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A B S T R A C T

This paper investigates the accelerated distributed model predictive control (MPC) strategy for the heating,
ventilation and air conditioning (HVAC) systems with local and global power input constraints. The problems
are firstly formulated in the distributed MPC framework and then the constrained optimization is converted
into a quadratic programming problem. In the problem formulation, the thermal couplings between immediate
neighboring zones are considered while designing the distributed controller, and the unknown thermal
disturbances are incorporated by the robust optimization scheme. Then, using the accelerated dual gradient-
projection method, a distributed fast MPC protocol is designed for HVAC systems considering both the
electricity cost and occupant comforts. A distributed stopping criterion based on the distributed average
consensus algorithm is utilized. Finally, numerical simulations are used to demonstrate the effectiveness of the
proposed distributed MPC algorithm, and its computational advantages comparing with an existing distributed
method and a centralized algorithm.
1. Introduction

The energy consumption in building systems accounts for almost
0% of the total energy consumption in the United States (Koebrich,
owen, & Sharpe, 2020), while the heating, ventilation and air con-
itioning (HVAC) systems make up 30% of the energy consumption
n commercial building systems (Goetzler et al., 2017). The consumed
energy is responsible for the large amount of green house gas emissions.
On the other hand, buildings are where people spend their much
time (Klein et al., 2012), so that the occupant comfort is one another
critical consideration when designing HVAC control systems. Thus, it
is essential to develop the HVAC systems which can both save en-
ergy and guarantee occupants’ comfort (Hussain, Gabbar, Bondarenko,
Musharavati, & Pokharel, 2014).

In order to ensure the comfort of occupants as far as possible, we
should consider the thermal preferences of different individuals, in-
stead of the average thermal preference (Kim, Zhou, Schiavon, Raftery,
& Brager, 2018). One strategy for this problem is to use different
HVAC subsystems in distinct zones. Distributed control is a method
that each subsystem makes its own local decisions by communicating
with other subsystems in a certain way (Cao, Chen, Xiao, & Sun,
2009; Mei & Xia, 2019). Besides, every single HVAC system has a
power limit, and the total HVAC energy consumption of a building
should be constrained due to the distribution infrastructure limit within
the building system (Zhang, Deng, Yuan, & Qin, 2017a). Thus, the
control aim of distributed HVAC systems is to minimize the energy
consumption while maintaining occupants’ thermal comfort, under
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both local and global power constraints (Yang, Hu, & Spanos, 2020).
Model predictive control (MPC) can serve as a control method that
makes explicit use of the model information and obtains the opti-
mal control signal by minimizing a specified objective function over
a given time horizon under certain constraints (Camacho & Alba,
2013). Thus, MPC is widely used in the energy efficiency problems
of building and HVAC systems (O’Dwyer, De Tommasi, Kouramas, Cy-
chowski, & Lightbody, 2017; Serale, Fiorentini, Capozzoli, Bernardini,
& Bemporad, 2018). West, Ward, and Wall (2014) solved the multi-
objective optimization problem for commercial buildings under the
framework of MPC. The considered objectives include running cost,
CO2 emissions, and occupant thermal comfort. A real-time online ther-
mal comfort was measured based on the predicted mean vote (PMV)
model (Humphreys & Nicol, 2002). However, the authors used the av-
erage PMV from individuals wherein the considered thermal preference
was not personalized. Valenzuela, Ebadat, Everitt, and Parisio (2019)
presented a robust multivariable HVAC supervisory MPC framework
with data-driven technique to identify the HVAC system dynamics. It
was demonstrated that the energy efficiency was improved and the
proposed controller could deal with multiple set points, such as both
indoor temperatures and air flow rate. Lee, Ooka, Ikeda, Choi, and
Kwak (2020) investigated the MPC strategy for commercial buildings
when occupancy schedules and electricity prices were time-varying.
The simulations showed that the MPC could reduce the total operating
cost compared with a conventional rule-based controller. It should
be noted that only one building zone was considered in Lee et al.
(2020), Valenzuela et al. (2019) and West et al. (2014). When there are
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multiple zones or multiple buildings, the controllers in different zones
cannot collaborate with each other to avoid violating the global power
constraint. As mentioned above, when there are multiple controllers,
a distributed control method allows subsystems to make their own
local decisions when there exist coupled constraints. Distributed MPC
provides an excellent strategy to achieve both customized thermal
preferences and energy consumption optimization under global and
local power constraints (Afram & Janabi-Sharifi, 2014; Camponogara,
Jia, Krogh, & Talukdar, 2002). Moroşan, Bourdais, Dumur, and Buisson
(2010) firstly developed a building temperature regulation approach
in the case of a single zone and then extended the algorithm to the
multi-zone building case. It was demonstrated that the distributed
MPC approach can effectively reduce the computational requirements
compared with the centralized controller. However, the building model
in Moroşan et al. (2010) did not consider the influence of the outdoor
temperature, which had a non-negligible impact on the indoor tem-
perature. Radhakrishnan, Srinivasan, Su, and Poolla (2017) proposed
a learning-based hierarchical distributed MPC protocol for HVAC sys-
tems with operational constraints. A learning algorithm was utilized
to capture the occupancy pattern and user interactions. Yu, Xie, Jiang,
Zou, and Wang (2017) designed a distributed real-time HVAC controller
based on the Lyapunov optimization technique, with considerations
of time-varying electricity price, outdoor temperature, and occupant
comfort. The authors showed in simulations that the presented algo-
rithm can achieve energy cost reduction with small sacrifice in thermal
comfort. Xie, Yu, Jiang, and Zou (2018) investigated the distributed en-
rgy optimization problem for HVAC systems when there exist multiple
uildings and each building has multiple zones. A MPC scheme based
n alternating direction method of multipliers (ADMM) was used to
btain the optimal power input for each subsystem. However, a multi-
uilding coordinator and a building message controller in each building
ere required. The multi-building coordinator and building message
ontrollers function like centralized units to determine if the iterations
f the ADMM algorithm satisfies the stopping criterion, which made
he controllers not fully distributed. In addition, the thermal coupling
etween neighboring zones is not considered in Radhakrishnan et al.
(2017), Xie et al. (2018) and Yu et al. (2017), which is an important
actoring affecting zone temperatures. Although Moroşan et al. (2010)
nd Yang et al. (2020) considered the thermal couplings between neigh-
oring zones, Yang et al. (2020) did not use the MPC framework, thus
he optimization was over the whole time horizon, instead of a small
rediction horizon, which will lead to large computational loads and
naccurate prediction information, such as outdoor temperatures, when
he considered time horizon is large. Moroşan et al. (2010) used the
rediction of neighboring zones’ indoor temperatures when designing
he distributed model predictive controller. However, only three zones
re considered and any two of them are neighbors, and the authors did
ot show how to make predictions using only local information when
he number of zones is large. In fact, when the MPC is used for the
VAC control problem in the presence of thermal couplings between
eighboring zones, the larger the prediction horizon of controller is, the
nformation of more zones is required. If a distributed control system is
egarded as the one where each agent only requires the information of
ts neighbors, then the MPC algorithm is no longer distributed when the
rediction horizon is larger than 1, since the information of neighbors
f neighbors is required for a certain agent.
Convergence rate is a key consideration for the controllers of HVAC

ystems, since the temperature regulation should be in real time in
rder to minimize the thermal discomfort of occupants in practice. The
istributed ADMM algorithm in Xie et al. (2018) can only achieve the
onvergence rate of 

(

1
𝑘

)

with 𝑘 being the iteration number (Wang &

ng, 2017). When using the stopping criterion based on the distributed
verage consensus and the total number of zones is large, the com-
utational efficiency is relatively low. Nesterov’s method is a strategy
hat can solve convex optimization problems with convergence rate
(

1
)

(Bertsekas, 2009; Nesterov, 2005). Since many MPC problem

𝑘2

2

can be transferred to convex optimization problem (East & Cannon,
2019; Müller & Allgöwer, 2017; Wang & Boyd, 2009), there are some
researches focusing on the accelerated gradient projection algorithms
for MPC recently. Patrinos and Bemporad (2014) developed an accel-
erated dual gradient projection protocol based on Nesterov’s method,
and gave the conditions of primal suboptimality and feasibility. A
convergence rate of 

(

1
𝑘2

)

was proved for both dual optimality and

primal optimality. After rewriting the linear MPC problems with state-
input constraints in the augmented Lagrangian framework, Nedelcu,
Necoara, and Tran-Dinh (2014) investigated the inexact dual fast gra-
dient augmented Lagrangian methods and demonstrated its superiority
in computation complexity. Li, Wu, Wu, Long, and Wang (2016) con-
sidered the convex optimization problems when there exist separable
objective functions with linear coupled constraints. By employing La-
grangian dual decomposition and a fast proximal-gradient method, an
inexact dual accelerated gradient-projection strategy was proposed. In
the distributed case, Wang and Ong (2018) developed an accelerated
distributed MPC scheme for linear systems with global constraints and
proved the convergence rate of 

(

1
𝑘2

)

based on the Nesterov’s method.
In this study, we proposed an accelerated distributed MPC algorithm

for HVAC systems with global constraints based on the Nesterov’s
method. The thermal couplings between neighboring zones and the
unknown bounded thermal disturbances are considered. The main con-
tributions of this paper are stated as follows. It should be noted that the
contributions (ii) and (iii) fill the gap between the distributed MPC for
HAVC systems and the Nesterov’s gradient-based accelerated algorithm,
which is essential for introducing the accelerated MPC algorithm into
the case of distributed HVAC systems.

(i) The dynamics of indoor temperatures is incorporated into the
distributed MPC framework, including the thermal couplings be-
tween immediate neighboring zones. Considering the thermal
couplings between immediate neighbors only it is possible to have
a prediction horizon larger than 1 in the distributed MPC algo-
rithm. In addition, the unknown bounded thermal disturbances
are handled by robust optimization strategy.

(ii) To demonstrate the applicability of the Nesterov’s gradient-proj-
ection method that requires converting the primal optimization
problem to the dual form, we strictly prove the strong duality
of the primal and dual optimization problems for the considered
HVAC systems.

(iii) The Nesterov’s gradient-projection algorithm requires that the
objective function has a Lipschitz continuous gradient. In this
study, we convert the objective function of MPC for the HVAC
systems into a positive definite quadratic form, which is 𝜇𝑖-
strongly convex for some 𝜇𝑖, and then obtain a Lipschitz constant
𝐿𝑔 for the gradient of the objective function of the Nesterov’s
gradient-projection algorithm.

In addition, comparing with the distributed MPC for HVAC systems
n Xie et al. (2018), the advantages of this work are listed as follows.

(i) The thermal couplings between zones and unknown bounded
disturbances are considered in the presented MPC algorithm,
while they are neglected in Xie et al. (2018).

(ii) Xie et al. (2018) designed a distributed model predictive con-
troller for HVAC systems with global constraint. However, a
multi-building coordinator and building message controllers were
required for the stopping criterion, which made the controller not
fully distributed. In this work, the proposed algorithm is fully
distributed in that the multi-building coordinator and building
message controllers are not needed and each HVAC subsystem
can compute its own power input based on the information of
the corresponding zone and the neighboring HVAC systems.

(iii) The convergence rate of the algorithm is 
(

1
𝑘

)

in Xie et al.
(2018). When using the fully distributed stopping criterion, the
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computational time will be large when the number of zones is
large. In this work, the convergence rate of the algorithm is

(

1
𝑘2

)

. The numerical simulation study demonstrates that the
computational speed of the algorithm in this paper is faster than
that in Xie et al. (2018).

The remainder of this paper is organized as follows. Section 2 int-
oduces the necessary preliminary information and formulates the prob-
em. Section 3 transforms the optimization problem obtained in Sec-
ion 2 into one with a quadratic objective function, and then shows
hat how the thermal disturbances and parameter uncertainties can
e incorporated. Section 4 presents the designing procedure for the
ccelerated distributed MPC algorithm for HVAC systems. Numerical
imulations are given in Section 5 to demonstrate the effectiveness and
dvantages of the proposed algorithm. Section 6 draws the conclusions
f this work.
Some notations used in this paper are introduced as follows. 𝑰𝑛

epresents the 𝑛-dimensional identity matrix. 𝟏𝑛 and 𝟎𝑛 represent the
-dimensional column vectors with all elements being 1 and 0, re-
pectively. R and R𝑛 denote the set of real numbers and the set of
-dimensional real vectors, respectively. If we denote Z+

0 the set of
onnegative integers, then Zℎ

𝓁 ≜ {𝓁,𝓁 + 1,… , ℎ} for any 𝓁, ℎ ∈ Z+
0

nd 𝓁 < ℎ. (⋅)T represents the transpose of a vector or a matrix.
ax(⋅) and min(⋅) denote the maximum and minimum functions of the
orresponding values, respectively. For two vectors 𝒂 and 𝒃, 𝒂 < 𝒃
eans that the elements of 𝒂 is smaller than the corresponding elements
f 𝒃, respectively. The other comparison operators for vectors are also
lement-wise. The notation [𝒙]+ ≜ max(𝟎ℎ−1,𝒙) with the element-wise
aximum denotes the projection of 𝒙 ∈ R𝑛 on the set {𝒚 ∣ 𝒚 ≥ 𝟎ℎ−1}.
⋅ ‖2 denotes the Euclidean norm of a vector. For a matrix 𝑨, 𝑨 > 0
eans that 𝑨 is positive definite.  (𝑎, 𝑏) represents the continuous
niform distribution over the interval [𝑎, 𝑏].

. Preliminaries and problem formulation

.1. Graph theory

We consider 𝑀 buildings and there are 𝑁 connected zones in each
uilding. An undirected graph 𝐺 = ( , ) is used to describe the
eighborhood relationships among the𝑀𝑁 zones, where  denotes the
et of vertexes, i.e., the zones, and  ⊂  ×  denotes the set of edges,
espectively. If subsystem 𝑖 can exchange information with subsystem
, then (𝑖, 𝑗) ∈  , otherwise (𝑖, 𝑗) ∉  . The adjacency matrix 𝑨 of the
raph 𝐺 is an 𝑀𝑁 ×𝑀𝑁 matrix with the element 𝑎𝑖𝑗 satisfying 𝑎𝑖𝑗 = 1
f (𝑖, 𝑗) ∈  , and 𝑎𝑖𝑗 = 0 otherwise. In addition, we assume 𝑎𝑖𝑖 = 0. All
he subsystems which can communicate with subsystem 𝑖 form a set,
alled the neighbor set, which is 𝑖 ≜ {𝑗 ∈  ∣ (𝑖, 𝑗) ∈  , 𝑖 ≠ 𝑗}. The
atrix 𝑫 is a diagonal matrix with elements 𝑑𝑖 ≜

∑𝑀𝑁
𝑗=1 𝑎𝑖𝑗 , then the

aplacian matrix of the network 𝐺 can be defined as 𝑳 ≜ 𝑫 − 𝑨. An
ndirected path is a sequence of edges in a undirected graph 𝐺 in the
orm of (𝑖1, 𝑖2), (𝑖2, 𝑖3), …. If there exists an undirected path between
ny two edges in 𝐺, then the undirected graph 𝐺 is connected (Ren &
eard, 2008). We assume that the graph 𝐺 is connected in this work.
he diameter 𝐷 of a graph is defined as the longest of the shortest paths
etween any two nodes.

.2. Distributed HVAC systems

In this part, the model of distributed HVAC systems considered in
his paper will be introduced.
We consider the 𝑖th zone of the systems, with power consumption

𝑖(𝑘) in kW at time slot 𝑘. The thermal dynamics of zone 𝑖 with an
VAC system working in the cooling mode can be described as (Con-
tantopoulos, Schweppe, & Larson, 1991; Thatte & Xie, 2012; Yang
et al., 2020)

𝑇𝑖(𝑘 + 1) = 𝑎̄𝑖𝑖𝑇𝑖(𝑘) +
∑

𝑎̄𝑖𝑗𝑇𝑗 (𝑘) + 𝑎̄𝑖𝑜𝑇
out
𝑖 (𝑘) −

𝜂𝑖𝛥
𝐶𝑖

𝑃𝑖(𝑘) + 𝑑𝑖(𝑘), (1)

𝑗∈̄𝑖

3

where 𝑇𝑖(𝑘) and 𝑇 out
𝑖 (𝑘) denote the indoor and outdoor temperatures at

time slot 𝑘 in ◦F, 𝑑𝑖(𝑘) is the thermal disturbances from some other
energy sources such as internal loads and solar gains, 𝑎̄𝑖𝑖, 𝑎̄𝑖𝑗 , and
𝑎̄𝑖𝑜 are three parameters whose definitions are explained in detail in
Appendix A, 𝜂𝑖 denotes the coefficient of performance of the cooling
system, 𝛥 denotes the duration of a time slot in h with h indicating the
unit hour, 𝐶𝑖 represents the thermal capacitance of zone 𝑖 in kJ∕K, and
̄𝑖 denotes the set of physically neighboring zones that have thermal
couplings with zone 𝑖. The subscript 𝑖 denotes that all the variables and
parameters are with respect to the subsystem 𝑖.

Remark 1. This remark is to explain the similarity and differences
between 𝑖, 𝑎𝑖𝑗 , 𝑖, 𝑗 ∈ Z𝑀𝑁

1 and ̄𝑖, 𝑎̄𝑖𝑗 , 𝑖, 𝑗 ∈ Z𝑀𝑁
1 . The similarity

is that they are both related to the concepts of neighbors. However,
𝑖 denotes the set of zones whose HAVC systems can communicate
with zone 𝑖, in order to guarantee that the total energy consumption
limit is not violated. ̄𝑖 represents the set of physically neighboring
zones that have thermal couplings with zone 𝑖. The use of both 𝑖
and ̄𝑖 is necessary, since it is unreasonable to assume that there
are thermal couplings between two zones at different buildings, while
communications are required between some zones at different buildings
to guarantee that the bound for total power input is not violated.
Similarly, such differences exist between 𝑎𝑖𝑗 and 𝑎̄𝑖𝑗 . For example, 𝑎𝑖𝑗
can only be either 1 or 0, for all 𝑖, 𝑗 ∈ Z𝑀𝑁

1 , and 𝑎𝑖𝑖 = 0, for all 𝑖 ∈ Z𝑀𝑁
1 .

However, 𝑎̄𝑖𝑗 can be any values in [0, 1], and 𝑎̄𝑖𝑖 should not be zero for
𝑖 ∈ Z𝑀𝑁

1 since it represents the coefficient of thermal inertia.

We assume that the thermal disturbance 𝑑𝑖(𝑘) is bounded. That is

Assumption 1. The thermal disturbance 𝑑𝑖(𝑘) is bounded for all 𝑖 ∈
𝑀𝑁
1 and 𝑘 ∈ Z+

0 , i.e., there exist constants 𝑑min
𝑖 (𝑘) and 𝑑max

𝑖 (𝑘) such
hat
min
𝑖 (𝑘) ≤ 𝑑𝑖(𝑘) ≤ 𝑑max

𝑖 (𝑘). (2)

emark 2. Assumption 1 provides the possibility to design a dis-
ributed MPC algorithm such that the bounds for indoor temperature
nd power input are not violated in the presence of unknown thermal
isturbance 𝑑𝑖(𝑘). The method used to handle the unknown disturbance
s robust optimization, which will be presented in Section 3.2. In
ddition, Assumption 1 is reasonable since the main factors affecting
he indoor temperature, for example, the indoor and outdoor tem-
eratures at the previous time slot, the neighboring zones’ indoor
emperatures, are already included in model (1). What Assumption 1
stablished is that the sum of all other thermal sources is bounded.
n the numerical simulations in this paper, the maximum power of
hermal disturbance is 424.4 W for each zone. In Remark 11, we also
ive a detailed explanation about the thermal disturbance 𝑑𝑖(𝑘) in the
umerical simulations.

One of the control objectives is to keep the indoor temperature
ithin the appropriate range so that the occupants in the room will
ot feel uncomfortable (Xie et al., 2018). Thus, we need
min
𝑖 (𝑘) ≤ 𝑇𝑖(𝑘) ≤ 𝑇max

𝑖 (𝑘), ∀𝑘, (3)

here 𝑇min
𝑖 (𝑘) and 𝑇max

𝑖 (𝑘) denote the lower and upper bounds of the
ndoor temperature of zone 𝑖 at time slot 𝑘, respectively. In this study,
e assume that 𝑇min

𝑖 (𝑘) and 𝑇max
𝑖 (𝑘) are certain and known. The reason

s that if 𝑇min
𝑖 (𝑘) and 𝑇max

𝑖 (𝑘) are in some ranges and uncertain, then we
an just use the worst 𝑇min

𝑖 (𝑘) and 𝑇max
𝑖 (𝑘), i.e., the highest 𝑇min

𝑖 (𝑘) and
owest 𝑇max

𝑖 (𝑘) to guarantee that the indoor temperature 𝑇𝑖(𝑘) always
atisfies (3).
Besides, the constraints of the power inputs 𝑃𝑖(𝑘) can be describ-

ed as

𝑃min
𝑖 (𝑘) ≤ 𝑃𝑖(𝑘) ≤ 𝑃max

𝑖 (𝑘), ∀𝑘, (4)

where 𝑃min
𝑖 (𝑘) and 𝑃max

𝑖 (𝑘) are the lower and upper bounds of the power
input of zone 𝑖 at time slot 𝑘, respectively.
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Moreover, we consider that there exists a global constraint for the
total power consumption of all zones (Radhakrishnan et al., 2017;
Zhang, Deng, Yuan, & Qin, 2017b), which is
𝑀𝑁
∑

𝑖=1
𝑃𝑖(𝑘) ≤ 𝑃 (𝑘), ∀𝑘, (5)

with 𝑃 (𝑘) being the upper bound of the total power consumption at
ime slot 𝑘.

emark 3. The local power constraint (4) is from the maximum power
of an HVAC system. The motivation of the total power constraint (5)
is stated as follows. Due to the power limit of the distribution infras-
tructure, the total power input for buildings should be constrained.
We assume there is an aggregator that decides how much energy
should be imported from the grid at each time slot for different power
consumption systems of a building (Lampropoulos, Baghină, Kling, &
Ribeiro, 2013; Nguyen & Le, 2013), such as HVAC system, water heater,
and lighting system, etc. Thus, we can set total power limits for all
power consumption systems in order to guarantee that the power limit
of the grid will not be violated. Besides, this allocation can be time-
varying for practical considerations. For example, in the numerical
simulations in Section 5, we set 𝑃 (𝑘) to be smaller while the electricity
price is higher and larger while the price is lower during a day.

2.3. Cost model

We consider two kinds of costs, which are the energy cost per hour
of the cooling systems and the thermal discomfort cost associated with
occupants. The cost function can be described as follows (Xie et al.,
2018).

𝓁𝑖(𝑘) = 𝑆(𝑘)𝑃𝑖(𝑘) + 𝜎𝑖(𝑘 + 1)
(

𝑇𝑖(𝑘 + 1) − 𝑇 ref
𝑖 (𝑘 + 1)

)2 , ∀𝑘, (6)

where 𝑆(𝑘) denotes the electricity price at time slot 𝑘 in $∕kWh, 𝑇 ref
𝑖 (𝑘+

1) is the reference indoor temperature at time slot 𝑘 reflecting the
occupants’ preference which is uncertain and in a range, and 𝜎𝑖(𝑘 + 1)
denotes the thermal coefficient cost in $∕(◦F)2 h at time slot 𝑘 + 1,
which is assumed to be positive in this paper and serves as a trade-off
coefficient between the energy saving and thermal comfort satisfaction.
Note that 𝜎𝑖(𝑘) is related to the occupancy status of zone 𝑖. For example,
we can just set 𝜎𝑖(𝑘) to be a small value at night when the building
is closed and there are few occupants in zone 𝑖, and a large value in
daytime when the building is open.

Remark 4. The reference indoor temperature 𝑇 ref
𝑖 (𝑘 + 1) can be

determined by a comfort survey. Based on the PMV model, West et al.
(2014) used an online thermal comfort survey form to inquire about the
occupants’ general thermal sensation and the satisfaction level for the
indoor temperature. The calculated PMV can be used to tune the set-
point temperature of zones in real time. Besides, we can also employ the
reinforcement learning (RL) method to determine the reference indoor
temperature (Fazenda, Veeramachaneni, Lima, & O’Reilly, 2014; Wei,
Wang, & Zhu, 2017). When the occupants feel uncomfortable, they
can give less rewards or more penalties to the corresponding state–
action pairs of HVAC systems. The indoor temperature 𝑇 ref

𝑖 (𝑘 + 1) can
be obtained and modified based on these related thermal feedbacks.

2.4. Problem formulation

In this paper, we would like to minimize total cost (6) of all 𝑀𝑁
zones over 𝐻 slots, subject to constraints (3)–(5). To this end, the
problem is formulated as

min
𝑀𝑁
∑

𝑖=1

𝐻−1
∑

𝑘=1
𝓁𝑖(𝑘), s.t. (3)–(6), (7)

with the decision variables being the power consumptions 𝑃𝑖(𝑘) for all
𝑀𝑁 𝐻−1
𝑖 ∈ Z1 and 𝑘 ∈ Z1 .

4

In order to solve (7), we need to know the outdoor temperature
𝑇 out
𝑖 (𝑘) and the reference indoor temperature over all 𝐻 − 1 time hori-
zons in all 𝑀𝑁 zones. However, it is of large uncertainty to predict all
these information at the initial time, which will deteriorate the control
performance and enlarge the probabilities of feeling uncomfortable
for occupants. To address this issue, we employ the MPC framework
for which we only assume that the required information 𝑇 out

𝑖 (𝑘) and
𝑇 ref
𝑖 (𝑘 + 1) are accurate in the next ℎ (1 ≤ ℎ ≤ 𝐻 − 1) slots (Parisio,
Rikos, & Glielmo, 2014; Xie et al., 2018). In this case, what we would
like to minimize at the slot 𝑘𝑐 is the cost

∑𝑀𝑁
𝑖=1

∑𝑘𝑐+ℎ−2
𝑘=𝑘𝑐

𝓁𝑖(𝑘). After we

obtain the power consumption 𝑃𝑖(𝑘𝑐 ), we can just substitute it into (1)
to get the new state 𝑇𝑖(𝑘𝑐+1) and then we minimize

∑𝑀𝑁
𝑖=1

∑𝑘𝑐+ℎ−1
𝑘=𝑘𝑐+1

𝓁𝑖(𝑘),

subsequently. It should be noted that the minimization should repeat
until 𝑘𝑐 = 𝐻 − ℎ + 1. For time slots from 𝐻 − ℎ + 2 to 𝐻 − 1, we can
directly use the remaining ℎ− 2 results computed at the slot 𝐻 − ℎ+ 1.
Thus, the optimization problem can be written as

min
𝑃𝑖(𝑘)

𝑀𝑁
∑

𝑖=1

𝑘𝑐+ℎ−2
∑

𝑘=𝑘𝑐

𝓁𝑖(𝑘), s.t. (3)–(6), (8)

with 𝑘𝑐 being from 1 to 𝐻 − ℎ + 1.

2.5. Tightening the constraints

For optimization problem (8), we need to solve it numerically.
However, little benefit can be gained when the numerical solution
is really near optimal and the computing cost will be high if we
continue the iteration (Wang & Ong, 2017). Besides, the subsequent
optimization may be infeasible if we use an early termination condition
in each step (Wang & Ong, 2018). To address this issue, we can tighten
constraint (5) at each time slot 𝑘𝑐 ∈ Z𝐻−ℎ+1

1 to account for errors
arising from the premature termination, which is (Rubagotti, Patrinos,
& Bemporad, 2014)
𝑀𝑁
∑

𝑖=1
𝑃𝑖(𝑘) ≤ (1 − 𝜖𝑀𝑁(𝑘 − 𝑘𝑐 + 1))𝑃 (𝑘), ∀𝑘 ∈ Z𝑘𝑐+ℎ−2

𝑘𝑐
, (9)

with 𝜖 being a predefined tolerance to the violation of the constraint
(5) for a stopping criterion. The constraint (9) can be written in the
vector form
𝑀𝑁
∑

𝑖=1
𝑷 𝑖(𝑘𝑐) ≤ 𝒃(𝑘𝑐 , 𝜖), ∀𝑘𝑐 ∈ Z𝐻−ℎ+1

1 , (10)

with 𝑷 𝑖(𝑘𝑐 ) ≜ [𝑃𝑖(𝑘𝑐 ), 𝑃𝑖(𝑘𝑐 + 1),… , 𝑃𝑖(𝑘𝑐 + ℎ − 2)]T and 𝒃(𝑘𝑐 , 𝜖) ≜
[(1−𝜖𝑀𝑁)𝑃 (𝑘𝑐), (1−2𝜖𝑀𝑁)𝑃 (𝑘𝑐+1),… , (1−(ℎ−1)𝜖𝑀𝑁)𝑃 (𝑘𝑐+ℎ−2)]T,
respectively.

With global constraint (10), the optimization problem becomes

min
𝑃𝑖(𝑘)

𝑀𝑁
∑

𝑖=1

𝑘𝑐+ℎ−2
∑

𝑘=𝑘𝑐

𝓁𝑖(𝑘), s.t. (3), (4), (6), (10). (11)

Note that it will be complicated to directly solve optimization
problem (11), due to the complicated objective function and thermal
disturbances and parameter uncertainties existed in the problem. In
Section 3, we will transform the objective function of (11) into a
uadratic form and then show how the thermal disturbances and
arameter uncertainties can be handled.

. Transformation of optimization problem (11)

In this section, we firstly formulate problem (11) into one with a
quadratic objective function with respect to 𝑷 𝑖(𝑘𝑐). Then, we will show
how the additive thermal disturbances and uncertain parameters can

be incorporated into the framework of distributed MPC in this work.
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3.1. Transformation of problem (11)

In order to design a distributed MPC algorithm for HVAC systems
considering thermal couplings between neighboring zones, we made
the following assumption, with justification provided in Remark 13 of
ppendix B.

ssumption 2. The impacts of initial indoor and outdoor tempera-
ures, and power input for zone 𝑖, 𝑖 ∈ Z𝑀𝑁

1 , are only considered for
one 𝑖 itself and its immediate neighbors. That is, they are neglected
or the neighbors of neighbors of zone 𝑖.

If we denote

𝑻 𝑖(𝑘𝑐 ) ≜
[

𝑇𝑖(𝑘𝑐 + 1), 𝑇𝑖(𝑘𝑐 + 2),… , 𝑇𝑖(𝑘𝑐 + ℎ − 1)
]T , (12a)

out
𝑖 (𝑘𝑐 ) ≜

[

𝑇 out
𝑖 (𝑘𝑐), 𝑇 out

𝑖 (𝑘𝑐 + 1),… , 𝑇 out
𝑖 (𝑘𝑐 + ℎ − 2)

]T , (12b)

𝑷 𝑖(𝑘𝑐 ) ≜
[

𝑃𝑖(𝑘𝑐 ), 𝑃𝑖(𝑘𝑐 + 1),… , 𝑃𝑖(𝑘𝑐 + ℎ − 2)
]T , (12c)

𝒅𝑖(𝑘𝑐 ) ≜
[

𝑑𝑖(𝑘𝑐 ), 𝑑𝑖(𝑘𝑐 + 1),… , 𝑑𝑖(𝑘𝑐 + ℎ − 2)
]T , (12d)

hen the thermal dynamics of zone 𝑖 can be formulated as

𝑖(𝑘𝑐 ) = 𝑻 𝑖0(𝑘𝑐 ) +
∑

𝑗∈̄𝑖∪𝑖

𝑭 𝑖𝑗𝑻 out
𝑗 (𝑘𝑐 ) −

∑

𝑗∈̄𝑖∪𝑖

𝝉 𝑖𝑗𝑷 𝑗 (𝑘𝑐 ) +
∑

𝑗∈̄𝑖∪𝑖

𝑮𝑖𝑗𝒅𝑗 (𝑘𝑐),

(13)

here the matrices 𝑭 𝑖𝑗 , 𝝉 𝑖𝑗 ,𝑮𝑖𝑗 ∈ R(ℎ−1)×(ℎ−1) and the vector 𝑻 𝑖0(𝑘𝑐) ∈
ℎ−1 are constant matrices related to physical parameters and adja-
ency relationship of the zones in building systems, and the duration
f each time slot. In addition, the vector 𝑻 𝑖0(𝑘𝑐 ) also depends on the
ndoor temperature 𝑇𝑖(𝑘𝑐) of zone 𝑖 at time slot 𝑘𝑐 . The definitions of
𝑖𝑗 , 𝝉 𝑖𝑗 ,𝑮𝑖𝑗 , 𝑻 𝑖0(𝑘𝑐 ), and the detailed formulation procedure of (13) can
e found in Appendix B.
If we denote

𝑻min
𝑖 (𝑘𝑐) ≜

[

𝑇min
𝑖 (𝑘𝑐 + 1), 𝑇min

𝑖 (𝑘𝑐 + 2),… , 𝑇min
𝑖 (𝑘𝑐 + ℎ − 1)

]T , (14a)

𝑻max
𝑖 (𝑘𝑐) ≜

[

𝑇max
𝑖 (𝑘𝑐 + 1), 𝑇max

𝑖 (𝑘𝑐 + 2),… , 𝑇max
𝑖 (𝑘𝑐 + ℎ − 1)

]T , (14b)

𝑷min
𝑖 (𝑘𝑐) ≜

[

𝑃min
𝑖 (𝑘𝑐 ), 𝑃min

𝑖 (𝑘𝑐 + 1),… , 𝑃min
𝑖 (𝑘𝑐 + ℎ − 2)

]T , (14c)
max
𝑖 (𝑘𝑐) ≜

[

𝑃max
𝑖 (𝑘𝑐 ), 𝑃max

𝑖 (𝑘𝑐 + 1),… , 𝑃max
𝑖 (𝑘𝑐 + ℎ − 2)

]T , (14d)

he constraints (4) can be written as
min
𝑖 (𝑘𝑐 ) ≤ 𝑻 𝑖(𝑘𝑐 ) ≤ 𝑻max

𝑖 (𝑘𝑐 ), (15)
min
𝑖 (𝑘𝑐 ) ≤ 𝑷 𝑖(𝑘𝑐 ) ≤ 𝑷max

𝑖 (𝑘𝑐 ), (16)

ith the inequalities being element-wise.
Substituting (13) into (15), and combining (16), we can obtain

⎡

⎢

⎢

⎢

⎢

⎣

𝑰ℎ−1

−𝑰ℎ−1

𝝉 𝑖𝑖
−𝝉 𝑖𝑖

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏟⏞⏟
𝑨𝑖

𝑷 𝑖(𝑘𝑐 )

≤

⎡

⎢

⎢

⎢

⎢

⎣

𝑷max
𝑖 (𝑘𝑐 )

−𝑷min
𝑖 (𝑘𝑐 )

𝑻 𝑖0(𝑘𝑐 ) +
∑

𝑗∈̄𝑖∪𝑖
𝑭 𝑖𝑗𝑻 out

𝑗 (𝑘𝑐 ) −
∑

𝑗∈̄𝑖
𝝉 𝑖𝑗𝑷 𝑗 (𝑘𝑐 ) +

∑

𝑗∈̄𝑖∪𝑖
𝑮𝑖𝑗𝒅𝑗 (𝑘𝑐 ) − 𝑻 min

𝑖 (𝑘𝑐 )
−𝑻 𝑖0(𝑘𝑐 ) −

∑

𝑗∈̄𝑖∪𝑖
𝑭 𝑖𝑗𝑻 out

𝑗 (𝑘𝑐 ) +
∑

𝑗∈̄𝑖
𝝉 𝑖𝑗𝑷 𝑗 (𝑘𝑐 ) −

∑

𝑗∈̄𝑖∪𝑖
𝑮𝑖𝑗𝒅𝑗 (𝑘𝑐 ) + 𝑻 max

𝑖 (𝑘𝑐 )

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑩𝑖

.

(17)

On the other hand, if we denote

𝑺(𝑘𝑐 ) ≜
[

𝑆(𝑘𝑐), 𝑆(𝑘𝑐 + 1),… , 𝑆(𝑘𝑐 + ℎ − 2)
]T , (18a)

𝝈𝑖(𝑘𝑐 ) ≜

⎡

⎢

⎢

⎢

⎢

𝜎𝑖(𝑘𝑐 + 1)
𝜎𝑖(𝑘𝑐 + 2)

⋱

⎤

⎥

⎥

⎥

⎥

, (18b)
⎣

𝜎𝑖(𝑘𝑐 + ℎ − 1)
⎦

5

ref
𝑖 (𝑘𝑐 ) ≜

[

𝑇 ref
𝑖 (𝑘𝑐 + 1), 𝑇 ref

𝑖 (𝑘𝑐 + 2),… , 𝑇 ref
𝑖 (𝑘𝑐 + ℎ − 1)

]T , (18c)

𝑪 𝑖 ≜ 𝝉T𝑖𝑖𝝈𝑖(𝑘𝑐 )𝝉 𝑖𝑖, (18d)

𝑫𝑖 ≜ 𝑺(𝑘𝑐 ) − 2

⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎝

𝑻 𝑖0(𝑘𝑐) − 𝑻 ref
𝑖 (𝑘𝑐 ) +

∑

𝑗∈̄𝑖∪𝑖

𝑭 𝑖𝑗𝑻 out
𝑗 (𝑘𝑐 )

−
∑

𝑗∈̄𝑖

𝝉 𝑖𝑗𝑷 𝑗 (𝑘𝑐) +
∑

𝑗∈̄𝑖∪𝑖

𝑮𝑖𝑗𝒅𝑗 (𝑘𝑐)
⎞

⎟

⎟

⎠

T

𝝈𝑖(𝑘𝑐)𝝉 𝑖𝑖

⎞

⎟

⎟

⎟

⎠

T

, (18e)

𝐸𝑖 ≜
⎛

⎜

⎜

⎝

𝑻 𝑖0(𝑘𝑐 ) − 𝑻 ref
𝑖 (𝑘𝑐) +

∑

𝑗∈̄𝑖∪𝑖

𝑭 𝑖𝑗𝑻 out
𝑗 (𝑘𝑐) −

∑

𝑗∈̄𝑖

𝝉 𝑖𝑗𝑷 𝑗 (𝑘𝑐 )

+
∑

𝑗∈̄𝑖∪𝑖

𝑮𝑖𝑗𝒅𝑗 (𝑘𝑐 )
⎞

⎟

⎟

⎠

T

𝝈𝑖(𝑘𝑐 )
(

𝑻 𝑖0(𝑘𝑐 ) − 𝑻 ref
𝑖 (𝑘𝑐 )

+
∑

𝑗∈̄𝑖∪𝑖

𝑭 𝑖𝑗𝑻 out
𝑗 (𝑘𝑐 ) −

∑

𝑗∈̄𝑖

𝝉 𝑖𝑗𝑷 𝑗 (𝑘𝑐 ) +
∑

𝑗∈̄𝑖∪𝑖

𝑮𝑖𝑗𝒅𝑗 (𝑘𝑐 )
⎞

⎟

⎟

⎠

,

(18f)

then
𝑘𝑐+ℎ−2
∑

𝑘=𝑘𝑐

𝓁𝑖(𝑘) = 𝑷 T
𝑖 (𝑘𝑐 )𝑪 𝑖𝑷 𝑖(𝑘𝑐 ) +𝑫T

𝑖 𝑷 𝑖(𝑘𝑐 ) + 𝐸𝑖. (19)

The detailed information about how to get (19) is shown in Appendix C.
Thus, the optimization problem (11) can be formulated as

min
𝑷 𝑖(𝑘𝑐 )

𝑀𝑁
∑

𝑖=1
𝑷 T

𝑖 (𝑘𝑐 )𝑪 𝑖𝑷 𝑖(𝑘𝑐) +𝑫T
𝑖 𝑷 𝑖(𝑘𝑐 ) + 𝐸𝑖, s.t. (10), (17), (20)

which is equivalent to

min
𝑷 𝑖(𝑘𝑐 )

𝑀𝑁
∑

𝑖=1
𝑷 T

𝑖 (𝑘𝑐 )𝑪 𝑖𝑷 𝑖(𝑘𝑐) +𝑫T
𝑖 𝑷 𝑖(𝑘𝑐 ), s.t. (10), (17), (21)

since 𝐸𝑖 is independent of 𝑷 𝑖(𝑘𝑐 ).
According to the form of 𝝉 𝑖𝑖 indicated in (B.10), we know that 𝝉 𝑖𝑖 is

a nonsingular matrix. From (18b), we have that 𝝈𝑖(𝑘𝑐) is a diagonal
matrix with all the diagonal elements 𝜎𝑖(𝑘𝑐 + 1),… , 𝜎𝑖(𝑘𝑐 + ℎ − 1)
being positive, thus the matrix 𝑪 𝑖 ≜ 𝝉T𝑖𝑖𝝈𝑖(𝑘𝑐 )𝝉 𝑖𝑖 is positive definite.
The positive definiteness of 𝑪 𝑖 is essential to prove that ∇𝝀𝑔𝑖(𝑘𝑐 ,𝝀),
which will be defined later and can be regarded as a function of 𝝀,
has Lipschitz continuous gradient. This is important for the accelerated
distributed MPC algorithm design, in Section 4, which use the gradient
projection method (see Section 6.10.1 of Bertsekas, 2009).

3.2. Formulation of uncertain optimization problem (21) to the certain
counterpart

In Section 3.1, we formulated optimization problem (11) into the
one with the objective function being quadratic. However, the obtained
optimization problem (21) is uncertain, since the vector 𝑫𝑖 in the objec-
tive and 𝑩𝑖 in the constraint (17) are related to the uncertain parameter
𝑇 ref
𝑖 (𝑘), 𝑘 ∈ Z𝑘𝑐+ℎ−1

𝑘𝑐+1
, and the unknown thermal disturbances 𝑑𝑖(𝑘),

𝑘 ∈ Z𝑘𝑐+ℎ−2
𝑘𝑐

, respectively. Thus, problem (21) cannot be directly solved.
In this section, we transform (21) into a certain problem by using
the concept of robust optimization (Ben-Tal, El Ghaoui, & Nemirovski,
2009).

The vector 𝑻 ref
𝑖 (𝑘𝑐 ) in (18c) is uncertain, since its corresponding

elements are uncertain. In this study, we assume that 𝑻 ref
𝑖 (𝑘𝑐) is in the

corresponding known ranges, i.e.,

𝜹ref𝑖 (𝑘𝑐 ) ≤ 𝑻 ref
𝑖 (𝑘𝑐 ) − 𝑻 ref

𝑖n0(𝑘𝑐 ) ≤ 𝜟ref
𝑖 (𝑘𝑐), (22)

where 𝑻 ref
𝑖n0(𝑘𝑐 ) is the nominal term, 𝜹

ref
𝑖 (𝑘𝑐 ) and 𝜟ref

𝑖 (𝑘𝑐 ) are the corre-
sponding lower and upper bounds of the true values’ deviation from

ref
the nominal value 𝑻 𝑖n0(𝑘𝑐).
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Besides, according to Assumption 1, we know that 𝒅𝑖(𝑘𝑐 ) in (12d) is
ounded, i.e.,

̃min
𝑖 (𝑘𝑐 ) ≤ 𝒅𝑖(𝑘𝑐) ≤ 𝒅̃max

𝑖 (𝑘𝑐 ), (23)

here 𝒅̃min
𝑖 (𝑘𝑐 ) ≜

[

𝑑min
𝑖 (𝑘𝑐 ), 𝑑min

𝑖 (𝑘𝑐 + 1),… , 𝑑min
𝑖 (𝑘𝑐 + ℎ − 2)

]T and 𝒅̃max
𝑖

𝑘𝑐 ) ≜
[

𝑑max
𝑖 (𝑘𝑐), 𝑑max

𝑖 (𝑘𝑐 + 1),… , 𝑑max
𝑖 (𝑘𝑐 + ℎ − 2)

]T. Since 𝑮(𝑘𝑐 ) is a
onstant matrix, as defined in (B.10), there must exist vectors 𝒅min

𝑖 (𝑘𝑐)
nd 𝒅max

𝑖 (𝑘𝑐 ), such that

min
𝑖 (𝑘𝑐 ) ≤

∑

𝑗∈̄𝑖∪𝑖

𝑮𝑖𝑗𝒅𝑗 (𝑘𝑐) ≤ 𝒅max
𝑖 (𝑘𝑐 ). (24)

It is shown in Appendix D that if we denote

𝑩min
𝑖 ≜

⎡

⎢

⎢

⎢

⎢

⎣

𝑷max
𝑖 (𝑘𝑐 )

−𝑷min
𝑖 (𝑘𝑐 )

𝑻 𝑖0(𝑘𝑐 ) +
∑

𝑗∈̄𝑖∪𝑖
𝑭 𝑖𝑗𝑻 out

𝑗 (𝑘𝑐 ) −
∑

𝑗∈𝑖
𝝉 𝑖𝑗𝑷 𝑗 (𝑘𝑐 ) + 𝒅min

𝑖 (𝑘𝑐 ) − 𝑻 min
𝑖 (𝑘𝑐 )

−𝑻 𝑖0(𝑘𝑐 ) −
∑

𝑗∈̄𝑖∪𝑖
𝑭 𝑖𝑗𝑻 out

𝑗 (𝑘𝑐 ) +
∑

𝑗∈̄𝑖
𝝉 𝑖𝑗𝑷 𝑗 (𝑘𝑐 ) − 𝒅max

𝑖 (𝑘𝑐 ) + 𝑻 max
𝑖 (𝑘𝑐 )

⎤

⎥

⎥

⎥

⎥

⎦

,

(25a)

max
𝑖 ≜ 𝑺(𝑘𝑐 ) − 2𝝉T𝑖𝑖𝝈𝑖(𝑘𝑐 )

⎛

⎜

⎜

⎝

𝑻 𝑖0(𝑘𝑐 ) − 𝜟ref
𝑖 (𝑘𝑐) − 𝑻 ref

𝑖n0(𝑘𝑐)

+
∑

𝑗∈̄𝑖∪𝑖

𝑭 𝑖𝑗𝑻 out
𝑗 (𝑘𝑐) −

∑

𝑗∈̄𝑖

𝝉 𝑖𝑗𝑷 𝑗 (𝑘𝑐) + 𝒅min
𝑖 (𝑘𝑐 )

⎞

⎟

⎟

⎠

, (25b)

𝑖 ≜ {𝑷 𝑖(𝑘𝑐 ) ∣ 𝑨𝑖𝑷 𝑖(𝑘𝑐 ) ≤ 𝑩min
𝑖 ,∀𝑘𝑐 ∈ Z𝐻−ℎ+1

1 }, (25c)

hen the uncertain optimization problem (21) can be converted to the
ollowing certain optimization problem.

min
𝑖(𝑘𝑐 )∈𝑖

𝑀𝑁
∑

𝑖=1
𝑷 T

𝑖 (𝑘𝑐 )𝑪 𝑖𝑷 𝑖(𝑘𝑐 ) +𝑫maxT
𝑖 𝑷 𝑖(𝑘𝑐 ), s.t. (10). (26)

emark 5. The uncertain vectors 𝑩𝑖(𝑘𝑐) and 𝑫𝑖(𝑘𝑐 ) in (21) are re-
laced with their certain bounds 𝑩min

𝑖 (𝑘𝑐 ) and 𝑫max
𝑖 (𝑘𝑐 ) in (26). The

ntuitive reason of this replacement is that the worst case is considered
hen robust optimization procedure is used to transform the uncertain
ptimization problem to the certain counterpart. In Section 4, an
ccelerated distributed MPC algorithm will be proposed to solve the
ptimization problem (26).

. Accelerated distributed model predictive control algorithm de-
ign

In this section, by using the Nesterov’s gradient-projection algo-
ithm, an accelerated distributed model predictive controller for HVAC
ystems with coupled constraints is designed.

.1. The dual problem of (26)

Considering coupled constraints (10), the Lagrangian dual function
f optimization problem (26) is

(𝑷 𝑖(𝑘𝑐 ),𝝀) ≜
𝑀𝑁
∑

𝑖=1
𝑷 T

𝑖 (𝑘𝑐 )𝑪 𝑖𝑷 𝑖(𝑘𝑐) +𝑫maxT
𝑖 𝑷 𝑖(𝑘𝑐 )

+𝝀T
(𝑀𝑁
∑

𝑖=1
(𝑷 𝑖(𝑘𝑐 ) − 𝒃(𝑘𝑐 , 𝜖))

)

,

∀𝑘𝑐 ∈ Z𝐻−ℎ+1
1 ,𝑷 𝑖(𝑘𝑐 ) ∈ 𝑖, 𝑖 ∈ Z𝑀𝑁

1 , (27)

here 𝝀 ≥ 𝟎ℎ−1 is the dual variable of inequality constraint (10).
In the rest of this paper, we will omit ∀𝑘𝑐 ∈ Z𝐻−ℎ+1

1 and ∀𝑖 ∈ Z𝑀𝑁
1

or convenience if there is no confusion. We have the dual problem of
21) as

max min (𝑷 𝑖(𝑘𝑐 ),𝝀), (28)

≥𝟎ℎ−1 𝑷 𝑖(𝑘𝑐 )∈𝑖

6

nd the primal optimization problem as

min
𝑖(𝑘𝑐 )∈𝑖

max
𝝀≥𝟎ℎ−1

(𝑷 𝑖(𝑘𝑐 ),𝝀), (29)

ith the primal function being max𝝀≥𝟎ℎ−1 (𝑷 𝑖(𝑘𝑐 ),𝝀).

emma 1. The objectives of dual optimization problem (28) and primal
ptimization problem (29) are equal, that is, the strong duality holds.

roof. Consider the Lagrangian dual function (27) (𝑷 𝑖(𝑘𝑐 ),𝝀). It is
ffine in 𝝀, hence it is concave in 𝝀. Besides, (𝑷 𝑖(𝑘𝑐 ),𝝀) is a continuous
unction with regard to 𝝀, and [0,∞)ℎ−1 is a convex and closed set,
hus we know that (𝑷 𝑖(𝑘𝑐 ),𝝀) closed with regard to 𝝀 (see Section
.3.3 of Boyd & Vandenberghe, 2004). Thus, −(𝑷 𝑖(𝑘𝑐 ),𝝀) is convex
nd closed with regard to 𝝀 for all 𝑷 𝑖(𝑘𝑐 ) ∈ 𝑖.
From (19), we know that 𝑷 T

𝑖 (𝑘𝑐 )𝑪 𝑖𝑷 𝑖(𝑘𝑐)+𝑫maxT
𝑖 𝑷 𝑖(𝑘𝑐) is a quadratic

unction of 𝑷 𝑖(𝑘𝑐), with 𝑪 𝑖 being positive definite. According to Exam-
le 3.2 of Boyd and Vandenberghe (2004), we have that 𝑷 T

𝑖 (𝑘𝑐 )𝑪 𝑖𝑷 𝑖(𝑘𝑐 )
𝑫maxT

𝑖 𝑷 𝑖(𝑘𝑐) is strictly convex with regard to 𝑷 𝑖(𝑘𝑐 ). Then, it is easy
o see that (𝑷 𝑖(𝑘𝑐 ),𝝀) is also convex in 𝑷 𝑖(𝑘𝑐 ). Similarly, 𝑷 𝑖(𝑘𝑐 ) is
convex and closed set from (17), and (𝑷 𝑖(𝑘𝑐 ),𝝀) is continuous in
𝑖(𝑘𝑐 ), thus (𝑷 𝑖(𝑘𝑐),𝝀) is convex and closed in 𝑷 𝑖(𝑘𝑐 ) for every 𝝀 ≥
ℎ−1.
Now we consider the function

(𝒖) = min
𝑷 𝑖(𝑘𝑐 )∈𝑖

max
𝝀≥𝟎ℎ−1

(

(𝑷 𝑖(𝑘𝑐 ),𝝀) − 𝒖T𝝀
)

, 𝒖 ∈ Rℎ−1, (30)

hich is a continuous function in 𝒖. Combining with the fact that Rℎ−1

s a closed set, we know that 𝑝(𝒖) is a closed function (see Section
.1 of Boyd & Vandenberghe, 2004). According to Proposition 1.1.2
n Bertsekas (2009), we have that 𝑝(𝒖) is lower semicontinuous. Since
(𝟎) < ∞, we can conclude

max
≥𝟎ℎ−1

min
𝑷 𝑖(𝑘𝑐 )∈𝑖

(𝑷 𝑖(𝑘𝑐 ),𝝀) = min
𝑷 𝑖(𝑘𝑐 )∈𝑖

max
𝝀≥𝟎ℎ−1

(𝑷 𝑖(𝑘𝑐 ),𝝀), (31)

rom Proposition 5.5.1 of Bertsekas (2009).

he dual problem (28) is equivalent to

min
≥𝟎ℎ−1

max
𝑷 𝑖(𝑘𝑐 )∈𝑖

−(𝑷 𝑖(𝑘𝑐),𝝀) = min
𝝀≥𝟎ℎ−1

𝑀𝑁
∑

𝑖=1
𝑔𝑖(𝑘𝑐 ,𝝀), (32)

ith

𝑖(𝑘𝑐 ,𝝀) ≜ max
𝑷 𝑖(𝑘𝑐 )∈𝑖

−
(

𝑷 T
𝑖 (𝑘𝑐 )𝑪 𝑖𝑷 𝑖(𝑘𝑐 ) +𝑫maxT

𝑖 𝑷 𝑖(𝑘𝑐 )
)

−𝝀T
(

𝑷 𝑖(𝑘𝑐 ) −
1

𝑀𝑁
𝒃(𝑘𝑐 , 𝜖)

)

. (33)

It is easy to see that −
(

𝑷 T
𝑖 (𝑘𝑐)𝑪 𝑖𝑷 𝑖(𝑘𝑐 ) +𝑫maxT

𝑖 𝑷 𝑖(𝑘𝑐)
)

− 𝝀T
(

𝑷 𝑖(𝑘𝑐 )

− 1
𝑀𝑁 𝒃(𝑘𝑐 , 𝜖)

)

is affine in 𝝀, and thus it is a convex function with

regard to 𝝀. According to the extended pointwise maximum property
(see Section 3.2.3 in Boyd & Vandenberghe, 2004), we can conclude
that 𝑔𝑖(𝑘𝑐 ,𝝀) is a convex function with regard to 𝝀.

Letting 𝑷 𝑖(𝑘𝑐 ,𝝀) ≜ argmax𝑷 𝑖(𝑘𝑐 )∈𝑖
𝑔𝑖(𝑘𝑐 ,𝝀), we have

𝑔𝑖(𝑘𝑐 ,𝝀) = −
(

𝑷 T
𝑖 (𝑘𝑐 )𝑪 𝑖𝑷 𝑖(𝑘𝑐) +𝑫maxT

𝑖 𝑷 𝑖(𝑘𝑐)
)

− 𝝀T
(

𝑷 𝑖(𝑘𝑐 ,𝝀)

− 1
𝑀𝑁

𝒃(𝑘𝑐 , 𝜖)
)

. (34)

According to Danskin’s theorem for maximum functions (see Section
3.1.1 in Bertsekas, 2015), we have

∇𝝀𝑔𝑖(𝑘𝑐 ,𝝀) = −
(

𝑷 𝑖(𝑘𝑐 ,𝝀) −
1

𝑀𝑁
𝒃(𝑘𝑐 , 𝜖)

)

. (35)

According to (19), we have

∇2
𝑷 𝑖(𝑘𝑐 ,𝝀)

(

𝑷 T
𝑖 (𝑘𝑐 )𝑪 𝑖𝑷 𝑖(𝑘𝑐 ) +𝑫maxT

𝑖 𝑷 𝑖(𝑘𝑐 )
)

= 2𝑪 𝑖 > 0, (36)

which indicates that there exists 𝜇𝑖 > 0 such that ∇2
𝑷 𝑖(𝑘𝑐 ,𝝀)

(

𝑷 T
𝑖 (𝑘𝑐 )𝑪 𝑖

𝑷 (𝑘 ) +𝑫maxT𝑷 (𝑘 )
)

≥ 𝜇 𝑰 . According to Theorem 1 in Nesterov
𝑖 𝑐 𝑖 𝑖 𝑐 𝑖 ℎ−1
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𝝀
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𝝀
𝑖
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i

(2005), one has that ∇𝝀𝑔𝑖(𝑘𝑐 ,𝝀) is Lipschitz continuous with constant
√

𝑁
𝜇𝑖
. We denote 𝐿𝑔 ≜ max𝑖∈Z𝑀𝑁

1

√

𝑁
𝜇𝑖

in the rest of this paper.

4.2. Distributed fast dual gradient algorithm for HVAC system

According to Section 6.10 of Bertsekas (2009) and Algorithm 1
n Patrinos and Bemporad (2014), optimization problem (32) can be
olved by the following iterations.

𝝀̃𝑗 = 𝝀𝑗 + 𝜃𝑗
(

(𝜃𝑗−1)−1 − 1
) (

𝝀𝑗 − 𝝀𝑗−1
)

, (37a)

𝑗+1 =

[

𝝀̃𝑗 − 1
𝐿𝑔

𝑀𝑁
∑

𝑖=1
∇𝝀𝑔𝑖(𝑘𝑐 , 𝝀̃

𝑗 )

]

+

, (37b)

𝜃𝑗+1 =

√

(

𝜃𝑗
)4 + 4

(

𝜃𝑗
)2 −

(

𝜃𝑗
)2

2
. (37c)

ith the initial values 𝝀−1 = 𝝀0 = 𝟎ℎ−1 and 𝜃−1 = 𝜃0 = 1. It is easy to
heck that (37c) satisfies the following relations.

1 − 𝜃𝑗+1
(

𝜃𝑗+1
)2

= 1
(

𝜃𝑗
)2

, 1
(

𝜃𝑗
)2

=
𝑗
∑

𝓁=0

(

𝜃𝓁
)−1 , 𝜃𝑗 ≤ 2

𝑗 + 2
, (38)

for 𝑗 > 0.
The variable 𝝀𝑗 in (37a) and (37b) is a global variable. Since what

we need to design is a distributed MPC controller, we can make a copy
of 𝝀𝑗 , denoted by 𝝀𝑗𝑖 , for subsystem 𝑖, 𝑖 ∈ Z𝑀𝑁

1 . The result is

𝝀̃𝑗𝑖 = 𝝀𝑗𝑖 + 𝜃𝑗
(

(𝜃𝑗−1)−1 − 1
)

(

𝝀𝑗𝑖 − 𝝀𝑗−1𝑖

)

, (39a)

𝝀𝑗+1𝑖 =

[

𝝀̃𝑗𝑖 −
1
𝐿𝑔

𝑀𝑁
∑

𝑖=1
∇𝝀𝑔𝑖(𝑘𝑐 , 𝝀̃

𝑗
𝑖 )

]

+

, (39b)

where ∇𝝀𝑔𝑖(𝑘𝑐 , 𝝀̃
𝑗
𝑖 ) = −

(

𝑷̃ 𝑗
𝑖 (𝑘𝑐 ) −

1
𝑀𝑁 𝒃(𝑘𝑐 , 𝜖)

)

with

𝑷̃ 𝑗
𝑖 (𝑘𝑐 ) ≜ argmin𝑷 𝑖(𝑘𝑐 )∈𝑖

𝑷 T
𝑖 (𝑘𝑐 )𝑪 𝑖𝑷 𝑖(𝑘𝑐 ) +𝑫maxT

𝑖 𝑷 𝑖(𝑘𝑐 )

+ 𝝀̃𝑗T𝑖
(

𝑷 𝑖(𝑘𝑐 ) −
1

𝑀𝑁
𝒃(𝑘𝑐 , 𝜖)

)

= argmin𝑷 𝑖(𝑘𝑐 )∈𝑖

𝑘𝑐+ℎ−2
∑

𝑘=𝑘𝑐

𝑷 T
𝑖 (𝑘𝑐 )𝑪 𝑖𝑷 𝑖(𝑘𝑐 ) + (𝑫max

𝑖 + 𝝀̃𝑗𝑖 )
T𝑷 𝑖(𝑘𝑐 ).

(40)

Remark 6. We use iterations (39a) and (39b) instead of (37a) and
37b) in the aim of making the controller distributed. As long as 𝝀−1𝑖
nd 𝝀0𝑖 are the same for all 𝑖 ∈ Z𝑀𝑁

1 respectively, we can obtain
𝑗
1 = 𝝀𝑗2 = ⋯ = 𝝀𝑗𝑀𝑁 for all iteration step 𝑗. Thus, the consensus of 𝝀𝑖,
∈ Z𝑀𝑁

1 can be guaranteed at all iteration steps. However, it should
e noted that we still need the information of 1

𝐿𝑔

∑𝑀𝑁
𝑖=1 ∇𝝀𝑔𝑖(𝑘𝑐 , 𝝀̃

𝑗
𝑖 )

in (39b), which is related to all 𝑀𝑁 subsystems and thus makes the
controller not fully distributed. In Section 4.3, a distributed averaging
consensus algorithm will be introduced to handle this problem.

Define

𝑷̄ 𝑗
𝑖 (𝑘𝑐 ) ≜ (𝜃𝑗 )2

𝑗
∑

𝓁=0
(𝜃𝓁)−1𝑷̃ 𝓁

𝑖 (𝑘𝑐) = (1 − 𝜃𝑗 )𝑷̄ 𝑗−1
𝑖 (𝑘𝑐 ) + 𝜃𝑗 𝑷̃ 𝑗

𝑖 (𝑘𝑐 ), (41)

for all 𝑖 ∈ Z𝑀𝑁
1 and with the initial condition 𝑷̄ −1

𝑖 (𝑘𝑐) = 𝟎ℎ−1.
According to the results of Wang and Ong (2018), supposing we

terminate the iteration of (41) at step 𝑗, then we can get 𝑷̄ 𝑗
𝑖 (𝑘𝑐 ) which

can be written as 𝑷̄ 𝑗
𝑖 (𝑘𝑐 ) ≜

[

𝑃 𝑗
𝑖,1(𝑘𝑐 ),… , 𝑃 𝑗

𝑖,ℎ−1(𝑘𝑐 )
]T
. The MPC algorithm

applied to the 𝑖th subsystem at time slot 𝑘𝑐 can be designed as

𝑃𝑖(𝑘𝑐) = 𝑃 𝑗
𝑖,1(𝑘𝑐 ),∀𝑘𝑐 ∈ Z𝐻−ℎ+1

1 ,∀𝑖 ∈ Z𝑀𝑁
1 . (42)
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4.3. Distributed average consensus

The aim of this subsection is to compute the term 1
𝐿𝑔

∑𝑀𝑁
𝑖=1 ∇𝝀𝑔𝑖

(𝑘𝑐 , 𝝀̃
𝑗
𝑖 ) in a distributed manner. Note that we can rewrite

1
𝐿𝑔

∑𝑀𝑁
𝑖=1 ∇𝝀𝑔𝑖

(𝑘𝑐 , 𝝀̃
𝑗
𝑖 ) as

1
𝐿𝑔

𝑀𝑁
∑

𝑖=1
∇𝝀𝑔𝑖(𝑘𝑐 , 𝝀̃

𝑗
𝑖 ) =

𝑀𝑁
𝐿𝑔

1
𝑀𝑁

𝑀𝑁
∑

𝑖=1
∇𝝀𝑔𝑖(𝑘𝑐 , 𝝀̃

𝑗
𝑖 ), (43)

with 1
𝑀𝑁

∑𝑀𝑁
𝑖=1 ∇𝝀𝑔𝑖(𝑘𝑐 , 𝝀̃

𝑗
𝑖 ) being the average of ∇𝝀𝑔𝑖(𝑘𝑐 , 𝝀̃

𝑗
𝑖 ) over 𝑀𝑁

subsystems. Thus, we can employ a distributed average consensus
algorithm to compute 1

𝑀𝑁
∑𝑀𝑁

𝑖=1 ∇𝝀𝑔𝑖(𝑘𝑐 , 𝝀̃
𝑗
𝑖 ) distributedly.

To that end, we introduce a distributed average consensus method
in this subsection. Besides, another distributed protocol is also used to
determine whether the average consensus is achieved with a predefined
tolerance at certain iteration step.

Consider the average consensus of 𝑀𝑁 vectors 𝒙1,… ,𝒙𝑀𝑁 , with
initial values 𝒙1(0),… ,𝒙𝑀𝑁 (0), respectively. A distributed average con-
sensus algorithm can be formulated as (Olfati-Saber, Fax, & Murray,
2007; Saber & Murray, 2003)

𝒙𝑖(𝑘′ + 1) = 𝒙𝑖(𝑘′) + 𝜖
∑

𝑗∈𝑖

𝑎𝑖𝑗
(

𝒙𝑗 (𝑘′) − 𝒙𝑖(𝑘′)
)

, (44)

or all 𝑖 ∈ Z𝑀𝑁
1 , and 0 < 𝜖 < 1

max𝑖 𝑑𝑖
being the step-size. According to

the related analysis in Olfati-Saber et al. (2007) and Saber and Murray
(2003) (the difference is that 𝒙𝑖 is a vector-valued in our case while it
s a scalar in Olfati-Saber et al., 2007; Saber & Murray, 2003), we know
that

lim
𝑘′→∞

𝒙𝑖(𝑘′) =
1

𝑀𝑁

𝑀𝑁
∑

𝑖=1
𝒙𝑖(0), ∀𝑖 ∈ Z𝑀𝑁

1 , (45)

as long as the undirected graph 𝐺 is connected.
It is indicated in (45) that the distributed average consensus of

vectors 𝒙1,… ,𝒙𝑀𝑁 can be achieved by (44) asymptotically. However,
when putting (44) into implementation, we should have a criterion
to determine whether the average consensus is achieved with a pre-
defined tolerance at certain iteration step 𝑘′′. To this end, we firstly
introduce the maximum consensus and minimum consensus protocols
as follows (Yadav & Salapaka, 2007).

Consider 𝑀𝑁 vectors 𝒚1,… , 𝒚𝑀𝑁 , with initial values 𝒚1(0),… ,
𝒚𝑀𝑁 (0), respectively. The algorithm

𝒚𝑖(𝑘 + 1) = max
𝑗∈𝑖

𝒚𝑗 (𝑘), (46)

with max being the element-wise operator, can achieve the finite-time
distributed maximum consensus. That is

𝒚𝑖(𝑘′) = max
𝑖

𝒚𝑖(0), ∀𝑖 ∈ Z𝑀𝑁
1 , (47)

for some 𝑘̄′ such that 𝑘′ ≥ 𝑘̄′.
Similarly, the algorithm

𝒚𝑖(𝑘 + 1) = min
𝑗∈𝑖

𝒚𝑗 (𝑘), (48)

with min being the element-wise operator, can achieve the finite-time
distributed minimum consensus. That is

𝒚𝑖(𝑘′) = min
𝑖

𝒚𝑖(0), ∀𝑖 ∈ Z𝑀𝑁
1 , (49)

for some 𝑘′ such that 𝑘′ ≥ 𝑘′.
According to Yadav and Salapaka (2007), we have that both 𝑘̄′ and

𝑘′ are less than or equal to the diameter 𝐷 of the graph. Thus, we can
just let 𝑘̄′ = 𝑘′ = 𝐷. Then Algorithm 1 can be used to compute the
average of 𝒙1(0),… ,𝒙𝑀𝑁 (0) with the prescribed margin error 𝜌.

In Algorithm 1, the termination criterion of distributed average
consensus is ‖

‖

max𝑖 𝒙𝑖(𝓁) − min𝑖 𝒙𝑖(𝓁)‖‖2 < 𝜌 after the maximum and
minimum consensus are both realized. We just use the value of the first
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Algorithm 1 Distributed average consensus with marginal error 𝜌.
1: Input: 𝒙𝑖(0), 𝑖 ∈ Z𝑀𝑁

1 , the predefined marginal error 𝜌, the diame-
ter 𝐷 and the adjacency matrix 𝑨 ≜ [𝑎𝑖𝑗 ], 𝑖, 𝑗 ∈ Z𝑀𝑁

1 , of graph 𝐺,
the step size 𝜖

2: Output: a vector 𝒙̄ such that ‖‖
‖

𝒙̄ − 1
𝑀𝑁

∑𝑀𝑁
𝑖=1 𝒙𝑖(0)

‖

‖

‖2
< 𝜌

3: Initialization: set 𝓁 = 0, 𝑘 = 0, 𝒙̄ = 𝟎ℎ−1, 𝛿 = 𝜌 + 1;
4: while 𝛿 ≥ 𝜌 (in parallel) do
5: 𝒙𝑖(𝓁 + 1) ← 𝒙𝑖(𝓁) + 𝜖

∑𝑀𝑁
𝑗=1 𝑎𝑖𝑗

(

𝒙𝑗 (𝓁) − 𝒙𝑖(𝓁)
)

6: 𝒚𝑖(0) ← 𝒙𝑖(𝓁 + 1), 𝒛𝑖(0) ← 𝒙𝑖(𝓁 + 1), 𝑖 ∈ Z𝑀𝑁
1 ;

7: while 𝑘 < 𝐷 do
8: 𝒚𝑖(𝑘 + 1) ← max𝑗∈𝑖

𝒚𝑗 (𝑘);
9: 𝒛𝑖(𝑘 + 1) ← min𝑗∈𝑖

𝒛𝑗 (𝑘);
10: 𝑘 ← 𝑘 + 1;
11: end while
12: 𝛿 ← ‖

‖

𝒚1(𝐷) − 𝒛1(𝐷)‖
‖2;

13: 𝓁 ← 𝓁 + 1;
14: end while
15: 𝒙̄ ← 𝒙1(𝓁)

subsystem to compute ‖
‖

max𝑖 𝒙𝑖(𝓁) − min𝑖 𝒙𝑖(𝓁)‖‖2 < 𝜌 in Line 12 since we
now that 𝒚1((𝑗 +1)𝐷) = max𝑖 𝒙𝑖(𝓁+1) and 𝒛1((𝑗 +1)𝐷) = min𝑖 𝒙𝑖(𝓁+1).
ote that

max
𝑖

𝒙𝑖(𝓁) − min
𝑖

𝒙𝑖(𝓁)
|

|

|

|

≥
|

|

|

|

|

|

𝒙1(𝓁) −
1

𝑀𝑁

𝑀𝑁
∑

𝑖=1
𝒙𝑖(0)

|

|

|

|

|

|

, (50)

where both the absolute operator and the inequality are element-wise.
Thus, one has
‖

‖

‖

‖

‖

‖

𝒙̄ − 1
𝑀𝑁

𝑀𝑁
∑

𝑖=1
𝒙𝑖(0)

‖

‖

‖

‖

‖

‖2

=
‖

‖

‖

‖

‖

‖

𝒙1(𝓁) −
1

𝑀𝑁

𝑀𝑁
∑

𝑖=1
𝒙𝑖(0)

‖

‖

‖

‖

‖

‖2

≤
‖

‖

‖

‖

max
𝑖

𝒙𝑖(𝓁) − min
𝑖

𝒙𝑖(𝓁)
‖

‖

‖

‖2

< 𝜌. (51)

t should be noted that we can actually let 𝒙̄ = 𝒙𝑖(𝓁) for any 𝑖 ∈ Z𝑀𝑁
1

nd we just pick 𝒙̄ = 𝒙1(𝓁) without loss of generality.
Now we consider to compute 1

𝑀𝑁
∑𝑀𝑁

𝑖=1 ∇𝝀𝑔𝑖(𝑘𝑐 , 𝝀̃
𝑗
𝑖 ). We can just let

𝒙𝑖(0) ← ∇𝝀𝑔𝑖(𝑘𝑐 , 𝝀̃
𝑗
𝑖 ) and then use Algorithm 1 to compute 1

𝑀𝑁
∑𝑀𝑁

𝑖=1 ∇𝝀
𝑔𝑖(𝑘𝑐 , 𝝀̃

𝑗
𝑖 ) distributedly. Thus, we can use iterations (39a), (39b), and

(37c) to solve optimization problem (32) in a distributed manner.
ccording to the strong duality indicated in Lemma 1, we actually
ave solved constrained optimization problem (11) in a distributed
ay. From Theorem 1 in Wang and Ong (2018) and Proposition 6.10.3
n Bertsekas (2009), we have the following statement.
Let the feasible domain of optimization problem (21) be 𝜖 ≜

𝑻 𝑖0 ∈ Rℎ ∶ (21) is feasible}. For any 𝑻 𝑖0 ∈ 𝜖 , we denote the optimal
olution of (21) as {𝑷 ∗

𝑖 (𝑘𝑐)}
𝑀𝑁
𝑖=1 and one of the optimal dual variable

s 𝝀∗. Further, let 𝐽 𝑗 (𝑘𝑐 ) ≜
∑𝑀𝑁

𝑖=1 𝑷̄ 𝑗T
𝑖 (𝑘𝑐 )𝑪 𝑖𝑷̄

𝑗
𝑖 (𝑘𝑐 ) + 𝑫maxT

𝑖 𝑷̄ 𝑗
𝑖 (𝑘𝑐 ) and

∗(𝑘𝑐 ) ≜
∑𝑀𝑁

𝑖=1 𝑷 ∗T
𝑖 (𝑘𝑐 )𝑪 𝑖𝑷 ∗

𝑖 (𝑘𝑐 )+𝑫maxT
𝑖 𝑷 ∗

𝑖 (𝑘𝑐). Then, for any 𝑻 𝑖0 ∈ 𝜖 ,
≥ 0, we have

4𝑀𝑁(
√

𝑀𝑁 + 1)𝐿𝑔‖𝝀∗‖22
(𝑗 + 2)2

≤ 𝐽 𝑗 (𝑘𝑐 ) − 𝐽 ∗(𝑘𝑐 ) ≤ 0. (52)

emark 7. Eq. (52) indicates that the designed algorithm can achieve a
onvergence rate of 𝑂

(

1
𝑗2

)

, which is accelerated compared with those

hose convergence rate is of 𝑂
(

1
𝑗

)

, such as the one in Xie et al. (2018)

(the rigorous proof can be found in Wang & Ong, 2017). However,
although the convergence rate is accelerated, we still need a stopping
criterion to determine when we should terminate the iterations (39a),
(39b), and (37c). In the next section, we will show how we can handle
this issue in a distributed manner.
8

4.4. Stopping criterion

Since the stopping criterion is with respect to whether we should
stop the iterations when obtaining 𝑷̄ 𝑗

𝑖 (𝑘𝑐 ) at step 𝑗, we only consider
the MPC slot 𝑘 = 𝑘𝑐 in this section without loss of generality. Let us
firstly introduce the definitions about 𝜀-solution and (𝜀, 𝛿)-suboptimal
solution of (21).

Definition 1. Given any 𝜀 > 0, the set {𝑷 𝑖(𝑘𝑐 )}𝑀𝑁
𝑖=1 is an 𝜀-relaxed

solution of (21) if 𝑷 𝑖(𝑘𝑐 ) ∈ 𝑖, ∀𝑖 ∈ Z𝑀𝑁
1 , and

𝑀𝑁
∑

𝑖=1
𝑷 𝑖(𝑘𝑐) − 𝒃(𝑘𝑐 , 𝜖) ≤ 𝜀𝑀𝑁 𝝆̄(𝑘𝑐 ), (53)

where 𝝆̄(𝑘𝑐 ) ≜ [𝑃 (𝑘𝑐 ), 𝑃 (𝑘𝑐 + 1),… , 𝑃 (𝑘𝑐 + ℎ − 2)]T.
Given any 𝜀, 𝛿 > 0, {𝑷 𝑖(𝑘𝑐 )}𝑀𝑁

𝑖=1 is an (𝜀, 𝛿)-suboptimal solution of
(21) if it is an 𝜀-related solution and

𝐽 (𝑘𝑐 ) − 𝐽 ∗(𝑘𝑐 ) ≤ 𝛿, (54)

where 𝐽 (𝑘𝑐 ) ≜ 𝑷 T
𝑖 (𝑘𝑐 )𝑪 𝑖𝑷 𝑖(𝑘𝑐) +𝑫maxT

𝑖 𝑷 𝑖(𝑘𝑐 ).

Similar to property (iii) of Lemma 1 in Wang and Ong (2018), we
have
𝑀𝑁
∑

𝑖=1
𝑷̄ 𝑗

𝑖 (𝑘𝑐) − 𝒃(𝑘𝑐 , 𝜖) ≤
4𝑀𝑁(

√

𝑀𝑁 + 1)𝐿𝑔‖𝝀∗‖2
(𝑗 + 2)2

𝝆̄(𝑘𝑐 ). (55)

Thus, there always exists 𝑗 such that {𝑷̄ 𝑗
𝑖 (𝑘𝑐)}

𝑀𝑁
𝑖=1 is an 𝜖-relaxed solu-

tion of (21). Besides, according to (52), we know that such a solution
{𝑷̄ 𝑗

𝑖 (𝑘𝑐)}
𝑀𝑁
𝑖=1 must be an (𝜖, 0)-suboptimal solution. Thus, a stopping

criterion could be ∑𝑀𝑁
𝑖=1 𝑷̄ 𝑗

𝑖 (𝑘𝑐) − 𝒃(𝑘𝑐 , 𝜖) ≤ 𝜖𝑀𝑁 𝝆̄(𝑘𝑐). Since 𝒃(𝑘𝑐 , 𝜖) ≜
[(1−𝜖𝑀𝑁)𝑃 (𝑘𝑐), (1−2𝜖𝑀𝑁)𝑃 (𝑘𝑐+1),… , (1−(ℎ−1)𝜖𝑀𝑁)𝑃 (𝑘𝑐+ℎ−2)]T,
this stopping condition could be written as

𝑀𝑁
∑

𝑖=1
𝑷̄ 𝑗

𝑖 (𝑘𝑐) ≤

⎡

⎢

⎢

⎢

⎢

⎣

𝑃 (𝑘𝑐)
(1 − 𝜖𝑀𝑁)𝑃 (𝑘𝑐 + 1)

⋮
(1 − (ℎ − 2)𝜖𝑀𝑁)𝑃 (𝑘𝑐 + ℎ − 2)

⎤

⎥

⎥

⎥

⎥

⎦

. (56)

Remark 8. We now illustrate the function of tightening the constraints
in Section 2.5. By (9), we can guarantee that 𝑃𝑖(𝑘𝑐 ), namely the first
element of 𝑷 𝑖(𝑘𝑐 ), will be no larger than 𝑃 (𝑘𝑐 ). From (42), we know
that only the first element of 𝑷 𝑖(𝑘𝑐) will be implemented during the
MPC framework, thus the coupled constraints (5) will not be violated
during the control process.

Remark 9. We can use Algorithm 1 to compute ∑𝑀𝑁
𝑖=1 𝑷̄ 𝑗

𝑖 (𝑘𝑐) for the
stopping criterion ∑𝑀𝑁

𝑖=1 𝑷̄ 𝑗
𝑖 (𝑘𝑐) − 𝒃(𝑘𝑐 , 𝜖) ≤ 𝜖𝑀𝑁 𝝆̄.

The accelerated distributed model predictive controller for HVAC sys-
tems with coupled constraints is summarized in Algorithm 2.

Remark 10. This remark is to illustrate how the possible conflict be-
tween the power and indoor temperature constraints can be addressed
when implementing the proposed algorithm. The possible conflict of
these two constraints is a characteristic of MPC when we consider them
both (see Section 2.5.4 of the book Wang, 2009). (1) When the con-
straints of local input bound and the indoor temperature are conflicting,
the quadratic programming problem, i.e., the line 13 of Algorithm 2,
will be infeasible. In this case, we can slack the bound of the indoor
temperature at the time slot when the conflict occurs. Thus, the thermal
comfort level might be sacrificed. (2) When the constraints of the
total power input and indoor temperature are conflicting, the stopping
criterion will never be satisfied. In order to step out of the while loop
of Algorithm 2, the maximum iteration number can be predefined. In
this case, the global power constraints might be violated, which means
more power would be allocated to the HVAC systems in the building
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system. However, the MPC algorithm will try its best to avoid conflicts
of constraints, since the optimization is over a finite future time horizon
instead of only the current time slot. This constitutes one advantage of
the model predictive controller.

Algorithm 2 The accelerated distributed MPC for HVAC systems.
1: Input: 𝐶𝑖, 𝑅𝑖𝑜, 𝑅𝑖𝑗 , 𝜂𝑖, 𝑑𝑖(𝑘), 𝛥, 𝑇𝑖(0), 𝑇 out

𝑖 (𝑘), 𝑇 ref
𝑖 (𝑘), 𝑆(𝑘), 𝜎𝑖(𝑘),

𝑇min
𝑖 (𝑘), 𝑇max

𝑖 (𝑘), 𝑃min
𝑖 (𝑘), 𝑃max

𝑖 (𝑘), 𝑨 ≜ [𝑎𝑖𝑗 ], 𝜖, 𝑃 (𝑘), ℎ, 𝐿𝑔 , 𝑖, 𝑗 ∈
Z𝑀𝑁
1 , 𝑘 ∈ Z𝐻

1

2: Output: 𝑷̄ 𝑗
𝑖 (𝑘), ∀𝑖 ∈ Z𝑀𝑁

1 , ∀𝑘 ∈ Z𝐻−ℎ+1
1

3: Initialization: 𝑘𝑐 = 1, 𝑷̄ −1
𝑖 (𝑘) = 𝟎ℎ−1, ∀𝑖 ∈ Z𝑀𝑁

1 , ∀𝑘 ∈ Z𝐻−ℎ+1
1

4: for all 𝑖 ∈ Z𝑀𝑁
1 (in parallel) do

5: while 𝑘𝑐 ≤ 𝐻 − ℎ + 1 do
6: 𝑗 ← 0;
7: 𝝀−1𝑖 = 𝝀0𝑖 ← 𝟎ℎ−1;
8: 𝜃−1 = 𝜃0 ← 1;
9: 𝜹 ← 𝜖𝑀𝑁 𝝆̄ + 𝟏ℎ−1;
10: while 𝜹 > 𝜖𝑀𝑁 𝝆̄ do
11: 𝝀̃𝑗𝑖 ← 𝝀𝑗𝑖 + 𝜃𝑗

(

(𝜃𝑗−1)−1 − 1
)

(

𝝀𝑗𝑖 − 𝝀𝑗−1𝑖

)

;

12: 𝝀𝑗+1𝑖 ←

[

𝝀̃𝑗𝑖 −
1
𝐿𝑔

∑𝑀𝑁
𝑖=1 ∇𝝀𝑔𝑖(𝑘𝑐 , 𝝀̃

𝑗
𝑖 )
]

+
;

3: 𝑷̃ 𝑗
𝑖 (𝑘𝑐 ) ← argmin𝑷 𝑖(𝑘𝑐 )∈𝑖

∑𝑘𝑐+ℎ−2
𝑘=𝑘𝑐

𝑷 T
𝑖 (𝑘𝑐)𝑪 𝑖𝑷 𝑖(𝑘𝑐 ) +

(𝑫max
𝑖 + 𝝀̃𝑗𝑖 )

T𝑷 𝑖(𝑘𝑐 );
4: 𝑷̄ 𝑗

𝑖 (𝑘𝑐 ) ← (1 − 𝜃𝑗 )𝑷̄ 𝑗−1
𝑖 (𝑘𝑐) + 𝜃𝑗 𝑷̃ 𝑗

𝑖 (𝑘𝑐);
5: 𝜹 ←

∑𝑀𝑁
𝑖=1 𝑷̄ 𝑗

𝑖 (𝑘𝑐 ) − 𝒃(𝑘𝑐 , 𝜖);

6: 𝜃𝑗+1 ←
√

(𝜃𝑗 )4+4(𝜃𝑗 )2−(𝜃𝑗 )2
2 ;

7: 𝑗 ← 𝑗 + 1;
8: end while
9: 𝑗 ← 𝑗;
0: 𝑃𝑖(𝑘𝑐) ← 𝑃 𝑗

𝑖,1(𝑘𝑐 );
1: 𝑇𝑖(𝑘𝑐 +1) ← 𝑎̄𝑖𝑖𝑇𝑖(𝑘) +

∑

𝑗∈̄𝑖
𝑎̄𝑖𝑗𝑇𝑗 (𝑘𝑐 ) + 𝑎̄𝑖𝑜𝑇 out

𝑖 (𝑘𝑐 ) −
𝜂𝑖𝛥
𝐶𝑖

𝑃𝑖(𝑘𝑐)
+ 𝑑𝑖(𝑘𝑐 );

2: 𝑘𝑐 ← 𝑘𝑐 + 1
3: end while
4: end for

5. Numerical simulations

In this section, the numerical simulations will be used to demon-
strate the effectiveness and advantages of the algorithms in this paper.
We use the similar simulation framework as that in Xie et al. (2018) to
compare the results and show the advantages. We consider 5 buildings
with each building comprising 10 distinct zones. In the distributed
cases, there is an independent HVAC system in each zone and the
neighborhood relationship of these independent systems is shown in
Fig. 1. The physical neighboring relationship, i.e., the thermal coupling
relationship, of these 50 zones are assumed to be the same as the
neighborhood relationship of the HVAC systems, expect that there are
no thermal couplings between two zones at different buildings, such
as zones 10 and 15 in Fig. 1. Note that we do not need the building
message controllers and the multi-building coordinator since we use a
fully distributed method to determine when to stop the iteration. The
MATLAB R2019a, running on a laptop with an Intel Core i7-4770 and
32.0 GB RAM, is used.

5.1. Simulation setup and results of the proposed distributed algorithm

We consider that there are 𝑀 = 5 buildings, and each building has
𝑁 = 10 zones. The parameters of zones are shown in Table 1, for all
𝑖 ∈ Z𝑀𝑁

1 and 𝑘 ∈ Z𝐻
1 (Constantopoulos et al., 1991; Yang et al., 2020).

The duration of a time slot is selected as 𝛥 = 0.2h, and the simulation
lasts for 48 h, i.e., 𝐻 = 48 = 240.
0.2 t

9

Table 1
System parameters.
Parameter Value Unit

𝐶𝑖 1.375 × 103 kJ∕K
𝑅𝑖𝑜 50 K∕kW
𝑅𝑖𝑗 14 K∕kW
𝜂𝑖 4.5 –
𝑑𝑖(𝑘)  (−0.2, 0.2) ◦F

The other simulation parameters are set as ℎ = 8, 𝜖 = 0.001
𝑀𝑁 , 𝜖 = 0.25,

𝜌 = 0.03, and 𝐿𝑔 = 200. According to Fig. 1, we have 𝐷 = 𝑀
(

𝑁
2 + 1

)

−
1 = 29. Besides, we have 𝑇 ref

𝑖 (𝑘) = (71 +  (−0.5, 0.5)) ◦F, 𝑃min
𝑖 (𝑘) = 0,

𝑃max
𝑖 (𝑘) = 1 kW, and

𝑃 (𝑘) =

{

0.5𝑀𝑁 kW, if 𝑆(𝑘) = $0.0808∕kWh,
0.3𝑀𝑁 kW, if 𝑆(𝑘) = $0.1692∕kWh,

for all 𝑘 ∈ Z𝐻
1 , 𝑖 ∈ Z𝑀𝑁

1 . We assume the buildings 1 and 2 open
at 9 am and close at 5 pm and the buildings 3 to 5 open at 8 am
and close at 8 pm, respectively. When the buildings are open, we set
𝜎𝑖(𝑘) = 3, 𝑇min

𝑖 (𝑘) = 65 ◦F, 𝑇max
𝑖 (𝑘) = 78 ◦F, and when the buildings

are closed, we set 𝜎𝑖(𝑘′) = 0.04
(𝑘′+2)2 , 𝑇

min
𝑖 (𝑘) = 65 ◦F, 𝑇max

𝑖 (𝑘) = 85 ◦F,
with 𝑘′ being the time since the nearest closing. We assume that the
initial indoor temperature of the zones labeled with odd numbers is
73 ◦F while the initial indoor temperature of the zones labeled with
even numbers is 74◦F. We use the outdoor temperature in Atlanta from
July 3 to July 4, 2020 (Atlanta, 0000). Note that we can only get the
outdoor temperature information every hour, while the duration of one
time slot is 𝛥 = 0.2h. To address this problem, the spline interpolation
is used to generate the data between adjacent hours. Thus, the outdoor
temperature used in this section is shown in Fig. 2. We consider that
the buildings are utilized commercially and the electricity price 𝑆(𝑘),
𝑘 ∈ Z𝐻

1 is shown in Fig. 3. In order to compare the simulation results
with those in Xie et al. (2018) and of the centralized algorithm, we
also obtain the simulation results by using the distributed ADMM in Xie
et al. (2018) with Algorithm 1 to determine when to stop the iterations,
nd using the same accelerating scheme in the centralized algorithm.
he common parameters of three algorithms are set as the same. The
imulation results are shown in Figs. 4–6.

emark 11. We choose the disturbance 𝑑𝑖(𝑘) to be uniformly dis-
ributed over [−0.2, 0.2], as shown in Table 1. (1) The reason the
egative disturbance is allowed is due to Assumption 2. According
o the analysis in Remark 13, heat transfers between zones that are
ot immediate neighbors are omitted in order to design a distributed
odel predictive controller. This is equivalent to introduce negative
eat gains to the thermal dynamics. (2) When 𝑑𝑖(𝑘) = 0.2, the thermal
isturbances will cause the indoor temperature to raise 0.2◦F within
2min. From the system model (A.3), this is equivalent to a power of
hermal disturbances being 424.4 W for each zone, which is reasonable.
3) In this study, we use the robust optimization method to handle the
nknown thermal disturbances. It is assumed that the minimum and
aximum thermal disturbances are known. Thus, from the perspective
f the algorithm in this paper, it does not matter what distribution
he thermal disturbance has, as long as it is over a small finite inter-
al. Thus, without loss of generality, we assume that it is uniformly
istributed in the numerical simulations.

We take zone 1, opening from 9 am to 5 am, and zone 22, opening
rom 8 am to 10 pm, as examples for discussion. Fig. 4 shows the
ndoor temperature of both zones. The indoor temperature is around
2◦F when the zones are open. When the zones are closed, for example
etween 5 pm and 9 am for zone 1, since the outdoor temperature is
elatively high during this interval, the indoor temperature is typically
igher than the reference temperature. In addition, the indoor tempera-

min
ures for both zones are within the comfortable range defined by 𝑇𝑖 (𝑘)
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w

Fig. 1. The neighborhood relationship of all 50 zones.
Fig. 2. The outdoor temperature in Atlanta from July 3 to July 4, 2020.

Fig. 3. The electricity price for business in Georgia (An explanation, 0000).

and 𝑇max
𝑖 (𝑘). Fig. 5 presents the HVAC power inputs in the two zones,

hich shows that all the input powers satisfy the local constraint. Fig. 6
shows the total HVAC power inputs of all 50 zones. The total power
consumptions do not exceed the global bound for all three algorithms.
Besides, when the buildings are closed, there is also nonzero power
inputs, which are caused by the nonzero weights on the temperature
deviation from the reference. This can avoid the indoor temperature
being too high when the buildings are closed.

Remark 12. This remark is to explain why we assume 𝑇 ref
𝑖 (𝑘) =

(71+ (−0.5, 0.5)) ◦F while the indoor temperature is around 72 ◦F when
the buildings are open. In Section 3.2, we replace the vectors 𝑩𝑖 and
10
𝑫𝑖 in the optimization problem with 𝑩min
𝑖 and 𝑫max

𝑖 . Note that using
𝑩min

𝑖 can guarantee that the local power inputs never exceed the local
bound in the presence of unknown bounded thermal disturbances, since
𝑩min

𝑖 serves as a tighter bound for the local power inputs than 𝑩𝑖. How-
ever, the vector 𝑫𝑖 appears originally in the objective function. When
we use robust optimization to handle the uncertainties, the results
guarantee the minimum of the defined objective no matter what the
exact disturbances are. Thus, the algorithm actually considers the worst
case. From the mathematical point of view, the reference temperature
𝑻 ref
𝑖 (𝑘𝑐) in𝑫𝑖 is replaced with 𝑻 ref

𝑖n0(𝑘𝑐 )+𝜟
ref
𝑖 (𝑘𝑐)+𝒅min

𝑖 (𝑘𝑐) in𝑫max
𝑖 . Thus,

the indoor temperature when the buildings are open is slightly higher
than the predefined one. However, this will not affect the practical
significance of the proposed algorithm, since we can always set the
reference temperature to be slightly lower than the occupants’ preferred
temperatures, and tune it when necessary. In the future work, we plan
to investigate how to determine the reference temperature by using the
occupants’ thermal feedback and machining learning method, which
will be incorporated into the control framework presented herein.

5.2. Advantages of the proposed algorithm over the one in Xie et al. (2018)
and the centralized algorithm

Figs. 4–6 show that the distributed algorithm in this paper, the
distributed ADMM algorithm in Xie et al. (2018), and the centralized
algorithm can all achieve indoor temperature regulation. However, the
original algorithm in Xie et al. (2018) requires the building message
controllers and the multi-building coordinator for the stopping crite-
ria, making the HVAC systems not fully distributed. To evaluate the
computing speed of these algorithms, a series of simulation studies
are conducted for 5 buildings. The number of zones of each building
increases from 5 to 15. Each simulation is over 120 time slots, i.e., 24 h
when 𝛥 = 0.2h. The total running time of each simulation is tallied.

When using the distributed method to determine when to stop the
iterations, the algorithm in Xie et al. (2018) requires significantly more
time to compute the results, as is shown in Fig. 7. In contrast, the
algorithm presented in this paper can accelerate the computing speed
when the HVAC systems are fully distributed. The proposed distributed
algorithm also presents higher computing speed compared with the
centralized algorithm using the Nesterov’s accelerating method when
a building has a large number of zones. In addition, the total energy
cost of all zones is shown in Fig. 8. The results demonstrate that the
total energy cost is almost the same for the proposed algorithm and
that in Xie et al. (2018), and is slightly lower for the centralized
algorithm. However, considering that the running time of the central-
ized algorithm increases significantly with increasing of the number
of zones, as shown in Fig. 7, it is beneficial to use the proposed
distributed algorithm for buildings with a large number of zones. Since
a commercial building typically has more than 15 zones, the proposed
algorithm can achieve the distributed temperature regulation in real
time, while the distributed ADMM in Xie et al. (2018) or the centralized
algorithm might not, as shown in Fig. 7.
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Fig. 4. The indoor temperature of zones 1 and 22 by the algorithms in this paper and Xie et al. (2018), and the centralized algorithm.
Fig. 5. The HVAC power input of zones 1 and 22 by the algorithms in this paper and Xie et al. (2018), and the centralized algorithm.
Fig. 6. The total power consumption by the algorithms in this paper and Xie et al. (2018), and the centralized algorithm.
6. Conclusions

In this paper, we investigated an accelerated distributed MPC strat-
egy for HVAC systems with global constraints. Firstly, we incorporated
the dynamics of indoor temperatures into MPC framework with the
assumption that only thermal couplings between the immediate neigh-
boring zones need to be considered. After presenting the system and
11
cost models, we converted the constrained optimization problem into
an quadratic programming problem and used robust optimization to
handle the potential unknown bounded thermal disturbances. Then,
based on the accelerated dual gradient-projection method, a distributed
fast MPC protocol was designed for HVAC systems. In order to de-
termine when to stop the iterations, a distributed stopping criterion
was used based on a distributed average consensus algorithm. Besides,
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Fig. 7. The running time comparison between the algorithms in this paper and Xie
t al. (2018), and the centralized algorithm.

he tightening of coupled constraints was firstly implemented to com-
ensate for the influence of early termination. Numerical simulations
emonstrated the effectiveness of the proposed distributed MPC algo-
ithm, and the comparisons with the MPC algorithm in Xie et al. (2018)
and the centralized counterpart illustrated that the proposed algorithm
can indeed accelerate the computation speed.

Our future research will focus on the algorithm for learning individ-
uals’ thermal preferences and how to incorporate the real-time thermal
feedbacks into controller design.
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Appendix A. Zone thermal dynamics model formulation

This appendix formulates the thermal dynamics of a zone including
neighboring zones’ thermal impact. The thermal dynamics of zones can
be modeled similarly to a resistance–capacitance (RC) network.

For zone 𝑖, 𝑖 ∈ Z𝑀𝑁
1 , one has (Constantopoulos et al., 1991; Thatte

& Xie, 2012; Wang, Hu, & Spanos, 2017; Yang et al., 2020)

𝑖
𝑇𝑖(𝑘 + 1) − 𝑇𝑖(𝑘)

𝛥
=

∑

𝑗∈̄𝑖

𝑇𝑗 (𝑘) − 𝑇𝑖(𝑘)
𝑅𝑖𝑗

+
𝑇𝑜(𝑘) − 𝑇𝑖(𝑘)

𝑅𝑖𝑜
− 𝜂𝑖𝑃𝑖(𝑘), (A.1)

here 𝑅𝑖𝑗 denotes the thermal resistance between zones 𝑖 and 𝑗 in
∕kW, and 𝑅𝑖𝑜 represents the thermal resistance between zone 𝑖 and
he outside in K∕kW, respectively. The meanings of other notations are
he same as those given in Section 2.2.
By some mathematical operations, (A.1) can be reformulated as

𝑖(𝑘 + 1) = 𝑎̄𝑖𝑖𝑇𝑖(𝑘) +
∑

𝑗∈̄𝑖

𝑎̄𝑖𝑗𝑇𝑗 (𝑘) + 𝑎̄𝑖𝑜𝑇
out
𝑖 (𝑘) −

𝜂𝑖𝛥
𝐶𝑖

𝑃𝑖(𝑘), (A.2)

where 𝑎̄𝑖𝑖 ≜ 1 −
∑

𝑗∈̄𝑖

𝛥
𝑅𝑖𝑗𝐶𝑖

− 𝛥
𝑅𝑖𝑜𝐶𝑖

, 𝑎̄𝑖𝑗 ≜
𝛥

𝑅𝑖𝑗𝐶𝑖
, and 𝑎̄𝑖𝑜 ≜

𝛥
𝑅𝑖𝑜𝐶𝑖

.

Eq. (A.2) indicates that the indoor temperature 𝑇𝑖(𝑘 + 1) of zone 𝑖
at time slot 𝑘 + 1 is related to the indoor temperatures of zone 𝑖 and
its neighbors, and the power input of zone 𝑖 at time slot 𝑘. However,
there might be some other energy sources that may influence the indoor
12
Fig. 8. The total energy cost comparison between the algorithms in this paper and Xie
et al. (2018), and the centralized algorithm.

temperature, such as some internal loads and solar gains. Thus, we
include an additive thermal disturbance term 𝑑𝑖(𝑘) in the model (A.2),
i.e.,

𝑇𝑖(𝑘 + 1) = 𝑎̄𝑖𝑖𝑇𝑖(𝑘) +
∑

𝑗∈̄𝑖

𝑎̄𝑖𝑗𝑇𝑗 (𝑘) + 𝑎̄𝑖𝑜𝑇
out
𝑖 (𝑘) −

𝜂𝑖𝛥
𝐶𝑖

𝑃𝑖(𝑘) + 𝑑𝑖(𝑘). (A.3)

Appendix B. Detailed formulation procedure of (13)

We suppose that there is no thermal couplings between two zones
at different buildings. Thus, it is enough to consider all 𝑁 zones in a
building 𝑚 ∈ Z𝑀

1 when we try to get 𝑻 𝑖(𝑘𝑐 ) in the form of (13). In this
case, we may write the system dynamics (1) in the following compact
form.
⎡

⎢

⎢

⎢

⎢

⎣

𝑇1(𝑘 + 1)
𝑇2(𝑘 + 1)

⋮
𝑇𝑁 (𝑘 + 1)

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝑻̄𝑚(𝑘+1)

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑎̄11 𝑎̄12 ⋯ 𝑎̄1𝑁
𝑎̄21 𝑎̄22 ⋯ 𝑎̄2𝑁
⋮ ⋮ ⋱ ⋮

𝑎̄𝑁1 𝑎̄𝑁2 ⋯ 𝑎̄𝑁𝑁

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑨𝑚

⎡

⎢

⎢

⎢

⎢

⎣

𝑇1(𝑘)
𝑇2(𝑘)
⋮

𝑇𝑁 (𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏟⏞⏟
𝑻̄𝑚(𝑘)

+

⎡

⎢

⎢

⎢

⎢

⎣

𝑎̄1𝑜
𝑎̄2𝑜

⋱
𝑎̄𝑁𝑜

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑨𝑚𝑜

⎡

⎢

⎢

⎢

⎢

⎣

𝑇 out
1 (𝑘)

𝑇 out
2 (𝑘)
⋮

𝑇 out
𝑁 (𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏟⏞⏞⏟
𝑻̄ out
𝑚 (𝑘)

−

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜂1𝛥
𝐶1

𝜂2𝛥
𝐶2

⋱
𝜂𝑁𝛥
𝐶𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝝉̄𝑚

⎡

⎢

⎢

⎢

⎢

⎣

𝑃1(𝑘)
𝑃2(𝑘)
⋮

𝑃𝑁 (𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏟⏞⏟
𝑷̄𝑚(𝑘)

+

⎡

⎢

⎢

⎢

⎢

⎣

𝑑1(𝑘)
𝑑2(𝑘)
⋮

𝑑𝑁 (𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏟⏞⏟
𝒅̄𝑚(𝑘)

, (B.1)

hus,

̄ 𝑚(𝑘𝑐 + 𝑘) = 𝑨𝑚𝑻̄ 𝑚(𝑘𝑐 + 𝑘 − 1) +𝑨𝑚𝑜𝑻̄
out
𝑚 (𝑘𝑐 + 𝑘 − 1) − 𝝉̄𝑚𝑷̄ 𝑚

(𝑘𝑐 + 𝑘 − 1)

= 𝑨𝑘
𝑚𝑻̄ 𝑚(𝑘𝑐 ) +

𝑘−1
∑

𝑘′=0
𝑨𝑘′

𝑚𝑨𝑚𝑜𝑻̄
out
𝑚 (𝑘𝑐 + 𝑘 − 𝑘′ − 1)

−
𝑘−1
∑

𝑘′=0
𝑨𝑘′

𝑚 𝝉̄𝑚𝑷̄ 𝑚(𝑘𝑐 + 𝑘 − 𝑘′ − 1)

+
𝑘−1
∑

𝑨𝑘′
𝑚 𝒅̄𝑚(𝑘𝑐 + 𝑘 − 𝑘′ − 1). (B.2)
𝑘′=0
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Similar to the Appendix of Xie et al. (2018), the indoor temperatures
from time slot 𝑘𝑐 + 1 to 𝑘𝑐 + ℎ − 1 for the 𝑖th zone can be described as

⎡

⎢

⎢

⎢

⎢

⎣

𝑻̄ 𝑚(𝑘𝑐 + 1)
𝑻̄ 𝑚(𝑘𝑐 + 2)

⋮
𝑻̄ 𝑚(𝑘𝑐 + ℎ − 1)

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑻̃𝑚(𝑘𝑐 )

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑨𝑚
𝑨2

𝑚
⋱

𝑨ℎ−1
𝑚

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜼̃0𝑚

⎡

⎢

⎢

⎢

⎢

⎣

𝑻̄ 𝑚(𝑘𝑐 )
𝑻̄ 𝑚(𝑘𝑐 )

⋮
𝑻̄ 𝑚(𝑘𝑐 )

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏟⏞⏞⏟
𝑻̃𝑚0(𝑘𝑐 )

+

⎡

⎢

⎢

⎢

⎢

⎣

𝑨𝑚𝑜 𝟎𝑁×𝑁 … 𝟎𝑁×𝑁
𝑨𝑚𝑨𝑚𝑜 𝑨𝑚𝑜 … 𝟎𝑁×𝑁

⋮ ⋮ ⋱ ⋮
𝑨ℎ−2

𝑚 𝑨𝑚𝑜 𝑨ℎ−3
𝑚 𝑨𝑚𝑜 … 𝑨𝑚𝑜

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑭̃ 0
𝑚

×

⎡

⎢

⎢

⎢

⎢

⎣

𝑻̄ out
𝑚 (𝑘𝑐 )

𝑻̄ out
𝑚 (𝑘𝑐 + 1)

⋮
𝑻̄ out
𝑚 (𝑘𝑐 + ℎ − 2)

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑻̃ out
𝑚 (𝑘𝑐 )

−

⎡

⎢

⎢

⎢

⎢

⎣

𝝉̄𝑚 𝟎𝑁×𝑁 … 𝟎𝑁×𝑁
𝑨𝑚𝝉̄𝑚 𝝉̄𝑚 … 𝟎𝑁×𝑁
⋮ ⋮ ⋱ ⋮

𝑨ℎ−2
𝑚 𝝉̄𝑚 𝑨ℎ−3

𝑚 𝝉̄𝑚 … 𝝉̄𝑚

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝝉̃0𝑚

×

⎡

⎢

⎢

⎢

⎢

⎣

𝑷̄ 𝑚(𝑘𝑐 )
𝑷̄ 𝑚(𝑘𝑐 + 1)

⋮
𝑷̄ 𝑚(𝑘𝑐 + ℎ − 2)

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑷̃𝑚(𝑘𝑐 )

+

⎡

⎢

⎢

⎢

⎢

⎣

𝑰𝑁×𝑁 𝟎𝑁×𝑁 … 𝟎𝑁×𝑁
𝑨𝑚 𝑰𝑁×𝑁 … 𝟎𝑁×𝑁
⋮ ⋮ ⋱ ⋮

𝑨ℎ−2
𝑚 𝑨ℎ−3

𝑚 … 𝑰𝑁×𝑁

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑮̃0
𝑚

⎡

⎢

⎢

⎢

⎢

⎣

𝒅̄𝑚(𝑘𝑐 )
𝒅̄𝑚(𝑘𝑐 + 1)

⋮
𝒅̄𝑚(𝑘𝑐 + ℎ − 2)

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝒅̃𝑚(𝑘𝑐 )

,

(B.3)

which has the compact form

𝑻̃ 𝑚(𝑘𝑐) = 𝜼̃0𝑚𝑻̃ 𝑚0(𝑘𝑐 ) + 𝑭̃ 0
𝑚𝑻̃

out
𝑚 (𝑘𝑐 ) − 𝝉̃0𝑚𝑷̃ 𝑚(𝑘𝑐 ) + 𝑮̃0

𝑚𝒅̃𝑚(𝑘𝑐). (B.4)

Note that 𝜼̃0𝑚, 𝑭̃
0
𝑚, 𝝉̃

0
𝑚, 𝑮̃

0
𝑚 ∈ R𝑁(ℎ−1)×𝑁(ℎ−1) are constant matrices

for certain parameters of zone dynamics, the duration of each time
slot 𝛥, and time horizon ℎ. Thus, these three matrices can be pre-
computed and stored in computer before the iterations of MPC. To
facilitate the analysis, we firstly provide the justification and meaning
of Assumption 2.

Remark 13. The justification of Assumption 2 is stated as follows.
The coefficient of thermal inertia is relatively large for a zone. For
example, with 𝛥 = 1h, the coefficient of thermal inertia is 0.9608
in Constantopoulos et al. (1991). In Wang et al. (2017) and Yang et al.
(2020), the coefficient of thermal inertia used in the simulation is
0.9147 with 𝛥 = 0.2h. We consider building 1 consisting of 10 zones
in Fig. 1. The coefficients of thermal inertia is 0.9147, and the thermal
coupling coefficient between the neighboring zones is 0.0374. That is,

𝑨1 ≜

⎡

⎢

⎢

⎢

⎢

𝑎̄11 𝑎̄12 ⋯ 𝑎̄110
𝑎̄21 𝑎̄22 ⋯ 𝑎̄210
⋮ ⋮ ⋱ ⋮

⎤

⎥

⎥

⎥

⎥

⎣

𝑎̄101 𝑎̄102 ⋯ 𝑎̄1010⎦

13
=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.9147 0.0374 0.0374
0.0374 0.9147 0.0374

⋱ ⋱ ⋱
0.0374 0.9147 0.0374

0.0374 0.0374 0.9147

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (B.5)

Then, one has

𝑨2
1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.8395 0.0684 0.0014 0.0014 0.0684
0.0684 0.8395 0.0684 0.0014 0.0014
0.0014 0.0684 0.8395 0.0684 0.0014

⋱ ⋱ ⋱ ⋱ ⋱
0.0014 0.0684 0.8395 0.0684 0.0014

0.0014 0.0014 0.0684 0.8395 0.0684
0.0684 0.0014 0.0014 0.0684 0.8395

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(B.6)

Compared with 0.8395 and 0.0684, 0.0014 is very small. Assumption 2
indicates that we can neglect 0.0014 and only retain the elements
0.8395 and 0.0684. That is, we can approximate the matrix 𝑨2

1 by

𝑨2
1 ≈

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.8395 0.0684 0.0684
0.0684 0.8395 0.0684

⋱ ⋱ ⋱
0.0684 0.8395 0.0684

0.0684 0.0684 0.8395

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (B.7)

and add the elements 0.0014 to the disturbance term.
By approximating the matrices 𝑨𝑖

𝑚, ∀𝑚 ∈ Z𝑀
1 , 𝑖 ∈ Zℎ−1

2 , in the
similar way, Assumption 2 makes it possible to design a distributed
MPC controller for the HVAC systems. Without this assumption, the
information of immediate neighbors is not sufficient to compute the
local control input. In particular, when the time horizon ℎ is large,
the global information of the distributed HVAC systems is required to
design the control algorithm for each zone.

Under Assumption 2 and the approximating method illustrated in
Remark 13, we denote the corresponding approximated matrices of 𝜼̃0𝑚,
𝑭̃ 0

𝑚, 𝝉̃0𝑚, and 𝑮̃0
𝑚 as 𝜼̃𝑚, 𝑭̃𝑚, 𝝉̃𝑚, and 𝑮̃𝑚. Note that the matrices 𝜼̃𝑚, 𝑭̃𝑚,

𝝉̃𝑚, and 𝑮̃𝑚 can be precomputed and stored in the computer, and do
not need to be computed in the iterations of MPC. Thus, we can regard
them as three constant matrices. From (B.4), one has

𝑻̃ 𝑚(𝑘𝑐 ) = 𝜼̃𝑚𝑻̃ 𝑚0(𝑘𝑐 ) + 𝑭̃𝑚𝑻̃
out
𝑚 (𝑘𝑐 ) − 𝝉̃𝑚𝑷̃ 𝑚(𝑘𝑐) + 𝑮̃𝑚𝒅̃𝑚(𝑘𝑐 ). (B.8)

From (B.3) and (B.8), we know that

𝑇𝑖(𝑘𝑐 + 𝑘 + 1) =
∑

𝑗∈̄𝑖∪𝑖

𝜂(𝑘𝑁+𝑖)(𝑘𝑁+𝑗)𝑇𝑗 (𝑘𝑐)

+
∑

𝑗∈̄𝑖∪𝑖

𝑘
∑

𝑘′=0
𝐹(𝑘𝑁+𝑖)(𝑘′𝑁+𝑗)𝑇

out
𝑗 (𝑘𝑐 + 𝑘′)

−
∑

𝑗∈̄𝑖∪𝑖

𝑘
∑

𝑘′=0
𝜏(𝑘𝑁+𝑖)(𝑘′𝑁+𝑗)𝑃𝑗 (𝑘𝑐 + 𝑘′)

+
∑

𝑗∈̄𝑖∪𝑖

𝑘
∑

𝑘′=0
𝐺(𝑘𝑁+𝑖)(𝑘′𝑁+𝑗)𝑑𝑗 (𝑘𝑐 + 𝑘′), (B.9)

for 𝑘 ∈ Zℎ−2
0 , and 𝑖 ∈ Z𝑀

1 . It should be noted that 𝜂𝑖𝑗 , 𝐹𝑖𝑗 , 𝜏𝑖𝑗 , and
𝐺𝑖𝑗 denote the (𝑖, 𝑗)th elements of the matrices 𝜼̃𝑖𝑗 , 𝑭̃ 𝑖𝑗 , 𝝉̃ 𝑖𝑗 , and 𝑮̃𝑖𝑗 ,
respectively.

Thus,

⎡

⎢

⎢

⎢

⎢

⎣

𝑇𝑖(𝑘𝑐 + 1)
𝑇𝑖(𝑘𝑐 + 2)

⋮
𝑇𝑖(𝑘𝑐 + ℎ − 1)

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

=

⎡

⎢

⎢

⎢

⎢

⎣

∑

𝑗∈̄𝑖∪𝑖
𝜂𝑖𝑗𝑇𝑗 (𝑘𝑐 )

∑

𝑗∈̄𝑖∪𝑖
𝜂(𝑁+𝑖)(𝑁+𝑗)𝑇𝑗 (𝑘𝑐)

⋮
∑

𝑗∈̄𝑖∪𝑖
𝜂((ℎ−2)𝑁+𝑖)((ℎ−2)𝑁+𝑗)𝑇𝑗 (𝑘𝑐 )

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑻 𝑖(𝑘𝑐 ) 𝑻 𝑖0(𝑘𝑐 )
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+
∑

𝑗∈̄𝑖∪𝑖

⎡

⎢

⎢

⎢

⎢

⎣

𝐹𝑖𝑗 0 ⋯ 0
𝐹(𝑁+𝑖)𝑗 𝐹(𝑁+𝑖)(𝑁+𝑗) ⋯ 0

⋮ ⋮ ⋱ ⋮
𝐹((ℎ−2)𝑁+𝑖)𝑗 𝐹((ℎ−2)𝑁+𝑖)(𝑁+𝑗) ⋯ 𝐹((ℎ−2)𝑁+𝑖)((ℎ−2)𝑁+𝑗)

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑭 𝑖𝑗

×

⎡

⎢

⎢

⎢

⎢

⎣

𝑇 out
𝑗 (𝑘𝑐 )

𝑇 out
𝑗 (𝑘𝑐 + 1)

⋮
𝑇 out
𝑗 (𝑘𝑐 + ℎ − 2)

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑻 out
𝑗 (𝑘𝑐 )

−
∑

𝑗∈̄𝑖∪𝑖

⎡

⎢

⎢

⎢

⎢

⎣

𝜏𝑖𝑗 0 ⋯ 0
𝜏(𝑁+𝑖)𝑗 𝜏(𝑁+𝑖)(𝑁+𝑗) ⋯ 0

⋮ ⋮ ⋱ ⋮
𝜏((ℎ−2)𝑁+𝑖)𝑗 𝜏((ℎ−2)𝑁+𝑖)(𝑁+𝑗) ⋯ 𝜏((ℎ−2)𝑁+𝑖)((ℎ−2)𝑁+𝑗)

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝝉 𝑖𝑗

×

⎡

⎢

⎢

⎢

⎢

⎣

𝑃𝑗 (𝑘𝑐 )
𝑃𝑗 (𝑘𝑐 + 1)

⋮
𝑃𝑗 (𝑘𝑐 + ℎ − 2)

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑷 𝑗 (𝑘𝑐 )

+
∑

𝑗∈̄𝑖∪𝑖

⎡

⎢

⎢

⎢

⎢

⎣

𝐺𝑖𝑗 0 ⋯ 0
𝐺(𝑁+𝑖)𝑗 𝐺(𝑁+𝑖)(𝑁+𝑗) ⋯ 0

⋮ ⋮ ⋱ ⋮
𝐺((ℎ−2)𝑁+𝑖)𝑗 𝐺((ℎ−2)𝑁+𝑖)(𝑁+𝑗) ⋯ 𝐺((ℎ−2)𝑁+𝑖)((ℎ−2)𝑁+𝑗)

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑮𝑖𝑗

×

⎡

⎢

⎢

⎢

⎢

⎣

𝑑𝑗 (𝑘𝑐 )
𝑑𝑗 (𝑘𝑐 + 1)

⋮
𝑑𝑗 (𝑘𝑐 + ℎ − 2)

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝒅𝑗 (𝑘𝑐 )

(B.10)

can be written in the compact form

𝑻 𝑖(𝑘𝑐 ) = 𝑻 𝑖0(𝑘𝑐 ) +
∑

𝑗∈̄𝑖∪𝑖

𝑭 𝑖𝑗𝑻 out
𝑗 (𝑘𝑐 ) −

∑

𝑗∈̄𝑖∪𝑖

𝝉 𝑖𝑗𝑷 𝑗 (𝑘𝑐 ) +
∑

𝑗∈̄𝑖∪𝑖

𝑮𝑖𝑗𝒅𝑗 (𝑘𝑐 ).

(B.11)

Appendix C. Transform of the objective of (21)

We firstly consider only the 𝑖th zone, with 𝑖 ∈ Z𝑀𝑁
1 . From (6), the

cost function ∑𝑘𝑐+ℎ−2
𝑘=𝑘𝑐

𝓁𝑖(𝑘) for zone 𝑖 can be simplified as follows.

𝑘𝑐+ℎ−2
∑

𝑘=𝑘𝑐

𝓁𝑖(𝑘) =
𝑘𝑐+ℎ−2
∑

𝑘=𝑘𝑐

(

𝑆(𝑘)𝑃𝑖(𝑘) + 𝜎𝑖(𝑘 + 1)
(

𝑇𝑖(𝑘 + 1) − 𝑇 ref
𝑖 (𝑘 + 1)

)2)

=
𝑘𝑐+ℎ−2
∑

𝑘=𝑘𝑐

𝑆(𝑘)𝑃𝑖(𝑘) +
𝑘𝑐+ℎ−2
∑

𝑘=𝑘𝑐

(

𝜎𝑖(𝑘 + 1)
(

𝑇 2
𝑖 (𝑘 + 1)

+𝑇 ref2
𝑖 (𝑘 + 1) − 2𝑇𝑖(𝑘 + 1)𝑇 ref

𝑖 (𝑘 + 1)
))

= 𝑺T(𝑘𝑐 )𝑷 𝑖(𝑘𝑐 ) + 𝑻 T
𝑖 (𝑘𝑐)𝝈𝑖(𝑘𝑐 )𝑻 𝑖(𝑘𝑐) − 2𝑻 refT

𝑖 (𝑘𝑐 )𝝈𝑖(𝑘𝑐)

×𝑻 𝑖(𝑘𝑐 ) + 𝑻 refT
𝑖 (𝑘𝑐 )𝝈𝑖(𝑘𝑐 )𝑻 ref

𝑖 (𝑘𝑐). (C.1)

Substituting (13) into (C.1), one has
𝑘𝑐+ℎ−2
∑

𝑘=𝑘𝑐

𝓁𝑖(𝑘)

= 𝑺T(𝑘𝑐 )𝑷 𝑖(𝑘𝑐) +
⎛

⎜

⎜

𝑻 𝑖0(𝑘𝑐 ) +
∑

𝑭 𝑖𝑗𝑻 out
𝑗 (𝑘𝑐 ) −

∑

𝝉 𝑖𝑗𝑷 𝑗 (𝑘𝑐 )

⎝ 𝑗∈̄𝑖∪𝑖 𝑗∈̄𝑖∪𝑖

14
+
∑

𝑗∈̄𝑖∪𝑖

𝑮𝑖𝑗𝒅𝑗 (𝑘𝑐 )
⎞

⎟

⎟

⎠

T

𝝈𝑖(𝑘𝑐 )
⎛

⎜

⎜

⎝

𝑻 𝑖0(𝑘𝑐) +
∑

𝑗∈̄𝑖∪𝑖

𝑭 𝑖𝑗𝑻 out
𝑗 (𝑘𝑐 )

−
∑

𝑗∈̄𝑖∪𝑖

𝝉 𝑖𝑗𝑷 𝑗 (𝑘𝑐) +
∑

𝑗∈̄𝑖∪𝑖

𝑮𝑖𝑗𝒅𝑗 (𝑘𝑐 )
⎞

⎟

⎟

⎠

− 2𝑻 refT
𝑖 (𝑘𝑐 )𝝈𝑖(𝑘𝑐 )

×
⎛

⎜

⎜

⎝

𝑻 𝑖0(𝑘𝑐) +
∑

𝑗∈̄𝑖∪𝑖

𝑭 𝑖𝑗𝑻 out
𝑗 (𝑘𝑐 ) −

∑

𝑗∈̄𝑖∪𝑖

𝝉 𝑖𝑗𝑷 𝑗 (𝑘𝑐 ) +
∑

𝑗∈̄𝑖∪𝑖

𝑮𝑖𝑗𝒅𝑗 (𝑘𝑐 )
⎞

⎟

⎟

⎠

+𝑻 refT
𝑖 (𝑘𝑐 )𝝈𝑖(𝑘𝑐 )𝑻 ref

𝑖 (𝑘𝑐 )

= 𝑷 T
𝑖 (𝑘𝑐 )𝝉

T
𝑖𝑖𝝈𝑖(𝑘𝑐 )𝝉 𝑖𝑖𝑷 𝑖(𝑘𝑐)

+
⎛

⎜

⎜

⎝

𝑺T(𝑘𝑐) − 2
⎛

⎜

⎜

⎝

𝑻 𝑖0(𝑘𝑐 ) − 𝑻 ref
𝑖 (𝑘𝑐) +

∑

𝑗∈̄𝑖∪𝑖

𝑭 𝑖𝑗𝑻 out
𝑗 (𝑘𝑐)

−
∑

𝑗∈̄𝑖

𝝉 𝑖𝑗𝑷 𝑗 (𝑘𝑐 ) +
∑

𝑗∈̄𝑖∪𝑖

𝑮𝑖𝑗𝒅𝑗 (𝑘𝑐 )
⎞

⎟

⎟

⎠

T

𝝈𝑖(𝑘𝑐 )𝝉 𝑖𝑖

⎞

⎟

⎟

⎟

⎠

𝑷 𝑖(𝑘𝑐 )

+
⎛

⎜

⎜

⎝

𝑻 𝑖0(𝑘𝑐 ) − 𝑻 ref
𝑖 (𝑘𝑐 ) +

∑

𝑗∈̄𝑖∪𝑖

𝑭 𝑖𝑗𝑻 out
𝑗 (𝑘𝑐 ) −

∑

𝑗∈̄𝑖

𝝉 𝑖𝑗𝑷 𝑗 (𝑘𝑐)

+
∑

𝑗∈̄𝑖∪𝑖

𝑮𝑖𝑗𝒅𝑗 (𝑘𝑐)
⎞

⎟

⎟

⎠

T

𝝈𝑖(𝑘𝑐)
⎛

⎜

⎜

⎝

𝑻 𝑖0(𝑘𝑐 ) − 𝑻 ref
𝑖 (𝑘𝑐) +

∑

𝑗∈̄𝑖∪𝑖

𝑭 𝑖𝑗𝑻 out
𝑗 (𝑘𝑐)

−
∑

𝑗∈̄𝑖

𝝉 𝑖𝑗𝑷 𝑗 (𝑘𝑐) +
∑

𝑗∈̄𝑖∪𝑖

𝑮𝑖𝑗𝒅𝑗 (𝑘𝑐)
⎞

⎟

⎟

⎠

= 𝑷 T
𝑖 (𝑘𝑐 )𝑪 𝑖𝑷 𝑖(𝑘𝑐) +𝑫T

𝑖 𝑷 𝑖(𝑘𝑐 ) + 𝐸𝑖. (C.2)

Appendix D. Converting uncertain optimization problem (21) to
the certain counterpart (26)

This appendix presents how uncertain optimization problem (21)
can be transformed to its certain counterpart (26).

Note that both the objective function ∑𝑀𝑁
𝑖=1 𝑷 T

𝑖 (𝑘𝑐)𝑪 𝑖𝑷 𝑖(𝑘𝑐 ) +𝑫T
𝑖 𝑷 𝑖

(𝑘𝑐) in (21) and the constraint (17) are uncertain in this case, since the
vectors 𝑩𝑖 and 𝑫𝑖 are uncertain. In order to make the problem easy to
analyze, we firstly perform the following standardization procedure.

It is easy to check that the constrained optimization problem (21)
is equivalent to the following problem with decision variables being
𝑷 𝑖(𝑘𝑐) and 𝑡𝑖, ∀𝑖 ∈ Z𝑀𝑁

1 .

min
𝑷 𝑖(𝑘𝑐 ),𝑡𝑖

𝑀𝑁
∑

𝑖=1
𝑡𝑖, (D.1a)

s.t. 𝑨𝑖𝑷 𝑖(𝑘𝑐 ) − 𝑩𝑖 ≤ 𝟎4(ℎ−1), (D.1b)

𝑷 T
𝑖 (𝑘𝑐 )𝑪 𝑖𝑷 𝑖(𝑘𝑐 ) +𝑫T

𝑖 𝑷 𝑖(𝑘𝑐) − 𝑡𝑖 ≤ 0, ∀𝑖 ∈ Z𝑀𝑁
1 , (D.1c)

𝑀𝑁
∑

𝑖=1
𝑷 𝑖(𝑘𝑐 ) ≤ 𝒃(𝑘𝑐 , 𝜖), ∀𝑘𝑐 ∈ Z𝐻−ℎ+1

1 . (D.1d)

We now consider the uncertainties of vectors 𝑩𝑖 and 𝑫𝑖 in (D.1b) and
(D.1c).

For vector 𝑩𝑖, by defining

𝑩min
𝑖 ≜

⎡

⎢

⎢

⎢

⎢

⎣

𝑷max
𝑖 (𝑘𝑐 )

−𝑷min
𝑖 (𝑘𝑐 )

𝑻 𝑖0(𝑘𝑐 ) +
∑

𝑗∈̄𝑖∪𝑖
𝑭 𝑖𝑗𝑻 out

𝑗 (𝑘𝑐 ) −
∑

𝑗∈̄𝑖
𝝉 𝑖𝑗𝑷 𝑗 (𝑘𝑐 ) + 𝒅min

𝑖 (𝑘𝑐 ) − 𝑻 min
𝑖 (𝑘𝑐 )

−𝑻 𝑖0(𝑘𝑐 ) −
∑

𝑗∈̄𝑖∪𝑖
𝑭 𝑖𝑗𝑻 out

𝑗 (𝑘𝑐 ) +
∑

𝑗∈̄𝑖
𝝉 𝑖𝑗𝑷 𝑗 (𝑘𝑐 ) − 𝒅max

𝑖 (𝑘𝑐 ) + 𝑻 max
𝑖 (𝑘𝑐 )

⎤

⎥

⎥

⎥

⎥

⎦

,

(D.2a)

𝑩max
𝑖 ≜

⎡

⎢

⎢

⎢

⎢

⎣

𝑷max
𝑖 (𝑘𝑐 )

−𝑷min
𝑖 (𝑘𝑐 )

𝑻 𝑖0(𝑘𝑐 ) +
∑

𝑗∈̄𝑖∪𝑖
𝑭 𝑖𝑗𝑻 out

𝑗 (𝑘𝑐 ) −
∑

𝑗∈̄𝑖
𝝉 𝑖𝑗𝑷 𝑗 (𝑘𝑐 ) + 𝒅max

𝑖 (𝑘𝑐 ) − 𝑻 min
𝑖 (𝑘𝑐 )

−𝑻 𝑖0(𝑘𝑐 ) −
∑

𝑗∈̄𝑖∪𝑖
𝑭 𝑖𝑗𝑻 out

𝑗 (𝑘𝑐 ) +
∑

𝑗∈̄𝑖
𝝉 𝑖𝑗𝑷 𝑗 (𝑘𝑐 ) − 𝒅min

𝑖 (𝑘𝑐 ) + 𝑻 max
𝑖 (𝑘𝑐 )

⎤

⎥

⎥

⎥

⎥

⎦

,

(D.2b)



L. Chen and Y. Zhang Control Engineering Practice 110 (2021) 104782
one has

𝑩min
𝑖 ≤ 𝑩𝑖 ≤ 𝑩max

𝑖 . (D.3)

We consider 𝑫𝑖 = 𝑺(𝑘𝑐 ) − 2
(

(

𝑻 𝑖0(𝑘𝑐 ) − 𝑻 ref
𝑖 (𝑘𝑐 ) +

∑

𝑗∈̄𝑖∪𝑖
𝑭 𝑖𝑗𝑻 out

𝑗

(𝑘𝑐 ) −
∑

𝑗∈̄𝑖
𝝉 𝑖𝑗𝑷 𝑗 (𝑘𝑐) +

∑

𝑗∈̄𝑖∪𝑖
𝑮𝑖𝑗𝒅𝑗 (𝑘𝑐 )

)T
𝝈𝑖(𝑘𝑐 )𝝉 𝑖𝑖

)T
. Since 𝜹ref𝑖 (𝑘𝑐)

+ 𝑻 ref
𝑖n0(𝑘𝑐) ≤ 𝑻 ref

𝑖 (𝑘𝑐 ) ≤ 𝜟ref
𝑖 (𝑘𝑐) + 𝑻 ref

𝑖n0(𝑘𝑐) from (22), we have

𝑻 𝑖0(𝑘𝑐 ) − 𝜟ref
𝑖 (𝑘𝑐 ) − 𝑻 ref

𝑖n0(𝑘𝑐 ) +
∑

𝑗∈̄𝑖∪𝑖

𝑭 𝑖𝑗𝑻 out
𝑗 (𝑘𝑐 ) −

∑

𝑗∈̄𝑖

𝝉 𝑖𝑗𝑷 𝑗 (𝑘𝑐)

+𝒅min
𝑖 (𝑘𝑐 )

≤ 𝑻 𝑖0(𝑘𝑐) − 𝑻 ref
𝑖 (𝑘𝑐) +

∑

𝑗∈̄𝑖∪𝑖

𝑭 𝑖𝑗𝑻 out
𝑗 (𝑘𝑐 ) −

∑

𝑗∈̄𝑖

𝝉 𝑖𝑗𝑷 𝑗 (𝑘𝑐 )

+
∑

𝑗∈̄𝑖∪𝑖

𝑮𝑖𝑗𝒅𝑗 (𝑘𝑐 )

≤ 𝑻 𝑖0(𝑘𝑐) − 𝜹ref𝑖 (𝑘𝑐) − 𝑻 ref
𝑖n0(𝑘𝑐) +

∑

𝑗∈̄𝑖∪𝑖

𝑭 𝑖𝑗𝑻 out
𝑗 (𝑘𝑐 ) −

∑

𝑗∈̄𝑖

𝝉 𝑖𝑗𝑷 𝑗 (𝑘𝑐 )

+𝒅max
𝑖 (𝑘𝑐). (D.4)

According to the fact that 𝝈𝑖(𝑘𝑐 ) is a diagonal matrix with positive
diagonal entries, we have

𝝈𝑖(𝑘𝑐 )
⎛

⎜

⎜

⎝

𝑻 𝑖0(𝑘𝑐) − 𝜟ref
𝑖 (𝑘𝑐) − 𝑻 ref

𝑖n0(𝑘𝑐) +
∑

𝑗∈̄𝑖∪𝑖

𝑭 𝑖𝑗𝑻 out
𝑗 (𝑘𝑐)

−
∑

𝑗∈̄𝑖

𝝉 𝑖𝑗𝑷 𝑗 (𝑘𝑐 ) + 𝒅min
𝑖 (𝑘𝑐 )

⎞

⎟

⎟

⎠

≤ 𝝈𝑖(𝑘𝑐 )
⎛

⎜

⎜

⎝

𝑻 𝑖0(𝑘𝑐 ) − 𝑻 ref
𝑖 (𝑘𝑐 ) +

∑

𝑗∈̄𝑖∪𝑖

𝑭 𝑖𝑗𝑻 out
𝑗 (𝑘𝑐 ) −

∑

𝑗∈̄𝑖

𝝉 𝑖𝑗𝑷 𝑗 (𝑘𝑐)

+
∑

𝑗∈̄𝑖∪𝑖

𝑮𝑖𝑗𝒅𝑗 (𝑘𝑐)
⎞

⎟

⎟

⎠

≤ 𝝈𝑖(𝑘𝑐 )
⎛

⎜

⎜

⎝

𝑻 𝑖0(𝑘𝑐 ) − 𝜹ref𝑖 (𝑘𝑐 ) − 𝑻 ref
𝑖n0(𝑘𝑐 ) +

∑

𝑗∈̄𝑖∪𝑖

𝑭 𝑖𝑗𝑻 out
𝑗 (𝑘𝑐 )

−
∑

𝑗∈̄𝑖

𝝉 𝑖𝑗𝑷 𝑗 (𝑘𝑐) + 𝒅max
𝑖 (𝑘𝑐 )

⎞

⎟

⎟

⎠

. (D.5)

From the construction of matrix 𝝉 𝑖𝑖 in (B.10), we can find that all the
elements of 𝝉 𝑖𝑖 are non-negative, which indicates that 𝝉T𝑖𝑖𝒖 ≤ 𝝉T𝑖𝑖𝒗 for
any vectors 𝒖 ≤ 𝒗. Thus, one has

𝑺(𝑘𝑐 ) − 2𝝉T𝑖𝑖𝝈𝑖(𝑘𝑐)
⎛

⎜

⎜

⎝

𝑻 𝑖0(𝑘𝑐 ) − 𝜹ref𝑖 (𝑘𝑐 ) − 𝑻 ref
𝑖n0(𝑘𝑐 ) +

∑

𝑗∈̄𝑖∪𝑖

𝑭 𝑖𝑗𝑻 out
𝑗 (𝑘𝑐)

−
∑

𝑗∈̄𝑖

𝝉 𝑖𝑗𝑷 𝑗 (𝑘𝑐 ) + 𝒅max
𝑖 (𝑘𝑐)

⎞

⎟

⎟

⎠

≤ 𝑫𝑖 ≤ 𝑺(𝑘𝑐 ) − 2𝝉T𝑖𝑖𝝈𝑖(𝑘𝑐 )
(

𝑻 𝑖0(𝑘𝑐 )

−𝜟ref
𝑖 (𝑘𝑐 ) − 𝑻 ref

𝑖n0(𝑘𝑐 ) +
∑

𝑗∈̄𝑖∪𝑖

𝑭 𝑖𝑗𝑻 out
𝑗 (𝑘𝑐) −

∑

𝑗∈̄𝑖

𝝉 𝑖𝑗𝑷 𝑗 (𝑘𝑐 ) + 𝒅min
𝑖 (𝑘𝑐 )

⎞

⎟

⎟

⎠

,

(D.6)

according to the definition of 𝑫𝑖 in (18e).
If we denote𝑫min

𝑖 ≜ 𝑺(𝑘𝑐 )−2𝝉T𝑖𝑖𝝈𝑖(𝑘𝑐)
(

𝑻 𝑖0(𝑘𝑐 ) − 𝜹ref𝑖 (𝑘𝑐 ) − 𝑻 ref
𝑖n0(𝑘𝑐 ) +

∑

𝑗∈̄𝑖∪𝑖
𝑭 𝑖𝑗𝑻 out

𝑗 (𝑘𝑐) −
∑

𝑗∈̄𝑖
𝝉 𝑖𝑗𝑷 𝑗 (𝑘𝑐 ) + 𝒅max

𝑖 (𝑘𝑐 )
)

and 𝑫max
𝑖 ≜ 𝑺(𝑘𝑐) −

2𝝉T𝑖𝑖𝝈𝑖(𝑘𝑐)
(

𝑻 𝑖0(𝑘𝑐 ) − 𝜟ref
𝑖 (𝑘𝑐 ) − 𝑻 ref

𝑖n0(𝑘𝑐 ) +
∑

𝑗∈̄𝑖∪𝑖
𝑭 𝑖𝑗𝑻 out

𝑗 (𝑘𝑐) −
∑

𝑗∈̄𝑖

𝝉 𝑖𝑗𝑷 𝑗 (𝑘𝑐 ) + 𝒅min
𝑖 (𝑘𝑐)

)

, then (D.6) can be written as

min max
𝑫𝑖 ≤ 𝑫𝑖 ≤ 𝑫𝑖 . (D.7)

15
Now we consider the robust counterpart of the uncertain program-
ming problem without the global constraint as follows.

min
𝑷 𝑖(𝑘𝑐 ),𝑡𝑖

𝑡𝑖, (D.8a)

s.t. 𝑨𝑖𝑷 𝑖(𝑘𝑐 ) − 𝑩𝑖 ≤ 𝟎4(ℎ−1), (D.8b)

𝑷 T
𝑖 (𝑘𝑐 )𝑪 𝑖𝑷 𝑖(𝑘𝑐 ) +𝑫T

𝑖 𝑷 𝑖(𝑘𝑐) − 𝑡𝑖 ≤ 0, ∀𝑘𝑐 ∈ Z𝐻−ℎ+1
1 , (D.8c)

𝑩min
𝑖 ≤ 𝑩𝑖 ≤ 𝑩max

𝑖 , (D.8d)

𝑫min
𝑖 ≤ 𝑫𝑖 ≤ 𝑫max

𝑖 . (D.8e)

Firstly, it is easy to see that 𝑷 𝑖(𝑘𝑐) satisfies 𝑨𝑖𝑷 𝑖(𝑘𝑐 ) − 𝑩𝑖 ≤ 𝟎4(ℎ−1)
for all 𝑩min

𝑖 ≤ 𝑩𝑖 ≤ 𝑩max
𝑖 if and only if 𝑷 𝑖(𝑘𝑐) satisfies 𝑨𝑖𝑷 𝑖(𝑘𝑐) −𝑩min

𝑖 ≤
𝟎4(ℎ−1). Similarly, 𝑷 𝑖(𝑘𝑐 ) and 𝑡𝑖 satisfies 𝑷 T

𝑖 (𝑘𝑐)𝑪 𝑖𝑷 𝑖(𝑘𝑐 ) +𝑫maxT
𝑖 𝑷 𝑖(𝑘𝑐 ) −

𝑡𝑖 ≤ 0 for all 𝑫min
𝑖 ≤ 𝑫𝑖 ≤ 𝑫max

𝑖 if and only if 𝑷 𝑖(𝑘𝑐) and 𝑡𝑖 satisfies
𝑷 T

𝑖 (𝑘𝑐 )𝑪 𝑖𝑷 𝑖(𝑘𝑐 ) +𝑫T
𝑖 𝑷 𝑖(𝑘𝑐 ) − 𝑡𝑖 ≤ 0, for all 𝑫min

𝑖 ≤ 𝑫𝑖 ≤ 𝑫max
𝑖 , since we

only consider the cooling mode and thus 𝑷 𝑖(𝑘𝑐 ) ≥ 𝟎ℎ−1.
Denote 𝑖 ≜ {𝑷 𝑖(𝑘𝑐 ) ∣ 𝑨𝑖𝑷 𝑖(𝑘𝑐 ) ≤ 𝑩min

𝑖 ,∀𝑘𝑐 ∈ Z𝐻−ℎ+1
1 }. The con-

straints (15) and (16), namely (3) and (4), can be written as

𝑷 𝑖(𝑘𝑐) ∈ 𝑖. (D.9)

Thus, we have

min
𝑷 𝑖(𝑘𝑐 ),𝑡𝑖

𝑡𝑖, (D.10a)

s.t. 𝑨𝑖𝑷 𝑖(𝑘𝑐 ) − 𝑩min
𝑖 ≤ 𝟎4(ℎ−1), (D.10b)

𝑷 T
𝑖 (𝑘𝑐 )𝑪 𝑖𝑷 𝑖(𝑘𝑐 ) +𝑫maxT

𝑖 𝑷 𝑖(𝑘𝑐 ) − 𝑡𝑖 ≤ 0, ∀𝑘𝑐 ∈ Z𝐻−ℎ+1
1 . (D.10c)

which is equivalent to

min
𝑷 𝑖(𝑘𝑐 )∈𝑖

𝑀𝑁
∑

𝑖=1
𝑷 T

𝑖 (𝑘𝑐 )𝑪 𝑖𝑷 𝑖(𝑘𝑐) +𝑫maxT
𝑖 𝑷 𝑖(𝑘𝑐 ), s.t. (10). (D.11)
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