
Demo: Will it Move? Indoor Scene Characterization for
Hologram Stability in Mobile AR

Tim Scargill
Duke University
ts352@duke.edu

Shreya Hurli
Duke University

shreya.hurli@duke.edu

Jiasi Chen
University of California,

Riverside
jiasi@cs.ucr.edu

Maria Gorlatova
Duke University

maria.gorlatova@duke.edu

ABSTRACT
Mobile Augmented Reality (AR) provides immersive experiences
by aligning virtual content (holograms) with a view of the real
world. When a user places a hologram it is usually expected that
like a real object, it remains in the same place. However, positional
errors frequently occur due to inaccurate environment mapping
and device localization, to a large extent determined by the proper-
ties of natural visual features in the scene. In this demonstration
we present SceneIt, the first visual environment rating system for
mobile AR based on predictions of hologram positional error mag-
nitude. SceneIt allows users to determine if virtual content placed
in their environment will drift noticeably out of position, without
requiring them to place that content. It shows that the severity
of positional error for a given visual environment is predictable,
and that this prediction can be calculated with sufficiently high
accuracy and low latency to be useful in mobile AR applications.

CCS CONCEPTS
• Computing methodologies → Mixed / augmented reality;
Tracking; Scene understanding.

KEYWORDS
Augmented reality, scene characterization, VI-SLAM.

ACM Reference Format:
Tim Scargill, ShreyaHurli, Jiasi Chen, andMaria Gorlatova. 2021. Demo:Will
it Move? Indoor Scene Characterization for Hologram Stability in Mobile
AR. In The 22nd International Workshop on Mobile Computing Systems and
Applications (HotMobile ’21), February 24–26, 2021, Virtual, United Kingdom.
ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3446382.3449026

1 INTRODUCTION
Over the past few years, mobile augmented reality (AR) apps that
do not require images or fiducial markers to position virtual content
have increasingly become standard, enabled by platforms such as
Google’s ARCore [6] and Apple’s ARKit [1]. However, these mark-
erless AR apps rely on natural visual features in the environment
that can be mapped and tracked accurately, which is not always
the case. Errors resulting from inaccurate tracking cause virtual
content (holograms) to be rendered at a different location in the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HotMobile ’21, February 24–26, 2021, Virtual, United Kingdom
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8323-3/21/02. . . $15.00
https://doi.org/10.1145/3446382.3449026

(a) Time 0 (b) Time 1 (c) Time 2

Figure 1: Hologram drift examples in commercial AR
(ARKit, iPhone 11, iOS 13.1.3, "Avo!" application)

real world from where they were originally placed, often termed
drift. Examples of hologram drift in the commercial AR app ‘Avo!’
are shown in Figure 1. These errors can degrade a user’s subjective
experience and her task performance in AR.

In modern mobile AR, accurate environment mapping and device
localization is dependent onVisual-Inertial SLAM (Simultaneous Lo-
calization and Mapping) [7]. The more conducive visual input data
are to accurate Visual-Inertial SLAM pose estimation, the lower the
resulting drift. Our goal is to guide users, developers and designers
of spaces that host AR toward optimal experiences, by determining
and detecting the conditions that cause virtual content positional
errors. Though this is a known issue in AR, recent works only
quantify either drift [9, 16] or environmental characteristics [2],
not both. ARKit and ARCore can identify unfavorable conditions
based on whether tracking results are unavailable or questionable,
along with possible high-level causes, but these solutions lack the
granularity required to guide users toward more suitable visual en-
vironments. Our work is the first to formally examine the relationship
between visual scene characteristics and drift magnitude.

In this demo we present SceneIt, an edge-based visual envi-
ronment rating system for mobile AR, based on predictions of
hologram positional error magnitude. An illustration of SceneIt is
shown in Figure 2. Unlike existing commercial solutions that iden-
tify challenging environments using simple indicators (e.g., light
level, number of feature points), SceneIt uses a set of custom scene
characterization metrics, and takes into account the complex inter-
actions between scene properties. As well as detecting conditions
known to cause severe degradation or loss of tracking, it demon-
strates how more subtle cases can be identified; in which sufficient
visual features are detected, but feature mismatching is likely to
occur. The nature of the design supports future work on automatic

173

https://doi.org/10.1145/3446382.3449026
https://doi.org/10.1145/3446382.3449026

HotMobile ’21, February 24–26, 2021, Virtual, United Kingdom Tim Scargill, Shreya Hurli, Jiasi Chen, and Maria Gorlatova

Figure 2: SceneIt in action: examples of good (left) and bad
(right) scene quality ratings.

improvements to AR environments, and the consideration of other
factors which affect quality of experience in AR.

2 SYSTEM DESIGN
An overview of the SceneIt system architecture is shown in Figure 3.
We implement an edge computing-based architecture to serve on-
line predictions. This architecture allows us to calculate the visual
scene characterization metrics required for accurate drift predic-
tion, a task which is too computationally expensive to perform on
a smartphone.

We identify three key sources of data in an AR application that
may be used to characterize a visual scene: the RGB images from
the rear-facing camera, the point cloud generated by the AR plat-
form, and additional data supplied by the AR platform (e.g., light
estimation, plane detection). These data are captured within the
AR application, converted to JSON format, and transferred over
a one-hop wireless local area network connection via an HTTP
POST request (constructed using a UnityWebRequest). The request
is received and handled on the edge server by a high performance
Python web framework, FastAPI [4]. This converts the data into
Python objects, from which our scene characterization metrics
(detailed below) can be computed.

RGB Image Properties.At the lowest level, we can extract informa-
tion from the overall distribution of pixel values about light level
and the distinguishable elements of a scene (Img. Brightness,
Img. Brightness RSD (Relative Standard Deviation), Contrast,
Entropy [14]). However, we should also take into account the spa-
tial organization of those pixel values (Spatial Information [19],
Laplacian Variance [5], Corners [13]). A more complex image is
generally beneficial, but this complexity should relate to discernable
features rather than chaos, measured using gradient orientation en-
tropy (GOEntropy [17]). More sophisticated image processing can
also recognize situations likely to cause pose estimation errors; we
identify repetitive textures using gradient orientation self similarity
(GO SelfSim [10]), bright, transient spots of light (Specular High-
lights [8]), metal or glass household objects that cause reflections
(Challenging Objects [11]), and mirrors (Mirrors [18]).

Figure 3: SceneIt system architecture: Data collected about
the visual environment is sent from the AR app to the edge
server. SceneIt calculates scene characterizationmetrics and
the hologram drift prediction result, and the user can be no-
tified with check and cross symbols, updated plane coloring
or sound effects.

Point Cloud Properties. Next, we can extract information from
the 3D point cloud generated by the AR platform while mapping
the scene. From this we calculate Feature Point Count, Feature
PointDensity,MeanDepth, Feature Point Proximity, and how
evenly distributed the points are across the mapped space (Spatial
Heterogeneity [12]). We hypothesize that dense, evenly spread
point clouds, with higher numbers of points and a low mean depth
will decrease drift, and vice versa.

AR Platform Data. Finally, the AR platform itself (e.g., ARCore,
ARKit) may provide useful data on light estimation and detected
planes. We can extract measures of light level (Brightness) and
appearance (Color Temperature), extreme values of either we
expect to indicate challenging conditions. Estimates of Main Light
Intensity and Light Direction are sometimes provided; a high
horizontal component of the light direction vector, combined with
high light intensity, may result in shadows and dynamic (unreliable)
feature points. More planes (Plane Count) should aid accurate
positional tracking, but a window (Window Count, ARKit only)
may impede it, as the feature points within that plane are often
unreliable.

Drift Prediction Algorithm. To inform the design of our drift pre-
diction algorithm we developed a custom AR app for both ARKit
and ARCore (using Unity’s AR Foundation framework [15]), that
can gather scene data and measure drift. Keeping device move-
ment as similar as possible across trials, we collected data for 141
diverse scenes in 13 rooms (6.6m2–40.4m2), in 6 residential or of-
fice buildings, using both ARCore and ARKit. Drawing inspiration
from indoor datasets such as Matterport3D [3], we constructed
a wide range of conditions, including a flashlight-lit basement, a
brick accent wall, and a living room at sunset. ARKit scenes were
captured using an iPhone 11 and ARCore scenes using a Google
Pixel 3a or Nokia 7.1. We observe that for normal indoor conditions
drift magnitude is determined by a complex interaction between scene
properties, rather than a single metric such as brightness or feature
point count.

Due to this complex interaction between variables, we use ma-
chine learning to predict the amount of drift in a scene. To meet our

174

Demo: Will it Move? Indoor Scene Characterization for Hologram Stability in Mobile AR HotMobile ’21, February 24–26, 2021, Virtual, United Kingdom

end goal of interpretability (to inform users how to improve their
scenes) with a limited number of data points, we use a decision
tree. For data gathered on ARKit, we train a binary classifier using
scikit-learn, to predict if a scene is ‘Good’ (drift < 3cm) or ‘Bad’
(drift ≥ 3cm). This classification boundary is based on both the
distribution of drift values and our own observations on how drift
magnitude impacts user experience. We use an 80/20 train/test split
and to limit overfitting set the max tree depth to 5. We achieve
82.6% accuracy and an F1 score of 82.4% for our classifier. Future
work will include more sophisticated feature selection techniques
to gain further insights and improve performance.

Once SceneIt has calculated the prediction result, FastAPI returns
the result to the app via an HTTP RESPONSE over the samewireless
connection, and the app user interface is updated accordingly. Over
10 trials in unseen visual environments (not part of our dataset), we
classify 8 correctly and achieve a mean end-to-end system latency
of 1.74 seconds.

3 INTERACTIVE DEMONSTRATION
The demonstration utilizes the same architecture as in Figure 3.
It is performed using an iPhone 11 running iOS 13.1.3 and ARKit
3, and an AR application built with Unity 2019.3.9f1. SceneIt runs
on a high-end desktop computer with an Intel i7-9000 3GHz CPU
and Intel UHD Graphics 630 GPU. A video of the demonstration is
available online.1

As the user moves around, ARKit generates a map of the en-
vironment in the form of a sparse 3D point cloud. When a plane
is detected in the environment, it is represented by a transparent
hologram with a black border. The presence of a plane allows the
user to attach a hologram to the real-world surface. When the user
presses the ‘Rate Scene’ button, the application captures the cur-
rent RGB camera image and the point cloud, as well as the lighting
estimation and plane detection data gathered by ARKit.

These data are transferred to the edge server, and SceneIt calcu-
lates the prediction result based on these inputs. For subsequent
rating requests the image- and lighting-based metrics are averaged
across the session, while the most recent point cloud and plane de-
tection data are used each time. If SceneIt returns a positive rating
to the app (indicating a prediction of low drift), the AR applica-
tion user interface is updated to show a green check symbol. The
user can then place their virtual content (in the demo a Mondrian
painting) on the plane using the ‘Place Hologram’ button, with
confidence that it will not move significantly out of position.

On the other hand, if SceneIt returns a negative rating, the user
interface is updated to show a red cross symbol. This indicates that

drift of 3cm or over is predicted to occur, and if the user places the
hologram at this time then this can be observed. In future work
we plan to instruct the user how to improve the quality of a bad
scene, or automatically do so using IoT devices available in the
environment, to adjust lighting conditions or display additional
textures.
1https://sites.duke.edu/timscargill/sceneit-prototype/

4 ACKNOWLEDGEMENTS
This work was supported in part by the Lord Foundation of North
Carolina and by NSF awards CSR 1903136, CNS 1908051 and CA-
REER 1942700.

REFERENCES
[1] Apple. 2021. ARKit. https://developer.apple.com/augmented-reality/
[2] Lillemor Blom. 2018. Impact of light on augmented reality. Master’s thesis.

Linköping University.
[3] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner,

Manolis Savva, Shuran Song, Andy Zeng, and Yinda Zhang. 2017. Matterport3D:
Learning from RGB-D data in indoor environments. In International Conference
on 3D Vision (3DV) 2017.

[4] FastAPI. 2021. FastAPI. https://fastapi.tiangolo.com/
[5] James Garforth and Barbara Webb. 2019. Visual appearance analysis of forest

scenes for monocular SLAM. In IEEE ICRA 2019.
[6] Google. 2021. ARCore. https://arvr.google.com/arcore/
[7] Li Jinyu, Yang Bangbang, Chen Danpeng, Wang Nan, Zhang Guofeng, and Bao

Hujun. 2019. Survey and evaluation of monocular visual-inertial SLAM algo-
rithms for augmented reality. Virtual Reality & Intelligent Hardware 1, 4 (2019),
386–410.

[8] Alexandre Morgand and Mohamed Tamaazousti. 2014. Generic and real-time
detection of specular reflections in images. In VISAPP 2014.

[9] Xukan Ran, Carter Slocum, Maria Gorlatova, and Jiasi Chen. 2019. ShareAR:
Communication-efficient multi-user mobile augmented reality. In ACM HotNets
2019.

[10] Christoph Redies, Seyed Ali Amirshahi, Michael Koch, and Joachim Denzler. 2012.
PHOG-derived aesthetic measures applied to color photographs of artworks,
natural scenes and objects. In ECCV 2012.

[11] Joseph Redmon and Ali Farhadi. 2018. YOLOv3: An incremental improvement.
arXiv preprint arXiv:1804.02767 (2018).

[12] Brian D Ripley. 1976. The second-order analysis of stationary point processes.
Journal of Applied Probability 13, 2 (1976), 255–266.

[13] Edward Rosten and Tom Drummond. 2006. Machine learning for high-speed
corner detection. In ECCV 2006.

[14] C. E. Shannon. 1948. A mathematical theory of communication. The Bell System
Technical Journal 27, 3 (1948), 379–423.

[15] Unity. 2021. Unity AR Foundation. https://unity.com/unity/features/
arfoundation/

[16] Reid Vassallo, AdamRankin, Elvis C. S. Chen, and TerryM. Peters. 2017. Hologram
stability evaluation for Microsoft HoloLens. In SPIE Medical Imaging 2017: Image
Perception, Observer Performance, and Technology Assessment.

[17] Yichin Wu, Liwei Chan, and Wen-Chieh Lin. 2019. Tangible and visible 3D object
reconstruction in augmented reality. In IEEE ISMAR 2019.

[18] Xin Yang, Haiyang Mei, Ke Xu, Xiaopeng Wei, Baocai Yin, and Rynson WH Lau.
2019. Where is my mirror?. In IEEE ICCV 2019.

[19] Honghai Yu and Stefan Winkler. 2013. Image complexity and spatial information.
In IEEE QoMEX 2013.

175

https://sites.duke.edu/timscargill/sceneit-prototype/
https://developer.apple.com/augmented-reality/
https://fastapi.tiangolo.com/
https://arvr.google.com/arcore/
https://unity.com/unity/features/arfoundation/
https://unity.com/unity/features/arfoundation/

	Abstract
	1 Introduction
	2 System Design
	3 Interactive Demonstration
	4 Acknowledgements
	References

