samples from a

distribution P over X and reports a tuple (L, B) € 2091 % {+1} such
that, with probability at least 99/100,

errp(L, B) < mibn errp(£,b) + .
L,

This probability is taken over the randomness of the samples and
over M.

For this problem, we will use a variant of our family of distribu-
tions: for a parameter a € [0,1/2],aset £ C [d], and a bit b € {+1},
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Algorithm 2: M’, an online algorithm

Input: Data stream ¥ € X™; access to online algorithm
M: X" - 2ldl x {21}
Output: A random variable Z € R
1 81— My(x1)
2 Forie [2,n]
| Si — Mi(xi,Si-1)
Foric [n+1,m]
Ifi=n+1:
(L, B) « Mop(Sn)
C ~ Lap(1/e)
Else
| (LBC) «—Siy
I [1ef%ij = Xider - B:
| C—C+1
| Si— (L.BO
13 L ~ Lap(1/¢)
14 Return Z «— C+L

3

4
5
6

7

8
9

fo

11

p2

we define the distribution Qg ; 5, o to have probability mass function

(1420279 i b [Tiepxj = Xge1
Qarbalx) = —d-1 - Jee " (13)
(1-2a)2 ifb-[jerxj = —Xan
Fact 5.2. For any (¢',b’) # (£,b),
Po|b-[ X=X L
. =Xy | ==
X~Qarba\ ey ’ e
P b - H X=X <!
X~Qd,ebx ! SRy

Jjet

For dimension d, a parameter k < d, and a € [0, 1/2], we define
the family

Qika ={Qdebe:t S [d] 1] <k be{+1}}

FacT 5.3. The size of Qqj.q is 2( %) +2.

(14)

Fact 5.4. The uniform mixture of Qg k. o is uniform over X.
LEmMMA 5.5. Foreveryd e N, k < d, and a € [0,1/2],
4a?
d
(gk)
For brevity, we defer the proof of Lemma 5.5 to the the full
version of this work.

2
1Qukallcoss <

THEOREM 5.6. If M = (My, ..., Mn, Mp) is an (&, §)-pan-private
algorithm that learns width-k signed parities with error a and

Slog (5)/8 < a?é? /(Sdk),

then its sample complexity isn = Q( (Sdk)/as).
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ProOF. Analogous to previous proofs, let Qg p , denote a dis-
tribution chosen uniformly at random from Qg . . We argue that
M implies an (¢, §)-pan-private algorithm M’ which takes m
n+0(1/a¢) values from X as input and outputs a real number such
that drv (M’ (U™), M/(QZ,IL,B,a)) is larger than a constant.

We specify M” in Algorithm 2. Although it does not explicitly
have the structure in Definition 2.2, it is straightforward to decom-
pose it into a sequence of algorithms. At a high level, M has a
training and a testing phase. In the training phase, it will execute
M on the first n samples to obtain a signed parity function (L, B).
In the testing phase, M’ will evaluate the function on the remain-
ing samples and maintain a pan-private estimate of the number
of correct predictions. If the samples are drawn from U, then any
choice of parity function makes a correct prediction with only 1/2
probability. But if the samples are drawn from any distribution
Qudtba € Qi k. we know that (L, B) = (£, b) with > 99/100 prob-
ability; conditioned on this event, our predictions will be correct
with probability 1/2 + a. Thus, the count of correct predictions will
reliably differentiate between the two input cases.

Pan-privacy: We will first prove privacy for user i and intrusion
time ¢. Recall that the adversary’s view is (M (X<¢), M, (M7 (X)));
for brevity, we shall use the notation (S;,Z). If i < nandt < n,
the tuple is a post-processing of (M (¥<¢), Mo(My(X))) which
we know to be (¢, §)-private. If i < n but ¢ > n, the adversary’s
view is a post-processing of M7 (X) which is again (¢, §)-private.

If i > nbut t < n, the only influence S; has on Z is the choice
of (L, B); it suffices to prove that Z is differentially private for any
choice of (L, B). Let I(+) be the {0, 1} indicator function, Observe
that Z ~ Lap(1/e) + X7 ., ]I(Hjeﬁ Xu,j = Xy 441 - B) + Lap(1/e).
e-differential privacy follows the observation that the summation
is 1-sensitive and the privacy of the Laplace mechanism.

Ifi > nand t > n, we consider two further cases. When t > i,
observe that Z is a post-processing of S;. Also observe that S; ~
Lap(1/¢) +ZL:n+1 ]I(H].E]: Xu,j = Xy, de1 -B).So we can again invoke
the privacy of the Laplace mechanism. When t < i, we can show
that Z is differentially private conditioned on any realization of
Sy = (L, B,Cy): because Z ~ Lap(1/e) + C; + P ]I(HjeI: Xuj =
Xyd+1 B) and i € [t + 1, m], we invoke the privacy of the Laplace
mechanism one more.

Bound on TV distance: Now we show that the total variation dis-
tance between M’(U™) and M’(QZ‘L o) is larger than a constant.
Notice that, for any 7 € R,

drv(M'(QI, 5 ). M’ (U™)

> P(M(Qy 5 o) > ) ~ B(M'(U™) > 1) (15)
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We will focus our attention on the first term:
IP(M’(QZ?L’B’a) > r)

B(M'(Q,,0) > 7) - PULB) = (£5))
ecld].|e|<k
be{x1}

) P(M'(ngab’a) > 7| (LB = (e, b))
ecldl.|el<k
be{+1}

.P((i, B) = (e, b)) P((L B) = (£,b))

B(M'(Q,,) > 71 (L.B) = (1))
ecldllel<k
be{x1}

IA

99
"Too  FUL.B) = (£.))

The final inequality comes from the fact that M learns parities. No-
tice that, conditioned on (I:, B) = (¢, b),Fact 5.2 implies M'(Q;”’f’b!a)
is a sample from the convolution Bin(m — n,1/2 + a) + Lap(1/¢) +
Lap(1/¢) with probability > 99/100.

Meanwhile, note that the equality X?U(Hjel Xj=Xg41 - b) =
1/2 holds for any parity function (¢, b). Consequently, the output of
the algorithm M’(U™) is a sample from the convolution Bin(m —
n,1/2) + Lap(1/¢) + Lap(1/¢).

Because m —n = ©(1/a¢), we can use a Chernoff bound to argue
that there is some 7 where

P(M’(Q:Z[,b,a))

P(M'(U™) > 1) <

99

100
1

100

I\

By substitution,

99 99 1
(15) = — — P((L,B) = (£,b)) | - —
100 100 100

ecd],|e|<k

be{+1}

992 - 100

~ 10000

Lemma 5.5 and Theorem 3.1 imply m = Q( (Sdk)/ae) and, in

turn,n:Q( (Sdk)/ae). O

The next theorem adapts our proof to the robust shuffle privacy
setting. For brevity, we defer the proof to the full version; the proof
techniques are essentially the same as previously.

THEOREM 5.7. IfIL is an (e, 8, 1/3)-robustly shuffle private protocol
that learns width-k signed parities with error a and 8log (&)/s <

azsz/(sdk), then its sample complexity isn = Q( (Sdk)/ag).
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