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ABSTRACT

This paper investigates the accelerated distributed model predictive control (MPC) strategy for the heating,
ventilation and air conditioning (HVAC) systems with local and global power input constraints. The problems
are firstly formulated in the distributed MPC framework and then the constrained optimization is converted
into a quadratic programming problem. In the problem formulation, the thermal couplings between immediate
neighboring zones are considered while designing the distributed controller, and the unknown thermal
disturbances are incorporated by the robust optimization scheme. Then, using the accelerated dual gradient-
projection method, a distributed fast MPC protocol is designed for HVAC systems considering both the
electricity cost and occupant comforts. A distributed stopping criterion based on the distributed average
consensus algorithm is utilized. Finally, numerical simulations are used to demonstrate the effectiveness of the
proposed distributed MPC algorithm, and its computational advantages comparing with an existing distributed

method and a centralized algorithm.

1. Introduction

The energy consumption in building systems accounts for almost
40% of the total energy consumption in the United States (Koebrich,
Bowen, & Sharpe, 2020), while the heating, ventilation and air con-
ditioning (HVAC) systems make up 30% of the energy consumption
in commercial building systems (Goetzler et al., 2017). The consumed
energy is responsible for the large amount of green house gas emissions.
On the other hand, buildings are where people spend their much
time (Klein et al., 2012), so that the occupant comfort is one another
critical consideration when designing HVAC control systems. Thus, it
is essential to develop the HVAC systems which can both save en-
ergy and guarantee occupants’ comfort (Hussain, Gabbar, Bondarenko,
Musharavati, & Pokharel, 2014).

In order to ensure the comfort of occupants as far as possible, we
should consider the thermal preferences of different individuals, in-
stead of the average thermal preference (Kim, Zhou, Schiavon, Raftery,
& Brager, 2018). One strategy for this problem is to use different
HVAC subsystems in distinct zones. Distributed control is a method
that each subsystem makes its own local decisions by communicating
with other subsystems in a certain way (Cao, Chen, Xiao, & Sun,
2009; Mei & Xia, 2019). Besides, every single HVAC system has a
power limit, and the total HVAC energy consumption of a building
should be constrained due to the distribution infrastructure limit within
the building system (Zhang, Deng, Yuan, & Qin, 2017a). Thus, the
control aim of distributed HVAC systems is to minimize the energy
consumption while maintaining occupants’ thermal comfort, under

* Corresponding author.
E-mail address: yzhang@gatech.edu (Y. Zhang).

https://doi.org/10.1016/j.conengprac.2021.104782

both local and global power constraints (Yang, Hu, & Spanos, 2020).
Model predictive control (MPC) can serve as a control method that
makes explicit use of the model information and obtains the opti-
mal control signal by minimizing a specified objective function over
a given time horizon under certain constraints (Camacho & Alba,
2013). Thus, MPC is widely used in the energy efficiency problems
of building and HVAC systems (O’Dwyer, De Tommasi, Kouramas, Cy-
chowski, & Lightbody, 2017; Serale, Fiorentini, Capozzoli, Bernardini,
& Bemporad, 2018). West, Ward, and Wall (2014) solved the multi-
objective optimization problem for commercial buildings under the
framework of MPC. The considered objectives include running cost,
CO, emissions, and occupant thermal comfort. A real-time online ther-
mal comfort was measured based on the predicted mean vote (PMV)
model (Humphreys & Nicol, 2002). However, the authors used the av-
erage PMV from individuals wherein the considered thermal preference
was not personalized. Valenzuela, Ebadat, Everitt, and Parisio (2019)
presented a robust multivariable HVAC supervisory MPC framework
with data-driven technique to identify the HVAC system dynamics. It
was demonstrated that the energy efficiency was improved and the
proposed controller could deal with multiple set points, such as both
indoor temperatures and air flow rate. Lee, Ooka, Ikeda, Choi, and
Kwak (2020) investigated the MPC strategy for commercial buildings
when occupancy schedules and electricity prices were time-varying.
The simulations showed that the MPC could reduce the total operating
cost compared with a conventional rule-based controller. It should
be noted that only one building zone was considered in Lee et al.
(2020), Valenzuela et al. (2019) and West et al. (2014). When there are
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multiple zones or multiple buildings, the controllers in different zones
cannot collaborate with each other to avoid violating the global power
constraint. As mentioned above, when there are multiple controllers,
a distributed control method allows subsystems to make their own
local decisions when there exist coupled constraints. Distributed MPC
provides an excellent strategy to achieve both customized thermal
preferences and energy consumption optimization under global and
local power constraints (Afram & Janabi-Sharifi, 2014; Camponogara,
Jia, Krogh, & Talukdar, 2002). Morosan, Bourdais, Dumur, and Buisson
(2010) firstly developed a building temperature regulation approach
in the case of a single zone and then extended the algorithm to the
multi-zone building case. It was demonstrated that the distributed
MPC approach can effectively reduce the computational requirements
compared with the centralized controller. However, the building model
in Morosan et al. (2010) did not consider the influence of the outdoor
temperature, which had a non-negligible impact on the indoor tem-
perature. Radhakrishnan, Srinivasan, Su, and Poolla (2017) proposed
a learning-based hierarchical distributed MPC protocol for HVAC sys-
tems with operational constraints. A learning algorithm was utilized
to capture the occupancy pattern and user interactions. Yu, Xie, Jiang,
Zou, and Wang (2017) designed a distributed real-time HVAC controller
based on the Lyapunov optimization technique, with considerations
of time-varying electricity price, outdoor temperature, and occupant
comfort. The authors showed in simulations that the presented algo-
rithm can achieve energy cost reduction with small sacrifice in thermal
comfort. Xie, Yu, Jiang, and Zou (2018) investigated the distributed en-
ergy optimization problem for HVAC systems when there exist multiple
buildings and each building has multiple zones. A MPC scheme based
on alternating direction method of multipliers (ADMM) was used to
obtain the optimal power input for each subsystem. However, a multi-
building coordinator and a building message controller in each building
were required. The multi-building coordinator and building message
controllers function like centralized units to determine if the iterations
of the ADMM algorithm satisfies the stopping criterion, which made
the controllers not fully distributed. In addition, the thermal coupling
between neighboring zones is not considered in Radhakrishnan et al.
(2017), Xie et al. (2018) and Yu et al. (2017), which is an important
factoring affecting zone temperatures. Although Morosan et al. (2010)
and Yang et al. (2020) considered the thermal couplings between neigh-
boring zones, Yang et al. (2020) did not use the MPC framework, thus
the optimization was over the whole time horizon, instead of a small
prediction horizon, which will lead to large computational loads and
inaccurate prediction information, such as outdoor temperatures, when
the considered time horizon is large. Morosan et al. (2010) used the
prediction of neighboring zones’ indoor temperatures when designing
the distributed model predictive controller. However, only three zones
are considered and any two of them are neighbors, and the authors did
not show how to make predictions using only local information when
the number of zones is large. In fact, when the MPC is used for the
HVAC control problem in the presence of thermal couplings between
neighboring zones, the larger the prediction horizon of controller is, the
information of more zones is required. If a distributed control system is
regarded as the one where each agent only requires the information of
its neighbors, then the MPC algorithm is no longer distributed when the
prediction horizon is larger than 1, since the information of neighbors
of neighbors is required for a certain agent.

Convergence rate is a key consideration for the controllers of HVAC
systems, since the temperature regulation should be in real time in
order to minimize the thermal discomfort of occupants in practice. The
distributed ADMM algorithm in Xie et al. (2018) can only achieve the
convergence rate of @ (%) with k being the iteration number (Wang &

Ong, 2017). When using the stopping criterion based on the distributed
average consensus and the total number of zones is large, the com-
putational efficiency is relatively low. Nesterov’s method is a strategy
that can solve convex optimization problems with convergence rate
(9(1(1—2) (Bertsekas, 2009; Nesterov, 2005). Since many MPC problem
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can be transferred to convex optimization problem (East & Cannon,
2019; Miiller & Allgower, 2017; Wang & Boyd, 2009), there are some
researches focusing on the accelerated gradient projection algorithms
for MPC recently. Patrinos and Bemporad (2014) developed an accel-
erated dual gradient projection protocol based on Nesterov’s method,
and gave the conditions of primal suboptimality and feasibility. A

1

convergence rate of @ (k_l)

was proved for both dual optimality and
primal optimality. After rewriting the linear MPC problems with state-
input constraints in the augmented Lagrangian framework, Nedelcu,
Necoara, and Tran-Dinh (2014) investigated the inexact dual fast gra-
dient augmented Lagrangian methods and demonstrated its superiority
in computation complexity. Li, Wu, Wu, Long, and Wang (2016) con-
sidered the convex optimization problems when there exist separable
objective functions with linear coupled constraints. By employing La-
grangian dual decomposition and a fast proximal-gradient method, an
inexact dual accelerated gradient-projection strategy was proposed. In
the distributed case, Wang and Ong (2018) developed an accelerated
distributed MPC scheme for linear systems with global constraints and
proved the convergence rate of © (%22 based on the Nesterov’s method.

In this study, we proposed an accelerated distributed MPC algorithm
for HVAC systems with global constraints based on the Nesterov’s
method. The thermal couplings between neighboring zones and the
unknown bounded thermal disturbances are considered. The main con-
tributions of this paper are stated as follows. It should be noted that the
contributions (ii) and (iii) fill the gap between the distributed MPC for
HAVC systems and the Nesterov’s gradient-based accelerated algorithm,
which is essential for introducing the accelerated MPC algorithm into
the case of distributed HVAC systems.

(i) The dynamics of indoor temperatures is incorporated into the
distributed MPC framework, including the thermal couplings be-
tween immediate neighboring zones. Considering the thermal
couplings between immediate neighbors only it is possible to have
a prediction horizon larger than 1 in the distributed MPC algo-
rithm. In addition, the unknown bounded thermal disturbances
are handled by robust optimization strategy.

(i) To demonstrate the applicability of the Nesterov’s gradient-proj-
ection method that requires converting the primal optimization
problem to the dual form, we strictly prove the strong duality
of the primal and dual optimization problems for the considered
HVAC systems.

(iii) The Nesterov’s gradient-projection algorithm requires that the
objective function has a Lipschitz continuous gradient. In this
study, we convert the objective function of MPC for the HVAC
systems into a positive definite quadratic form, which is p;-
strongly convex for some y;, and then obtain a Lipschitz constant
L, for the gradient of the objective function of the Nesterov’s
gradient-projection algorithm.

In addition, comparing with the distributed MPC for HVAC systems
in Xie et al. (2018), the advantages of this work are listed as follows.

(i) The thermal couplings between zones and unknown bounded
disturbances are considered in the presented MPC algorithm,
while they are neglected in Xie et al. (2018).

(i) Xie et al. (2018) designed a distributed model predictive con-
troller for HVAC systems with global constraint. However, a
multi-building coordinator and building message controllers were
required for the stopping criterion, which made the controller not
fully distributed. In this work, the proposed algorithm is fully
distributed in that the multi-building coordinator and building
message controllers are not needed and each HVAC subsystem
can compute its own power input based on the information of
the corresponding zone and the neighboring HVAC systems.

(iii) The convergence rate of the algorithm is (9(% in Xie et al.
(2018). When using the fully distributed stopping criterion, the
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computational time will be large when the number of zones is
large. In this work, the convergence rate of the algorithm is

(9(1%2 . The numerical simulation study demonstrates that the
computational speed of the algorithm in this paper is faster than

that in Xie et al. (2018).

The remainder of this paper is organized as follows. Section 2 int-
roduces the necessary preliminary information and formulates the prob-
lem. Section 3 transforms the optimization problem obtained in Sec-
tion 2 into one with a quadratic objective function, and then shows
that how the thermal disturbances and parameter uncertainties can
be incorporated. Section 4 presents the designing procedure for the
accelerated distributed MPC algorithm for HVAC systems. Numerical
simulations are given in Section 5 to demonstrate the effectiveness and
advantages of the proposed algorithm. Section 6 draws the conclusions
of this work.

Some notations used in this paper are introduced as follows. I,
represents the n-dimensional identity matrix. 1, and 0, represent the
n-dimensional column vectors with all elements being 1 and 0, re-
spectively. R and R”" denote the set of real numbers and the set of
n-dimensional real vectors, respectively. If we denote Zg the set of
nonnegative integers, then Z; 2 (¢, +1,....h) for any /,h € Z(J)r
and # < h. ()7 represents the transpose of a vector or a matrix.
max(-) and min(-) denote the maximum and minimum functions of the
corresponding values, respectively. For two vectors a and b, a < b
means that the elements of a is smaller than the corresponding elements
of b, respectively. The other comparison operators for vectors are also
element-wise. The notation [x], £ max(0,_,,x) with the element-wise
maximum denotes the projection of x € R” on the set {y | y > 0,_,}.
|| - ]I, denotes the Euclidean norm of a vector. For a matrix A, A > 0
means that A is positive definite. U'(a,b) represents the continuous
uniform distribution over the interval [a, b].

2. Preliminaries and problem formulation
2.1. Graph theory

We consider M buildings and there are N connected zones in each
building. An undirected graph G = (V,€) is used to describe the
neighborhood relationships among the M N zones, where V denotes the
set of vertexes, i.e., the zones, and £ C V x V denotes the set of edges,
respectively. If subsystem i can exchange information with subsystem
Jj, then (i, j) € &, otherwise (i, ) ¢ €. The adjacency matrix A of the
graph G is an M N X M N matrix with the element q;; satisfying a;; = 1
if (i, ) € &, and g, ;=0 otherwise. In addition, we assume a; = 0. All
the subsystems which can communicate with subsystem i form a set,
called the neighbor set, which is N; £ {j € V | (i,j) € &,i # j}. The
matrix D is a diagonal matrix with elements d; 2 Zj‘i f’ a;;, then the
Laplacian matrix of the network G can be defined as L 2 D — A. An
undirected path is a sequence of edges in a undirected graph G in the
form of (i, i,), (i5,i3), .... If there exists an undirected path between
any two edges in G, then the undirected graph G is connected (Ren &
Beard, 2008). We assume that the graph G is connected in this work.
The diameter D of a graph is defined as the longest of the shortest paths
between any two nodes.

2.2. Distributed HVAC systems

In this part, the model of distributed HVAC systems considered in
this paper will be introduced.

We consider the ith zone of the systems, with power consumption
P/(k) in kW at time slot k. The thermal dynamics of zone i with an
HVAC system working in the cooling mode can be described as (Con-
stantopoulos, Schweppe, & Larson, 1991; Thatte & Xie, 2012; Yang
et al., 2020)

_ _ _ n;A
Tk +1)=a, T+ Y, a,T;(k) +a,T™" (k) - R0+, @
JEN; !
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where T;(k) and T (k) denote the indoor and outdoor temperatures at
time slot k in °F, d;(k) is the thermal disturbances from some other
energy sources such as internal loads and solar gains, 4, 4;;, and
a;, are three parameters whose definitions are explained in detail in
Appendix A, n; denotes the coefficient of performance of the cooling
system, A denotes the duration of a time slot in h with h indicating the
unit hour, C; represents the thermal capacitance of zone i in kJ/K, and
N, denotes the set of physically neighboring zones that have thermal
couplings with zone i. The subscript i denotes that all the variables and
parameters are with respect to the subsystem i.

Remark 1. This remark is to explain the similarity and differences
between N, a;;, i.j € ZMN and N, @, i,j € ZMN. The similarity
is that they are both related to the concepts of neighbors. However,
N; denotes the set of zones whose HAVC systems can communicate
with zone i, in order to guarantee that the total energy consumption
limit is not violated. N; represents the set of physically neighboring
zones that have thermal couplings with zone i. The use of both W
and W, is necessary, since it is unreasonable to assume that there
are thermal couplings between two zones at different buildings, while
communications are required between some zones at different buildings
to guarantee that the bound for total power input is not violated.
Similarly, such differences exist between q;; and 4;;. For example, a;;
can only be either 1 or 0, for all i, j € Z}N, and a;; = 0, for all i € Z}N.
However, g;; can be any values in [0, 1], and a;; should not be zero for
i€ Zi” N since it represents the coefficient of thermal inertia.

We assume that the thermal disturbance d,(k) is bounded. That is

Assumption 1. The thermal disturbance d;(k) is bounded for all i €
ZMN and k € Z}, i.e., there exist constants d™in(k) and d™*(k) such
that

d™n(k) < d;(k) < d™ (k). (2

Remark 2. Assumption 1 provides the possibility to design a dis-
tributed MPC algorithm such that the bounds for indoor temperature
and power input are not violated in the presence of unknown thermal
disturbance d;(k). The method used to handle the unknown disturbance
is robust optimization, which will be presented in Section 3.2. In
addition, Assumption 1 is reasonable since the main factors affecting
the indoor temperature, for example, the indoor and outdoor tem-
peratures at the previous time slot, the neighboring zones’ indoor
temperatures, are already included in model (1). What Assumption 1
established is that the sum of all other thermal sources is bounded.
In the numerical simulations in this paper, the maximum power of
thermal disturbance is 424.4 W for each zone. In Remark 11, we also
give a detailed explanation about the thermal disturbance d;(k) in the
numerical simulations.

One of the control objectives is to keep the indoor temperature
within the appropriate range so that the occupants in the room will
not feel uncomfortable (Xie et al., 2018). Thus, we need

TM0(k) < Ty(k) < T (), Vk, ©)

where Timi“(k) and T"**(k) denote the lower and upper bounds of the
indoor temperature of zone i at time slot k, respectively. In this study,
we assume that Timi“(k) and 7" (k) are certain and known. The reason
is that if T/""(k) and T;"**(k) are in some ranges and uncertain, then we
can just use the worst 7,""(k) and 7;"**(k), i.e., the highest T/"'"(k) and
lowest T/"*(k) to guarantee that the indoor temperature T;(k) always
satisfies (3).

Besides, the constraints of the power inputs P,(k) can be describ-
ed as

Pimin(k) < Pk) < Pimax(k), vk, “)

where Pimi"(k) and P™* (k) are the lower and upper bounds of the power
input of zone i at time slot k, respectively.
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Moreover, we consider that there exists a global constraint for the
total power consumption of all zones (Radhakrishnan et al., 2017;
Zhang, Deng, Yuan, & Qin, 2017b), which is
MN
Y Pik) < P(k), VK, ()
i=1
with P(k) being the upper bound of the total power consumption at
time slot k.

Remark 3. The local power constraint (4) is from the maximum power
of an HVAC system. The motivation of the total power constraint (5)
is stated as follows. Due to the power limit of the distribution infras-
tructure, the total power input for buildings should be constrained.
We assume there is an aggregator that decides how much energy
should be imported from the grid at each time slot for different power
consumption systems of a building (Lampropoulos, Baghina, Kling, &
Ribeiro, 2013; Nguyen & Le, 2013), such as HVAC system, water heater,
and lighting system, etc. Thus, we can set total power limits for all
power consumption systems in order to guarantee that the power limit
of the grid will not be violated. Besides, this allocation can be time-
varying for practical considerations. For example, in the numerical
simulations in Section 5, we set P(k) to be smaller while the electricity
price is higher and larger while the price is lower during a day.

2.3. Cost model

We consider two kinds of costs, which are the energy cost per hour
of the cooling systems and the thermal discomfort cost associated with
occupants. The cost function can be described as follows (Xie et al.,
2018).

(k) = S()P(K) + oy(k + 1) (Ty(k + 1) = T (k + 1))*, VK, (6)

where S(k) denotes the electricity price at time slot k in $/kWh, Ti“f(k+
1) is the reference indoor temperature at time slot k reflecting the
occupants’ preference which is uncertain and in a range, and o;(k + 1)
denotes the thermal coefficient cost in $/(°F)*> h at time slot k + 1,
which is assumed to be positive in this paper and serves as a trade-off
coefficient between the energy saving and thermal comfort satisfaction.
Note that o;(k) is related to the occupancy status of zone i. For example,
we can just set o;(k) to be a small value at night when the building
is closed and there are few occupants in zone i, and a large value in
daytime when the building is open.

Remark 4. The reference indoor temperature Tl.ref(k + 1) can be
determined by a comfort survey. Based on the PMV model, West et al.
(2014) used an online thermal comfort survey form to inquire about the
occupants’ general thermal sensation and the satisfaction level for the
indoor temperature. The calculated PMV can be used to tune the set-
point temperature of zones in real time. Besides, we can also employ the
reinforcement learning (RL) method to determine the reference indoor
temperature (Fazenda, Veeramachaneni, Lima, & O’Reilly, 2014; Wei,
Wang, & Zhu, 2017). When the occupants feel uncomfortable, they
can give less rewards or more penalties to the corresponding state—
action pairs of HVAC systems. The indoor temperature T,.'ef(k + 1) can
be obtained and modified based on these related thermal feedbacks.

2.4. Problem formulation

In this paper, we would like to minimize total cost (6) of all M N
zones over H slots, subject to constraints (3)-(5). To this end, the
problem is formulated as

MN H-1

min ' N £,(k), st (3)~(6), )
=1

i=1 k

with the decision variables being the power consumptions P;(k) for all
i€eZMN and k € ZI'.
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In order to solve (7), we need to know the outdoor temperature
Ti"“‘(k) and the reference indoor temperature over all H — 1 time hori-
zons in all M N zones. However, it is of large uncertainty to predict all
these information at the initial time, which will deteriorate the control
performance and enlarge the probabilities of feeling uncomfortable
for occupants. To address this issue, we employ the MPC framework
for which we only assume that the required information Tl."“t(k) and
Tl.‘ef(k + 1) are accurate in the next 2 (1 < h < H — 1) slots (Parisio,
Rikos, & Glielmo, 2014; Xie et al., 2018). In this case, what we would

like to minimize at the slot k, is the cost Z,AZ IN I;;:’f72 ¢;(k). After we

obtain the power consumption P,(k,), we can just substitute it into (1)

to get the new state T;(k,+1) and then we minimize Zf‘;’ IN Z‘: ;h;; ¢;(k),

subsequently. It should be noted that the minimization should repeat
until k, = H — h + 1. For time slots from H — h +2 to H — 1, we can
directly use the remaining s — 2 results computed at the slot H — A+ 1.
Thus, the optimization problem can be written as

MN k.+h=2
min 3 Y £k, st (36, (8)
i=1  k=k,

Pi(k)

with k. being from 1 to H — h + 1.

2.5. Tightening the constraints

For optimization problem (8), we need to solve it numerically.
However, little benefit can be gained when the numerical solution
is really near optimal and the computing cost will be high if we
continue the iteration (Wang & Ong, 2017). Besides, the subsequent
optimization may be infeasible if we use an early termination condition
in each step (Wang & Ong, 2018). To address this issue, we can tighten
constraint (5) at each time slot k, € Zf’ ~i+1 to account for errors
arising from the premature termination, which is (Rubagotti, Patrinos,
& Bemporad, 2014)

MN
> Pk)<(1—eMN(k -k, + 1)P(k), Vke Z’;Z”H, )
i=1

with ¢ being a predefined tolerance to the violation of the constraint
(5) for a stopping criterion. The constraint (9) can be written in the
vector form

MN

Z P(k,) < b(k,.€), Vk, €z (10)
i=1

with P;(k,) £ [P(k,),P(k, + 1),...., Pk, + h — 2)]" and b(k.,¢) =
[1—eM N)P(k,),(1-2¢e M N)P(k,+1),...,(1—(h— l)eMN)P(kC+h—2)]T,
respectively.

With global constraint (10), the optimization problem becomes

MN k. +h=2
min 3, X, £k, st (3), (4), (6), (10). an
=1 k=k,
Note that it will be complicated to directly solve optimization
problem (11), due to the complicated objective function and thermal
disturbances and parameter uncertainties existed in the problem. In
Section 3, we will transform the objective function of (11) into a
quadratic form and then show how the thermal disturbances and

parameter uncertainties can be handled.

3. Transformation of optimization problem (11)

In this section, we firstly formulate problem (11) into one with a
quadratic objective function with respect to P;(k.). Then, we will show
how the additive thermal disturbances and uncertain parameters can
be incorporated into the framework of distributed MPC in this work.
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3.1. Transformation of problem (11)

In order to design a distributed MPC algorithm for HVAC systems
considering thermal couplings between neighboring zones, we made
the following assumption, with justification provided in Remark 13 of
Appendix B.

Assumption 2. The impacts of initial indoor and outdoor tempera-
tures, and power input for zone i, i € Z{"’ N are only considered for
zone |/ itself and its immediate neighbors. That is, they are neglected
for the neighbors of neighbors of zone i.

If we denote

T (k) 2 [Tk, + D, Ty(k, +2), ..., Ti(k, + h — 1>]T, (12a)
TO(k,) & [T (k) T (ko + 1), o T Gk +h=2)] (12b)
P(k) 2 [Pk, Pk, + 1), ..., Pk, +h=2)] ", (12¢)
dy(k) 2 [dik), di(ke + 1), ..., dik. +h=2)] ", (12d)

then the thermal dynamics of zone i can be formulated as

Tik) =Tyk)+ Y. FT"k)— Y 1,Pk)+ Y Gydk),
JENVI JEN Ui JEN I

13)
where the matrices F;;,7;;, G,; € R/=D*(=D and the vector T y(k,) €
R"-! are constant matrices related to physical parameters and adja-
cency relationship of the zones in building systems, and the duration
of each time slot. In addition, the vector T;,(k.) also depends on the
indoor temperature T;(k.) of zone i at time slot k.. The definitions of
F;;,7;;,Gy;, Ty(k,), and the detailed formulation procedure of (13) can
be found in Appendix B.

If we denote

TMn (k) & [Tk, + 1), T (K, +2), ..., Tk, +h— 1], (14a)
T™(k,) £ [T (k. + 1), T™ (k. +2), ..., T"™ (k. + h — 1)]T, (14b)
PMn(k) & [P (e,), PP, 4 1), ..., PPk, +h—2)] (140)
P (k) 2 [P (k,), PM(k, + 1), ..., P™k, +h—2)|", (14d)
the constraints (4) can be written as

T™n(k,) < T(k,) < T™ (k,), s
PN (k,) < Pi(k,) < PP (k,), (16)

with the inequalities being element-wise.
Substituting (13) into (15), and combining (16), we can obtain

Ih—l
-1
= Pk,
ii
_TH
—
Ar
P (k,)
P (k)

Tio(ke) + Zyegn FiuT)" k) = Zyex 7Py (k) + Zjegrus Giyd, (k) = T (k)

“Tiotke) = Zjesrun FiT7" (k) + Eje i 1P (k) = Xje o Giyd ) + T (k)

B:

a7
On the other hand, if we denote
S(k.) 2 [S(k,), Sk, +1),..., Sk, +h— 2)]T, (18a)
o;(k, + 1)
o.(k,) 2 oike +2) . , (18b)

ok, +h—1)
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T (k) 2 [TF (ke + D, T (k +2), o T (ke + = D] (18¢)
C & 1lo,(k )Ty, (18d)
D, 2 S(k) 2| | Tk =T k) + Y, F T (k)
JEN;UI
T T
- z 7 P(k,) + 2 G;dj(k)| oik)T; | (18e)
JEN; JEN;UI
E &[Tylke) - T )+ Y FyT" (k)= Y, 7Pk,
JEN;UI JEN;
T
+ Y Gud;k)| o,(ko) (Tilk) = T (k,)
JEN;UI
+ ) F T k) - Y 1, Pitk)+ Y, Gudk)|,
jeNi jeN, JEN,i
(180
then
ke+h—2
Y, k) = P{(k)C;Pi(k,) + D] P;(k.) + E;. a9
k=k

The detailed information about how to get (19) is shown in Appendix C.
Thus, the optimization problem (11) can be formulated as

MN
Ig_likn) Z PT(k,)C;P;(k.)+ DT P,(k,) + E;, s.t. (10), (17), (20)
izt
which is equivalent to
MN
min Y Pl (k)C,P,(k)+ D P;(k,), st (10), (17) (21)
P;(k,) i 4 i+ i\"e i i\e/s ot > 4

e i=1

since E; is independent of P;(k,).

According to the form of z;; indicated in (B.10), we know that z;; is
a nonsingular matrix. From (18b), we have that o,(k.) is a diagonal
matrix with all the diagonal elements o;(k, + 1),...,0;(k, + h — 1)
being positive, thus the matrix C; £ lo,(k)t; is positive definite.
The positive definiteness of C; is essential to prove that V,g;(k,, 1),
which will be defined later and can be regarded as a function of A,
has Lipschitz continuous gradient. This is important for the accelerated
distributed MPC algorithm design, in Section 4, which use the gradient

projection method (see Section 6.10.1 of Bertsekas, 2009).

3.2. Formulation of uncertain optimization problem (21) to the certain
counterpart

In Section 3.1, we formulated optimization problem (11) into the
one with the objective function being quadratic. However, the obtained
optimization problem (21) is uncertain, since the vector D, in the objec-
tive and B; in the constraint (17) are related to the uncertain parameter
Ti‘ef(k), k g zhth! , and the unknown thermal disturbances d;(k),

ket1
k e ZtC+h_2, respectively. Thus, problem (21) cannot be directly solved.

In this section, we transform (21) into a certain problem by using
the concept of robust optimization (Ben-Tal, El Ghaoui, & Nemirovski,
2009).

The vector T;ef(kc) in (18c) is uncertain, since its corresponding
elements are uncertain. In this study, we assume that Tf.ef(kc) is in the
corresponding known ranges, i.e.,

8 (k) < TH (k) — T™ (k) < AT (k,), (22)

nl
where T;;’é(kc) is the nominal term, 6[Tef(kc) and A[r.ef(kc) are the corre-
sponding lower and upper bounds of the true values’ deviation from

. t
the nominal value T3 (k,).
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Besides, according to Assumption 1, we know that d;(k,) in (12d) is
bounded, i.e.,

adM™ k) < dyky) < A (k) 23)

~min ]T ~max

where d;""(k,) £ [d™"(k,),d™(k, + 1), ...,d™"(k, + h—2)] and d|
(k) 2 [d™(k,),d™ (k. +1),...,d™ (k, +h—2)]T. Since G(k,) is a
constant matrix, as defined in (B.10), there must exist vectors d;""(k,)
and d**(k,), such that

dM™k) < Y Gd;lk,) < APk @24
JEN;UI

It is shown in Appendix D that if we denote

P;ﬂﬂX(kC)
-P™(k,) A _
To(k.)+ Zjef/,u: F‘.I.T[;“‘(kc) - Z/EN} 7 Pk, +d™ (k) =T (k,) ’

“Totk) = B FyTO k) + e g 7, Py k) — dM™ (k) + TP (k,)

[

min A
BMn 2

(25a)
DM & S(k,) - 2t)0,(k,) | Tiolk,) — AT (k,) — T"F (k,)
+ Y F T k) — Y, 7Pk +dMM (k) | (25b)
JEN i jeN,
P, & (Py(k.) | A,P(k,) < B Vk, € ZI1Y, (25¢)

then the uncertain optimization problem (21) can be converted to the
following certain optimization problem.
MN
. T axT

o hin, § PI(k)C,Pi(k) + D™ TP (k,), s.t. (10). (26)
Remark 5. The uncertain vectors B;(k.) and D;(k.) in (21) are re-
placed with their certain bounds B™"(k.) and D[™(k.) in (26). The
intuitive reason of this replacement is that the worst case is considered
when robust optimization procedure is used to transform the uncertain
optimization problem to the certain counterpart. In Section 4, an
accelerated distributed MPC algorithm will be proposed to solve the
optimization problem (26).

4. Accelerated distributed model predictive control algorithm de-
sign

In this section, by using the Nesterov’s gradient-projection algo-
rithm, an accelerated distributed model predictive controller for HVAC
systems with coupled constraints is designed.

4.1. The dual problem of (26)

Considering coupled constraints (10), the Lagrangian dual function
of optimization problem (26) is
MN
L(P(k), A) 2 Y PI(k)C,Pi(k,) + DT P (k,)

i=1

MN
+1T < (P;(k,) — b(k,, e))> ,

i=1

Vk, € ZIM Pk, € Py, i € YN, 27)

where A > 0,,_, is the dual variable of inequality constraint (10).

In the rest of this paper, we will omit Vk, € Z~"**! and vi € ZMN
for convenience if there is no confusion. We have the dual problem of
(21) as

max _ min

P,(k, 2
max |, min L(P;(k,), A), (28)
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and the primal optimization problem as

i L(P,(k,), 1), 29
p[<‘ii‘>%p[1‘§})i’fl (P;(k,), A) (29)

with the primal function being max;, | L(P;(k.), ).

Lemma 1. The objectives of dual optimization problem (28) and primal
optimization problem (29) are equal, that is, the strong duality holds.

Proof. Consider the Lagrangian dual function (27) L(P,;(k,), A). It is
affine in A, hence it is concave in A. Besides, L(P;(k,), A) is a continuous
function with regard to 4, and [0, )1 is a convex and closed set,
thus we know that L£(P;(k,.), 1) closed with regard to 1 (see Section
A.3.3 of Boyd & Vandenberghe, 2004). Thus, —L(P;(k.), ) is convex
and closed with regard to A for all P;(k,.) € P,.

From (19), we know that PT(k,)C; P;(k.)+ D™ TP (k,) is a quadratic
function of P,(k.), with C; being positive definite. According to Exam-
ple 3.2 of Boyd and Vandenberghe (2004), we have that P,.T(kC)C,-P,-(kC)
+ D;“"‘"TP,.(kc) is strictly convex with regard to P;(k.). Then, it is easy
to see that L(P;(k,),A) is also convex in P;(k.). Similarly, P;(k.) is
a convex and closed set from (17), and L(P;(k.), A) is continuous in
P;(k,), thus L(P;(k.),A) is convex and closed in P;(k,) for every 4 >
0, .

Now we consider the function
pw) = p,(r?ffép, Agloi)fl (E(Pi(kc)’ h- uTl) , weRM 30)
which is a continuous function in u. Combining with the fact that R"~!
is a closed set, we know that p(u) is a closed function (see Section
9.1 of Boyd & Vandenberghe, 2004). According to Proposition 1.1.2
in Bertsekas (2009), we have that p(u) is lower semicontinuous. Since
p(0) < oo, we can conclude

max _ min

Jmax , min L(Pi(k.),A)= min_ max L(P;(k.),A), 31

P(ko)EP, 120,

from Proposition 5.5.1 of Bertsekas (2009).

The dual problem (28) is equivalent to

MN
N0, 18, ~EP D = i B e >
with

T T
gilke. 2) & Pigclca)’épi - (Pi (k)C; Pi(k,) + D;nax Pi(kc))

T (ko) - ﬁb(kc,e» . 33)

It is easy to see that — (P](k,)C;P;(k,) + D™ TP,(k,)) — AT (P,.(kc)
—ﬁb(kc,e» is affine in A, and thus it is a convex function with
regard to A. According to the extended pointwise maximum property
(see Section 3.2.3 in Boyd & Vandenberghe, 2004), we can conclude

that g; (k.. 4) is a convex function with regard to A.
Letting P;(k,, A) £ argmaxp,  sep, &i(k, 4), we have

gi(k,, 4) = = (PT(k)C;Pi(k,) + D™ TP,(k,)) - AT (P,-(kc, 2)
1
bk, e). 34

According to Danskin’s theorem for maximum functions (see Section
3.1.1 in Bertsekas, 2015), we have

1
Vigikes ) = = (Pylles D) = 7o bk, ). (35)
According to (19), we have

V%,i(kcv » (PIkICPi(k) + DT P(k,)) = 2C; > 0, (36)

which indicates that there exists y4; > 0 such that V%, o) (P[T(kC)C,-

Pi(k,)+ Dj.“ﬂ"TPl-(kc)) > p;I,_;. According to Theorem 1 in Nesterov
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(2005), one has that V,g;(k., A) is Lipschitz continuous with constant

\/”—iv. We denote L, £ MaX;ezmN M—{V in the rest of this paper.

4.2. Distributed fast dual gradient algorithm for HVAC system

According to Section 6.10 of Bertsekas (2009) and Algorithm 1
in Patrinos and Bemporad (2014), optimization problem (32) can be
solved by the following iterations.

F=2+6 (0" =1) (W -2, (372)
MN
P = [,v - — 2 Vgl ¥ )] , (37b)
g i=1 +
AV 2 2
_ 0/) +4(05) - (¢
o VO @) -0 e
2
with the initial values A~ = A° = 0,_, and 97! = ¢° = 1. It is easy to
check that (37c) satisfies the following relations.
-t 1 1 & 2
el tiswe i NGRS (38)
()" ()" (&) = I
for j > 0.

The variable A/ in (37a) and (37b) is a global variable. Since what
we need to design is a distributed MPC controller, we can make a copy
of A/, denoted by 4/, for subsystem i, i € ZYMN . The result is

o S
=40 (@ -1) (#-47), (39)
MN
A= [A’ -= >V lg,(kc,/lf)] , (39b)
g i=1 +
where V,g,(k, 1) = - (P{(kc) - M—le(kc,e)) with
Pl(k,) & argminp o cp PT(k)C,P;(k,) + D™ P,(k,)
~ T
+ 3 Ptk = bk
ke+h=2 ‘
= argminp (. \ep, Z PT(k,)C;P;(k.) + (D™ + AT P,(k,).
k=k,
(40)

Remark 6. We use iterations (39a) and (39b) instead of (37a) and
(37b) in the aim of making the controller distributed. As long as A‘l
and /IO are the same for all i € ZMN respectively, we can obtam
l’ = /l’ = = )J y for all iteration step j. Thus, the consensus of 4,,
i€ ZM N can be guaranteed at all iteration steps. However, it should
Z, 1 Vllg,(ku:l )
in (39b), which is related to all M N subsystems and thus makes the
controller not fully distributed. In Section 4.3, a distributed averaging
consensus algorithm will be introduced to handle this problem.

be noted that we still need the information of —

Define

Pl(k,) 2 (0/) i(e"rli’f (ko) = (1= 0P/ (k,) + 0/ P (k,), (41)
£=0
for all i € ZMN and with the initial condition P} (k,) = 0,_;.
According to the results of Wang and Ong (2018), supposing we
terminate the iteration of (41) at step j, then we can get Pf (k.) which
can be written as P{ (k) 2 PI’ ko), o P/ o (ko) T. The MPC algorithm
applied to the ith subsystem at time slot k, can be designed as

Pk,) = 13{1 (ko). Vk, € ZH"1 vi e ZMN. (42)
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4.3. Distributed average consensus

The aim of this subsection is to compute the term ng Zf\i 11\/ V&

(ks 1{ ) in a distributed manner. Note that we can rewrite ng Zf\i IN V,8

(k.. %)) as

3J
— ==——_——>Yv
I, Z:, Vigitke 1)) = L e Z a8itke 2. “3)

with L V'V ,8:(k,. X]) being the average of V,g,(k . 1)) over MN
subsystems Thus, we can employ a distributed average consensus

algorithm to compute —— M ~ Ny, gk, /1’ ) distributedly.

To that end, we 1ntr0duce a dlstrlbuted average consensus method
in this subsection. Besides, another distributed protocol is also used to
determine whether the average consensus is achieved with a predefined
tolerance at certain iteration step.

Consider the average consensus of M N vectors x, ..., Xy, With
initial values x;(0), ..., x ;5 (0), respectively. A distributed average con-
sensus algorithm can be formulated as (Olfati-Saber, Fax, & Murray,
2007; Saber & Murray, 2003)

XK+ D) =x,(k)+é Y
JEN;

a;; (x;(K') = x; (k")) , 44

for all i € ZMM, and 0 < & < being the step-size. According to
the related analys1s in Olfati- Saber et al. (2007) and Saber and Murray
(2003) (the difference is that x; is a vector-valued in our case while it
is a scalar in Olfati-Saber et al., 2007; Saber & Murray, 2003), we know
that

Jim x (k) = - Z x,(0), VieZMN, (45)
as long as the undirected graph G is connected.

It is indicated in (45) that the distributed average consensus of
vectors x,, ..., X,y can be achieved by (44) asymptotically. However,
when putting (44) into implementation, we should have a criterion
to determine whether the average consensus is achieved with a pre-
defined tolerance at certain iteration step k. To this end, we firstly
introduce the maximum consensus and minimum consensus protocols
as follows (Yadav & Salapaka, 2007).

Consider M N vectors y;,...,yyn, With initial values y,(0),...,
¥y~ (0), respectively. The algorithm

yitk+1) = max y;(k), (46)
J i

with max being the element-wise operator, can achieve the finite-time
distributed maximum consensus. That is

y,(k') = max y,(0), Vi€ ZMN, 47)

for some k' such that k' > k’.
Similarly, the algorithm

yitk+1) = Igj\lfl y; (), (48)
J i

with min being the element-wise operator, can achieve the finite-time
distributed minimum consensus. That is

y; (k') = min y,(0), Vi€ VAR (49)
for some k" such that k' > k’.

According to Yadav and Salapaka (2007), we have that both k’ and
k" are less than or equal to the diameter D of the graph. Thus, we can
just let ¥’ = k¥’ = D. Then Algorithm 1 can be used to compute the
average of x,(0), ..., x5 (0) with the prescribed margin error p.

In Algorithm 1, the termination criterion of distributed average
consensus is ||max; x;(¢) — min; x;(¢)||, < p after the maximum and
minimum consensus are both realized. We just use the value of the first
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Algorithm 1 Distributed average consensus with marginal error p.

1: Input: x;(0), i € Z’l” N the predefined marginal error p, the diame-
ter D and the adjacency matrix A £ [q;], i,j € Zf“", of graph G,
the step size €

: Output: a vector x such that ”x - ﬁ - 1 x; (O)H <p

: Initialization: set £ =0, k=0,x=0,_;, 6 =p+1;

: while § > p (in parallel) do

X+ D)« x,@O)+EXNY ay (x,00) - x,0))

Yi0) < x,(£ + 1), 2,(0) < x,(¢ + 1), i € ZMN;

while k < D do

Yilk + 1) < max;c v, y;(k);
zi(k+1) « minjEM z;(k);

10: ke—k+1;

11: end while

122 6 < [lyi(D) =z, (D);

13: C—C+1;

14: end while

15: X « x(¢)

VN DA

subsystem to compute ||max; x;(¢) — min; x;(¢)||, < p in Line 12 since we

know that y;((j + 1)D) = max, x,(£ + 1) and z,((j + 1)D) = min; x;(£ + 1).
Note that
1 MN
. —mi . > - — .
‘miax x,(¢) — min x,(f)‘ 2 %)) = ; x;(0)], (50)

where both the absolute operator and the inequality are element-wise.
Thus, one has

MN
—— ! x,0)
N i=1 2

=i

xi(0) = Z x,(0)

< ‘maxx,-(f) — min xi(f)H
1 1 2
< p. (51)

It should be noted that we can actually let x = x,(¢) for any i € ZM~
and we just pick x = x,(¢) without loss of generality

Now we consider to compute —— M ~ Ny, gk, /1 ). We can Just let
x(0) < V, gk, /{f ) and then use Algorlthm 1 to compute — M ~ ‘.:1 Ny,
g,-(kc,ll’. ) distributedly. Thus, we can use iterations (39a), (39b), and
(37c) to solve optimization problem (32) in a distributed manner.
According to the strong duality indicated in Lemma 1, we actually
have solved constrained optimization problem (11) in a distributed
way. From Theorem 1 in Wang and Ong (2018) and Proposition 6.10.3
in Bertsekas (2009), we have the following statement.

Let the feasible domain of optimization problem (21) be D, £
(T,, € R" : (21) is feasible}. For any T, € D,, we denote the optimal
solution of (21) as {P}(k, )}M IN and one of the optimal dual variable
as A*. Further, let Ji(k,) £ zj‘le P/ (k)C, P! (k) + D™TP/(k,) and
T (k) 2 XYY Pk, )C, PF(k,)+ D™ T P*(k,). Then, for any T, € D,,
j >0, we have

_AMN(/MN + DL 21 < Tk I*(k) <0 (52)

Remark 7. Eq. (52) indicates that the designed algorithm can achieve a
convergence rate of O (]iz , which is accelerated compared with those

whose convergence rate is of O (Jl), such as the one in Xie et al. (2018)

(the rigorous proof can be found in Wang & Ong, 2017). However,
although the convergence rate is accelerated, we still need a stopping
criterion to determine when we should terminate the iterations (39a),
(39b), and (37c). In the next section, we will show how we can handle
this issue in a distributed manner.
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4.4. Stopping criterion

Since the stopping criterion is with respect to whether we should
stop the iterations when obtaining Pf(kc) at step j, we only consider
the MPC slot k = k, in this section without loss of generality. Let us
firstly introduce the definitions about e-solution and (e, §)-suboptimal
solution of (21).

Definition 1. Given any ¢ > 0, the set {P;(k,)}MN is an e-relaxed
solution of (21) if P,(k,) € P;, Vi € Z{”N, and
MN
> P,(k,) - blk,.€) < eMNp(k,), (53)
i=1
where p(k,) £ [P(k,), P(k, + 1),..., P(k, + h—2)]T.

Given any &,6 > 0, {Pi(kc)}f‘ilN is an (g, 8)-suboptimal solution of
(21) if it is an &-related solution and

J(k,) = (k) <8, (54)
where J(k.) £ PT(k,)C,P;(k,) + D™ TP (k,).

Similar to property (iii) of Lemma 1 in Wang and Ong (2018), we
have

MN- AMNG/MN + 1)L, ||A*
2 Pj(kc) _ b(kc,e) < ( ) g” ”2

, TES plk). (55)
i=1

Thus, there always exists j such that {P{ (k)}MN is an e-relaxed solu-
tion of (21). Besides, according to (52), we know that such a solution
{P](k, )IMN must be an (e, 0)-suboptimal solution. Thus, a stopping
criterion could be YN P/ (k) — b(k,,€) < eM N p(k,). Since b(k,,¢) 2
[(1—eMN)P(k,).(1-2e M N)P(k,+1), ...,(1—(h—1)e M N)P(k,+h-2)I",
this stopping condition could be written as
P(k,)

MN _
3 Pk < (1= eMN)P(k +1) . 56)
i=1

(1-(h- 2)eM}V)P(kC +h-2)

Remark 8. We now illustrate the function of tightening the constraints
in Section 2.5. By (9), we can guarantee that P,(k,.), namely the first
element of P;(k,), will be no larger than P(k,). From (42), we know
that only the first element of P;(k.) will be implemented during the
MPC framework, thus the coupled constraints (5) will not be violated
during the control process.

Remark 9. We can use Algorithm 1 to compute Z P’ (k,) for the
stopping criterion ZMN P’(ke) —b(k,,¢) <eMNp.

i=1

The accelerated distributed model predictive controller for HVAC sys-
tems with coupled constraints is summarized in Algorithm 2.

Remark 10. This remark is to illustrate how the possible conflict be-
tween the power and indoor temperature constraints can be addressed
when implementing the proposed algorithm. The possible conflict of
these two constraints is a characteristic of MPC when we consider them
both (see Section 2.5.4 of the book Wang, 2009). (1) When the con-
straints of local input bound and the indoor temperature are conflicting,
the quadratic programming problem, i.e., the line 13 of Algorithm 2,
will be infeasible. In this case, we can slack the bound of the indoor
temperature at the time slot when the conflict occurs. Thus, the thermal
comfort level might be sacrificed. (2) When the constraints of the
total power input and indoor temperature are conflicting, the stopping
criterion will never be satisfied. In order to step out of the while loop
of Algorithm 2, the maximum iteration number can be predefined. In
this case, the global power constraints might be violated, which means
more power would be allocated to the HVAC systems in the building
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system. However, the MPC algorithm will try its best to avoid conflicts
of constraints, since the optimization is over a finite future time horizon
instead of only the current time slot. This constitutes one advantage of
the model predictive controller.

Algorithm 2 The accelerated distributed MPC for HVAC systems.
1: Input: C;, Ry, Ry, n;, di(k), 4, Ty(0), TP (k), TrE(k), S(k), o,(k),
T k), T (k), PM™(k), P"™(k), A £ [a;;], €, P(k), h, Ly, i,j €
ZMN ket

g’

2: Output: P/(k), Vi € ZMN, vk € 2/~
3: Initialization: k, =1, P} (k) =0,,_,, Vi € ZMV, vk € ZH1~"*!
4; foralli e Z]l” N (in parallel) do
5: while k, < H—-h+1 do
6: j <0
7: AT=20<0,_;
8: 071 =00 « 1;
9: 6—eMNp+1,_;;
10: while 6 > e M Np do
11: e a0 (@ =) (-4
12 e [H - L2 Va3
+
=J . k.+h-2
13: Pl(k) < arg minp  )ep, Zk:]; P;r(kc)C,-Pi(kc) +
(D™ + )T Pi(k,);
14: Plk) — (1= 0)P/ 7 (k) + 07 P (k,);
15: 8« IMN Plk,) - blk,,e);
16: gitl — VO ) -@)
: - ;
17: e+
18: end while
19: i
20: Pi(k;) < P/ (k,);
— _ _ A
21: Titk + 1) < @y Ty () + X i T (k) +a;, T (ko) = " Py,
+di(k.);
22: k, <k +1
23: end while
24: end for

5. Numerical simulations

In this section, the numerical simulations will be used to demon-
strate the effectiveness and advantages of the algorithms in this paper.
We use the similar simulation framework as that in Xie et al. (2018) to
compare the results and show the advantages. We consider 5 buildings
with each building comprising 10 distinct zones. In the distributed
cases, there is an independent HVAC system in each zone and the
neighborhood relationship of these independent systems is shown in
Fig. 1. The physical neighboring relationship, i.e., the thermal coupling
relationship, of these 50 zones are assumed to be the same as the
neighborhood relationship of the HVAC systems, expect that there are
no thermal couplings between two zones at different buildings, such
as zones 10 and 15 in Fig. 1. Note that we do not need the building
message controllers and the multi-building coordinator since we use a
fully distributed method to determine when to stop the iteration. The
MATLAB R2019a, running on a laptop with an Intel Core i7-4770 and
32.0 GB RAM, is used.

5.1. Simulation setup and results of the proposed distributed algorithm

We consider that there are M = 5 buildings, and each building has
N = 10 zones. The parameters of zones are shown in Table 1, for all
ie Z{”N and k € Zf” (Constantopoulos et al., 1991; Yang et al., 2020).
The duration of a time slot is selected as 4 = 0.2h, and the simulation
lasts for 48 h, i.e., H = % = 240.
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Table 1

System parameters.
Parameter Value Unit
C, 1.375x 10° KJ/K
R;, 50 K/kW
R; 14 K/kW
n; 4.5 -
d,(k) U(-0.2,0.2) °F

The other simulation parameters are set as h =8, ¢ = %, € =025,
p =003, and L, = 200. According to Fig. 1, we have D = M (% +1)—
1 = 29. Besides, we have 7™ (k) = (71 + U'(-0.5,0.5)) °F, PMi"(k) = 0,
P™(k) =1 kW, and

_ {O.SMN kW, if S(k) = $0.0808/kWh,
Plk) =

0.3M N kW, if S(k) = $0.1692/kWh,

for all k € Z, i € ZMN. We assume the buildings 1 and 2 open
at 9 am and close at 5 pm and the buildings 3 to 5 open at 8 am
and close at 8 pm, respectively. When the buildings are open, we set
o;(k) = 3, Timi“(k) = 65 °F, T/"(k) = 78 °F, and when the buildings
are closed, we set o,(k') = 22, T"(k) = 65 °F, T (k) = 85 °F,
with k¥’ being the time since the nearest closing. We assume that the
initial indoor temperature of the zones labeled with odd numbers is
73 °F while the initial indoor temperature of the zones labeled with
even numbers is 74°F. We use the outdoor temperature in Atlanta from
July 3 to July 4, 2020 (Atlanta, 0000). Note that we can only get the
outdoor temperature information every hour, while the duration of one
time slot is 4 = 0.2h. To address this problem, the spline interpolation
is used to generate the data between adjacent hours. Thus, the outdoor
temperature used in this section is shown in Fig. 2. We consider that
the buildings are utilized commercially and the electricity price S(k),
ke Zf is shown in Fig. 3. In order to compare the simulation results
with those in Xie et al. (2018) and of the centralized algorithm, we
also obtain the simulation results by using the distributed ADMM in Xie
et al. (2018) with Algorithm 1 to determine when to stop the iterations,
and using the same accelerating scheme in the centralized algorithm.
The common parameters of three algorithms are set as the same. The
simulation results are shown in Figs. 4-6.

Remark 11. We choose the disturbance d;(k) to be uniformly dis-
tributed over [-0.2,0.2], as shown in Table 1. (1) The reason the
negative disturbance is allowed is due to Assumption 2. According
to the analysis in Remark 13, heat transfers between zones that are
not immediate neighbors are omitted in order to design a distributed
model predictive controller. This is equivalent to introduce negative
heat gains to the thermal dynamics. (2) When d;(k) = 0.2, the thermal
disturbances will cause the indoor temperature to raise 0.2°F within
12 min. From the system model (A.3), this is equivalent to a power of
thermal disturbances being 424.4 W for each zone, which is reasonable.
(3) In this study, we use the robust optimization method to handle the
unknown thermal disturbances. It is assumed that the minimum and
maximum thermal disturbances are known. Thus, from the perspective
of the algorithm in this paper, it does not matter what distribution
the thermal disturbance has, as long as it is over a small finite inter-
val. Thus, without loss of generality, we assume that it is uniformly
distributed in the numerical simulations.

We take zone 1, opening from 9 am to 5 am, and zone 22, opening
from 8 am to 10 pm, as examples for discussion. Fig. 4 shows the
indoor temperature of both zones. The indoor temperature is around
72°F when the zones are open. When the zones are closed, for example
between 5 pm and 9 am for zone 1, since the outdoor temperature is
relatively high during this interval, the indoor temperature is typically
higher than the reference temperature. In addition, the indoor tempera-
tures for both zones are within the comfortable range defined by T,.m‘“(k)
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Fig. 1. The neighborhood relationship of all 50 zones.
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Fig. 2. The outdoor temperature in Atlanta from July 3 to July 4, 2020.
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Fig. 3. The electricity price for business in Georgia (An explanation, 0000).

and T"®(k). Fig. 5 presents the HVAC power inputs in the two zones,
which shows that all the input powers satisfy the local constraint. Fig. 6
shows the total HVAC power inputs of all 50 zones. The total power
consumptions do not exceed the global bound for all three algorithms.
Besides, when the buildings are closed, there is also nonzero power
inputs, which are caused by the nonzero weights on the temperature
deviation from the reference. This can avoid the indoor temperature
being too high when the buildings are closed.

Remark 12. This remark is to explain why we assume Tl.‘ef(k) =
(7141°(-0.5,0.5)) °F while the indoor temperature is around 72 °F when
the buildings are open. In Section 3.2, we replace the vectors B; and

10

D; in the optimization problem with B;"i“ and D™**. Note that using
B™" can guarantee that the local power inputs never exceed the local
bound in the presence of unknown bounded thermal disturbances, since
Bl‘.nin serves as a tighter bound for the local power inputs than B;. How-
ever, the vector D; appears originally in the objective function. When
we use robust optimization to handle the uncertainties, the results
guarantee the minimum of the defined objective no matter what the
exact disturbances are. Thus, the algorithm actually considers the worst
case. From the mathematical point of view, the reference temperature
T™!(k,) in D; is replaced with T (k,)+ A (k,)+d™"(k,) in D™, Thus,
the indoor temperature when the buildings are open is slightly higher
than the predefined one. However, this will not affect the practical
significance of the proposed algorithm, since we can always set the
reference temperature to be slightly lower than the occupants’ preferred
temperatures, and tune it when necessary. In the future work, we plan
to investigate how to determine the reference temperature by using the
occupants’ thermal feedback and machining learning method, which
will be incorporated into the control framework presented herein.

5.2. Advantages of the proposed algorithm over the one in Xie et al. (2018)
and the centralized algorithm

Figs. 4-6 show that the distributed algorithm in this paper, the
distributed ADMM algorithm in Xie et al. (2018), and the centralized
algorithm can all achieve indoor temperature regulation. However, the
original algorithm in Xie et al. (2018) requires the building message
controllers and the multi-building coordinator for the stopping crite-
ria, making the HVAC systems not fully distributed. To evaluate the
computing speed of these algorithms, a series of simulation studies
are conducted for 5 buildings. The number of zones of each building
increases from 5 to 15. Each simulation is over 120 time slots, i.e., 24 h
when 4 = 0.2h. The total running time of each simulation is tallied.

When using the distributed method to determine when to stop the
iterations, the algorithm in Xie et al. (2018) requires significantly more
time to compute the results, as is shown in Fig. 7. In contrast, the
algorithm presented in this paper can accelerate the computing speed
when the HVAC systems are fully distributed. The proposed distributed
algorithm also presents higher computing speed compared with the
centralized algorithm using the Nesterov’s accelerating method when
a building has a large number of zones. In addition, the total energy
cost of all zones is shown in Fig. 8. The results demonstrate that the
total energy cost is almost the same for the proposed algorithm and
that in Xie et al. (2018), and is slightly lower for the centralized
algorithm. However, considering that the running time of the central-
ized algorithm increases significantly with increasing of the number
of zones, as shown in Fig. 7, it is beneficial to use the proposed
distributed algorithm for buildings with a large number of zones. Since
a commercial building typically has more than 15 zones, the proposed
algorithm can achieve the distributed temperature regulation in real
time, while the distributed ADMM in Xie et al. (2018) or the centralized
algorithm might not, as shown in Fig. 7.
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Fig. 4. The indoor temperature of zones 1 and 22 by the algorithms in this paper and Xie et al. (2018), and the centralized algorithm.
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Fig. 5. The HVAC power input of zones 1 and 22 by the algorithms in this paper and Xie et al. (2018), and the centralized algorithm.

6. Conclusions

In this paper, we investigated an accelerated distributed MPC strat-
egy for HVAC systems with global constraints. Firstly, we incorporated
the dynamics of indoor temperatures into MPC framework with the
assumption that only thermal couplings between the immediate neigh-
boring zones need to be considered. After presenting the system and

Total power consumption (kW)
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I

i

= = =Power limit

T
Total HVAC power input (Algorithm in this paper)
Total HVAC power input (Algorithm in [22])
Total HVAC power input (Centralized algorithm)

10 am

3 pm

8 pm

1 am 6 am

Time (h)

I ?
M’”W ’NMJ\WMMM . :i: W%Wf“ﬁ ‘

11 am 4 pm 9 pm

Fig. 6. The total power consumption by the algorithms in this paper and Xie et al. (2018), and the centralized algorithm.

cost models, we converted the constrained optimization problem into
an quadratic programming problem and used robust optimization to
handle the potential unknown bounded thermal disturbances. Then,
based on the accelerated dual gradient-projection method, a distributed
fast MPC protocol was designed for HVAC systems. In order to de-
termine when to stop the iterations, a distributed stopping criterion
was used based on a distributed average consensus algorithm. Besides,

11
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Fig. 7. The running time comparison between the algorithms in this paper and Xie
et al. (2018), and the centralized algorithm.

the tightening of coupled constraints was firstly implemented to com-
pensate for the influence of early termination. Numerical simulations
demonstrated the effectiveness of the proposed distributed MPC algo-
rithm, and the comparisons with the MPC algorithm in Xie et al. (2018)
and the centralized counterpart illustrated that the proposed algorithm
can indeed accelerate the computation speed.

Our future research will focus on the algorithm for learning individ-
uals’ thermal preferences and how to incorporate the real-time thermal
feedbacks into controller design.
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Appendix A. Zone thermal dynamics model formulation

This appendix formulates the thermal dynamics of a zone including
neighboring zones’ thermal impact. The thermal dynamics of zones can
be modeled similarly to a resistance—capacitance (RC) network.

For zone i, i € ZM", one has (Constantopoulos et al., 1991; Thatte
& Xie, 2012; Wang, Hu, & Spanos, 2017; Yang et al., 2020)

Tk+D-T®  « TO-TE  T,0-Tk
C y _Z + n

R - -nPk), (A1)
je _/\_/, ij io
where R;; denotes the thermal resistance between zones i and j in
K/kW, and R,, represents the thermal resistance between zone i and
the outside in K/kW, respectively. The meanings of other notations are
the same as those given in Section 2.2.

By some mathematical operations, (A.1) can be reformulated as

_ _ _ n;A
Tik+1)=a, T+ Y, a,T;(k) +a,T" (k) - éP,-(k), (A.2)
JeN; !
- A A A - A A ~ A A
where g; £ 1 — Zje/(@ RG T RyC” a; = R0 and g;, = G

Eq. (A.2) indicates that the indoor temperature T;(k + 1) of zone i
at time slot k + 1 is related to the indoor temperatures of zone i and
its neighbors, and the power input of zone i at time slot k. However,
there might be some other energy sources that may influence the indoor

12

Control Engineering Practice 110 (2021) 104782

10
—s— Energy cost (Algorithm in this paper)
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Fig. 8. The total energy cost comparison between the algorithms in this paper and Xie
et al. (2018), and the centralized algorithm.

temperature, such as some internal loads and solar gains. Thus, we
include an additive thermal disturbance term d,(k) in the model (A.2),
ie.,

_ _ _ nA
T,k + 1) = @, T;(k) + Z a,;T;(k) + a;, T (k) — éP,-(k) +d,(k). (A.3)
JEN; !

Appendix B. Detailed formulation procedure of (13)

We suppose that there is no thermal couplings between two zones
at different buildings. Thus, it is enough to consider all N zones in a
building m € Zflu when we try to get T;(k,) in the form of (13). In this
case, we may write the system dynamics (1) in the following compact
form.

Ty(k+1) a, ap ay || Tk
Tyk+1)| _|an ax Gy || T2(k)
Ty(k+1) any  any - ann || Ty
N
T, (k+1) Ap T, (k)
a, T (k)
N a, "0
an, || T k)
. AN J/
Ao T (ke
A
& A Py (k) d (k)
ma
- < Ll FE R B
avA [ Py(k) | [dn (k)
Cn —— ——
o Py (k) d, ()
Thus,
_ _ —out L
T,k +k) = A Tk, +k =D+ AT (k. +k—1)=7%,P,
(k, +k—1)
k—1
= ALT, (k) + Y AS AT (k + k=K — 1)
k'=0
k—1
;o
- ) ALz, P (k. +k—K —1)
K'=0
k—1
-
+ ) AN,k + k=K = 1). (B.2)

K'=0
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Similar to the Appendix of Xie et al. (2018), the indoor temperatures
from time slot k, + 1 to k. + h — 1 for the ith zone can be described as

T, (k. +1) An T,(k,)
T,(ke+2) |_ A2 T,,(k,)
T,(k,+h—1) AT, (k)
T, (ko) i, T otke)
Amo 0N><N 0N><N
AmAmo Amo 0N><N
Afln_z Amo Aﬁl—% Amo e Amo
FO
T;ul(kc)
y 0"k, + 1)
- t ;
Tk, +h-2)
—_—— —
T (k,)
Ty O O
_ Am%m im e 0NxN
A2z AR L 1,
z
P, (k)
o | Patke+D
P, (k,+h—-2)
[ —
Pk
IN><N 0N><N 0N><N _ am(kc)
+ Am IN><N 0N><N dm(kc + 1)
A2 g3 Iyun || Ak, + 1 =2)
G?n am(kc)
(B.3)
which has the compact form
~ - ~ ~ 0 ~ - ~ ~ 0 ~
T,k = 0T otk) + F) T (k) — 70 P, (k) + G d,,(k,). (B.4)

Note that ﬁ?n,i??n,%gl,é?n e RNG-DXN(k-1) are constant matrices
for certain parameters of zone dynamics, the duration of each time
slot 4, and time horizon h. Thus, these three matrices can be pre-
computed and stored in computer before the iterations of MPC. To
facilitate the analysis, we firstly provide the justification and meaning
of Assumption 2.

Remark 13. The justification of Assumption 2 is stated as follows.
The coefficient of thermal inertia is relatively large for a zone. For
example, with 4 = 1h, the coefficient of thermal inertia is 0.9608
in Constantopoulos et al. (1991). In Wang et al. (2017) and Yang et al.
(2020), the coefficient of thermal inertia used in the simulation is
0.9147 with 4 = 0.2h. We consider building 1 consisting of 10 zones
in Fig. 1. The coefficients of thermal inertia is 0.9147, and the thermal
coupling coefficient between the neighboring zones is 0.0374. That is,

ay  ap apo
A 2 da1 42 aQ10
ayp;  aip ajo10
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0.9147 0.0374 0.0374
0.0374 09147 0.0374
= 2 (B.5)
0.0374 09147 0.0374
0.0374 0.0374 0.9147
Then, one has
[0.8395 0.0684 0.0014 0.0014  0.0684]
0.0684 0.8395 0.0684 0.0014 0.0014
0.0014 0.0684 0.8395 0.0684 0.0014
2 . . . . .
A% = . . . . . .
0.0014 0.0684 0.8395 0.0684 0.0014
0.0014 0.0014 0.0684 0.8395 0.0684
0.0684  0.0014 0.0014  0.0684 0.8395|
(B.6)

Compared with 0.8395 and 0.0684, 0.0014 is very small. Assumption 2
indicates that we can neglect 0.0014 and only retain the elements
0.8395 and 0.0684. That is, we can approximate the matrix A% by

0.8395 0.0684
0.0684 0.8395 0.0684

0.0684

A2

1 s (B.7)

Q

0.0684 0.8395 0.0684

0.0684 0.0684 0.8395

and add the elements 0.0014 to the disturbance term.

By approximating the matrices A}, Vm € Z}, i € 77!, in the
similar way, Assumption 2 makes it possible to design a distributed
MPC controller for the HVAC systems. Without this assumption, the
information of immediate neighbors is not sufficient to compute the
local control input. In particular, when the time horizon 4 is large,
the global information of the distributed HVAC systems is required to
design the control algorithm for each zone.

Under Assumption 2 and the approximating method illustrated in
Remark 13, we denote the corresponding approximated matrices of #°,
Fz, #0, and G?n as #j,,, F,, %, and G,,. Note that the matrices #,,, F

T

ms
> and G,, can be precomputed and stored in the computer, and do
not need to be computed in the iterations of MPC. Thus, we can regard
them as three constant matrices. From (B.4), one has

Fout

T,k =,T k) + F, T (k) - %,P,k)+G,d,k,). (B.8)

From (B.3) and (B.8), we know that

Tk +k+1) = Z NueN+ieN+i) T (ke)
JEN;UI
k
+ Z Z F(kN+i)(k’N+j)T;)m(kc + k)
JEN;Ui K'=0

k
- Z Z TN+ k' N+j) P (ke + K"
JEN;ui K'=0
k
+ Z Z Gn+ik N+ ke + k'),
JEN;ui k'=0

(B.9)

for k € Zg‘z, and i € ZM. 1t should be noted that n,;, F;;, z;;, and
G,; denote the (i, j)th elements of the matrices #;, F;;, #;, and G
respectively.

ij>

Thus,
Tk, + 1) e M Tike)
X e M+ T Gke)

Ti(k, +2)

Tike +h=D || Xjefui Mn-n+ixcn-2n+pTjke)

T;(ke) Tio(k,)
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F; 0 0

Fin iy FN+i(N+j) 0

D)

JEN;UI

Fo-onvij  Fan-2N+yave Fh-2)N+iy(h-2)N+j)

Fj;

TjDul(kB)
T (k, + 1)

Tk, +h - 2)

| —
ut
T (k)

0 0

T(N+)(N+j) 0

Tjj
_ z T(N+i)j
JEN;UI :
T((h—Z)N+i)((h—2)N+j)

T(h=2)N+i)j  T(h=2)N+i)(N+))

i

Py(ko)
Pyl +1)

Pi(k, +h—2)

Pjk,)

G, 0 0

G(N+ij Ginrnv+p) 0

D)

JEN;UI

G((h—2)N+i)j G((h—2)N+i)(N+j) G((h—Z)N+i)((h—2)N+j)

G,
d;(k,)

d;j(k. +1) (B.10)

dy(k, +h=2)
dj (k)
can be written in the compact form
Tik) =Tyk)+ Y, FyT"k)— Y w;Pik)+ Y, Gydk,).
JEN; VI JEN;UI JEN; VI

(B.11)

Appendix C. Transform of the objective of (21)

We firstly consider only the ith zone, with i € Z{"’ N From (6), the

ke+h=2

cost function Z ¢;(k) for zone i can be simplified as follows.

ke+h=2 ke+h

DR 2 (S(k)P,-(k) +oy(k + 1) (T + 1) = T (ke + 1))2)
K=k,

k=k.
+h-2 ke+h=2

Z S(k)P,(k) + Z (oi(k+ 1) (T(k + 1)

+T,.'ef2(k +1) = 2Ty (k + DT (k + 1))
ST(k)P; (k) + TT (ko (k)T (ko) — 2T (k )o;(k,)
X T (k) + T (ko (k)T (k).

(Cn

Substituting (13) into (C.1), one has

ke+h=2

PIRAC!
k=k,

= STk )Pi(k) +|Tiok) + Y, FTk)— Y, 7Pk,
JEN;UI JEN;UI
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T
+ O Gudyk)| ok)| Ttk + Y, F T (k)
JEN; VI JEN; VI
- D T Pik)+ Y, Gudk) [ 2T (ko (k,)
JEN; VI JEN;UI

[Tk + Y FyT™k)— Y w;Pik)+ Y, Gyd;k)
JEN; VI JEN;UI JEN;UI

+ T (k )o (k)T (k)

= PT(k)lo; (k)T Pi(k,)

+ [ STk = 2| Tk =T (k) + Y, FTS" (k)
JjEN; Ui
T
- Y TPk + Z G,j d;(k)| okt | Pik,)
JEN;

+ [Tk =T k) + ) FT k)= Y 7Pk,

JEN;UI jeN,
T
+ 2 G;;d;(k.)| o;(k)| Tk, )_Tref(k Y+ 2 F,JTO‘“(k)
JeNu JEN;UI
- Z 7Py ko) + Z G;;d;(k.)
jeN; jeN; Ui

= PT(k,)C,P;(k,)+ DT P(k,)+ E,. (c2)
Appendix D. Converting uncertain optimization problem (21) to
the certain counterpart (26)

This appendix presents how uncertain optimization problem (21)
can be transformed to its certain counterpart (26).

Note that both the objective function Y PT(k,)C;P;(k,) + D P,
(k.) in (21) and the constraint (17) are uncertain in this case, since the
vectors B; and D; are uncertain. In order to make the problem easy to
analyze, we firstly perform the following standardization procedure.

It is easy to check that the constrained optimization problem (21)
is equivalent to the following problem with decision variables being
P;(k.) and 1;, Vi € ZMV.

MN
i ; D.1
o, 2t (012
s.t. A;Pi(k,) — B; < 04_,). (D.1b)
PT(k,)C,P(k,)+ DI P;(k,)—1; <0, VieZMN, (D.10)
MN
Y Pilk,) < blk..€), Vk, € ZH, (D.1d)

i=1
We now consider the uncertainties of vectors B; and D; in (D.1b) and
(D.10).

For vector B;, by defining

P (k,)
pmin & P (k) ,
i Tio(k) + X e iroi Fiy T3 k) = X e, 7y Pk, ) +dM (k) - T (k) |
~Tik) = X FiyT" k) + X e Ty Pyke) = di™ (k) + TP (k,) |
(D.2a)
- PGk ;
Bmax N Pl.nm(k )
i T;o(k.)+ Zje/@’,u, F,jT;‘”‘(k )— Z]EN T,;P;(k.)+ d‘“""(k )— T‘““‘(k )y I’
7—T,O(kc) - Ejej\/,ur ,/T;’“‘(k )+ Z/EN T, P;(k,)— d"““(k )+T‘““(k )
(D.2b)
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one has
BM" < B, < B™. (D.3)
We consider D; = S(k,) -2 <<T,-0(kc) - Tff(kc) + Zje./\_f-ui F,IT;’“‘

T

(ke) — ZjEJV iy Pjke) + Z/GN u Gijd;(k, )) Gi(kc)rii> - Since 5;ef(kc)

f f f
+ T (k) < T (k,) < A (k,) + T™! (k,) from (22), we have

Tio(k) - A (k) T (k) + > F (k) — Y 7, P(k,)

JEN; Ui JEN;
dmin(k )
STtk =T (k) + Y F Tk — Y, 7Pk
JEN i JEN;
+ Z Gy;d;(k,)
JEN; VI
S Tylk) = 8T (k) = T (k) + Y, FyT (k)= Y, 7P (k)
JEN; VI JEN;
+dM X (k). (D.4)

According to the fact that o;(k.) is a diagonal matrix with positive
diagonal entries, we have

o,(k) | Tiok) = A (k) = T k) + Y F T9" (k)

JEN; Ui

= Y TPk +dM(k,)

JEN;
<ok [Ttk - T k) + ) F T9" (k) — > TPk,
jeN; Ui JEN;
+ ) Gudk)
JEN; VI
<o,k [ Tiglk) = 8 (k) = T (k) + Y F T9" (k)

JEN Ui

= Y TPk ) + A (k) |
JEN;

(D.5)

in (B.10), we can find that all the
< v for

From the construction of matrix ;;
elements of t;; are non-negative, which indicates that zlu
any vectors u < v. Thus, one has

S(k,) = 2050,k )| Tio(k,) = 8 k) = TS (k) + Y, FT9" (k)
JEN;UI

= Y 1,P(k)+dM™ (k)| < D, < S(k,) - 270,(k,) (Tio(k,)
JEN;
—A k) =TS k) + Y FyT™ (k) — Y, 7, Py(ko) +d™ (k) |
JEN VI JEN;
(D.6)

according to the definition of D; in (18e).

If we denote D™" £ S(k,)-277 0, (k,) (T,-O(kc) - 8 (k,) = T™0 (k) +
Zjef/,.ui FyT3 (ko) = Zjeﬂf, i Pike) +d™ (k. )) and D™ £ S(k,) -
20, (ko) (Tiotke) = A (ko) = Tieh ) + e s Fu TS ko) = By
7,;P;(k.) + d™(k,)), then (D.6) can be written as

DMM < D, < D™ (D.7)
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Now we consider the robust counterpart of the uncertain program-
ming problem without the global constraint as follows.

m1n t;, (D.8a)
Piko)d;
st. A;Pi(k,) — B; < 041, (D.8b)
P (k,)C;P,(k,)+ D[ P,(k,)—1; <0, Vk, €ZI"*!, (D.8¢)
B < B, < B™, (D.8d)
DMM < D, < DM (D.8e)
Firstly, it is easy to see that P;(k,) satisfies A;P;(k.) — B; < 04(,_y,
for all B < B; < B!™ if and only if P,(k,) satisfies A;P;(k.)— B"" <

04¢1)- Similarly, P;(k,) and 1; satisfies P (k,)C; P;(k.)+ D™ P;(k,) -
t; <0 for all D™ < D; < D if and only if P;(k.) and ¢; satisfies
Pl(k,)C;P;(k,) + DTP;(k,)—1; <0, for all D™ < D; < D™, since we
only consider the cooling mode and thus P;(k,) > 0,,_,.

Denote P; £ {P;(k,) | A;Pi(k,) < B" Vk, € ZH"*1}. The con-
straints (15) and (16), namely (3) and (4), can be written as

P(k.)EP, (D.9)
Thus, we have

min t;, (D.10a)
Pi(ke)t;
st A Py(k,) — B™™ <04, (D.10b)
P (k,)CP(k,)+ DT P,(k,) -1, <0, Vk, €ZI"! (D.10¢)
which is equivalent to

MN

R (nkn)rép Z PT(k,)C;P;(k,) + D™ TP,(k,), s.t. (10). (D.11)

ie ii=1
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