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Abstract

Unlike normal-form games, where correlated equilibria have
been studied for more than 45 years, extensive-form correla-
tion is still generally not well understood. Part of the reason
for this gap is that the sequential nature of extensive-form
games allows for a richness of behaviors and incentives that
are not possible in normal-form settings. This richness trans-
lates to a significantly different complexity landscape sur-
rounding extensive-form correlated equilibria. As of today, it
is known that finding an optimal extensive-form correlated
equilibrium (EFCE), extensive-form coarse correlated equilib-
rium (EFCCE), or normal-form coarse correlated equilibrium
(NFCCE) in a two-player extensive-form game is computation-
ally tractable when the game does not include chance moves,
and intractable when the game involves chance moves. In
this paper we significantly refine this complexity threshold
by showing that, in two-player games, an optimal correlated
equilibrium can be computed in polynomial time, provided
that a certain condition is satisfied. We show that the condition
holds, for example, when all chance moves are public, that
is, both players observe all chance moves. This implies that
an optimal EFCE, EFCCE and NFCCE can be computed in
polynomial time in the game size in two-player games with
public chance moves, providing the biggest positive complex-
ity result surrounding extensive-form correlation in more than
a decade.

1 Introduction
A vast body of literature in computational game theory has fo-
cused on computing Nash equilibria (NEs) in two-player zero-
sum imperfect-information extensive-form games. Success
stories from that endeavor include the creation of strong—in
some cases superhuman—AIs for several complex games, in-
cluding two-player limit Texas hold’em (Bowling et al. 2015),
two-player no-limit Texas hold’em (Brown and Sandholm
2017a,b; Moravčík et al. 2017), and multiplayer no-limit
Texas hold’em (Brown and Sandholm 2019). NE captures
strategic interactions in which each player maximizes her
own utility. The interaction in NE is assumed to be fully
decentralized: no communication between players is possi-
ble and the behavior of the players is not coordinated by
any external orchestrator in any way. While that assumption
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is natural in games such as poker, NE is too restrictive in
other types of strategic interactions in which partial forms of
communication or centralized control are possible (Ashlagi,
Monderer, and Tennenholtz 2008). Therefore, there has been
growing interest around less restrictive solution concepts than
NE.

Correlated and coarse correlated equilibria are classic
families of solution concepts that relax the assumptions of
NE to allow forms of coordination of utility-maximizing
agents (Aumann 1974; Moulin and Vial 1978). In correlated
and coarse correlated equilibria, a mediator that can recom-
mend behavior—but not enforce it—complements the game.
Before the interaction starts, the mediator samples a profile of
recommended strategies (one for each player) from a publicly
known correlated distribution. The mediator reveals the next
recommended move (or sequence of moves, depending on the
specific solution concept in the family) to each acting player.
In correlated equilibrium, each agent must decide whether
to commit to following the next recommended move (or se-
quence of moves) after such move or sequence of moves is
revealed by the mediator. In coarse correlated equilibrium,
each agent must decide whether to commit to following the
next recommended move (or sequence of moves) before it is
revealed by the mediator. If a player chooses not to follow
the recommendation, the mediator stops issuing further rec-
ommendations to that player. Since the selfish agents are free
to not follow the recommendations, it is up to the mediator to
come up with a correlated distribution of recommendations
such that no agent has incentive to deviate from the recom-
mendations, assuming no other player deviates. Despite the
apparent weakness of a mediator that cannot enforce behav-
ior but only suggest it, the maximum social welfare (that is,
sum of the players’ utilities) that can be induced by these
families of solution concepts is greater than the social welfare
obtainable by NE. Examples of interactions where a mediator
is natural include traffic control and load balancing (Ashlagi,
Monderer, and Tennenholtz 2008).

These equilibrium concepts have typically been studied
in normal-form (that is, matrix) games. The study of corre-
lation in extensive-form (that is, tree-form) games is recent,
and was pioneered by von Stengel and Forges (2008). Three
correlated solution concepts are often used in extensive-form
games: extensive-form correlated equilibrium (EFCE) (von
Stengel and Forges 2008), extensive-form coarse corre-
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lated equilibrium (EFCCE) (Farina, Bianchi, and Sand-
holm 2020), and normal-form coarse correlated equilibrium
(NFCCE) (Moulin and Vial 1978; Celli, Coniglio, and Gatti
2019; Celli et al. 2019). Compared to normal-form (that is,
one-shot) games, extensive-form correlation poses new and
different challenges, especially in settings where the agents
retain private information. This is unique to the sequential na-
ture of extensive-form games, where, fundamentally, players
can adjust strategically as they make observations about their
opponents and the environment (Farina et al. 2019a). These
challenges also translate to some negative complexity results
for extensive-form correlation (Gilboa and Zemel 1989; von
Stengel and Forges 2008). While a landmark positive com-
plexity result in game theory shows that one EFCE, EFCCE,
or NFCCE can be found in polynomial time (Papadimitriou
and Roughgarden 2005; Huang and von Stengel 2008; Jiang
and Leyton-Brown 2011), the computation of an optimal (that
is, one that maximizes or minimizes a given linear objective,
such as social welfare) EFCE, EFCCE, or NFCCE is compu-
tationally intractable in games with more than two players, as
well as two-player games with chance moves, and tractable
in two-player games without chance moves (von Stengel and
Forges 2008).

In this paper we significantly refine this complexity thresh-
old by showing that, in two-player games, an optimal corre-
lated equilibrium can be computed in polynomial time, pro-
vided that a certain triangle-freeness condition—which can
be checked in polynomial time—is satisfied. We prove that
the condition holds, for example, when all chance moves are
public, that is, both players observe all chance moves. This
includes, for example, games where the chance outcomes
amount to public dice rolls or public revelations of cards.
Specifically, we show that the set of correlation plans Ξ of
a triangle-free game coincides with the von Stengel-Forges
polytope V of the game—a polytope that only requires a
polynomial number of linear “probability-mass-conserving”
constraints. Since V can be represented using a polynomial
number of constraints in the input game size, optimizing over
this set can be efficiently done by means of, for example,
linear programming methods.

In Figure 1 we give an overview of the results in this pa-
per and how they relate to each other. Our main result is
that the polytope of correlation plans Ξ coincides with the
von Stengel-Forges polytope V when the game satisfies the
triangle-freeness condition that we introduce (Definition 3).
As we show in Theorem 1, every two-player game with pub-
lic chance moves (which includes games with no chance
moves at all) is triangle-free, but not all triangle-free games

have public chance moves. So, our results also apply to some
games where chance is not public. The equality Ξ = V in
triangle-free games implies that an optimal EFCE, EFCCE
and NFCCE can be computed in polynomial time. This is be-
cause V has a polynomial (in the game size) description (von
Stengel and Forges 2008) and the computation of an EFCE,
EFCCE, NFCCE can be expressed as a linear program (von
Stengel and Forges 2008; Farina, Bianchi, and Sandholm
2020).

We prove Ξ = V in several steps. First, we show that in
triangle-free games, V admits a structural decomposition in
terms of scaled extension operations. This type of decomposi-
tion of V was introduced by Farina et al. (2019b) as a way of
“unrolling” the combinatorial structure of V to construct an
efficient regret minimization algorithm for Ξ in two-player
games without chance moves. We extend their construction
to handle any triangle-free game. Then, we show a deep con-
nection between the integrality of the vertices of the von
Stengel-Forges polytope V and Ξ. Namely, in Theorem 3, we
show that Ξ = V holds if and only if all of V’s vertices have
integer {0, 1} coordinates. Finally, in Section 4 we prove that
V has integral vertices by leveraging its structural decompo-
sition.

2 Preliminaries
Extensive-form games Extensive-form games (EFGs) are
the standard model for games that are played on a game tree.
EFGs can capture sequential and simultaneous moves as well
as private information. Each node in the EFG belongs to one
player. One special player, called the chance player, is used
to model random stochastic events, such as rolling a die or
drawing cards. In this paper, we only consider games that
have two players in addition to potentially having a chance
player.

Edges leaving from a node represent actions that a player
can take at that node. To model private information, the game
tree is supplemented with an information partition, defined
as a partition of nodes into sets called information sets. Each
node belongs to exactly one information set, and each in-
formation set is a nonempty set of tree nodes for the same
Player i. An information set for Player i denotes a collection
of nodes that Player i cannot distinguish among, given what
she has observed so far. The symbols I1 and I2 denote the
information partition of Player 1 and 2, respectively. Let I1
and I2 be information sets for Player 1 and 2, respectively. I1
and I2 are connected, denoted I1 
 I2, if there exist nodes
u ∈ I1 and v ∈ I2 such that u is on the path from the root to
v, or vice versa.



We will only consider perfect-recall games, that is, no
player forgets what the player knew earlier. As a consequence,
all nodes that belong to an information set I share the same
set of available actions (otherwise the player acting at those
nodes would be able to distinguish among them), which we
denote by AI . We define the set of sequences of Player i as
the set Σi := {(I, a) : I ∈ Ii, a ∈ AI} ∪ {∅}, where the
special element ∅ is called empty sequence. Given an infor-
mation set I ∈ Ii, we denote by σ(I) the parent sequence of
I , defined as the last pair (I ′, a′) ∈ Σi encountered on the
path from the root to any node v ∈ I; if no such pair exists
we let σ(I) = ∅.

An important concept in extensive-form correlation is rele-
vance of sequence pairs. Intuitively, two sequences are rele-
vant if they belong to connected information sets or if either
of them is the empty sequence. Formally, a pair of sequences
(σ1, σ2) ∈ Σ1 ×Σ2 is relevant, denoted σ1 ./ σ2, if either σ1

or σ2 or both is the empty sequence, or if σ1 = (I1, a1) and
σ2 = (I2, a2) and I1 
 I2. The set of all relevant sequence
pairs is denoted Σ1 ./Σ2. Given σ1 ∈ Σ1 and I2 ∈ I2, we
say that σ1 is relevant for I2, and write σ1 ./ I2, if σ1 = ∅ or
if σ1 = (I1, a1) and I1 
 I2 (an analogous statement holds
for I1 ./ σ2). We say that a sequence σ = (I, a) ∈ Σi for
Player i is descendent of another sequence σ′ = (I ′, a′) ∈ Σi
for the same player, denoted by σ � σ′, if σ = σ′ or if there
is a path from the root of the game to a node v ∈ I that passes
through action a′ at some node v′ ∈ I ′. We use the notation
τ � τ ′ to mean τ � τ ′ ∧ τ 6= τ ′.

A reduced-normal-form plan πi for Player i defines a
choice of action for every information set I ∈ Ii that is
still reachable as a result of the other choices in π itself. We
denote the set of reduced-normal-form plans of Player i by
Πi. We denote by Πi(I) the subset of reduced-normal-form
plans that prescribe all actions for Player i on the path from
the root to information set I .

Polytope of correlation plans (Ξ) A correlated distribu-
tion µ over combinations of plans Π1 × Π2 of the players
can be thought of as a point in probability simplex ∆|Π1×Π2|.
Since the number of plans of each player is exponential in
the game tree size, so is that representation of µ. Therefore,
von Stengel and Forges (2008) introduced a more compact
representation of µ, called the correlation plan representa-
tion. The set of all legal correlation plans is denoted Ξ and
called the polytope of correlation plans. The set Ξ is a convex
polytope in R|Σ1 ./Σ2|

≥0 , so the number of variables is at most
quadratic in the game tree size. However, it might still require
an exponential number of constraints.

An optimal EFCE, EFCCE, or NFCCE is an optimal corre-
lation plan subject to a set of linear incentive constraints (von
Stengel and Forges 2008; Farina et al. 2019a; Farina, Bianchi,
and Sandholm 2020). These constraints encode the require-
ment that the set of corrrelated behavior be incentive com-
patible for the player, that is, that no player would be better
off not following the recommended behavior than to always
follow it. Hence, an optimal EFCE, EFCCE, or NFCCE can
be computed as the solution of a linear program. Furthermore,
the linear program can be solved in polynomial time if and
only if Ξ can be described with a polynomial number of lin-

ear constraints. Thus the characterization of the constraints
that define Ξ in various classes of games is important.

The von Stengel-Forges polytope (V) The characteriza-
tion of the constraints that define Ξ was initiated by von Sten-
gel and Forges (2008) in their landmark paper on extensive-
form correlation. In particular, they show that in two-player
perfect-recall games without chance moves, Ξ coincides with
a particular polytope V—which we call the von Stengel-
Forges polytope—whose description only uses a polynomial
number of linear constraints, which are “probability-mass-
conserving” constraints:

V :=

v ∈ R|Σ1 ./ Σ2|
≥0 :

• v[∅,∅] = 1

•
∑

a∈AI
v[(I1, a), σ2] = v[σ(I1), σ2]

∀ I1 ∈ I1, σ2 ∈ Σ2 s.t. I1 ./ σ2

•
∑

a∈AJ
v[σ1, (I2, a)] = v[σ1, σ(I2)]

∀ I2 ∈ I2, σ1 ∈ Σ1 s.t. σ1 ./ I2

.
(1)

The polytope V is well defined in every game. However, the
equality Ξ = V was known to hold only in two-player games
without chance moves. In more general games, it is only
known that Ξ ⊆ V . The main contribution of our paper is
to show that the equality Ξ = V holds in significantly more
general games than two-player games without chance moves.
We will isolate a condition, which we coin triangle freeness,
that is sufficient for Ξ = V to hold. We also show that all two-
player games where all chance moves are public (including
two-player games without chance moves) are triangle free.

3 Scaled-Extension-Based Structural
Decomposition for V

Farina et al. (2019b) recently showed that in two-player
games without chance moves, a particular structural decom-
position theorem holds for the von Stengel-Forges polytope V .
At the core of their decomposition is a convexity-preserving
operation, scaled extension, defined as follows.

Definition 1 ((Farina et al. 2019b)). Let X and Y be
nonempty, compact and convex sets, and let h : X → R≥0

be a nonnegative affine real function. The scaled extension of
X with Y via h is defined as the set

X h
/ Y := {(x,y) : x ∈ X , y ∈ h(x)Y}.

Specifically, they show that in two-player games without
chance moves, V admits a decomposition of the form V =
{1} / h1 X1 /

h2 X2 /
h3 · · · / hn Xn, where each of the sets

Xi is either the singleton set {1}, or a probability simplex
∆si := {x ∈ Rsi≥0 : ‖x‖1 = 1} for some appropriate
dimension si.

In this section, we significantly extend their result. As we
will show, an analogous scaled-extension-based decomposi-
tion of V exists in far more general games than those without
chance moves. In particular, in Section 3 we isolate a con-
dition on the information structure of the game—which we
coin triangle freeness—that guarantees existence of a scaled-
extension-based decomposition. Then, we will present an
algorithm for computing such a decomposition, that is, find-
ing the hi functions and sets Xi. Since our full algorithm is
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Figure 2: Three examples of extensive-form games with increasingly complex information partitions. Crossed nodes belong the
chance player, black round nodes belong to Player 1, white round nodes belong to Player 2, gray round sets define information
sets, white squares denote terminal states. The numbers along the edges define concise names for sequences.

rather intricate, we start by giving three examples of increas-
ing complexity that capture the main intuition behind our
structural decomposition routine.

First example The first example is shown in the first
column of Figure 2. The game starts with a chance node,
where two outcomes (say, heads or tails) are possible. After
observing the outcome of the chance node, Player 1 chooses
between two actions (say, the “left” and the “right” action).
The choice as to whether to play the left or the right action
can be different based on the observed chance outcome. After
Player 1 has played their action, Player 2 has to pick whether
to play their left or right action—however, Player 2 does
not observe the chance outcome nor Player 1’s action. The
chance outcome is not observed by Player 2, so, this is not a
public-chance game.

The only information set C for Player 2 is connected to
both information sets (denoted A and B in Figure 2) of Player
1, so, all sequence pairs (σ1, σ2) ∈ Σ1 × Σ2 are relevant.
Since Player 2 only has one information set, it is easy to in-
crementally generate the von Stengel-Forges polytope. First,
the fixed value 1 is assigned to v[∅,∅] (step 1 in the fill-in
order). Then, this value is split arbitrarily into the two (non-
negative) entries v[∅, 1], v[∅, 2] so that v[∅, 1] + v[∅, 2] =
v[∅,∅] in accordance with the von Stengel-Forges con-
straints. This operation can be expressed using scaled exten-
sion as {(v[∅,∅], v[∅, 1], v[∅, 2])} = {1} / h ∆2, where h
is the identity function (step 2 in the fill-in order). Then,
v[∅, 1] is further split into v[1, 1] + v[2, 1] = v[∅, 1] and
v[3, 1] +v[4, 1] = v[∅, 1], while v[∅, 2] is split into v[1, 2] +
v[2, 2] = v[∅, 2] and v[3, 2] + v[4, 2] = v[∅, 2] (step 3 of
the fill-in order). These operations can be expressed as scaled
extensions with ∆2. Now that the eight entries v[σ1, σ2] for
σ1 ∈ {1, 2, 3, 4}, σ2 ∈ {1, 2} have been filled out, we fill in
v[σ1,∅] for all σ1 ∈ {1, 2, 3, 4} in accordance with the von
Stengel-Forges constraint v[σ1,∅] = v[σ1, 1]+v[σ1, 2] (step
4 ). In this step, we are not splitting any values, but rather we
are summing already-filled-in entries in v to form new en-
tries. Specifically, we can extend the set of partially-filled-in

vectors

v = (v[∅,∅], v[∅, 1], v[∅, 2], v[1, 1], v[2, 1],

2cmv[3, 1], v[4, 1], v[1, 2], v[2, 2], v[3, 2], v[4, 2])

with the new entry v[1,∅] by using the scaled extension
operation {v} / h{1} where h is the (linear) function that
extracts the sum v[σ1, 1] + v[σ1, 2] from v. By doing so, we
have incrementally filled in all entries in v. Furthermore,
by construction, we have that all von Stengel-Forges con-
straints v[σ1,∅] = v[σ1, 1] + v[σ1, 2] (σ1 ∈ {∅, 1, 2, 3, 4})
and v[∅, σ2] = v[1, σ2] + v[2, σ2] = v[3, σ2] + v[4, σ2]
(σ2 ∈ {1, 2}) must hold. So, the only two von Stengel-
Forges constraints that we have ignored and might poten-
tially be violated are v[∅,∅] = v[1,∅] + v[2,∅] and
v[∅,∅] = v[3,∅] + v[4,∅]. This concern is quickly re-
solved by noting that those constraints are implied by the
other ones that we satisfy. In particular, by construction
we have v[1,∅] + v[2,∅] = (v[1, 1] + v[1, 2]) + (v[2, 1] +
v[2, 2]) = (v[1, 1] + v[2, 1]) + (v[1, 2] + v[2, 2]) = v[∅, 1] +
v[∅, 2] = v[∅,∅], and an analogous statement holds for
v[3,∅] + v[4,∅]. So, all constraints hold and the scaled-
extension-based decomposition is finished.

Remark 1. An approach that would start by splitting v[∅,∅]
into v[1,∅] + v[2,∅] = v[∅,∅] and v[3,∅] + v[4,∅] =
v[∅,∅], thereby inverting the order of fill-in steps 4 and
2 , would fail. Indeed, after filling v[σ1, σ2] for all σ1 ∈
{1, 2, 3, 4}, σ2 ∈ {1, 2}), there would be no clear way of
guaranteeing that v[1, 1] + v[2, 1] = v[3, 1] + v[4, 1] (=
v[∅, 1]).

Second example We now consider a variation of the
game from the first example, where Player 2 observes the
chance outcome but not the actions selected by Player 1. This
game, shown in the middle column of Figure 2, has public
chance moves, because the chance outcome is observed by
all players. In this game, not all pairs of information sets are
connected. In fact, only (A, C) and (B, D) are connected in-
formation set pairs. Correspondingly, entries such as v[1, 3],
v[4, 2], and v[2, 4] are not defined in the correlation plans for



the game. This observation is crucial, and will set apart this
example from the next one. To fill in any correlation plan, we
can start by splitting v[∅,∅] into v[1,∅]+v[2,∅] = v[∅,∅]
and v[3,∅] + v[4,∅] = v[∅,∅] (fill-in step 2 in the figure).
Both operations can be expressed as a scaled extension of
partially-filled-in vectors with ∆2, scaled by the affine func-
tion that extracts v[∅,∅] = 1 from the partially-filled-in cor-
relation plans. Then, we further split those values into entries
v[σ1, 1] + v[σ1, 2] = v[σ1,∅] for σ1 ∈ {1, 2} in accordance
with the von Stengel-Forges constraint. Similarly, we will
in v[σ1, 3], v[σ1, 4] for σ1 ∈ {3, 4} in accordance with the
constraint v[σ1, 3] + v[σ1, 4] = v[σ1,∅] for σ1 ∈ {1, 2}
(fill-in step 3 ). Finally, we recover the values of v[∅, σ2] for
σ2 ∈ {1, 2, 3, 4} with a scaled extension with the singleton
set {1} as discussed in the previous example. Again, it can be
checked that despite the fact that we ignored the constraints
v[∅, 1]+v[∅, 2] = v[∅,∅] and v[∅, 3]+v[∅, 4] = v[∅,∅],
those constraints are automatically satisfied by constuction.
In this case, we were able to sidestep the issue raised in
Remark 1 because of the particular connection between the
information sets.

Third example Finally, we propose a third example in
the third column of Figure 2. It is a variation of the first
example, where Player 2 now observes Player 1’s action
but not the chance outcome. The most significant difference
with the second example is that the information structure
of the game is now such that all pairs of information sets
of the players are connected. Hence, the problem raised in
Remark 1 cannot be avoided. Our decomposition algorithm
cannot handle this example.

A Sufficient Condition for the Existence of a
Scaled-Extension-Based Decomposition
The third example in the previous section highlights an unfa-
vorable situation in which our decomposition attempt based
on incremental generation of the correlation plan. In order
to codify all situations in which that issue does not arise, we
introduce the concept of rank of an information set.

Definition 2. Let i ∈ {1, 2} be one player, and let−i denote
the other player. Furthermore, let I ∈ Ii and σ ∈ Σ−i. The
σ-rank of I is the cardinality of the set {J ∈ I−i : J 

I, σ(J) = σ}.

The issue in Remark 1 can be stated in terms of the ranks.
Consider a relevant sequence pair (σ1, σ2) ∈ Σ1 ./Σ2 and
two connected information sets I1 
 I2 such that σ(I1) =
σ1, σ(I2) = σ2. If the σ1-rank of I2 and the σ2-rank of I1
are both greater than 1, the issue cannot be avoided and the
decomposition will fail. For example, in the third example,
where our decomposition fails, all information sets have ∅-
rank 2. We prove that such situations cannot occur, provided
the game satisfies the following condition, which can be
verified in polynomial time in the size of the EFG.

Definition 3 (Triangle-freeness). A two-player extensive-
form game is triangle-free if, for any choice of two distinct
information sets I1, I2 ∈ I1 such that σ(I1) = σ(I2) = σ1

and two distinct information sets J1, J2 ∈ I2 such that
σ(J1) = σ(J2) = σ2, it is never the case that I1 

J1 ∧ I2 
 J2 ∧ I1 
 J2.

In Theorem 1 we show that games with public chance
(which includes games with no chance moves at all) always
satisfy the triangle-freeness condition of Definition 3.

Theorem 1. A two-player extensive-form game with public
chance moves is triangle-free.

However, not all triangle-free games must have public
chance nodes. For example, the topmost game in Figure 2
is triangle-free, but in that game the chance outcome is not
public to Player 2. So, our results apply more broadly than
games with public chance moves.

Computation of the Decomposition
We present our algorithm following the same structure
as (Farina et al. 2019b). Like theirs, our algorithm con-
sists of a recursive function, DECOMPOSE. It takes three
arguments: (i) a sequence pair (σ1, σ2) ∈ Σ1 ./Σ2, (ii)
a subset S of the set of all relevant sequence pairs, and
(iii) a set D where only the entries indexed by the ele-
ments in S have been filled in. The decomposition for
the whole von Stengel-Forges polytope V is computed by
calling DECOMPOSE((∅,∅), {(∅,∅)}, {(1)})—this corre-
sponds to the starting situation in which only the entry
v[∅,∅] has been filled in (denoted as fill-in step 1 in Fig-
ure 2). Each call to DECOMPOSE returns a pair (S ′,D′) of
updated indices and partial vectors, to reflect the new entries
that were filled in during the call.

DECOMPOSE((σ1, σ2),S,D) operates as follows (we de-
note with −i the opponent for Player i):
1. Let Ji := {I ∈ Ii : I ./ σ−i, σ(I) = σi} for all i ∈
{1, 2}, and J ∗ ← ∅.

2. For each (I1, I2) ∈ J1 × J2 such that I1 
 I2, if the
σ2-rank of I1 is greater than or equal to the σ1-rank of I2,
we branch on Player 1, update J ∗ ← J ∗ ∪ {I1}. Else,
update J ∗ ← J ∗ ∪ {I2}.

3. For each i ∈ {1, 2} and I ∈ Ji such that the σ−i-rank of
I is 0, do J ∗ ← J ∗ ∪ {I}.

4. For each I ∈ J ∗: (Below we assume that I ∈ I1, the
other case is symmetrical)

(a) Fill in all entries {v[(I, a), σ2] : a ∈ AI} by splitting
v[σ1, σ2]. This can be expressed using a scaled exten-
sion operation as D ← D / h ∆|AI | where h extracts
ξ[σ1, σ2] from any partially-filled-in vector.

(b) Update S ← S∪{((I, a), σ2)} to reflect that the entries
corresponding to (I, a) ./ σ2 have been filled in.

(c) For each a ∈ AI we assign (S,D) ←
DECOMPOSE(((I, a), σ2),S,D).

(d) Let K := {J ∈ I2 : I 
 J}. For all J ∈ I2 such that
σ(J) � (J ′, a′) for some J ′ ∈ K, a′ ∈ AJ′ :

• If I 
 J , then for all a ∈ AJ we fill in the se-
quence pair ξ[σ1, (J, a)] by assigning its value in
accordance with the von Stengel-Forges constraint
ξ[σ1, (J, a)] =

∑
a∗∈AI∗

ξ[(I∗, a∗), (J, a)] via the
scaled extension D ← D / h{1} where the linear
function hmaps a partially-filled-in vector to the value
of
∑
a∗∈AI∗

ξ[(I∗, a∗), (J, a)].
• Otherwise, we fill in the entries {ξ[σ1, (J, a)] : a ∈
AJ}, by splitting the value ξ[σ1, σ(J)]. In this case,



we let D ← D / h ∆|AJ | where h extracts the entry
ξ[σ1, σ(J)] from a partially-filled-in vector in D.

5. At this point, all the entries corresponding to indices S̃ =
{(σ′1, σ′2) : σ′1 � σ1, σ

′
2 � σ2} have been filled in, and

we return (S ∪ S̃,D).
The above algorithm formalizes and generalizes the first two
examples of Figure 2. For example, step 2 of the fill-in order
in either example is captured in Step 4(a), while fill-in step 3

corresponds to Step 4(c). Finally, fill-in step 4 corresponds
to Step 4(d).

Compared to the decomposition algorithm by Farina et al.
(2019b), our branching steps (Step 4) are significantly more
intricate. This is because, compared to their setting (that is,
two-player games without chance moves) where at least one
player has at most one information set with rank strictly
greater than one, we have to account for multiple information
sets with rank greater than one. Since two-player games with-
out chance moves are a special case of two-player games with
public chance moves, our algorithm completely subsumes
that of Farina et al. (2019b).

A proof of correctness for the algorithm is in Appendix A.
In particular, the following holds.

Theorem 2. The von Stengel-Forges polytope V of a two-
player perfect-recall triangle-free EFG can be expressed via
a sequence of scaled extensions with simplexes and singleton
sets:

V = {1} h1
/ X1

h2
/ X2

h3
/ · · · hn

/ Xn, (2)

where, for i = 1, . . . , n, eitherXi = ∆si orXi = {1} and hi
is a linear function. Furthermore, an exact algorithm exists to
compute such expression in linear time in the dimensionality
of V , and so, in time at most quadratic in the size of the game.

4 Bridging the Gap Between V and Ξ

As noted by von Stengel and Forges (2008), the inclusion Ξ ⊆
V holds trivially in any game. The reverse inclusion, Ξ ⊇
V , was shown for two-player games without chance moves,
but no complete characterization as to when that reverse
inclusion holds was known before our paper. In Theorem 3,
we contribute a new connection between the reverse inclusion
Ξ ⊇ V and the integrality of the vertices of the von Stengel-
Forges polytope (all proofs are in Appendix B).

Theorem 3. Let Γ be a two-player perfect-recall extensive-
form game, let V be its von Stengel-Forges polytope, and let
Ξ be its polytope of correlation plans. Then, Ξ = V if and
only if all vertices of V have integer {0, 1} coordinates.

As it turns out, the scaled-based decomposition of V can
be used to conclude the integrality of the vertices of V , by
leveraging the following analytical result about the scaled
extension operation.

Lemma 1. Let X ,Y , and h be as in Definition 1. If X is
a convex polytope with vertices {x1, . . . ,xn}, and Y is a
convex polytope with vertices {y1, . . . ,ym}, then X / h Y is
a convex polytope whose vertices are a nonempty subset of
{(xi, h(xi)yj) : i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}}.

In particular, by applying Lemma 1 inductively on the
structure of the scaled-extension-based structural decomposi-
tion of V , we obtain the following theorem.
Theorem 4. Let V be the von Stengel-Forges polytope of a
two-player triangle-free game (Definition 3). All vertices of
V have integer {0, 1} coordinates.

Finally, combining Theorem 4 and Theorem 3, we obtain
the central theorem of this paper.
Theorem 5. In a two-player perfect-recall extensive-form
game that satisfies the triangle-freeness condition (Defini-
tion 3), the polytope of correlation plans coincides with
the von Stengel-Forges polytope. Consequently, an optimal
EFCE, EFCCE, or NFCCE can be computed in polynomial
time (in the size of the input extensive-form game) in two-
player triangle-free games.

A consequence of V = Ξ is that the linear programs
for EFCE (von Stengel and Forges 2008), EFCCE (Farina,
Bianchi, and Sandholm 2020) and NFCCE (Farina, Bianchi,
and Sandholm 2020)—originally formulated for two-player
games without chance moves only—hold verbatim for any
triangle-free game. So, an optimal EFCE, EFCCE, and
NFCCE can be computed in polynomial time as the solution
of those linear programs. Furthermore, the scaled-extension-
based decomposition for triangle-free games (Section 3) can
be combined with the scaled extension regret circuit intro-
duced by Farina et al. (2019b); Farina, Kroer, and Sandholm
(2019) to construct a scalable regret minimization algorithm
for V = Ξ. That, in turn, can be used to compute an EFCE,
EFCCE, and NFCCE in large triangle-free games that are too
large for traditional linear programming methods.

5 Experimental Evaluation
We implemented the scaled-extension-based decomposition
routine of Section 3. We test our decomposition algorithm
for triangle-free games on Goofspiel (Ross 1971), a popular
benchmark game in computational game theory. In Goof-
spiel, each player has a personal deck of cards made of k
different ranks (from 1 to k). A third deck (the “prize” deck)
is shuffled and put face down on the board at the beginning
of the game. In each turn, the topmost card from the prize
deck is publicly revealed. Then, each player privately picks a
card from their hand—this card acts as a bid to win the card
that was just revealed from the prize deck. The player that
bids the highest wins the prize card. We use an established
tie-breaking rule: the prize card is discarded if the players’
bids are equal. Furthermore, we adopt the convention that
only the winner is revealed, but not the bids, in accordance
with prior computational game theory literature (Lanctot et al.
2009; Lanctot 2013). The players’ scores are computed as the
sum of the values of the prize cards they have won. Because
of the tie-breaking rule, Goofspiel is a general-sum game.
Furthermore, since all chance outcomes are public, it is a
triangle-free game.

In Figure 3(left) we report the performance of our decom-
position routine for k = 3, 4, 5, both in terms of number of
scaled extension operations required in the decomposition
(Theorem 2) and of runtime of our single-threaded implemen-
tation, as well as the dimensions of the games. The runtime



Deck
size

Information sets Sequences Decomposition
|I1 ∪ I2| |I1 
 I2| |Σ1 ∪ Σ2| |Σ1 ./Σ2| Num / h Runtime

3 ranks 4.3×102 1.1×103 5.2×102 3.3×103 2.9×103 2ms
4 ranks 1.7×104 8.1×104 2.1×104 2.7×105 2.4×105 1.1s
5 ranks 1.2×106 1.1×107 1.4×106 3.6×107 3.2×107 43.8s

Figure 3: (Left) Dimensions of games and runtime of decomposition
algorithm (Theorem 2). (Right) Payoffs that can be reached using an
EFCE, EFCCE, or NFCCE in 3-rank Goofspiel.
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was averaged over 100 independent runs. Our decomposition
algorithm performs well, and is able to scale to the largest
game (Goofspiel with k = 5 ranks, which has 3.6 × 107

relevant sequence pairs). In Figure 3(right) we used the char-
acterization Ξ = V to compute the set of all payoffs that
can be reached by an EFCE, EFCCE, or NFCCE in 3-rank
Goofspiel. The sets are highly non-trivial, and reinforce the
observation that the behaviors and incentives that can be
induced through extensive-form correlation are subtle and
complex (Farina et al. 2019a). The sets of reachable payoff
vectors was computed using Polymake, a library for compu-
tational polyhedral geometry (Gawrilow and Joswig 2000;
Assarf et al. 2017).

We also implemented the linear programming formulation
of EFCE described by von Stengel and Forges (2008), and
the scalable regret minimization algorithm of Farina et al.
(2019b). We use the Gurobi commercial linear programming
solver to solve the linear program formulation. As the game
size increases, the barrier algorithm is the only algorithm that
can solve the linear program. However, even that quickly be-
comes impractical. In the largest game, Gurobi uses roughly
200GB of memory, spends approximately 90 minutes to pre-
condition the linear program, and requires slightly more than
20 minutes to perform each iteration of the barrier method
using 30 threads. The regret minimization scales significantly
more favorable in the large game. It requires roughly 6 sec-
onds per iteration, and reaches 10−2 infeasibility in 4 minutes,
10−3 infeasibility in 12 minutes, and 10−4 infeasibility in
110 minutes. Additional data about the experiment is avail-
able in Appendix C.

6 Conclusions
We showed that an optimal extensive-form correlated equi-
librium, extensive-form coarse correlated equilibrium, and
normal-form coarse correlated equilibrium can be computed
in polynomial time in two-player perfect-recall games that
satisfy a certain triangle-freeness condition that we intro-
duced and that can be checked in polynomial time. To show
that such equilibria can be found in polynomial time, we gave
and combined several results that may be of independent in-
terest: (1) the existence of a scaled-extension-based structural
decomposition for the von Stengel-Forges polytope of the
game, (2) a characterization of when the von Stengel-Forges
polytope coincides with the polytope of correlation plans,
and (3) a result about the integrality of the vertices of the von
Stengel-Forges polytope in triangle-free games.
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Broader Impact
In this paper we give a positive complexity result, show-
ing that optimal equilibrium according to three important
extensive-form imperfect-information game correlated solu-
tion concepts can be computed efficiently in settings—two-
player games with public chance moves—where it was gener-
ally believed to be impossible. In fact, we showed that this can
be done more broadly: in all games where a certain triangle-
freeness condition holds. Correlated solution concepts have
many advantages. First, they enable incentive-compatible
coordination of agents. Such coordination is achieved via
incentives, rather than forcing: mediators in correlated so-
lution concepts are only able to recommend behavior, but
not force it. So, it is up to the mediator to come up with
a correlated distribution of recommendations such that no
agent has incentive to deviate from the recommendations.
Second, in some general-sum interactions these solution con-
cepts are known to enable significantly higher social welfare
than Nash equilibrium, while at the same time sidestepping
some of the other shortcomings of Nash equilibrium (for
example, some equilibrium selection issues). In this paper,
we are particularly interested in optimal correlated equilib-
ria. In other words, our technology can empower the system
designer (mediator) to select, among the infinite number of
correlated equilibria of the game, one that maximizes a given
objective. For example, this technology could be used to find
correlated equilibria than maximize social welfare, leading
to highest societal good. However, like most technology, our
technology has potential for abuse. If used maliciously, the
ability to select particular correlated equilibria could be used
to minimize social welfare, maximize only one of the agent’s
utility, or minimize all others’ utilities—thereby furthering
existing inequality or creating new inequality.
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A Scaled-Extension-Based Structural Decomposition for V

Triangle-Freeness

Lemma 2. Consider a triangle-free game, let (σ1, σ2) ∈ Σ1 ./Σ2, and let I1 
 I2 be such that σ(I1) = σ1, σ(I2) = σ2. Then,
at most one between the σ1-rank of I2 and the σ2-rank of I1 is strictly larger than 1.

Proof. The results follows almost immediately from the definition of triangle-freeness. We prove the statement by contradiction.
Let (σ1, σ2) ∈ Σ1 ./Σ2 be a relevant sequence pair, and let information sets I1 ∈ I1, I2 ∈ I2 be such that σ(I1) = σ1, σ(I2) =
σ2. Furthermore, assume that the σ1-rank of I2 is greater than 1, and at the same time the σ2-rank of I1 is greater than 1. Since
the σ2-rank of I1 is greater than 1, there exists an information set I ′2 ∈ I2, σ(I ′2) = σ2, distinct from I2, such that I1 
 I ′2.
Similarly, because the σ1-rank of I2 is greater than 1, there exists an information set I ′1 ∈ I1, σ(I ′1) = σ1, distinct from I1, such
that I ′1 
 I2. But then, we have found I1, I ′1 ∈ I1 and I ′2, I2 ∈ I2 such that σ(I1) = σ(I2) = σ1, σ(I ′2) = σ(I2) = σ2 such
that I1 
 I ′2, I

′
1 
 I2, and I1 
 I2. So, the game is not triangle-free, contradiction.

Theorem 1. A two-player extensive-form game with public chance moves is triangle-free.

Proof. For contradiction, let I1, I2 be two distinct information sets for Player 1 such that σ(I1) = σ(I2), let J1, J2 be two
distinct information sets for Player 2 such that σ(J1) = σ(J2), and assume that I1 
 J1, I2 
 J2, I1 
 J2. By definition of
connectedness, there exist nodes u ∈ I1, v ∈ J1 such that v is on the path from the root to u, or vice versa. Similarly, there exist
nodes u′ ∈ I2, v′ ∈ J2 such that u′ is on the path from the root to v′, or vice versa. Let w be the lowest common ancestor of u
and u′. It is not possible that w = u or w = u′, because otherwise the parent sequences of I1 and I2 would be different. So w
must be a strict ancestor of both u and u′, and u and u′ must be reached using different edges at w. Therefore, node w cannot
belongs to Player 1, or otherwise it again would not be true that σ(I1) = σ(I2). So, there are only two possible cases: either w
belongs to Player 2, or it belongs to the chance player. We break the analysis accordingly.

• First case: w belongs to Player 2. From above, we know that u and u′ are reached by following different branches at w.
So, if both v and v′ were strict descendants of w, they would need to be on two different branches of w (because they are
connected to u and u′ respectively), violating the condition σ(J1) = σ(J2). So, at least one between v and v′ is on the path
from the root to w (inclusive). But then either v is an ancestor of v′, or vice versa. Either case violates the hypothesis that
σ(J1) = σ(J2).

• Second case: w belongs to the chance player. If any between v and v′ is an ancestor of w, then necessarily either v is
an ancestor of v′, or v′ is an ancestor of v. Either case violates the condition σ(J1) = σ(J2). So, both v and v′ must be
descendants of w. Because v is on the path from the root to u (or vice versa), and v′ is on the path from the root to u′ (or vice
versa), then necessarily u, v and u′, v′ are on two different branches of the chance node w. To fix names, call a the action at
w that must be taken to (eventually) reach u and v, and let b be the action that must be taken to (eventually) reach u′ and v′.
Now, we use the hypothesis that I1 
 J2, that is, there exists u′′ ∈ I1, v′′ ∈ J2 such that u′′ is on the path from the root to
v′′ or vice versa. Assume that u′′ is on the path from the root to v′′. Since u′′ belongs to the same information set as u (that is,
I1), and since chance is public by hypothesis, then Player 1, when acting at u and u′′, must have observed action a at w. In
other words, the path from the root to u′′ must pass through action a at w. But then, using the fact that u′′ is on the path from
the root to v′′, this means that the path from the root to v′′ passes through action a. However, the path from the root to v′
passes through action b. Since chance is public, nodes v′ and v′′ cannot be in the same information set, because Player 2 is
able to distinguish them by means of the observed chance outcome. We reached a contradiction. The symmetric case where
v′′ is on the path from the root to u′′ is analogous.

Decomposition Algorithm

In this section, we provide pseudocode for the algorithm presented in Section 3. We will use the following conventions:
• Given a player i ∈ {1, 2}, we let −i denote the opponent.
• We use the symbol t to denote disjoint union.
• Given two infosets I, I ′ ∈ Ii, we write I � I ′ if σ(I ′) � σ(I). We say that we iterate over a set I ⊆ Ii in top-down order if,

given any two I, I ′ ∈ I such that I � I ′, I appears before I ′ in the iteration.
• We use the observation that for all I ∈ I1 and σ2 ∈ Σ2, I ./ σ2 if and only if (I, a) ./ σ2 ∀a ∈ AI . (A symmetric statement

holds for I ∈ I2 and σ1 ∈ Σ1.)



Two Useful Subroutines We start by presenting two simple subroutines that capture fill-in step 4 of Figure 2 or equivalently
Step 4(d) of Section 3. The two subroutines are symmetric and have the role of filling rows and columns of the correlation plans.

Algorithm 1: FILLOUTROW((σ1, σ2), I1,S,D)

Preconditions :(σ1, σ2) ∈ Σ1 ./Σ2, I1 ∈ I1, σ(I1) = σ1, (σ1, σ2) ∈ S
1 for I2 such that σ(I2) = σ2 and σ1 ./ I2 do
2 if I1 
 I2 then
3 for σ′2 ∈ {(I2, a) : a ∈ AI2} do

. Fill (σ1, σ
′
2) by summing up all entries {v[(I1, a

′), σ′2] : a′ ∈ AI1} in accordance with the von Stengel-Forges
constraints

4 S ← S t {(σ1, σ
′
2)}

5 D ← D / h{1} where h : v 7→
∑

a′∈AI1
v[(I1, a

′), σ′2]

6 else
. Fill all {v[σ1, (I2, a)] : a ∈ AI2} by splitting v[σ1, σ2] accordance with the von Stengel-Forges constraints

7 S ← S t {(σ1, (I2, a)) : a ∈ AI2}
8 D ← D / h ∆|AI2

| where h : v 7→ v[σ1, σ2]
9 for σ′2 ∈ {(I2, a) : a ∈ AI2} do

10 FILLOUTROW((σ1, σ
′
2), I1)

11 return (S,D)

Algorithm 2: FILLOUTCOLUMN((σ1, σ2), I2,S,D)

Preconditions :(σ1, σ2) ∈ Σ1 ./Σ2, I2 ∈ I2, σ(I2) = σ2, (σ1, σ2) ∈ S
1 for I1 such that σ(I1) = σ1 and σ2 ./ I1 do
2 if I1 
 I2 then
3 for σ′ ∈ {(I1, a) : a ∈ AI1} do

. Fill (σ′1, σ2) by summing up all entries {v[σ′1, (I2, a
′)] : a′ ∈ AI2} in accordance with the von Stengel-Forges

constraints
4 S ← S t {(σ′1, σ2)}
5 D ← D / h{1} where h : v 7→

∑
a′∈AI2

v[σ′1, (I2, a
′)]

6 else
. Fill all {v[(I1, a), σ2] : a ∈ AI1} by splitting v[σ1, σ2] accordance with the von Stengel-Forges constraints

7 S ← S t {((I1, a), σ2) : a ∈ AI1}
8 D ← D / h ∆|AI1

| where h : v 7→ v[σ1, σ2]
9 for σ′ ∈ {(I1, a) : a ∈ AI1} do

10 FILLOUTCOLUMN((σ′1, σ2), I2)
11 return (S,D)

The following inductive contract will be important for the full algortihm.

Lemma 3 (Inductive contract for FILLOUTROW). Suppose that the following preconditions hold when
FILLOUTROW((σ1, σ2), I1,S,D)) is called:

(Pre1) (σ1, σ2) ∈ Σ1 ./Σ2;
(Pre2) I1 ∈ I1 is such that σ(I1) = σ;
(Pre3) S contains only relevant sequence pairs and D consists of vectors indexed by exactly the indices in S;
(Pre4) (σ1, σ2) ∈ S , but (σ1, σ

′
2) /∈ S for all σ′2 � σ2;

(Pre5) For all a ∈ I1 and σ′2 � σ2 such that I1 ./ σ′2, ((I1, a), σ′2) ∈ S;
(Pre6) If I1 ./ σ2, all v ∈ D satisfy the von Stengel-Forges constraint v[σ1, σ2] =

∑
a∈I1 v[(I1, a), σ2];

(Pre7) All v ∈ D satisfy the von Stengel-Forges constraints

v[(I, a), σ(I2)] =
∑

a′∈AI2

v[(I, a), (I2, a
′)] ∀a ∈ I1, and I2 ∈ I2 : I1 ./ I2, σ(I2) � σ2.

Then, the sets (S ′,D′) returned by the call are such that
(Post1) S ′ contains only relevant sequence pairs and D′ consists of vectors indexed by exactly the indices in S ′;
(Post2) S ′ = S t {(σ1, σ

′
2) : σ′2 � σ2, σ ./ σ

′
2};

(Post3) All v ∈ D′ satisfy the von Stengel-Forges constraints

v[σ1, σ(I2)] =
∑

a′∈AI2

v[σ1, (I2, a
′)] ∀I2 ∈ I2 : σ ./ I2, σ(I2) � σ2



and all von Stengel-Forges constraints

v[σ1, σ
′
2] =

∑
a∈AI1

v[(I, a), σ′2] ∀σ′2 ∈ Σ2 : σ′2 ./ I1, σ
′
2 � σ2.

Proof. By induction.

• Base case. The base case corresponds to σ2 ∈ Σ2 such that no information set I2 ∈ I2 : σ(I2) = σ2 ∧ σ1 ./ I2 exists. In that
case, Algorithm 1 returns immediately, so (Post1) holds trivially from (Pre3). Since no I2 such that σ(I2) = σ2 ∧ σ1 ./ I2
exists, no σ′2 � σ2 such that σ1 ./ σ

′
2 exists, so (Post2) holds as well. The first set of constraints of (Post3) is empty, and the

second set reduces to (Pre6).
• Inductive step. Suppose that the inductive hypothesis holds when σ′2 � σ2. We will show that it holds when σ′2 = σ2 as

well. In order to use the inductive hypothesis, we first need to check that the preconditions are preserved at the time of the
recursive call on Line 10. (Pre1) holds since σ1 ./ I2. (Pre2) holds trivially since σ does not chance. (Pre3) holds since we are
updating S and D in tandem on lines 4, 5 and 7, 8. (Pre4) holds since by the time of the recursive call we have only filled in
entries (σ1, σ

′
2) where σ′2 is an immediate successor of σ2. (Pre5) at Line 10 holds trivially, since it refers to a subset of the

entries for which the condition held at the beginning of the call. (Pre6) holds because I1 ./ σ′2 ⇐⇒ I1 
 I2. Hence, if
I1 ./ σ

′
2 then Lines 4 and 5 must have run. (Pre7) at Line 10 holds trivially, since it refers to a subset of the constraints for

which the condition held at the beginning of the call. Using the inductive hypothesis, (Post1), (Post2), and the second set of
constraints in (Post3) follow immediately. The only constraints that are left to be verified are

v[σ1, σ2] =
∑

a′∈AI2

v[σ1, (I2, a
′)] ∀I2 ∈ I2 : σ ./ I2, σ(I2) = σ2. (3)

That constraint is guaranteed by Lines 7 and 8 for all I2 6
 I1. So, we need to verify that it holds for all those I2 such that
σ(I2) = σ2, σ ./ I2 and I1 
 I2. Let I2 be one such information set. Then, from Lines 4 and 5 we have that

v[σ1, (I2, a)] =
∑

a′∈AI1

v[(I, a′), (I2, a)] ∀a ∈ AI2 .

Summing the above equations across all a ∈ AI2 and using (Pre7) yields

∑
a∈AI2

v[σ1, (I2, a)] =
∑
a∈AI2

∑
a′∈AI1

v[(I, a′), (I2, a)]

=
∑

a′∈AI1

∑
a∈AI2

v[(I, a′), (I2, a)]

=
∑

a′∈AI1

v[(I, a′), σ(I2)]

=
∑

a′∈AI1

v[(I, a′), σ2],

where we used the hypothesis that σ(I2) = σ2 in the last equality. Finally, since I1 
 I2 and σ(I2) = σ2, it must be I1 ./ σ2

and so, using (Pre6), we obtain that ∑
a∈AI2

v[σ1, (I2, a)] = v[σ1, σ2],

completing the proof of Equation (3). So, (Post3) holds as well and the proof of the inductive step is complete.

The inductive contract for FILLOUTCOLUMN is symmetric and we omit it.



The Full Algorithm

Algorithm 3: DECOMPOSE((σ1, σ2),S,D)

Preconditions :(σ1, σ2) ∈ Σ1 ./Σ2, (σ1, σ2) ∈ S
1 B ← ∅
2 for all i ∈ {1, 2}, I ∈ Ii, σ(I) = σi, σ−i ./ I do
3 if the σ−i-rank of I is 0 then
4 B ← B t I
5 for (I1, I2) ∈ I1 × I2 such that σ(I1) = σ1, σ(I2) = σ2, I1 
 I2 do
6 if the σ2-rank of I1 is ≥ the σ1-rank of I2 then
7 B ← B t I1
8 else
9 B ← B t I2

10 for I ∈ B do
11 if I ∈ I1 then

. Fill all {v[(I, a), σ2] : a ∈ AI} by splitting v[σ1, σ2] accordance with the von Stengel-Forges constraints
12 S ← S t {((I, a), σ2) : a ∈ AI}
13 D ← D / h ∆|AI | where h : v 7→ v[σ1, σ2]

. Recursive call
14 for σ′1 ∈ {(I, a) : a ∈ AI} do
15 DECOMPOSE((σ′1, σ2),S,D)

. Fill a portion of the row for σ1

16 for I2 ∈ I2 : σ1 ./ I2, σ(I2) = σ2 do
17 for σ′2 ∈ {(I2, a′) : a′ ∈ AI2} do

. Fill (σ1, σ
′
2) by summing up all entries {v[(I, a′), σ′2] : a′ ∈ AI} in accordance with the von Stengel-Forges

constraints
18 S ← S t {(σ1, σ

′
2)}

19 D ← D / h{1} where h : v 7→
∑

a′∈AI
v[(I, a′), σ′2]

20 FILLOUTROW((σ1, σ
′
2), I)

21 else
. Fill all {v[σ1, (I, a)] : a ∈ AI} by splitting v[σ1, σ2] accordance with the von Stengel-Forges constraints

22 S ← S t {(σ1, (I, a)) : a ∈ AI}
23 D ← D / h ∆|AI | where h : v 7→ v[σ1, σ2]

. Recursive call
24 for σ′2 ∈ {(I, a) : a ∈ AI} do
25 DECOMPOSE((σ1, σ

′
2),S,D)

. Fill a portion of the column for σ2

26 for I1 ∈ I1 : σ2 ./ I1, σ(I1) = σ1 do
27 for σ′1 ∈ {(I1, a′) : a′ ∈ AI1} do

. Fill (σ′1, σ2) by summing up all entries {v[σ′1, (I, a
′)] : a′ ∈ AI} in accordance with the von Stengel-Forges

constraints
28 S ← S t {(σ′1, σ2)}
29 D ← D / h{1} where h : v 7→

∑
a′∈AI

v[σ′1, (I, a
′)]

30 FILLOUTCOLUMN((σ′1, σ2), I)
31 return (S,D)

Lemma 4 (Inductive contract for DECOMPOSE). Assume that at the beginning of each call to DECOMPOSE((σ1, σ2),S,D) the
following conditions hold

(Pre1) S contains only relevant sequence pairs and D consists of vectors indexed by exactly the indices in S .
(Pre2) S does not contain any relevant sequence pairs which are descendants of (σ1, σ2), with the only exception of (σ1, σ2)

itself. In formulas,
S ∩ {(σ′1, σ′2) ∈ Σ1 × Σ2 : σ′1 � σ1, σ

′
2 � σ2} = {(σ1, σ2)}.

Then, at the end of the call, the returned set (S ′,D′) are such that
(Post1) S ′ contains only relevant sequence pairs and D′ consists of vectors v indexed by exactly the indices in S ′.
(Post2) The call has filled in exactly all relevant sequence pair indices that are descendants of (σ1, σ2) (except for (σ1, σ2)

itself, which was already filled in). In formulas,

S ′ = S t {(σ′1, σ′2) ∈ Σ1 × Σ2 : σ′1 � σ1, σ
′
2 � σ2, (σ

′
1, σ
′
2) 6= (σ1, σ2), σ′1 ./ σ

′
2}.

(Post3) D′ satisfies the subset of von Stengel-Forges constraints



∑
a∈AI

v[(I, a), σ′2] = v[σ(I), σ′2] ∀σ′2 � σ2, I ∈ I1 s.t. σ′2 ./ I, σ(I) � σ1∑
a∈AJ

v[σ′1, (J, a)] = v[σ′1, σ(J)] ∀σ′1 � σ1, J ∈ I2 s.t. σ′1 ./ J, σ(J) � σ2.

Proof. By induction.
• Base case. The base case is any (σ1, σ2) such that there is no σ′1 � σ1, σ

′
2 � σ2, σ′1 ./ σ

′
2. In that case, the set B is empty, so

the algorithm terminates immediately without modifying the sets S and D. Consequently, (Post1) and (Post2) hold trivially
from (Pre1) and (Pre2). (Post3) reduces to an empty set of constraints, so (Post3) holds as well.

• Inductive step. In order to use the inductive hypothesis, we will need to prove that the preconditions for DECOMPOSE hold
on Lines 15 and 25. We will focus on Line 15 (I ∈ I1), as the analysis for the other case (I ∈ I2) is symmetric. (Pre1) clearly
holds, since we always update S and D in tandem. Since all iterations of the for loop on Line 10 touch different information
sets, at the time of the recursive call on Line 15, and given (Post2) for all previous recursive calls, the only relevant sequence
pairs (σ′′1 , σ

′′
2 ) such that σ′′1 � σ′1, σ′′2 � σ2 that have been filled are the ones on Lines 12 and 13. So, (Pre2) holds.

We now check that the preconditions for FILLOUTROW hold at Line 20. (Pre1), (Pre2), (Pre3), and (Pre4) are trivial. (Pre5)
and (Pre7) are guaranteed by (Post2) and (Post3) of DECOMPOSE applied to Line 15. (Pre6) holds because of Lines 18 and
19.
Using the inductive contracts of FILLOUTROW, FILLOUTCOLUMN and DECOMPOSE for the recursive calls, we now show
that all postconditions hold at the end of the call. (Post1) is trivial since we always update S and D together. (Post2) holds
by keeping track of what entries are filled in Lines 12, 13, 18, 19, 22, 23, 28, 29, as well as those filled in the calls to
FILLOUTROW, FILLOUTCOLUMN and DECOMPOSE, as regulated by postcondition (Post2) in the inductive contracts of the
functions. In order to verify (Post3), we need to verify that the constraints that are not already guaranteed by the recursive
calls hold. In particular, we need to verify that

A
∑
a∈AI

v[(I, a), σ2] = v[σ1, σ2] ∀I ∈ I1 s.t. σ2 ./ I, σ(I) = σ1, I /∈ B

B
∑
a∈AJ

v[σ1, (J, a)] = v[σ1, σ2] ∀J ∈ I2 s.t. σ1 ./ J, σ(J) = σ2, J /∈ B.

We will show that constraints A hold; the proof for B is symmetric. Using Lemma 2 together with the definition of B (Lines
1-9), any information set I ∈ Ii : σ(I) = σi, σ−i ./ I that is not in B must have σ−i-rank exactly 1. Let I ∈ I1 be such that
σ2 ./ I, σ(I) = σ1, I /∈ B, as required in A . Since the σ2-rank of I is 1, let J be the only information set in I2 such that
I 
 J, σ(J) = σ2. Note that J ∈ B. The entries v[(I, a), σ2] : a ∈ AI were filled in Lines 28 and 29 when the for loop
picked up J ∈ B. So, in particular,

v[(I, a), σ2] =
∑
a′∈AJ

v[(I, a), (J, a′)] ∀a ∈ AI .

Summing the above equations across a ∈ AI , we obtain∑
a∈AI

v[(I, a), σ2] =
∑
a∈AI

∑
a′∈AJ

v[(I, a), (J, a′)]

=
∑
a′∈AJ

∑
a∈AI

v[(I, a), (J, a′)]

=
∑
a′∈AJ

v[σ1, (J, a
′)]

= v[σ1, σ2],

where the last equation follows from the way the entries v[σ1, (J, a
′)] : a′ ∈ AJ were filled in (Lines 22 and 23). This shows

that the set of constraints A hold.

Theorem 2. The von Stengel-Forges polytope V of a two-player perfect-recall triangle-free EFG can be expressed via a sequence
of scaled extensions with simplexes and singleton sets:

V = {1} h1
/ X1

h2
/ X2

h3
/ · · · hn

/ Xn, (2)

where, for i = 1, . . . , n, either Xi = ∆si or Xi = {1} and hi is a linear function. Furthermore, an exact algorithm exists to
compute such expression in linear time in the dimensionality of V , and so, in time at most quadratic in the size of the game.



Proof. The correctness of the algorithm follow from (Post3) in the inductive contract. Every time the set of partially-filled-in
vectors D gets extended, it is extended with either the singleton set {1} or a simplex. In either case the nonnegative affine
functions h used are linear. So, the decomposition structure is as in the statement. Finally, since the overhead of each call (on
top of the recursive calls) is linear in the number of relevant sequence pairs (σ, τ) ∈ Σ1 ./Σ2 that are filled, and each relevant
sequence pair is filled only once, the complexity of the algorithm is linear in the number of relevant sequence pairs.

B Relationship Between V and Ξ
Preliminaries: Definition of the Polytope of Correlation Plans
Let Πi(σ) denote the subset of reduced-normal-form plans Πi for Player i prescribe all actions of Player i on the path from the
root of the game down to the information set-action pair σ (if σ =, assign Πi(∅) = Πi). The transformation from a correlated
distribution µ to its correlation plan representation is achieved using a linear function

f : ∆|Π1×Π2| → R|Σ1 ./Σ2|
≥0 .

Specifically, f takes a generic distribution µ over Π1 ×Π2 and maps to the vector ξ = f(µ), called a correlation plan, whose
components are

ξ[σ1, σ2] :=
∑

π1∈Π1(σ1)

∑
π2∈Π2(σ2)

µ(π1, π2) ∀(σ1, σ2) ∈ Σ1 ./Σ2. (4)

The set of all valid correlation plans, Ξ, is defined as the image Im f of f as the distribution µ takes any possible value in
∆|Π1×Π2|.
Remark 2. Since f sums up distinct entries from the distribution µ, all entries in ξ = f(µ) are in the range [0, 1].

Proofs
Lemma 5. Let 1(π1,π2) ∈ ∆|Π1×Π2| denote the distribution over Π1 ×Π2 that assigns mass 1 to the pair (π1, π2), and mass 0
to any other pair of reduced-normal-form plans. Then,

Ξ = co{f(1(π1,π2)) : π1 ∈ Π1, π2 ∈ Π2}.

Proof. The “deterministic” distributions 1(π1,π2) are the vertices of ∆|Π1×Π2|, so, in particular,

∆|Π1×Π2| = co{1(π1,π2) : π1 ∈ Π1, π2 ∈ Π2}.

Since by definition Ξ = Im f , and f is a linear function, the images (under f ) of the 1(π1,π2) are a convex basis for Ξ, which is
exactly the statement.

Lemma 6. Let v ∈ V . For all σ1 ∈ Σ1 such that v[σ1,∅] = 0, v[σ1, σ2] = 0 for all σ2 ./ σ1. Similarly, for all σ2 ∈ Σ2 such
that v[∅, σ2] = 0, v[σ1, σ2] = 0 for all σ1 ./ σ2.

Proof. We prove the theorem by induction on the depth of the sequences σ1 and σ2. The depth depth(σ) of a generic sequence
σ = (I, a) ∈ Σi of Player i is defined as the number of actions that Player i plays on the path from the root of the tree down to
action a at information set I included. Conventionally, we let the depth of the empty sequence be 0.

Take σ1 ∈ Σ1 such that v[σ1,∅] = 0. For σ2 of depth 0 (that is, σ2 = ∅), clearly v[σ1, σ2] = 0. For the inductive
step, suppose that v[σ1, σ2] = 0 for all σ2 ∈ Σ2, σ1 ./ σ2 such that depth(σ2) ≤ d2. We will show that v[σ2, σ2] = 0 for
depth(σ2) ≤ d2 + 1. Indeed, let (I, a′) = σ2 ./ σ1 of depth d2 + 1. Since v ∈ V , in particular the von Stengel-Forges constraint∑
a∈AI

v[σ1, (I, a)] = v[σ1, σ(I)] must hold. The depth of σ(I) is d2, so by the inductive hypothesis, it must be v[σ1, σ(I)] = 0,
and therefore

∑
a∈AI

v[σ1, (I, a)] = 0. But all entries of v are nonnegative, so it must be v[σ1, (I, a)] = 0 for all a ∈ AI , and
in particular for (I, a′) = σ2. This completes the proof by induction.

The proof for the second part is analogous.

Lemma 7. Let v ∈ V have integer {0, 1} coordinates. Then, for all (σ1, σ2) ∈ Σ1 ./Σ2, it holds that

v[σ1, σ2] = v[σ1,∅] · v[∅, σ2].

Proof. We prove the theorem by induction on the depth of the sequences, similarly to Lemma 6.
The base case for the induction proof corresponds to the case where σ1 and σ2 both have depth 0, that is, σ1 = σ2 = ∅. In

that case, the theorem is clearly true, because v[∅,∅] = 1 as part of the von Stengel-Forges constraints (1).
Now, suppose that the statement holds as long as depth(σ1), depth(σ2) ≤ d. We will show that the statement will hold

for any (σ1, σ2) ∈ Σ1 ./Σ2 such that depth(σ1), depth(σ2) ≤ d + 1. Indeed, consider (σ1, σ2) ∈ Σ1 ./Σ2 such that
depth(σ1), depth(σ2) ≤ d + 1. If any of the sequences is the empty sequence, the statements holds trivially, so assume that
neither is the empty sequence and in particular σ1 = (I, a), σ2 = (J, b). If v[σ1,∅] = 0, then from Lemma 6 v[σ1, σ2] = 0 and



the statement holds. Similarly, if v[∅, σ2] = 0, then v[σ1, σ2] = 0, and the statement holds. Hence, the only remaining case
given the integrality assumption on the coordinates of v is v[σ1,∅] = v[∅, σ2] = 1.

From the von Stengel-Forges constraints, v[σ(I),∅] =
∑
a′∈AI

v[(I, a′),∅] = 1 +
∑
a′∈AI ,a′ 6=a v[(I, a′),∅] ≥ 1. Hence,

because all entries of v are in {0, 1}, it must be v[σ(I),∅] = 1 and v[(I, a′),∅] = 0 for all a′ ∈ AI , a′ 6= a. With a similar
argument we conclude that v[∅, σ(J)] = 1 and v[∅, (J, b′)] = 0 for all b′ ∈ AJ , b 6= b′. Using the inductive hypothesis,
v[σ(I), σ(J)] = v[σ(I),∅] · v[∅, σ(J)] = 1.

Now, using the von Stengel-Forges constraints together with the equality v[σ(I), σ(J)] = 1 we just proved, we conclude that∑
a′∈AI

∑
b′∈AJ

v[(I, a′), (J, b′)] = 1. (5)

On the other hand, since v[(I, a′),∅] = 0 for all a′ ∈ AI , a′ 6= a and v[∅, (J, b′)] = 0 for all b′ ∈ AJ , b′ 6= b, from Lemma 6
we have that

a′ 6= a ∨ b′ 6= b =⇒ v[(I, a′), (J, b′)] = 0. (6)

From (6) and (5), we conclude that v[(I, a), (J, b)] = v[σ1, σ2] = 1 = v[σ1,∅] · v[∅, σ2], as we wanted to show.

Theorem 3. Let Γ be a two-player perfect-recall extensive-form game, let V be its von Stengel-Forges polytope, and let Ξ be its
polytope of correlation plans. Then, Ξ = V if and only if all vertices of V have integer {0, 1} coordinates.

Proof. We prove the two implications separately.
(⇒) We start by proving that if Ξ = V , then all vertices of V have integer {0, 1} coordinates. Since V = Ξ by hypothesis, from

5 we can write
V = co{f(1(π1,π2)) : π1 ∈ Π1, π2 ∈ Π2}.

So, to prove this direction it is enough to show that f(1(π1,π2)) has integer {0, 1} coordinates for all (π1, π2) ∈ Π1 ×Π2.
To see that, we use the definition (4): each entry in f(1(π1,π2)) is the sum of distinct entries of 1(π1,π2). Given that
by definition 1(π1,π2) has exactly one entry with value 1 and |Π1 × Π2| − 1 entries with value 0, we conclude that all
coordinates of f(1(π1,π2)) are in {0, 1}.

(⇐) We now show that if all vertices of V have integer {0, 1} coordinates, then V ⊆ Ξ. This is enough, since the reverse
inclusion, V ⊇ Ξ, is trivial and already known (von Stengel and Forges 2008). Let {v1, . . . , vn} be the vertices of V . To
conclude that V ⊆ Ξ, we will prove that vi ∈ Ξ for all i = 1, . . . , n. This will be sufficient since both V and Ξ are convex.
Let v ∈ {v1, . . . , vn} be any vertex of V . By hypothesis, v[σ1, σ2] ∈ {0, 1} for all (σ1, σ2) ∈ Σ1 ./Σ2. Because v satisfies
the von Stengel-Forges constraints and furthermore v has {0, 1} entries by hypothesis, the two vectors q1, q2 defined
according to q1[σ1] = v[σ1,∅] (σ1 ∈ Σ1) and q2[σ2] = v[∅, σ2] (σ2 ∈ Σ2) are pure sequence-form strategies. Now, let
π∗1 and π∗2 be the reduced-normal form plans corresponding to q1 and q2, respectively. We will show that v = f(1(π∗1 ,π

∗
2 )),

which will immediately imply that v ∈ Ξ using Lemma 5.
Since 1(π∗1 ,π

∗
2 ) has exactly one positive entry with value 1 in the position corresponding to (π∗1 , π

∗
2), by definition of the

linear map f , for any (σ1, σ2) ∈ Σ1 ./Σ2,

f(1(π∗1 ,π
∗
2 ))[σ1, σ2] = 1[σ1 ∈ Π1(σ1)] · 1[σ2 ∈ Π2(σ2)]. (7)

So, using the known properties of pure sequence-form strategies, we obtain

f(1(π∗1 ,π
∗
2 ))[σ1, σ2] = q1[σ1] · q2[σ2] = v[σ1,∅] · v[∅, σ2] = v[σ1, σ2],

where the last equality follows from Lemma 7. Since the equality holds for any (σ1, σ2) ∈ Σ1 ./Σ2, we have that
v = f(1(π∗1 ,π

∗
2 )).

Lemma 1. Let X ,Y , and h be as in Definition 1. If X is a convex polytope with vertices {x1, . . . ,xn}, and Y is a convex
polytope with vertices {y1, . . . ,ym}, then X / h Y is a convex polytope whose vertices are a nonempty subset of {(xi, h(xi)yj) :
i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}}.

Proof. Take any point z ∈ X / h Y . By definition of scaled, extension, there exist x ∈ X ,y ∈ Y such that z = (x, h(x)y).
Since {x1, . . . ,xn} are the vertices of X , x can be written as a convex combination x =

∑n
i=1 λixi where (λ1, . . . , λn) ∈ ∆n.



Similarly, y =
∑m
i=1 µiyi for some (µ1, . . . , µm) ∈ ∆m. Hence, using the hypothesis that h is affine, we can write

z = (x, h(x)y)

=

 n∑
i=1

λixi, h

(
n∑
i=1

λixi

)
m∑
j=1

µjyj


=

 n∑
i=1

λixi,

(
n∑
i=1

λih(xi)

)
m∑
j=1

µjyj


=

n∑
i=1

m∑
j=1

λiµj(xi, h(xi)yj).

Since λiµj ≥ 0 for all i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} and
∑n
i=1

∑m
j=1 λiµj = (

∑n
i=1 λi)(

∑m
j=1 µj) = 1, we conclude that

z ∈ co{(xi, h(xi)yj) : i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}}. On the other hand, (xi, h(xi)yj) ∈ X / h Y , so

X h
/ Y = co{(xi, h(xi)yj) : i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}}.

Since the vertices of a (nonempty) polytope are a (nonempty) subset of any convex basis for the polytope, the vertices of X / h Y
must be a nonempty subset of {(xi, h(xi)yj) : i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}}, which is the statement.

Theorem 4. Let V be the von Stengel-Forges polytope of a two-player triangle-free game (Definition 3). All vertices of V have
integer {0, 1} coordinates.

Proof. We prove the statement by induction over the scaled-extension-based decomposition

V = {1} h1
/ X1

h2
/ · · · hn

/ Xn.

In particular, we will show that for all k = 0, . . . , n, the coordinates of the vertices of the polytope

Vk = {1} h1
/ · · · hk

/ Xk

constructed by considering only the first k scaled extensions in the decomposition are all integer. Since V ⊆ [0, 1]|Σ1 ./Σ2|

(Remark 2), this immediately implies that each coordinate is in {0, 1}.
• Base case: k = 0. In this case, V0 = {1}. The only vertex is {1}, which is integer. So, base case trivially holds.
• Inductive step. Suppose that the polytope Vk (k < n) has integer vertices. We will show that the same holds for Vk+1.

Clearly, Vk+1 = Vk / hk+1 Xk+1. From the properties of the structural decomposition, we know that Kk+1 is either the
singleton {1}, or a probability simplex ∆sk+1 for some appropriate dimension sk+1. We break the analysis accordingly.
– If Xk+1 = {1}, the scaled extension represents filling in a linearly-dependent entry in v ∈ V by summing already-filled-in

entries. So, hk+1 takes a partially-filled-in vector from Vk and sums up some of its coordinates. Let v1, . . . , vn be the
vertices of Vk. Using Lemma 1, the vertices of Vk+1 are a subset of

{(vi, h(vi) · 1) : i = 1, . . . , n}. (8)

Since by inductive hypothesis vi have integer coordinates, and h sums up some of them, h(v)i is integer for all i = 1, . . . , n.
So, all of the vectors in (8) have integer coordinates, and in particular this must be true of the vertices of Vk+1.

– If Xk+1 = ∆sk+1 , the scaled extension represents the operation of partitioning an already-filled-in entry v[σ, τ ] of Vk into
si non-negative real values. The affine function hk+1 extracts the entry v[σ, τ ] from each vector v ∈ Vk. Let v1, . . . , vn
be the vertices of Vk. The vertices of ∆sk+1 are the canonical basis vectors {e1, . . . , esk+1

}. From Lemma 1, the vertices
of Vk+1 are a subset of

{(vi, h(vi)ej) : i = 1, . . . , n, j = 1, . . . , sk+1}
= {(vi, vi[σ, τ ]ej) : i = 1, . . . , n, j = 1, . . . , sk+1}. (9)

Since by inductive hypothesis the vertices vi have integer coordinates, vi[σ, τ ] is an integer. Since the canonical basis
vector only have entries in {0, 1}, all of the vectors in (9) have integer coordinates. So, in particular, this must be true of
the vertices of Vk+1.



C Additional Experimental Results
In this section we present additional computational results. Specifically, we present results on how well algorithms can solve
for EFCE (and thus also EFCCE and NFCCE since they are supsets of EFCE) after our new scaled-extension-based structural
decomposition has been computed for the polytope of correlation plans using the algorithm that we presented in the body.
The speed of that algorithm for computing the decomposition is extremely fast, as shown in the body both theoretically and
experimentally. Here we report the performance of two leading algorithms for finding an approximate optimal EFCE after the
decomposition algorithm has completed. Specifically, we compare the performance of the regret-minimization method of Farina
et al. (2019b) to that of the barrier algorithm for linear programming implemented by the Gurobi commercial linear programming
solver, as described in the body of the paper. (On these problems, any linear programming solver could be used in principle, but
simplex and dual simplex methods—even the ones in Gurobi—are prohibitively slow. Similarly, the subgradient descent method
of Farina et al. (2019a) is known to be dominated by the regret-minimization method of Farina et al. (2019b).)

Both algorithms are used to converge to a feasible EFCE—that is, no objective function was set—in the largest Goofspiel
instance (k = 5). Our implementation of the regret minimization method is single-threaded, while we allow Gurobi to use 30
threads. All experiments were conducted on a machine with 64 cores and 500GB of memory. Gurobi required roughly 200GB of
memory, while the memory footprint of the regret-minimization algorithm was less than 2GB.

At all times, the regret-minimization algorithm produces feasible correlation plans, that is, points that belong to Ξ = V . So,
that algorithm’s iterates’ infeasibility is defined as how incentive-incompatible the computed correlation plan is, measured as
the difference in value that each player would gain by optimally deviating from any recommendation at any information set in
the game. In contrast, the barrier method does not guarantee that the correlation plan is primal feasible, that is, the correlation
plans produced by the barrier algorithm might not be in Ξ = V . Therefore, for Gurobi, we measure infeasibility as the maximum
between (i) the (maximum) violation of the constraints that define V , and (ii) the incentive-incompatibility of the iterate.

Figure 4 shows the results. The regret minimization algorithm works better as an anytime algorithm and leads to lower
infeasibility for most of the run. The barrier method needs significant time to preprocess before even the first iterates are found.
After that it converges rapidly.
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Figure 4: Performance of the regret minimization method of Farina et al. (2019b) compared to Gurobi’s barrier method in the
largest Goofspiel game (k = 5).


	Introduction
	Preliminaries
	Scaled-Extension-Based Structural Decomposition for V
	A Sufficient Condition for the Existence of a Scaled-Extension-Based Decomposition
	Computation of the Decomposition

	Bridging the Gap Between V and Xi
	Experimental Evaluation
	Conclusions
	Scaled-Extension-Based Structural Decomposition for V
	Triangle-Freeness
	Decomposition Algorithm

	Relationship Between V and 
	Preliminaries: Definition of the Polytope of Correlation Plans
	Proofs

	Additional Experimental Results

