Real-Time Systems (2021) 57:302-345
https://doi.org/10.1007/511241-021-09364-5

®

Check for
updates

Online reconfiguration of regularity-based resource
partitions in cyber-physical systems

Wei-Ju Chen'® . Peng Wu? - Pei-Chi Huang? - Aloysius K. Mok’ - Song Han?

Accepted: 12 January 2021 / Published online: 1 March 2021
©The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract

We consider the problem of resource provisioning for real-time cyber-physical appli-
cations in an open system environment where there does not exist a global resource
scheduler that has complete knowledge of the real-time performance requirements
of each individual application that shares the resources with the other applica-
tions. Regularity-based Resource Partition (RRP) model is an effective strategy to
hierarchically partition and assign various resource slices among the applications.
However, RRP model does not consider changes in resource requests from the appli-
cations at run time. To allow for the run time adaptation to resource requirement
changes, we consider in this paper the issues in online resource partition reconfig-
uration, including semantics issues that arise in configuration transitions that may
cause application failures. Based on the reconfiguration semantics, we study the
online resource reconfigurability problem under the RRP model where the avail-
ability factors of resource partitions may be reconfigured at run time. We formalize
and solve the Dynamic Partition Reconfiguration (DPR) problem for uniform envi-
ronment where the minimal intervals assigned to each task for execution on each
resource are the same. Extensive experiments have been conducted to evaluate the
performance of the proposed approaches in different scenarios. We also present a
case study using the autonomous F1/10 model car; the controller of the F1/10 car
requires resource adaptation to satisfy the computing needs of its PID controller
and vision system under different operating conditions. Our implementation dem-
onstrates the effectiveness and benefit of online resource partition reconfiguration
using the proposed approach in a real-world cyber-physical system.

Keywords Regularity-based resource partition (RRP) - Online reconfiguration -
Open system environment

P4 Wei-Ju Chen
albertwj@cs.utexas.edu

Extended author information available on the last page of the article

@ Springer


http://orcid.org/0000-0001-5978-9235
http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-021-09364-5&domain=pdf

Real-Time Systems (2021) 57:302-345 303

1 Introduction

A cyber-physical system (CPS) may consist of multiple applications that share
resources from the same resource pool. In an open system environment (Deng and
Liu 1997; Herterich et al. 2015), there is no global scheduler that has full knowl-
edge of the real-time performance requirements of each individual application. Each
application tenders a request and is allocated a fraction of the shared resource to
meet its own need. It is up to the application-level scheduler to schedule the tasks in
each application to meet the task-level timing constraints.

The Regularity-based Resource Partition (RRP) model is an effective strategy to
allocate resource in such environment. The RRP model is an abstraction of a compo-
nent-based hierarchical scheduling system where each component is an application
providing the functionality that is required by a CPS with real-time performance
constraints (Deng and Liu 1997; Feng 2004; Boudjadar et al. 2018; Li and Cheng
2017). For example, an autonomous car may have an application for keeping the car
in a traffic lane and another application for detecting obstacles ahead. A component/
application may consist of several sub-components (sub-tasks). A parent component
distributes its share of resource to its sub-components and each of which in turn
distributes it to its sub-components in a hierarchical fashion. Figure 1 gives an over-
view of the hierarchical resource scheduling model by taking the CPU resource as
an example. In this example, the CPU resource is distributed to N resource interfaces
and each resource interface is utilized by an application. Given a resource interface,
each application distributes its resource share to its task group according to self-
defined policies.

In past work on hierarchical scheduling systems, there is another popular
approach to characterize the resource usage interface of each component besides our
RRP model: the Periodic Resource Model (PRM) (Shin and Lee 2003) or its vari-
ant the Explicit Deadline Periodic (EDP) model (Easwaran et al. 2007). The PRM
model characterizes the resource interface using a per-period resource budget and an
execution period parameter; while the EDP model further introduces a relative dead-
line parameter. The EDP resource interface defines a bandwidth server such that the
server supplies the required amount of resource according to the budget in every
period within the relative deadline. Our RRP model (Feng 2004; Chen et al. 2017,
Li and Cheng 2017) characterizes the resource interface by two parameters: an

CPU
- \Resource-Level Scheduler
Resource Interface 1 Resource Interface N
I I
Application 1 Application N
N\l T~ " \\ Task-Level Scheduler
Task1l Task2 Task3 Task1 Task2

Fig. 1 Overview of the hierarchical scheduling model by taking the CPU resource as an example

@ Springer



304 Real-Time Systems (2021) 57:302-345

A ——- A —-

_HEEEE HgE | = N

[l L
012345678 012345678 0123475
(a) EDP (b) RRP ()

Fig.2 a and b two possible schedules for a resource interface with a bandwidth of 1 under the EDP and
RRP models, respectively. ¢ The ideal resource supply from the application’s point of view with a band-
width assignment of i of the resource

availability factor and a supply regularity. The availability factor defines the band-
width of the resource supply and the supply regularity defines the maximum supply
deviation (or supply jitter) from the ideal supply bandwidth.

The main difference between the RRP and PRM/EDP models is illustrated in
Fig. 2 which shows the possible schedules of a resource allocation with a bandwidth
assignment of 1/4 of the resource. In the EDP model, there is an interval of length
5 from time 1 to 6 where the resource supply is zero. In contrast, the length of such
a zero-supply interval can be limited by an interface which explicitly specifies the
allowable resource supply jitter in the RRP model. Ideally, the resource should be
supplied uniformly as if it is dedicated to the application, but at a slower rate (i)
as depicted in Fig. 2c. However, the resource is allocated in units of some integer
time intervals. The resource interface under the RRP model approximates the ideal
resource supply by specifying the supply jitter. Supplying resource according to the
desired fraction of resource allows that changes made to the task group can be more
easily accommodated by the application within its allocated resource partition. This
decreases the chance that the resource interface needs to be altered in response to
the change of task group. For example, a set of periodic tasks with total utilization
U can be independently scheduled on a regular partition with availability factor a by
an EDF (Earliest Deadline First Liu and Layland (1973)) scheduler if a > U Feng
(2004). In fact, the above mentioned periodic task scheduling problem on a logical
resource can be transformed to the periodic task scheduling problem on a dedicated
single resource (Li and Cheng 2015). Classic schedulers, such as EDF, DM (Dead-
line Monotonic (Liu and Layland 1973)) and FIFO (First In First Out) scheduler, can
be reused. However, the jitter requirements make the designs of scheduling algo-
rithms under the RRP model more complex than those under the EDP model.

Although the RRP resource interface can be used to mask the resource require-
ment changes within a partition, the reconfiguration among the partitions may still
need to be performed at run time. To illustrate the online partition reconfiguration
and its potential problem, consider an autonomous car control system which operates
in two operational contexts: “Straight Ahead” and “Turn Corner”. In the Straight
Ahead context, the car runs straight along a corridor toward a corner while keeping
itself in the middle of the corridor. In the Turn Corner context, the car makes a turn
around the corner it has detected. The computation requirements of the CPU are

@ Springer



Real-Time Systems (2021) 57:302-345 305

different in the two contexts.! If the resource allocation changes abruptly from one
context to the next, then instability may occur that results in the car crashing into the
side of the corridor. Any resource interface model scheduled by a dynamic or static
scheduler may lead to such problem if the performance semantics of the resource
reconfiguration is not considered.

The performance semantics of a resource reconfiguration specify what tim-
ing constraints can or cannot be missed for the time intervals overlapping with
the time of the resource reconfiguration. Different applications may have different
performance semantics during the resource reconfiguration. One naive choice is to
ignore deadline misses during the resource reconfiguration by simply switching to
the new schedule upon the time of the reconfiguration request. Our results with the
car control system experiments show that this may lead to system failure, e.g., car
crashing. A better way is to specify certain invariant that must be maintained dur-
ing the course of the resource reconfiguration such as defining and guaranteeing the
resource supply during the reconfiguration.

The real-time performance guarantee of the partitions during such reconfigu-
ration is, however, not well studied in the literature. In particular, there may exist
temporary utilization overload or performance degradation during the reconfigu-
ration. Other work has investigated the dynamic reconfiguration problem (Evripi-
dou and Burns 2016; Phan et al. 2010; Li et al. 2018; Nikolov et al. 2017). Most of
those work study the task scheduling problem focusing on how to schedule a set of
tasks that may transit to other modes and the real-time requirement of each task in
each mode is given. In this paper, we study the problem of the partition scheduling
problem where the problem is to schedule a set of partitions that may be reconfig-
ured and there may be temporary performance degradation or performance guar-
antee violation depending on the performance semantics of the reconfiguration. To
the best of our knowledge there is no previous work that (1) addresses the precise
semantics of the resource reconfiguration that may cause system instability issues
in the open system environment, and (2) considers the partition scheduling problem
where performance semantics of resource reconfiguration is considered and tempo-
rary performance degradation may happen during the reconfiguration.

More specifically, in this paper we study the Dynamic Partition Reconfiguration
(DPR) problem under the RRP model in uniform environment where the size of each
resource slice is the same among the resources. We first discuss the key challenges
to address this problem and then propose the performance semantics for resource
partitions during the reconfiguration by introducing the concept of reconfiguration
supply regularity. We then formalize the DPR problem and present a three-stage
algorithm to construct both the transition schedule during the reconfiguration and
the cyclic schedule after the reconfiguration. Extensive simulation-based experi-
ments have been conducted to evaluate the performance of the proposed approach
in different scenarios. A case study is also presented on a real-life autonomous car
control system which requires dynamic resource reconfiguration. This application

! The application demo can be found in the following link: http://www.youtube.com/watch?v=8b-
MMP3-cug.

@ Springer


http://www.youtube.com/watch?v=8b-MMP3-cug
http://www.youtube.com/watch?v=8b-MMP3-cug

306 Real-Time Systems (2021) 57:302-345

demonstrates the necessity for online resource reconfigurability to prevent system
instability and shows the effectiveness of our approach.

In the rest of this paper, Sect. 2 summarizes the related work, and Sect. 3 reviews
the RRP model. Section 4 describes the main challenge of online resource parti-
tion reconfiguration, defines the semantics of performance guarantee during recon-
figuration and gives the precise definition of the DPR problem. The detail of our
three-stage algorithm for solving the DPR problem is provided in Sect. 4. The per-
formance evaluation and a real-life case study are presented in Sect. 5. Section 6
concludes this work and discusses the future work.

2 Related work

A hierarchical real-time system with timing constraints integrates a group of appli-
cations with multiple tasks on the same resource pool (Deng and Liu 1997; Feng
2004; Shin and Lee 2003). Most systems use two-level schedulers to achieve this
(Deng and Liu 1997; Evripidou and Burns 2016; Biondi et al. 2018; Evripidou and
Burns 2016; Li et al. 2018). One scheduler is used for scheduling applications such
as assigning each application with a virtual machine. Virtual machines are sched-
uled by a resource scheduler and each application will have its own scheduler for
scheduling the tasks in the virtual machine.

The concept of regularity was first introduced by Shirero et al. (1999) and was
then extended to the regularity-based resource partition model by Mok and Alex
(2001). Mok and Feng introduced the irregular partition and presented the AAF-
based scheduling algorithm to schedule regularity-based resource partition (Mok
and Alex 2001; Feng 2004). Li and Cheng then extended the AAF-based scheduling
algorithm to uniform multi-resource environment and developed an optimized par-
titioning algorithm (Li and Cheng 2017). Besides the RRP model, there are plenty
of studies on hierarchical scheduling which characterize resource interfaces using
different models (Feng 2004; Shin and Lee 2003; Easwaran et al. 2007; Boudjadar
et al. 2018). The most popular model among them is the EDP model which we dis-
cussed and compared with the RRP model in Sect. 1. In this paper, we shall focus on
the dynamic partition reconfiguration problem under the RRP model.

There are several related research areas on scheduling tasks with varying timing
requirements. Burns and Davis have a survey on mixed-criticality systems (Burns
and Davis 2018), in which the task period, worst-case execution time and deadline
depend on the system state/criticality. In multi-mode systems (de Niz and Phan
2014; Evripidou and Burns 2016; Neukirchner et al. 2013; Gu and Easwaran 2016;
Hu et al. 2016; Schlatow et al. 2017; Hu et al. 2018; Davis et al. 2018), systems with
mode changes require the design of new protocols such as (Real and Crespo 2004;
Burns 2014; Evripidou and Burns 2016; Lee et al. 2017; Chen and Phan 2018; Xu
and Burns 2019) to ensure that the mode switch is performed in a timely and safe
manner in response to both internally or externally generated events. The key chal-
lenge in these protocol designs is how to ensure the schedulability of the system
not only in each mode but also during the mode transition. The DPR problem to be
addressed in this paper faces the similar challenge where applications may suffer

@ Springer



Real-Time Systems (2021) 57:302-345 307

from system instability because of the undefined performance semantics during the
resource reconfiguration. In this paper, we focus on online resource interface recon-
figuration instead of designing a new task-level mode change protocol. More spe-
cifically, a resource partition is characterized by its resource availability factor and
its supply regularity, whereas a task is often specified by its execution time, period
and deadline. The semantics of performance guarantee during the resource partition
reconfiguration is also different from that of the mode switch protocols. Thus, exist-
ing task-level mode switch protocols cannot be directly applied to resource interface
reconfiguration under the RRP model. The resource interface to be studied in this
paper is assigned to a group of tasks which may change their mode at run time.

In addition, there was some research work on the multi-mode resource interface
(Evripidou and Burns 2016; Phan et al. 2010; Li et al. 2018; Nikolov et al. 2017)
where the resource interface may change for single resource environment. For
instance, Evripidou and Burns (2016) used a two-level scheduler or a hyper-visor
to handle the criticality mode change. Phan et al. (2010) proposed a compositional
analysis of the multi-mode resource interface. Li et al. (2018) used virtual machine
(VM) to support multi-mode virtualization where the parameters of the VM change
with minimum transition latency. For multi-resource environment, some research-
ers used end-to-end reservation approaches to achieving performance isolation.
For example, Buttazzo et al. (2010, 2011) proposed a method for allocating a set of
parallel real-time tasks with time and precedence constraints on different multicore
platforms by abstracting the computing power available into interface specifications.

Although the literature is rich, none of those work studies (1) the precise seman-
tics of the resource reconfiguration that may cause system instability issues in the
open system environment; and (2) the partition scheduling problem where the per-
formance semantics of resource reconfiguration is considered and temporary perfor-
mance degradation may happen during the reconfiguration.

3 RRP model

This section revisits the regularity-based resource partition (RRP) model which is
the foundation of the dynamic partition reconfiguration problem to be elaborated
in Sect. 4. We first define the time systems used in this paper and then review the
important concepts in the RRP model in single-resource environment. These con-
cepts were mostly presented in Mok and Alex (2001), Feng (2004), Chen et al.
(2017).

3.1 Time systems

In the RRP model, we have three time systems as illustrated in Fig. 3. The first one
is the wall clock time defined as the physical time 7, which is the same and synchro-
nized among all physical resources as illustrated in Fig. 3a. For the physical resource
IT, a minimum physical time interval (2 in the example shown in Fig. 3) that is non-
preemptive and allocated to an application exclusively is defined as a resource slice.

@ Springer



308 Real-Time Systems (2021) 57:302-345

|:| : Resource Slices

resource slice size

== . : Partition P’s Slices

HEEEEE NN
0 2 4 6 8 101271416 18 20
S1 S92 S3 S3+1-p

J

0123456 78 910

Physical Time 7

- =3 =

(C)O T 12 23 4455 6 Partition Resource Time ¢/

Fig. 3 a Physical resource I7 is allocated in units of resource slices and a resource partition P is a set
of allocated resource slices. b and ¢ Show the two time systems for application utilizing the physical
resource time and the partition resource time, respectively

The physical resource is allocated to the application(s) in units of resource slices as
illustrated in Fig. 3b (Feng 2004), where a resource partition P is a set of resource
slices. The second time system, physical resource time, is defined as follows.

Definition 3.1 The physical resource time ¢ of a physical resource IT is a function
of the physical time 7 such that t = é where Q is the resource slice size of I1.

In addition to the physical time and physical resource time, a resource partition
also has a logical clock defined as the partition resource time which denotes the
amount of resource slices this resource partition has offered by that time from physi-
cal time zero as illustrated in Fig. 3c.

Definition 3.2 The partition resource time ¢’ of a resource partition P is defined as
the amount of resource slices having been offered by that time from physical time
Zero.

t and ¢ represent the physical resource time and partition resource time, respec-
tively. If ¢ or ¢’ is a non-negative integer, this indicates that it is at the boundary of a
resource slice in its corresponding time system; if z or ¢ is a non-integer value, this
indicates that it is within a resource slice in its corresponding time system. As illus-
trated in Fig. 3, non-negative integer #(¢') denotes a time at the boundaries of resource
slices. In this paper, the domain of physical time is assumed to have only non-nega-
tive integers and each resource slice starts and ends at physical time integral bounda-
ries. The scheduling decisions made by the resource-level scheduler are always at
the integral domain of physical/partition resource time even though the resource
slice size may be different for different physical resources. We always refer the time
to be physical resource time unless we specify the time to be others in this paper.

@ Springer



Real-Time Systems (2021) 57:302-345 309

Moreover, we also assume that the resource slices have an equal size for the same
physical resource. If all physical resources to be scheduled have the same resource
slice size, the resource environment is uniform. Otherwise, the resource environment
is non-uniform. In this paper, we mainly focus on addressing the dynamic partition
reconfiguration problem in uniform environment. The extension of the proposed
approaches to the non-uniform environment will be briefly discussed in Sect. 6.

3.2 Regularity-based resource partition in uniform environment

We now give the formal definition of a regularity-based resource partition in the
uniform environment.

Definition 3.3 A resource partition P on a physical resource I7 is a tuple (S, p),
where S = {s,5,,...,5, : 0 <5, <s, <+ <5, <p}is aset of n time points that
denote the start time of the resource slices (called the offsets) allocated to the parti-
tion, and p is the partition period with the following semantics: the physical resource
11 is available to the application tasks to which the partition P is allocated only dur-
ing the time intervals [s, +x-p, s, + 1 +x-p),x €N, 1 <k <n.

Definition 3.4 The supply function S(¢) of resource partition P is the number of
allocated resource slices in interval [0, 7).

S(r) represents the amount of resource supply for resource partition P from time 0
to t. For example in Fig. 3, the resource partition is P = ({s; = 0,5, = 2,5, = 4},5)
and the supply function of P has S(1) = 1,5(2) = 1,5) = 2,5(4) = 2, and so on.

Based on the definition of the supply function, we can also redefine the partition
resource time as follows.

Definition 3.5 The partition resource time ¢’ of a resource partition P is a func-
tion of the physical resource time ¢ of the underlying physical resource such that
' =8 t]) + (S([t]) = S(|z])) - (z — [¢]) where S(?) is the supply function of P.

The RRP model characterizes the resource supply in two dimensions: (1) the
resource supply rate and (2) the deviation of the resource supply from the ideal
resource supply which allocates the resource evenly to the application over any time
interval (zero jitter). The resource supply rate is defined as the availability factor a,
and we introduce the concept of regularity to capture the jitter in the resource supply.

Definition 3.6 The availability factor a of a resource partition P = (S, p) is defined

asa = 'pﬂ where |S|is the number of elements in S.

Definition 3.7 The instant regularity /(z) for a resource partition P at time ¢ is
defined as I(t) = S(¢t) — «a - 1.

@ Springer



310 Real-Time Systems (2021) 57:302-345

S(2) S(#) - S(1)

41 41

3t 6 1 3t 1
I .4 i - _.2

ORI aal SRR
1"1’:71 3 3 3 3 > ¢ —l’T—T 1 1 1 ':t

012345678 1234567809
(a) Instant Regularity (b) Supply Deviation

Fig.4 Tllustration of the concepts of availability, instant regularity and supply regularity in RRP model

Definition 3.8 Let a, b, k be non-negative integers. The supply regularity R of
resource partition P is defined as the smallest k such that |I(b) — I(a)| < k,Vb > a.

Figure 4a illustrates the ideal and actual resource supply of a resource partition P
which is defined as P = ({s1 =1}, 6). P has availability of i; and the supply func-
tion of P has S(0)=0, S(1)=1,82)=1,S3) =154 =1 S5)=1, S6)=1,
S(7) = 2, and so on. Ideally, the resource supply should be uniformly distributed as
the dash line which is equal to the availability factor times the duration as 1.t How-
ever, resource can only be allocated to an application exclusively in units of resource
slices. For this reason, the actual resource supply will be a staircase function S(¢) as
shown using the solid line. The instant regularity at time ¢ quantifies the gap between
the ideal supply and actual supply at time ¢ such as I(1) and 1(6). Figure 4b illustrates
the actual resource supply for time interval [1, ¢) as S(¢) — S(1). I(r) — I(1) is the sup-
ply deviation in this time interval. For example, /(6) — I(1) is the supply deviation in
time interval [1, 6). The supply regularity defines the maximum supply deviation for
all time intervals.

Definition 3.9 A regular partition is a resource partition with supply regularity of 1
and an irregular partition is a resource partition with supply regularity larger than 1.

As an example shown in Fig. 3, the availability factor a of the resource partition
P is 2. The instant regularity /(7) has I(1) = §,1(2) = —§,1(3) = g and so on. The
supply regularity R is 1 and thus P is a regular partition.

3.3 RRP scheduling algorithms

Several algorithms have been developed to construct the schedule of regular and
irregular resource partitions based on specified availability factors and supply regu-
larities. For uniform single-resource environment, the Adjusted Availability Factor
(AAF) algorithm allocates resource partitions with availability factors of power of
% to each application (Feng 2004). By limiting the choice of availability factors, the

@ Springer



Real-Time Systems (2021) 57:302-345 311

schedule can be easily constructed if the sum of the availability factors is less than 1.
This however introduces some resource utilization overhead. Under the RRP model,
resources are provisioned with the availability factor restricted to be power of % and
the scheduler is not work-conserving. The scheduler will construct resource parti-
tion with the closest fraction of resource in power of % and the unused resource in
that partition will not be distributed to other partitions. For example, an application
requesting a fraction of 2 resource will be allocated with % fraction of the resource.
Those extra allocated resource cannot be utilized by other applications. For the
uniform multi-resource environment, the use of a combination of Magic7, PFair
algorithms (Li and Cheng 2012; Baruah et al. 1996) and various forms of avail-
ability factors were proposed to construct the runtime schedule and greatly improve
the resource utilization overhead (Li and Cheng 2012, 2017). For the non-uniform
multi-resource environment, the Acyclic Regular Composite Resource Partition
Scheduling algorithm was proposed to schedule acyclic regular composite resource
partitions where a composite resource partition is a collection of multiple resource
partitions (Chen et al. 2017). All these algorithms were designed for static resource
partition construction. Moreover, an RRP scheduling algorithm is generally per-
formed based on physical resource time ¢ but it can be based on partition resource
time ¢ with some modification to achieve hierarchical re-partitioning (Chen et al.
2017).

4 Resource reconfigurability in RRP model

Different from the aforementioned work on static resource partitioning under the
RRP model, this paper studies the resource partition reconfigurability problem in
dynamic environment. In Sect. 4.1, we first present the main challenges of maintain-
ing regularity-based resource partition in the run time. We then define the perfor-
mance semantics for online resource partition reconfiguration and present the formal
definition of the dynamic partition reconfiguration (DPR) problem in Sect. 4.2. A
novel three-stage algorithm for constructing the resource partitions during and after
the reconfiguration is presented in Sect. 4.3 for uniform environment and its proper-
ties including the correctness of the algorithm are discussed in Sect. 4.4.

4.1 Challenges

In the RRP model, there may exist multiple applications running on the physical
resources and each application may request to reconfigure its resource partitions on
demand. In the uniform environment, an application can issue a Reconfiguration
Request of Resource Partition (R*P) to request new resource partitions or reconfig-
ure the existing ones. As illustrated in Fig. 5, the application can request to reconfig-
ure its resource supply curve by issuing an R’P to change the availability factor from
i to 1 at time #,. The system then enters the Resource Partition Transition (RPT)
stage where resource partitions are being reconfigured and performance degradation
may happen during this stage as shown in Fig. 5. After the RPT stage is over at time

@ Springer



312 Real-Time Systems (2021) 57:302-345

Fig.5 The dotted line illustrates S( t)
that the requested availability

factor changes from 1 to 1 at the A
time of R®P and the partition has
an availability factor of 1 after
the RPT stage

O N = O\

\A /
™~

/t'l v ;

t
R3P RPT ~ After

t,, the reconfigured resource partitions will supply resource to the applications in
accordance with the new availability factor and new supply regularity by approxi-
mating the new ideal supply curve in a staircase function as depicted in Fig. 5.
There are multiple challenges to handle R®P appropriately. First of all, during the
RPT stage, there could exist a temporary overload or schedule conflict such that the
system cannot reconfigure the availability factors of some resource partitions. This
may violate the performance guarantee of some resource partitions and result in unex-
pected application failures. To address this issue, a formal definition of the perfor-
mance semantics during the resource partition reconfiguration is needed. Secondly,
even if a temporary overload does not happen during the reconfiguration, resource pro-
visioning may suffer a serious performance degradation if we naively reschedule the
resource without considering the current resource supply state of individual resource
partitions. This unexpected performance degradation may cause an application utiliz-
ing this partition to miss a deadline during the transition if the temporary resource sup-
ply deviation is larger than the requested regularity. An example is shown in Fig. 6a
where a new regular resource partition P; requests to join the system at time 5. P,
should be deemed as a regular partition starting at time 5. However, this request may
cause a performance violation to either of the other two resource partitions. To fulfill
the performance requirement of P;, there are only two options to schedule P;’s parti-
tions, as depicted in Fig. 6b, c, respectively. Unfortunately, P; will conflict with P, in
(b) and conflict with P, in (c). In these two cases, even though the total utilization does
not exceed 1, the system still cannot schedule the three resource partitions owing to the
conflict. One can naively reschedule the resource to accommodate this change such as
using the AAF or Magic7 algorithm, as described in Sect. 3.3 to compute a completely
new schedule and switch to this schedule at time 5. However, naively rescheduling
resource may cause some resource partitions to suffer serious performance degrada-
tion and the violation of supply regularity. Figure 6d illustrates such case, where a new
schedule computed by using AAF algorithm is adopted and P, will suffer a serious

@ Springer



Real-Time Systems (2021) 57:302-345 313

R3P
P1(041:%)¢. (©)
Paer = 4): [ @
(©)
P3(az =1):
3l = 5 . )
(a) | [l L1
0123456 7 8 9101112

Fig.6 There is an R3P at time 5 requesting to add a new resource partition Pj into the system. a Shows
the schedule without R*P. b and ¢ Show that the R*P will cause Pj to conflict with either P, or P,,
respectively. d Shows a naive rescheduling approach that results in a serious performance degradation in
P, during time 2 to 8. e Shows a schedule such that P, P, and P; do not suffer performance degradation
and they are all reconfiguration regular

starvation interval during time 2 to 8, while a carefully designed schedule will be able
to minimize the performance degradation, as shown in Fig. 6e.

As a summary, the challenges of handling reconfiguration requests of resource
partitions in uniform environment include: (1) how to define the performance
semantics during the transition among old/new and RPT stages; and (2) how to con-
struct the schedule during and after the transition to satisfy the performance require-
ment of each reconfiguration request.

4.2 Dynamic partition reconfiguration problem

To address the aforementioned challenges, we now extend the RRP model to take
the online partition reconfiguration into consideration and define the semantics of
performance guarantee during the reconfiguration. The formal definition of the
dynamic partition reconfiguration problem will be presented at the end of this sub-
section. The key ideas of the proposed algorithms will be presented in Sect. 4.3.
Recall that a resource partition P is a tuple (S, p) which describes its cyclic sched-
ule and its period. In each stage, we can describe the schedule of the resource par-
tition using this tuple with the time zero counting from the start of the stage. We
thus describe the resource partition P at different stages using different symbols. We
denote the resource partition in the old stage as P° (before reconfiguration), in the
transition stage as P’ (during RPT stage) and in the new stage as P" (after reconfigu-
ration). We now formally define the reconfiguration request of resource partition.

Definition 4.1 Reconfiguration Request of Resource Partition (R°P) is defined
as a tuple 4 = {P", A,R", T} where P" is the target set of resource partitions after
the request; each resource partition P! € P" has an associated availability factor of
a € A and P; will have reconfiguration supply regularity (see Definition 4.3) of
R? € R'. T is the maximum time allowed for the reconfiguration to complete.

@ Springer



314 Real-Time Systems (2021) 57:302-345

While P? and P" represent the partition before and after the reconfiguration, P
represents the partition over the entire time interval including those time inter-
vals across the reconfiguration. The resource supply after the reconfiguration is
guaranteed by enforcing the availability factor and regularity of P!. The perfor-
mance semantic for the reconfiguration is achieved by enforcing the resource sup-
ply and the supply deviation of P for any time interval including the transition
stage, which will be defined later. We now classify a resource partition P during a
reconfiguration into the following four categories.

Inserted Partition P° has an availability factor of 0 and P" has an availability fac-
tor larger than 0. The RP requests to add this resource partition P into the system.

Deleted Partition P" has an availability factor of 0 and P° has an availability
factor larger than 0. The R?P requests to remove this resource partition P from the
system.

Unchanged Partition P° and P" have the same availability factor (larger than
0) and the same supply regularity.

Reconfigured Partition P° and P" have different availability factors and/or dif-
ferent supply regularity (all larger than 0).

In this paper, the performance semantic defines the maximum difference
between the actual resource supply and the desired supply even during the recon-
figuration. We use reconfiguration supply regularity to formally define such per-
formance semantics. We now first extend the definition of instant regularity to
accommodate the change of availability factor. The desired fraction of resource is
a? before the reconfiguration and a” after the reconfiguration. The instant regular-
ity is thus defined as follows.

Definition 4.2 The instant regularity /(r) of a resource partition P at time ¢ > ¢, is
defined as I() = S(t) — (a° - t, + a"(¢ — t,)) where ¢, is the time of a R*P; a° and o"
are the availability factors of the resource partition P before and after the request,
respectively.

As an example shown in Fig. 7a, I(1) indicates that there is resource over sup-
ply at time 1 while /(8) indicates that there is resource under supply at time 8.
The ideal amount of resource supply which is }1 in the time interval [0, 4) and 1
after time 4. The supply function S(r) satisfies that S(1) = 1 and S(8) = 4. Thus,
based on definition 4.2, the instant regularity at time 1 and 8 are /(1) = % and
I(8) = —1, respectively. Also, as shown in Fig. 7b S(b) — S(a) denotes the actual
resource supply during the time interval [b, a) and the dotted line illustrates the
requested resource supply for time interval [1, #). I(8) — I(1) indicates the supply
deviation for time interval [1, 8).

Based on the extended definition of instant regularity, we now define the
reconfiguration supply regularity as follows.

Definition 4.3 Let a, b, k be non-negative integers. The reconfiguration supply

regularity of resource partition P is defined as R” which equals to the smallest k > 1
such that I(b) — I(a) > —k,Vb > a.

@ Springer



Real-Time Systems (2021) 57:302-345 315

S(®) ~S(n) - 8(1)

4} 7[RI .

ol sl 1(8) - I(1)
2F 2t

1_1§1) nl

012345678 123456789
(a) Instant Regularity (b) Supply Deviation

Fig.7 Dotted line shows the ideal amount of resource supply which is Lin 10, 4) and 1 after time 4.
I(1) = % and /(8) = —1in a illustrate the instant regularity at time 1 and 8, respectively. /(f) —I(1) in b
illustrates the deviation of resource supply for time interval [1, )

b
S0 @) S0 (b)

ON = O
)

vy
~

R3P RPT After  R°P RPT After

Fig. 8 The dotted line illustrates that the requested availability factor changes from 1401 and from 1 to 1
in a, b, respectively, at the time of R*P. The arrow shows the supply deviation during the reconfiguration
where there is resource supply shortfall in (a) and resource supply surplus in (b), respectively

The reconfiguration supply regularity only defines the maximum supply shortfall
while the normal supply regularity restricts both the maximum supply shortfall and
supply surplus. This relaxation provides more flexibility when resolving the sched-
ule conflicts during the reconfiguration while still restricting the maximum resource
supply shortfall. Based on this definition, the semantics of the performance guar-
antee for a resource partition during the reconfiguration can be illustrated in Fig. 8.
In Fig. 8a, b, the resource supply deviation before/after the RPT is illustrated as the
gap between the actual supply and the ideal supply. It is bounded by the normal sup-
ply regularity. On the other hand, the resource supply deviation during the RPT is
bounded by its reconfiguration regularity R". In Fig. 8a, the resource supply suffers
a performance degradation for any time interval overlapped with the RPT and the
supply shortfall shall be bounded by R". On the other hand, the resource supply has

@ Springer



316 Real-Time Systems (2021) 57:302-345

a supply surplus for any time interval overlapped with the RPT in Fig. 8b. A recon-
figuration regular partition P supplies the resource no less than the requested frac-
tion of resource. To illustrate the concept, we give a numerical example in Fig. 6,
where we construct two partition schedules as shown in Fig. 6d, e, respectively. In
Fig. 6d, the maximum supply shortfall happens in time interval [2, 8) for P, which is
L(t) — I,(t) = S,(t) — S,(t,) —oy(t) — 1) = —% < —1 and this extra supply short-
fall makes P, not reconfiguration regular. In contrast, in Fig. 6e, P, has supply sur-
plus while the schedule of P, is unchanged. This makes P;, P, and P; all reconfigu-
ration regular even if there originally exists a schedule conflict between P; and one
of P, or P,.

With the above model extension, we are now ready to formalize the dynamic par-
tition reconfiguration problem. We first make the following assumptions.

— No concurrent reconfiguration request is allowed in the system.

— For each resource partition P, P° and P" are both regular but P can be reconfigu-
ration irregular, i.e., the reconfiguration regularity of P can be larger than one.

— The availability factor of P is restricted to be the power of %

Problem 4.1 Dynamic Partition Reconfiguration (DPR): Given a reconfigura-
tion request 4 = {P", A,R",T} and the resource partitions before the request
{P}|3P! € P"}, compute the schedules of P; and P! for each resource partition
{P;| 3P} € P} such that the following three conditions are satisfied:

C-1: P! is a regular partition with availability factor of a;
C-2: the reconfiguration regularity of P; is less than R;
C-3: the length of the RPT stage is no longer than 7.

By satisfying condition C-1, the resource partition P; successfully reconfigures its
capability to supply resource according to the reconfigured availability factor and
supply regularity; condition C-2 bounds the maximum performance degradation of
individual partitions during the reconfiguration by specifying the reconfiguration
regularity; condition C-3 specifies the maximum length of the reconfiguration tran-
sition during which the system may suffer performance degradation.

4.3 Three-stage DPR algorithm

In this section, we present the three-stage algorithm to solve the DPR problem. In
uniform environment, the reconfiguration of resource partitions on different physical
resources can be performed independently as long as the physical resource time of
every resource is synchronized. This is because an application is assumed to request
resource and finish execution at resource slice boundaries. The key challenge to
solve this problem is to ensure that each resource partition is reconfigured in a way
that it can supply enough resources (defined by its availability factor, supply regu-
larity and reconfiguration regularity) both during and after the reconfiguration. For

@ Springer



Real-Time Systems (2021) 57:302-345 317

70 riry eo so sy e ef

{ il %ii
0‘123%56789101112

— p=4 i p=4
RPT completion

Fig.9 An example of the task scheduling system: its first instance starts at time r, with deadline
e,. Given different completion times, the starting time and deadline of the next instance is computed
accordingly. The schedule of the task is cyclic with period of p after the RPT stage. Please note that the
resource partition may have resource slice offset s, or s(’) after the RPT stage

this purpose, every time a resource slice is allocated to a resource partition, the next
resource slice to be allocated to this resource partition must satisfy the performance
requirements as specified by the conditions C-1 and C-2, which together impose a
deadline for allocating the next resource slice to the resource partition. The problem
of scheduling resource partitions is akin to scheduling a set of tasks. where each
partition can be considered as a task and the followings need to be satisfied: (1) a
task instance is immediately released upon the completion of its previous instance,
(2) the deadline of the new instance depends on the availability factors and maxi-
mum supply shortfall (to be defined later) of its associated partition, and (3) each
task follows a cyclic schedule after the RPT stage. Figure 9 depicts an example of
such task scheduling system. To simplify the model, we assume that the task has a
fixed relative deadline as 5 and a period of 4 after the RPT stage. The first instance
has release time r, = 0 and relative deadline e, = 5. If this instance is scheduled
at time 2, it will release the second instance with release time r; = 3 and deadline
e’] =3+ 5 = 8. This instance can also be scheduled at time 3. In this case, it will
be released at time | = 4 with its deadline ¢/’ = 4 + 5 = 9. After the RPT stage is
over, the task should be scheduled by following a cyclic schedule with a period of
4 as illustrated in Fig. 9. Notice that each scheduled task instance will map to the
resource slice offset of the resource partition. The resource partition in Fig. 9 may
have resource slice offset s, or s;, after the reconfiguration.

We use T to denote the state of such partition scheduling system at time ¢,
which includes the starting time r;, the maximum supply shortfall d; and the dead-
line e;. The maximum supply shortfall d; is defined as follows:

Definition 4.4 The maximum supply shortfall of a resource partition P at time 7 is
defined as

d(t) = min(I(t) — 1()) = (1) — max(I(b)).

@ Springer



318 Real-Time Systems (2021) 57:302-345

As illustrated in Fig. 7b, I(f) — I(b) indicates the supply deviation of partition P
in time interval [b, f), and d(¢) defines the maximum supply shortfall for any time
interval [b, 1), b < t. For the starting time, it will be the completion time of the last
scheduled slice as if a new instance of task is released upon the completion of the
last task as illustrated in Fig. 9. The deadline is a function of the maximum supply
shortfall.

Algorithm 1: Algorithm Overview for the DPR Problem

Input: The R3P ) and the R3P requesting time t,.
Output: Transition schedule Sf and cyclic schedule S7* for all i s.t. P[* € P™.
Reject if no feasible schedule.
TO = Initialization(\,t,) // Stage-1
for t, < 0 to T do
({8} | vi}, T*) = TransitionSchedule(7°,t,) // Stage-2
if Tt # Null then
| {8 |Vi} = CyclicSchedule(T*) // Stage-3
end
if {8} | Vi} # Null then
| return ({S!|Vi},{S!|Vi})
end
end
return NULL

© 0 N o n A W

Roe
= O

To solve the DPR problem, we need to compute the transition schedule for the
RPT stage and the cyclic schedules for all partitions after the reconfiguration based
on above mentioned partition scheduling system. We propose a three-stage algo-
rithm to break down the DPR problem into three sub-problems. An overview of the
algorithm is presented in Algorithm 1. Stage-1 of the algorithm initialize the state
of the partition system (Algorithm 2). In Stage-2, the algorithm searches for a fea-
sible solution with an RPT duration of 7, < T and constructs the transition schedule
for each P§ within that duration (Algorithm 3). Based on the state information of the
partition system at the end of the RPT stage, Stage-3 computes the cyclic sched-
ules for individual P! to meet their corresponding supply regularity and availability
factor requirements (Algorithm 4). The correctness of the algorithm is proved in
Theorem 4.3.

We now present the details of the proposed algorithm.

@ Springer



Real-Time Systems (2021) 57:302-345 319

Algorithm 2: Partition System Initialization

Input: The R®P X and the R3P requesting time t,
Output: 70, the state of the partition system at the time reconfiguration.

1 Procedure Initialization(\,t,)
2 forie {j| 3P € P"} do
3 di =0
4 if P; is a reconfigured or unchanged partition then
5 if ¢t < s? then
6 ‘ d; = —a;? e
7 else
8 t1 =t mod p;-’
9 if 1 < s then
10 ‘ t1 =11 +pf3
11 end
12 diza?(sf+17t1)
13 end
14 end
15 r; =05 e = [(RY +di)/al];
16 end
17 return 7°

4.3.1 Stage 1: partition system initialization

Algorithm 2 presents the algorithm details for initializing the state of the partition
system 7°. A key step in the algorithms is to compute the maximum supply shortfall
d; and the deadline e;. The following theorem shows how d; can be computed.

Theorem 4.1 Let P! be the resource partition representation of the resource parti-
tion P; before the reconfiguration request time t, and t, > s? where s? is the resource
slice offset of P}, the maximum supply shorifall of the resource partition P; at time t,,
dy(t,), can be computed as d;(t,) = (s} + 1 — t;) where

B { t, mod p¢ + p? if 1, mod p? < s
| =

t, mod p? ow.

Proof P! (before the reconﬁguranon) is assumed to be regular and has an availabil-
ity factor of the power of 1 it has a single schedule offset s? and will repeat with a
period of p?. Thus, we have St)=8St)+ ¢, —1)/ Py Further by the definition of
instant regularity (see Definition 3.7) and the fact that = a?, we have

1) =1(1)) 60

For the same reason, we have S(1) = S(s¢ + 1) + [(t — (s7 + 1))/p{],Vt > 57. Again
by the definition of instant regularity and the fact that 1% = a;, we have

I(s7+1+1) <I(s7+1) Vi eN )

@ Springer



320 Real-Time Systems (2021) 57:302-345

By the definition of the maximum supply shortfall, Egs. (1), (2) and the fact that
S(z)) =1, we have d,(r,) =1(t;) = I(s7 + 1) = a/(s{ + 1 — ;). This completes the
proof. O

Algorithm 2 initializes the maximum supply shortfall d; and deadline e; at the
reconfiguration request time ¢, of each resource partition P;. For Line 5-6, it is a
special case where the resource partition has not yet offered any resource so the sup-
ply shortfall is —a? - 7, — 0 where a? is the availability factor of P?. Note that s7 is
the only resource slice offset of P¢. For Line 7-12, it computes d(z,) for partition P;
according to Theorem 4.1. The starting time and deadline of the first instance of z; is
setasr; = 0ande; = [(R] +d;)/a’ ], respectively.

@ Springer



Real-Time Systems (2021) 57:302-345 321

4.3.2 Stage 2: transition schedule computation

Algorithm 3: Transition Schedule Computation

Input: The R3P )\, the time budget t; and 79, the state of the partition
scheduling system at the time of R3P
Output: Transition schedule {S! | Vi} and the state of the partition system at the
end of the RPT stage 7. Reject if no feasible schedule is found.

Procedure TransitionSchedule (779, )

1

2 for t; < 0 to tp do

3 | mit:] = 0 //initialize the data structure for schedules

4 end

5 Enqueue all partition Pit into a queue Q in the ascending order following (1)

deadline e; and (2) period p}*

6 while Q # 0 do
7 Dequeue P} from Q
8 = DS-EDF(Ti,ei,m,tb)
9 if | = NULL then
10 if e; < t, then
11 | return NULL // Deadline will miss
12 end
13 //no idle resource slice can be utilized, update the system state
14 ri =0
15 e; =e; —tp
16 else
17 Add [ to Sf
18 d; = UpdateShortfall(d;,l,r;)
19 r, =1+1
20 eiZI_(R;-r-‘rdi)/a?J-i-l-i-l
21 Enqueue Pf to Q
22 end
23 end

24 return ({S} | Vi}, T)
25 Procedure DS-EDF (r,e, m,tp)

26 if e > t, then

27 e=1p

28 end

29 for ty < e—1 tor do
30 if m[t¢] = 0 then
31 mlty] =1

32 return t;

33 end

34 end

35 return NULL
36 Procedure UpdateShortfall(d;,[,r;)
return min(0,d; + 1 — o (1 +1 —1;))

Given a partition system computed in Stage 1 and with a time budget #, to complete
the reconfiguration, this stage computes the transition schedule for P! by following
two heuristic principles: (1) we employ the deferrable scheduling (DS)-EDF algo-
rithm Han et al. (2012) where partitions are scheduled according to their earliest
deadlines but each partition is scheduled as late as possible to make room for other

@ Springer



322 Real-Time Systems (2021) 57:302-345

€1,1 = €21 =T1.2

1,1 =721 72,2 T1,3 72,3 €22 €12 €13 €23

1 1 - . Partition Py

- D . Partition P,

o 1 2 3 4 5 6 7 8 9 10
-

Idle Slots RPT completion: t, =6

Fig. 10 An example of the transition schedule computation

partitions during the RPT stage; and (2) if the deadline of a partition calculated
through the DS-EDF algorithm is larger than the time budget #,, the algorithm will
try to schedule it in an idle slice before #, so that its next deadline can be further
deferred when entering Stage 3. This will significantly increase the schedulibility of
the cyclic schedule construction in Stage 3. In the following, we first give an exam-
ple, and then present the algorithm details.

Figure 10 gives an example to illustrate the two heuristic principles to schedule
the two partitions with a reconfiguration length of 6. We use r;; and ¢;; to denote
the j-th starting time and relative deadline of partition P;, respectively. Each parti-
tion has a relative deadline of 4. At the beginning, the two partitions P, and P, have
starting time r;; = r,; = 0 and deadline ¢, ; = e, = 4. The algorithm schedules
partition with the earliest deadline (ties will be broken arbitrarily) and picks a lat-
est unassigned resource slice between the starting time and deadline of the parti-
tion to be scheduled by following principle (1). Hence, in this example, partition P,
is assigned a resource slice at time 3 first. The starting time and deadline of parti-
tion P; is then updated as r;, =4 and e, = 8, respectively. Next, partition P, is
picked to be scheduled because now it has the earliest deadline 4 and it is assigned
an unassigned resource slice at time 2. The starting time and deadline of partition P,
is updated to r,, = 3 and e, , = 7, respectively. In the next steps, the derived dead-
lines of all the partitions are larger than the time budget ¢, = 6. The algorithm then
utilizes the idle slices at time 4 and 5 to further defer their deadlines following prin-
ciple (2). Partition P, is first scheduled, due to its earlier deadline e,, =7, at time 5
and its deadline is further deferred to e, ; = 10; partition P, is then scheduled at time
4 and its deadline is updated to e; ; = 9.

We then present the details of Algorithm 3. In the following, we first present
how the maximum supply shortfall can be updated at the time of resource slice
assignment.

The maximum supply shortfall of each resource partition will decrease linearly
and the deadline will not change during the time interval it is not allocated with
any resource slice. We thus only need to update the maximum supply shortfall d,
and deadline e; of the resource partition after it is scheduled a resource slice. The

@ Springer



Real-Time Systems (2021) 57:302-345 323

following theorem shows how to update d; after the resource partition is allocated a
resource slice.

Theorem 4.2 [f there is exactly one resource slice scheduled at time t + 6 — 1in the
interval [t,t + 0) for resource partition P,, then d,(t + 6), the maximum supply short-
fall at time t + 6, can be computed from d(t) as follows.

dy(t + 8) = min(0, dy(r) + 1 — o' - &) 3)

Proof According to Definition 4.4, there must exist a b’ <t such that
I(b") > I(b) Vb < t and thus d,(r) = I(r) — I(b") for some b'. Either (1) I(t + 8) < I(b")
or (2) I(t + 6) > I(V') is true.

For case (1), by definition of instant regularity, Definition 4.4 and the fact that
there is exactly one resource slice scheduled at time ¢ + 6 — 11in the interval [z, + 6),
we have

di(t+68)=8t+6)—a) -t,—al(t+6—1)— 10" %)

Since there is only one resource slice scheduled at time 7+ 6 — 1 during the time
interval [¢, f + 6), we have S(¢ + 6) = S(¢) + 1. By substituting S(¢ + 6) in Eq. (4), the
definitions of instant regularity and maximum supply shortfall, we have

dt+é)=1+d()—a' 6 5)

For case (2) where I(b") < I(t + 6), we have d;(t+ ) =I(t + 6) — I(t + ) = 0. By
combining the two cases, we complete the proof. a

Algorithm 3 summarizes the procedure for computing the transition schedule. The
procedure constructs the transition schedule by (1) scheduling partitions as late as pos-
sible and (2) utilizing the idle slice before the time budget is used up. For the loop in
Line 5-23, the partition is scheduled according to the earliest deadline. For each parti-
tion P, the DS-EDF procedure takes its starting time r;, deadline e;, the current sched-
ule m, the maximum duration of the schedule #, and assigns an resource slice to P.
The current schedule m records the owner of each resource slice at time ¢ with m[¢] and
m[t] = 0 indicates that the resource slice starting at ¢ is unassigned as in Line 30. This
procedure finds an latest available resource slice at the time between the starting time
and the deadline of P; as in Line 29-34. The resource partition P; is added back to the
queue with the maximum supply shortfall based on Theorem 4.2 once assigned as in
Line 17-21. If there is no available resource slice for resource partition P; in the RPT
stage and its deadline is before the end of the RPT stage, a deadline miss will happen
and the algorithm simple rejects as in Line 9—12. If all partitions have deadlines larger
than the time budget 7, and no more idle resource slice can be utilized, the algorithm
updates the state of the partition system and enters Stage 3 (Line 13-15). Notice that
the period of a regular partition P} with availability factor a; will be p! = a.

@ Springer



324 Real-Time Systems (2021) 57:302-345

Fig. 11 The schedules can be Root Level
encoded as a tree where each

resource partition is assigned a P . 0
sub-tree exclusively 1/ T

v1,0 = {0} v ={1} 1
PQ/TQ ZD
v2,0 = {0,0} {0, 1} {1,0}{1, 1}
- HEE | | |

0123 456 8

2

Algorithm 4: Cyclic Schedule Computation

Input: 7%, the sate of the partition system after the RPT.
Output: Cyclic schedule {S? | Vi}. Reject is no feasible schedule is found.

Procedure CyclicSchedule(7 )

[

2 Enqueue all partition P* into a queue Q in the ascending order following (1)
period p* and (2) deadline e;
3 for t¢ < 0 to pmaz do
4 | m[t:] =0 //initialize the data structure for schedules
5 end
6 while Q # () do
7 Dequeue P*
8 I = DS-EDF(0, e;,m, p})
9 if l = NULL then
10 ‘ return NULL
11 end
12 Add [ to S
13 for t; < 0 to pmax/p] —1 do
14 | mil+t:xpt]=1
15 end
16 end
17 return {S}* | Vi}

4.3.3 Stage 3: cyclic schedule computation

Based on each transition schedule computed from Algorithm 3, which has a length
smaller than 7, this stage will compute one cyclic schedule {S; | Vi} for every parti-
tion to meet its required regularity and availability factor after the reconfiguration.
Before presenting the details of the algorithm, we first introduce a tree representa-
tion of the cyclic schedule. In this work, we encode a regular resource partition
schedule as a tree structure called Index Schedule (ZS)-tree as depicted in Fig. 11.
At each level i > 0 in the ZS-tree, there are 2/ number of nodes and each node repre-
sents a schedule assignment of a resource partition. Each node v, ; at level i > 0 rep-
resents a tree and is indexed as v;; = {xy, ..., X, } where v;; denotes the node is j-th
node at depth i, 0 < k < 2', x, € {0, 1}, and the root node is indexed as {}. Each

@ Springer



Real-Time Systems (2021) 57:302-345 325

node Vi has one left node and one right node indexed as vi}. ={0,x,...,xy} and
vlfJ. = {1,x, -+, x5}, respectively. The binary coding of v; j can be converted into a
numerical value as |v;;|. A resource partition P with its schedule encoded as v;; has
access to resource in [[v;;[+k X2 |v;;| +kx2'+1) Vk € N . For example, as
illustrated in Fig. 11, resource partition P, assigned with node v, ; in the ZS-tree has
access to the resource slices in [0+ &k X 22,0 4+ k x 2% + 1) Vk € N. The value of
largest period p,,,, among all the partitions is denoted as max; (p;) where p; is the
period of P,.

Given the state of the partition system at the end of the RPT, Algorithm 4 assigns
a node in the ZS-tree for each partition using the DS-EDF procedure in Algo-
rithm 3. For a partition with period p? the procedure schedules the partition as late
as possible at level x where 2* = p'. This procedure repeats until all the tasks have
been assigned with an appropriate tree node. As an example in Fig. 11, the DS-EDF
procedure will search for an available node at level 1 of the ZS-tree for P, which
has a deadline of 2 and a period of 2. Suppose that v, ; is available and assigned to
P,, Algorithm 4 will then mark all its child nodes (v, ; and v, 3) as unavailable (Line
13-14). Note that for simplicity we use an array to implement the ZS-tree structure
in the algorithm.

4.4 Analyses and properties of the DPR algorithm

This section presents some important analyses and properties of the DPR algorithm,
including its time complexity, correctness of the algorithm, completeness, some fea-
sibility analysis, and its support for recursive reconfiguration.

Time complexity We begin with the time complexity analysis of the DPR algo-
rithm. In Stage 1, Algorithm 2 has a complexity of O(N), where N is number of
resource partitions as the computation of the maximum supply shortfall is a O(1)
operation by Theorem 4.1. In Stage 2, Algorithm 3 has a complexity of O(N) for
building up the queue, a complexity of O((2T + N) - logN) for dequeuing and
enqueuing 27" + N times; and plus the complexity of the DS-EDF procedure which
is O(T? + NT). In Stage 3, Algorithm 4 has a time complexity of zi(p;’ + %) to

search available nodes for each task at level x with 2* = p? and mark the unav
ailable nodes. Algorithm 4 also involves O(N + NlogN) queue operations.
This brings the total time complexity of the DPR algorithm to
O(NlogN + NT + TlogN + T? + Z;(’% + 1))

Correctness The following theorem shows the correctness of the DPR algorithm.
Theorem 4.3 [f the DPR algorithm terminates successfully, then the solution will
satisfy all three conditions C-1 to C-3 as specified in the dynamic partition recon-

figuration problem.

Proof In Stage 3, Algorithm 4 computes a schedule for each regular partition P!
with its targeted availability factor af. This satisfies condition C-1. In Stage 2,

@ Springer



326 Real-Time Systems (2021) 57:302-345

Algorithm 3 computes the transition schedule with a time budget b, < T and hence
condition C-3 is satisfied. We only need to prove that condition C-2 is also satisfied
where the reconfiguration regularity of P; is R!.

Step (1) To show that min(I(b) — I(a)) > =R}, Vb > a, we only need to consider
time intervals [a, b), where b is at the start of a scheduled slice. For any other time
interval [a, "), we can always find a b such that there is no slice scheduled in time
interval [b’,b) and this implies S(b") = S(b), and I(b) < I(b") by the definition of
instant regularity (Definition 4.2). Hence, I(b') — I(a) > —R! if I1(b) — I(a) > —R!.
Furthermore, by the definition of maximum supply shortfall (Definition 4.4),
we only need to prove d;(b) > —R! for all such b. Because P/ is regular and
—R! < —1 < d;(b),Vb < 1, where 1, is the time of the RP request, we can prove by
induction that d;(b) > —R? for all such time instant b > 7,.

Step (2) Assume that b, > 1, is at the start of the first resource slice after the time
of the R’P request t.. By the definition of maximum supply shortfall (Definition 4.4)
and the fact that P;’ is regular, there exists x < ¢, such that

dit)=10t) - I(x) > -1 (6)

By Definition 4.2 and S(z,) = S(b,), we have I(by) =1(1,) — a}(by —1,). Also,
I(x) > I(t,) > I(x') Vx' < byand x’ > t, by the definition of maximum supply shortfall
(Definition 4.4) and S(z,) = S(by). It follows that d,(b,) = I(z,) — a!'(by — 1,) — I(x).
Furthermore by Eq. (6), we have

dy(by) = di(t,) — a'(by — 1,) %)

According to the computation of deadline in Algorithm 2, we have
by —t, < (R} +dy(t,))/a — 1. From Eq. (7), we have d;(b)) > =R} + a!' > —R}. We
hence assume d,(b;) > —R;, where b, is at the start of some scheduled slice. We pro-
ceed to show that d;(by,,) > —R where S(by, ;) = S(b; + 1).

Step (3) By the same reason in Step (2) to get Eq. (7), we have

di(bgs1) = di(b + 1) = &/ (byyy = (b + 1)) ®)

From Algorithms 4 and 3, consecutive resource slices are scheduled before their rel-
ative deadlines. We have b, | — (b, + 1) <

pi—-1= i -1 or
(R + di(b + 1))/al = 1
Substituting b, ; — (b, + 1) in Eq. (8), we have d;(b, ) >

diby+1)—1+a or
—R! +a

We hence have d;(b;,,) > —R; because d;(b; + 1) > =R/ + 1 — a}' by Theorem 4.2
and the fact that d,(b;) > —R’.

From Step (1) and by mathematical induction using Step (2) and (3), we show
min(/(b) — I(a)) > —R; ,V¥b > a. This completes the proof. O

@ Springer



Real-Time Systems (2021) 57:302-345 327

Completeness and feasibility analysis The following two theorems prove the
completeness of Algorithm 4 to compute the cyclic schedule in Stage 3 of the DPR
algorithm and present a sufficient condition to perform a feasible R®P, respectively.

Theorem 4.4 Given the state of a partition system T% at the end of the RPT stage,
Algorithm 4 can compute a feasible cyclic schedule if and only if T has feasible
cyclic schedules starting at time t,,.

Proof We prove this theorem by showing that any feasible cyclic schedule s of 7%
can be systematically transformed to an equivalent schedule s’ computed by Algo-
rithm 4 and the intermediate schedule is feasible in each step of the transformation.
We note that a schedule with the following property is equivalent to the schedule
computed by Algorithm 4. The algorithm schedules partitions according to (1)
period p; and then (2) deadlines e; in the ascending order; also, the partitions are
scheduled as late as possible. Hence, for any partition P; having schedule encoded
as v; = v;, and any other node at the same level v/ = v;, one of the following condi-
tions must be true: (1) [vi| > ¢;; (2) [VI| < |v;|; (3) v/ is assigned to another partition
P! with e} < e;. (4) v/ is a descendent of a parent node assigned to another partition
with a period smaller than p,.

The proof proceeds by transforming any feasible schedule s into a schedule con-
forming the aforementioned property by adjusting the schedule of each partition P,
according to the following queue. The partitions are sorted according to their (1)
period p; and (2) deadline e; in an ascending order. For each partition P; in this
queue which is assigned node v; = v;;, we check whether there is a node v/ = v, at
the same level as v; and invalidating all of the above four conditions. If there exists
such a node v/, we swap the entire sub-tree v; with sub-tree vI. We shall prove that
one of the above four conditions will be true for P; and none of the deadlines will be
violated.

If such v/ exists, it must be true that [v}| < e;, [vi| > |v;| and one of the followings
is true.

Case 1: The v/ is not assigned to any partition.

Case 2: v/ is assigned to another partition P with e/ > e,.

Case 3: A descendant node of v/ is assigned to another partition P,

Any partition P} assigned on the sub-tree v must either have p; = p! and ¢} > ¢,
(case 2) or p; < p/ (case 3). Because |v;| < ||, P’s schedule will be earlier after the
swap and thus this won’t cause the deadline miss for P]. For example in Fig. 11, par-
tition P, on sub-tree v; | can be swapped to v, ;, without violating its deadline.

After each swapping step, the schedule remains valid. After adjusting all the par-
titions, any pair of nodes will conform to one of the four conditions resulting an
equivalent schedule computed by Algorithm 4. This completes the proof. O

Theorem 4.5 An R°P is always feasible if every partition P; € P" has reconfigura-
tion regularity R’ no less than 2.

@ Springer



328 Real-Time Systems (2021) 57:302-345

CPU
Resource-Level Scheduler
| Resource Interface 1 | | Resource Interface N |
I
| Application 1 | | Application N |

\\ Task-Level Scheduler
| Task1 | | Task2 | | Task3 | | Task1 | | Task2 |

Fig. 12 Normal scheduling hierarchy

| Resource Interface 1 | Resource-Level Scheduler:
Repartition/Reconfigure

| Child Resource Interface 1 | | Child Resource Interface 2 |

|Sub-Applicatior1 | |Sub-Application |

/l
| Task1 | | Task? | Task-Level Scheduler

Fig. 13 Scheduling hierarchy for hierarchical repartitioning and recursive reconfiguration

Proof One can simply set the time budget of reconfiguration to zero and perform the
DPR algorithm. By Definitions 3.8, 3.9, 4.4 and the fact that resource partition has
reconfiguration regularity R! > 1, we have d,(z,) > —1. The deadline of each parti-

tion P! will be e; = (R +dy(1,))/al'] > ai = p. If ¢; > p holds for every partition

i

P? and the total utilization of all partition is no greater than 1, Algorithm 4 can com-
pute the feasible schedule by allocating schedule in the ascending order of the peri-
ods. This completes the proof. O

Support of Recursive Reconfiguration: We first review the concept of hierar-
chical repartitioning (Chen et al. 2017) and introduce the concept of recursive recon-
figuration based on the similar characteristics of hierarchical repartitioning.

In these two concepts, the partitioning and reconfiguration algorithms can be per-
formed on a resource partition based on it logical clock instead of on a physical
resource. For example, Fig. 12 illustrates a scheduling hierarchy in which a CPU
resource is partitioned into several resource interfaces by some partitioning algo-
rithms (Li and Cheng 2012; Chen et al. 2017). As the same algorithm applied here,
a resource-level scheduler can repartition or reconfigure the Resource Interface
to construct or reconfigure the Child Resource Interfaces as illustrated in Fig. 13.
This can be done recursively in the hierarchy. This also significantly isolates the
resource scheduler in the scheduling hierarchy from each other such that each sched-
uler can independently repartition or reconfigure its resource without the complete

@ Springer



Real-Time Systems (2021) 57:302-345 329

_ 3 _ 2
Qp =3 Qe = 3

(a) (b)

012345678 910t 0123456 78910t
3

() P75

(d)
HENEEE

01 2345678910t 0123456 ¢

O/ng ac:g
rrm ==

01213452675; 01 2 3 45 6 7 8 910 ¢t
3 . ol n/ __
RP ol = 3,07 =3 . : Parent partition P,

()
[ : Child partition P. (F))

01234506788

Fig. 14 Concepts of hierarchical repartitioning and recursive reconfiguration in which repartitioning and
reconfiguration algorithms can be performed based on the partition resource time t; instead of physical
resource time ¢

knowledge of its parent partition and without the need to alter the schedule governed
by other scheduler.

Recall that we have a physical resource time system ¢ and a partition resource
time system #’. Here, we denote the parent partition as P, and its partition resource
time as #/. Without the loss of generality, we use P, to denote a child partition of P,
in the physical resource time system and use P’ to denote the same child partition of
P, in the partition resource time system. P! has an availability factor & and a period
P

Figure 14 gives an example to illustrate the concepts of hierarchical repartition-
ing and recursive reconfiguration. In the RRP model, we can repartition a parent
resource partition P, with a, = 2 as illustrated in Fig. 14a to create a child partition
P.witha, = % as illustrated in Fig. 14b by allocating exactly % fraction of resource
supply of P,. In reality, the resource-level scheduler may perform the partitioning
algorithm to create a schedule as illustrated in Fig. 14c and P, can be considered as
if it is a physical resource which has sequential resource slices to offer in the parti-
tion resource time system as illustrated in Fig. 14d. The application-level scheduler
may then perform the same partitioning algorithm based on the partition resource
time to construct a child partition P/ with availability of &/ = % as illustrated by
Fig. 14e. In the physical resource time system, P, has a schedule as illustrated in
Fig. 14f and P, has an availability factor a, = a, - a = % Similarly, we can also
reconfigure the child partition P_/P’ by performing the reconfiguration algorithm
based on its parent’s partition resource time. In Fig. 14g, P/ reconfigures its avail-
ability factor from a?’ = Lto a’ = Z

However, there is still one issue to pay attention when performing hierarchical
repartitioning and recursive reconfiguration based on the partition resource time
system. The child partition P/ may be regular in the partition resource time system
but P, may not be regular in the physical resource time system, which is what the

@ Springer



330 Real-Time Systems (2021) 57:302-345

application actually cares about. As illustrated in Fig. 14e, f, P/ is regular in (e) but
P. is not regular in (f). There is a significant supply shortfall as indicated by the
arrow in Fig. 14f which makes P, not regular.

In the following, we will first quantify the supply deviation of P, in physical
resource time system given P’C in partition resource time system. Let S,(0), ap,Ip(t)
be the supply function, availability factor and instant regularity of P, in the physi-
cal resource time system; S.(f),a,,I.(f) be those of P, in physical time system;
S.(#),a!,I.(t) be those of P! in parent partition time system; and P, is partitioned
from P, such that ¢, = @, - /.
Theorem 4.6 The resource supply deviation of P, can be computed as
1.(a) = 1.(b) = a/(I,(a) — 1,(b)) + I'(a") = I'(V') for all a > b; and their correspond-
ing partition resource time a’ and b'.

Proof By Definition 3.7, for any physical resource time a and b (a > b) and their
corresponding partition resource time a’ and b’ we have

S,(a)=S,(b)=1,a) - 1,b) + a,(a—D) )
and
S\(a) =SBy = ') — /() + a'(d —b) (10)

By Definition 3.5, the partition resource time advances by one when the parent
resource partition offers a resource slice, which means @’ — b’ = S,(a) = S,(b). By
substituting a’ — b’ in Eq. (10) with Eq. (9), we have

S\(a) = S.(b') =) = I'(W)) + &L (a) — L(b)

+ a,(a — b)) an

Also, S'(d') = S.(a) and S/(b') = S.(b) because the numbers of resource slices
assigned to P, and P/ are the same in both time systems. Combine this fact and Defi-
nition 3.7 with Eq. (11), we have I.(a) — 1.(b) = a(I,(a) — I,(b)) + I'(d") = I'(b")

O

Theorem 4.6 tells us that the parent partition P, may contribute extra supply devi-
ation in the amount of aé (I,(a) — 1,(b)) at most when doing hierarchical repartition-
ing. Based on this result, we have the following two theorems.

Theorem 4.7 The supply regularity of the child partition P, R,, is less than or
equal to the smallest positive integer k such that k > o - R, + R/ where R, and R,
are the supply regularity of P, and P!, respectively.

Proof By Theorem 4.6, we have I.(a) —1.(b) = a/(I,(a) — 1,(b)) + I'(a") = I'(}").

We also have |1,(a) — 1,(b)| <R, and |I(a") — I'(b")| < R! because P, and P/ have
supply regularity of R, and R/, respectively. Hence, |I.(a) — I.(b)| < a/R, +R.. O

@ Springer



Real-Time Systems (2021) 57:302-345 331

We also have a similar theorem for reconfiguration supply regularity.

Theorem 4.8 The reconfiguration supply regularity of the child partition P, R,
less than or equal to the smallest posmve integer k such that k > a!, R’ + R’ if P is
also reconfigured or k > o, ‘R, + R’ if P, is not under reconﬁguratlon

Proof The proof is similar to the proof of Theorem 4.7 by finding the range of
1.(a) —1.(b). O

The above two theorems give bounds on the supply regularity and reconfigu-
ration supply regularity, respectively. However, the bound can be improved if the
application-level scheduler either has knowledge of the term aé (I(a) — I,(b)) or has
the control over the //(a’) — I!(’) term. For example, if & has the form of one over
some integer, and P, and P! both are regular, then P, must also be regular (Chen
et al. 2017). Moreover, when computing the maximum supply shortfall of each child
partition in the DPR algorithm, the system can add one extra term —a; - R, to the
computation of maximum supply shortfall to each child resource partition (Line 12
in Algorithm 2 and Line 18 in Algorithm 3) to compensate the extra supply devia-
tion from P,. This will enable the recursive reconfiguration without the knowledge
of other partitions or alter the schedule governed by other schedulers.

5 Performance evaluation

In this section, we provide a comprehensive experimental evaluation on the perfor-
mance of the DPR algorithm. The simulation results are presented in Sect. 5.1. We
also applied the RRP-based dynamic resource reconfigurability model to a real-life
autonomous control system and demonstrate its effectiveness in Sect. 5.2.

5.1 Simulation-based experiments

In this section, we first compare the performance of the DPR algorithm with a naive
algorithm and an integer linear programming (ILP) based optimal approach. We
then present the performance evaluation on the DPR algorithm with different set-
tings. In the experiments, the availability factors of each individual partition before
and after R’P are randomly sampled in the set of 2l (1 <i < 7). The reconfigura-
tion supply regularity R of each resource partition is randomly sampled from [1, 5]
and the transition time budget T is randomly sampled from [0, 20]. The number of
partitions is randomly sampled from [10, 15]. In our experiments, each parameter is
sampled from the given range following the uniform distribution. The experiments
to evaluate the performance of the DPR algorithm were conducted with both a small
and large parameter range. The results obtained from both experiments showed the
similar trend. For the simplicity of presentation and due to the high computation
overhead to derive the results from the ILP-based optimal algorithm with the large
parameter range, in this paper we only showed the performance comparison among

@ Springer



332 Real-Time Systems (2021) 57:302-345

the naive algorithm, DPR algorithm and ILP-based optimal approach with a small
range of parameters.

5.1.1 DPR algorithm v.s. the naive algorithm and ILP-based solution

In this subsection, we first describe the naive algorithm and the ILP-based optimal
solution, and then compare the performance of the DPR algorithm and these two meth-
ods. In the naive algorithm, the system computes a new cyclic schedule using the AAF
algorithm at the time of the R*P based on the information P" of each new partition.
It then changes the schedule to be the new one immediately. The partition system is
schedulable if and only if the reconfiguration supply regularity and normal regularity
of each resource partition during and after the reconfiguration is not violated in the
computed schedule.

The optimal approach finds a feasible solution by brute force search using an inte-
ger linear programming solver (Gurobi 2019). Given n resource partitions and let
s;; be the offset of the j-th resource slice of the partition P;, the solver computes the
offsets by the constraints encoded as follows.

As the specific amount of slices for each partition to be scheduled is unknown,
we assume that the total amount of the resource slices of each partition P; is bounded
by T + '% In addition, we employ the binary auxiliary variable u; ; to represent that

if the j—tﬁ slice of partition 7; is scheduled in the transition schedule or the cyclic
schedule. For instance, if u;; = 0, the corresponding slice of partition must be sched-
uled in the transition schedule. Otherwise, the corresponding slice of partition must
be scheduled in the cyclic schedule.

Auxiliary variable constraints

u;; €{0,1} (12)

wherei € {1,2,...,n}and j € {1,2,...,T + ”p—}

In the transition stage, we assume that the maximum amount of the resource
slices of each partition P; is bounded by the time budget 7. Based on the partition
system, we constrain the offset s5;, by the release time r; and deadline e;. For the
remaining resource slices of each partition P;, we constrain their offsets based on the
corresponding reconfiguration supply regularity R’.

Transition schedule constraints

Sip S ¢

s+l

Sij < Sijp1 +M-u;

=P +R) =1 =M, (13)
;i < S +pi—k+R)+1+M-u;

.<T+M*ui1]-

ij =

Sij 28

N

where i € {1,2,...,n}, j€{1,2,..,T} and 1 <k < are integers. Let M be a suf-
ficiently large number. If u;; = 1, then the inequalities hold regardless of the variable

@ Springer



Real-Time Systems (2021) 57:302-345 333
(a) (b)
100
—+— Naive
~ 80 —o— DPR 100
§ —»— Optimal
z 0 %
= 6 Me—é——v =
E E 50
3 =
£ 4 —+— Naive
@ —o— DPR
20 H—+++—+—+ } N e TOptlmal
0 5 10 15 20 U571 15 20
Budget Budget

Fig. 15 A comparison among the naive algorithm, DPR algorithm and ILP-based optimal approach

values. This indicates that these constraints do not need to be satisfied if the offsets
are not scheduled in the transition schedule. In the cyclic schedule, we employ the
period p! to constrain the offsets.

Cyclic schedule constraints

$ij < Sijp =P+ MA —uy;

ij =i
Sij 2 Sije1 =Py — M1 =y
$i; > T =M —u,;)

(14)

where i € {1,2,..,n} and j€ {I,T + ’% — 1}. The constraints above need to be

satisfied when it holds that u;; = 1.
Since every resource slice of each partition cannot be scheduled in the same time
unit, the offsets cannot be equal.
Resource constraints
Vi#k

Sij F St (15)

where i,k € {1,2,...,n}and j,l € {1,T+’%}.

In Fig. 15, we compare the schedulibilit}; of each approach in (a) and computa-
tion time in (b). 80% of the resource partitions are set to be reconfiguration regular.
The reconfiguration supply regularity of the remaining 20% of the resource parti-
tions are uniformly sampled from [2, 5]. In Fig. 15a, we can see that the DPR algo-
rithm performs comparably to the optimal approach in terms of schedulability while
the naive algorithm has very low schedulability. Among all of our testings, the DPR
algorithm performs 4% worse than the ILP-based optimal approach at worst. Also,
the DPR algorithm outperforms naive algorithm by a huge margin because the naive
algorithm does not consider the supply shortfall of each partition at the time of the
R3P. This will incur serious supply shortfall for some of the partitions and violate
the performance requirements. In Fig. 15b, we can see that the ILP solver takes 103
seconds on average while the DPR algorithm takes 0.0003 and the naive algorithm

@ Springer



334 Real-Time Systems (2021) 57:302-345

Fig. 16 R’P schedulability with
different utilization settings

Schedulability (%)
A o ®» O
S & & 3

en)

0.4 0.4

0.6 0.6

0.8 0.8
Before-Utilization After-Utilization

takes 0.0001 seconds to compute the schedule for budget equals to 20. Please note
that the ILP-based approach is only allowed to search for a valid schedule given the
requirement of each R3P for 600 seconds on a machine with Core(TM) i-5 3.5 GHz
CPU. Quite some instances for the ILP-based approach run over 600 seconds and
are abandoned. This explains the trend of the ILP-based results after budget 10.

5.1.2 Performance of the DPR algorithm in different settings

We now evaluate the performance of the DPR algorithm under different parameter
settings. In the first set of experiments, we configure each resource partition to be
reconfiguration regular and set the transition budget to be 0. These experiments aim
to provide insights on the schedulability of R*P with different partition utilization
changes as the general case. From Fig. 16, it can be observed that the schedulabil-
ity greatly depends on the before-utilization (the total utilization before R*P) while
the after-utilization (the total utilization after R3P) has little effect. As the before-
utilization increases, the schedulability drops significantly. This is because when
the before-utilization is higher, partitions are more likely to be blocked from being
scheduled by other partitions which has high utilization and supply shortfall. On the
other hand, the change of after-utilization has not much impact for the schedulability.

From the general case, we can see that the schedulability of DPR algorithm is
low when both after-utilization and before-utilization are high. Next we explore
the schedulability of the DPR algorithm under heavy before-utilization and after-
utilization settings. In the second set of experiments, they are both set to be 0.9
but the reconfiguration supply regularity and transition budget can be higher
than 1 for the R®P requests in these experiments. In Fig. 17a, each line repre-
sents a different fraction of partitions that have R} > I and the x-axis denotes the
transition budget. Line 20% (55%, 80%, respectively) illustrates the results with
20% (55%, 80%, respectively) resource partitions having R! > 1 from the DPR
algorithm. In Fig. 18b, each line (budget 0 and budget 12) represents a differ-
ent budget while the x-axis denotes the fraction of partitions that have RY > 1.
We make three important observations here: (1) the transition budget can help

@ Springer



Real-Time Systems (2021) 57:302-345 335

(@) (b)
100 100
K—H—X
S PR
. 80 80
=
2
=
]
T 60| | 60
<
Q
A —— 0
| —+—20% —o— 5% —— 80% —o—12
40 40
0 5 10 15 20 0 20 40 60 80 100
Budget Irregular Percentage (%)

Fig. 17 A comparison of R’P schedulability with varied reconfiguration regularity and budget

Fig. 18 The impact of the recon-
figuration operation cost

o O

Schedulability (%)
[\ »JS (@) (09)

0
0
0 0
1 2 10
3
‘ 420
Block Time Budget

improve the schedulability but it only works for some extreme cases. Providing
more budget does not necessarily improve the schedulability. (2) In Fig. 17b, it
can be observed that the increase of R! can significantly improve the schedula-
bility. Moreover, when all partitions have R > 1, the schedulability is 100% as
proved in Theorem 4.5.

In the last set of experiments, we create a more practical environment where
the cost of the reconfiguration operation is not zero. The operation may include
changing the scheduler, setting the schedules and configuring the underlying
resources. In this experiment, the reconfiguration operation will block the first
few resource slices from being utilized. In Fig. 18, we can see that the block time
has significant impact on the schedulability while the budget may alleviate such
problem by roughly 10% in some settings. This is because the reconfiguration
operation can be considered as a head of line blocking task which has the highest
priority and a sizable non-preemptive execution time. If there exists a partition in

@ Springer



336 Real-Time Systems (2021) 57:302-345

needs of resource supply, it will be less likely to meet its requirement when the
operation cost is high. The budget itself does not offer too much help in this case.

5.2 Case study on the autonomous F1/10 model car

We implemented the RRP resource model and the DPR algorithm on an F1/10
autonomous model car system to demonstrate the benefit of resource partitioning
and reconfiguration in dynamic environment and compared the effectiveness of the
DPR algorithm with a naive algorithm.

Our F1/10 autonomous car is built on the Traxxas Slash model car with the
following major hardware components (Fltenth 2019) as shown in Fig. 19a: (1)
NVIDIA Jetson Tx2 embedded Al computing platform (NVIDIA 2019) running the
software stack, (2) LIDAR sensor to measure the distance to surrounding objects,
and (3) Zed stereo camera to capture front image. For the software stack, we inte-
grated the LitmusRT framework (Calandrino et al. 2006; Brandenburg 2011), a
real-time extension of Linux kernel 4.9.30, with the NVIDIA downstream kernel
4.4 to provide the resource partitioning function using the P-RES scheduler. To sup-
port applications in user space, we also implemented a library based on the Robot
Operating System (ROS) framework (ROS 2019) to enable the ROS applications to
(1) operate as sets of periodic processes and (2) request static and online resource
reconfiguration.

We now explain how our F1/10 model car system achieves dynamic resource
reconfiguration. Suppose that the car control system aims to race in a 35 m by 8
m rectangular track as fast as possible while avoiding any obstacles. The control
system has three applications running: PID Controller, Vision Controller, and Com-
munication. As summarized in Table 1, each application contains a set of tasks and
each task is associated with the corresponding real-time requirements (worst-case
execution time, task period). The requirement of each application on this car sys-
tem is specified by its developer and can vary on different hardware platforms. The
PID Controller generates control signals to the motor and steering system to avoid
obstacles. It also coordinates the control loop task with the LIDAR sensor task. The
Vision Controller identifies the traffic signs (red circles) that are used to indicate
that there exists a corner ahead. The Communication application couples the con-
trol system and the motor and steering system by exchanging sensing and control
messages. The environment of our case study can be classified into two contexts:
“Straight Ahead” and “Turn Corner”. In the Straight Ahead context, the system
allocates most resources to the Vision Controller for detecting the traffic sign while
moving as fast as possible in our laboratory corridor (Fig. 19b). After the traffic
sign is detected, the system enters the Turn Corner context where it slows down and
makes the turn (Fig. 19c). After the car goes around the corner, the system enters the
Straight Ahead context again. During these context switch, the car control system
will adapt its application and reconfigure the resource interfaces accordingly so that
the requirement of each application in different contexts can be satisfied”.

2 A demonstration video can be found on Youtube in the following link: http://www.youtube.com/watch
7v=8b-MMP3-cug.

@ Springer


http://www.youtube.com/watch?v=8b-MMP3-cug
http://www.youtube.com/watch?v=8b-MMP3-cug

337

Real-Time Systems (2021) 57:302-345

-10D) uIng,, Ay} I JXU0D  peayy ySiens,,

P)

oy

wyILIoT[e JATRU JY) FUISN PIAIISQO AIN[IRJ WAISAS B P PUB “IX9IU0D  JoU
q ‘syuouodwod drempIey B 1Ied [9pouwl )]/ SNOWOUOINE 9} U0 uonemsyuodar uonnied srwreukp jo Apmis ased v gl b4

©) ) (®)

pringer

Qs



338 Real-Time Systems (2021) 57:302-345

Table 1 The autonomous
control system has three

applications PID controller Control loop Straight ahead (0.4, 128)
PID controller LIDAR sensor  Straight ahead (0.4, 128)
Vison controller  Image recog. Straight ahead (110, 200)
Vison controller ~ Camera Straight ahead (50, 200)
Communication ~ Send signal Both (0.3, 128)

Application Task Context RT Req. (ms)

PID controller Control loop Turn corner (0.4, 64)
PID controller LIDAR sensor  Turn corner 0.4, 64)

Each application consists of multiple tasks along with their real-time
requirements in different contexts

Our case study uses a simple application transition model. We demonstrate the
PID Controller and Communication applications cannot tolerate any extra latency
while the Vision Controller application can tolerate an extra delay less than 100
ms during context transitions. The system enters the “Turn Corner” context when
the Vision Controller detects a traffic sign, and it enters the “Straight Ahead” con-
text when the PID Controller finishes executing the “Turn Corner” operation. The
relationships between the behavior and requirement of each task in every context is
summarized in Table 1. The last column in the table gives the real-time requirement
of each task in milliseconds which represents the worst-case execution time and the
period of the task. Note that the execution time of the Vision Controller varies a lot
in the test scenarios and depends on the speed of the image processing application.
When the goal is to finish the race as fast as possible, the faster the Vision Controller
can finish processing and identify the traffic signs ahead, the faster the car can run.
In the experiments, we scheduled all the three applications on one Denver core on
Jetson Tx2 (NVIDIA 2019) and run all other non-real time tasks on the other cores.
This minimizes the impact of the resource slice blocked by the kernel interrupt han-
dling to avoid failures of the control system. Based on the requirement of each appli-
cation, the system allocates resource partition P, to the PID Controller, P, to the
Vision controller and P; to the Communication. Each application runs a round-robin
scheduler to schedule its own task group. The control system issues a reconfiguration
request when entering each context. Based on the application requirement as speci-
fied in Table 1, the resource requirement for each application is assigned and conﬁg-
ured as follows. When entering the Straight Ahead context, A, = {77" AR, 100}
where Py, PS € P, are regular with availability factor a] = ] = ﬁ while PS eP;

has a; = =. The reconﬁguranon regularity of P, P,,P5is 1, 1, 100, respectlvely
When entering the Turn Corner context, A. = {P., A., R/, 100} where P{,P{ € P!
are regular partitions with availability factor at = =, a¢ = = while Plis a deleted

17 64°73 128
partition which has af = 0. The reconfiguration regularity of P,,P3 is 1 for the

Turn Corner R’P. Each reconfiguration request has a response time of 50 ms in the
experiments.

We capture the performance of the system by measuring the response time of
every task instance of the PID Controller and Communication applications. Fail-
ure to guarantee enough resource supply to these applications may result in system

@ Springer



Real-Time Systems (2021) 57:302-345 339

failure. For system running the DPR algorithm, it not only considers the current sup-
ply shortfall of each resource partition but also the response time of a reconfigura-
tion. The operation of a reconfiguration is considered as a single instance transition
task which has both execution time and deadline of 50ms released at the time of
each reconfiguration request. For the case where system running a naive algorithm,
the system simply computes two schedules for each context and swaps them during
each reconfiguration.

Figure 20 shows the response time and deadline of each task instance. When the
system runs the DPR algorithm, the response time of most task instances are stable
and below the corresponding deadline as shown in Fig. 20a and b. There may be
unusual response time spikes such as around time 25. The activity and scheduling
traces indicate that it is because the reconfiguration operation takes longer than the
estimated 50 ms. On the other hand, a naive algorithm will be more likely to under-
supply the resource partitions during reconfiguration as shown in Fig. 20d. Spikes of
response time are often close to the time of reconfiguration and the spikes indicate
that P; are reconfiguration irregular. The performance degradation at time 32 causes
the car to fail in avoiding obstacles as illustrated in Fig. 19d. Fig. 21 illustrates the
different schedules computed by DPR and naive algorithm in this condition where
the context changes from the Turn Corner to the Straight Ahead. One can see that
there is a huge starvation interval between time 2 and 193 for the Communication
application in the naive algorithm. This results in long latency and eventually causes
the car to crash. Note that the spike at time 28 in Fig. 20d is caused by the fact
that the ROS library is not a hard real-time library which sometimes takes longer to
execute certain functionality.

6 Conclusion and future work

In this paper, we study the dynamic partition reconfiguration (DPR) problem by:
(1) Proposing a precise semantics of resource provisioning during resource recon-
figuration for CPS in the open system environment; this helps to avoid unexpected
system instability problems. (2) Presenting a novel DPR algorithm to satisfy the per-
formance requirements of partition reconfiguration requests. (3) Demonstrating the
benefit of the DPR approach on a real-life open system application.

There are several limitations to the proposed work which restricts its applicabil-
ity. As the future work, we will explore solutions to relax these restrictions. In the
following, we will discuss four issues regarding (1) different partition transition and
reconfiguration semantics including overlapping requests; (2) different forms of
availability factors; (3) reconfiguration in non-uniform environment (multi-resource
environment); and (4) resource reconfiguration when the DPR algorithm is not able
to construct a valid schedule.

Partition transition and reconfiguration semantics In this paper, we pro-
posed a specific transition model regarding the performance degradation which is
defined as reconfiguration supply regularity. However, different applications may
require different transition models in order to preserve their system stability. By
studying the needs of other applications, we can generalize the desired transition and

@ Springer



340 Real-Time Systems (2021) 57:302-345

(a) DPR algorithm: PID Controller (b) DPR algorithm: Communication
%\200 200
o
E
B
2
= 100 100
2
8
[
0 00 10 20 30
(c) Naive algorithm: PID Controller (d) Naive algorithm: Communication

"% 200
£
i
E
=
2
Z 100
3
(o
38
[ast
OO 10 20 30 00 10 20 30
Time (sec) Time (sec)
—o— PID Controller —«— Communication = = = Deadline

Fig.20 The response time (ms) of each application at each time point (seconds) using the DPR algo-
rithm (a), (b) and using the naive algorithm (c), (d)

reconfiguration semantics by specifying the change of resource supply rate and the
bound of resource supply deviation at different time. For example, under appropriate
concurrency semantics, our approach can be applied to handle concurrent requests
by recomputing both the transition and cyclic schedules upon the arrival of new
requests. Also, the system may have a more complex reconfiguration semantics by
allowing a partition to request different amount of resource slices in each stage. For
example, in the RPT stage, each partition may request a temporary resource supply
surge or release more resource supply and demand another amount of resource sup-
ply after the RPT stage. This allows a finer-granularity coordination between the
applications running on the same resource pool.

Different forms of availability factors In this paper, we restrict the availabil-
ity factor to be the power of % The scheduling problem with arbitrary availability
factors is already known to be NP-hard even for slightly more relaxed assumptions
than a single harmonic chain (Chen et al. 2017). To achieve better average-case sys-
tem utilization, some other forms such as the Magic-7 or the combined approxima-
tion sequences proposed by Li and Cheng (2017) may be used in the 3-stage algo-
rithm since they share similar characteristics as the one used in this paper. However,
using other complex forms of availability factors may benefit the average resource

@ Springer



Real-Time Systems (2021) 57:302-345 341

Latency of Communication application
R3P

BN [WisEsEiss EEEis=E W EEREEREEEREEEEREEEERSEECE
Naive: [ TECEEEEEIIEEE

0 64 128 192 x
Crash

Latency of Communication application

I:l Communication E Reconfiguration

. PID E Others

Fig.21 The schedules computed by the DPR and Naive algorithms during the context switch from “Turn
Corner” to “Straight Ahead”

utilization in the static allocation scheme (Li and Cheng 2012). This may also sig-
nificantly increase the complexity of the online reconfiguration algorithm.

Non-uniform environment The proposed solution in this paper is limited to
uniform/single resource type. To extend it to non-uniform environment, one way
is to simply apply the 3-stage algorithm on each physical resource. However, this
may potentially increase the regularity of each resource partition by one. To further
improve it, the key challenge is that end-to-end tasks may request resource during
the execution of some resource slices in the non-uniform multi-resource environ-
ment where resource slices may have different sizes. Unexpected interruption of
scheduled resource supply will break most of the extant models (Chen et al. 2017).
If all the potential task request time points on a resource are known a priori, our pro-
posed algorithm can be readily applied by modifying the computation of maximum
supply shortfall of each resource partition based on these time points rather than the
start of every resource slice. Further by not scheduling resource slices conflicting
with these time points, the effective reconfiguration supply regularity and normal
effective regularity can be achieved. However, for concurrent non-uniform resource
reconfiguration, the task request time points on a resource can only be deduced after
the reconfiguration of other resources are done unless this resource is the initial
resource used by the end-to-end task. In the future work, each resource partition
with the associated application may be assumed to have a predetermined set of pos-
sible task request time points such that each resource can be configured indepen-
dently. This, however, will reduce the schedulability of the system.

No valid schedule can be found by the DPR algorithm The DPR algorithm
proposed in this paper provides a solution for system to reconfigure its resource
supply distribution for its application to coordinate and respond to the environment
change. However, given an R3P, there may not even exist a solution. There are a few
approaches to handling this issue when the reconfiguration request is rejected. One
is to define a fail-safe context in which a set of essential applications can always
be safely reconfigured in the system at run time. The remaining unused resource
can be reconfigured to supply other non-essential applications. The other approach

@ Springer



342 Real-Time Systems (2021) 57:302-345

is to define different priorities for the applications and let the system to satisfy the
reconfiguration requests from higher priority applications first. Both directions will
be explored as our future work.

Acknowledgements The work reported herein is supported by the Office of Naval Research under ONR
Award N00014-17-1-2216 and by the National Science Foundation under NSF Award CNS-2008463.

References

Baruah SK, Cohen NK, Plaxton CG, Varvel DA (1996) Proportionate progress: a notion of fairness in
resource allocation. Algorithmica 15(6):600-625

Biondi A, Buttazzo G, Bertogna M (2018) A design flow for supporting component-based software
development in multiprocessor real-time systems. Real-Time Syst 54(4):800-829

Boudjadar J, Kim JH, Phan LTX, Lee I, Larsen KG, Nyman U (2018) Generic formal framework for
compositional analysis of hierarchical scheduling systems. In: 21st IEEE International Symposium
on Real-Time Distributed Computing (ISORC). IEEE, pp 51-58

Brandenburg B (2011) Scheduling and locking in multiprocessor real-time operating systems. PhD thesis,
The University of North Carolina at Chapel Hill

Burns A (2014) System mode changes-general and criticality-based. In: Proc. of 2nd Workshop on Mixed
Criticality Systems (WMC), pp 3-8

Burns A, Davis RI (2018) A survey of research into mixed criticality systems. ACM Comput Surv 50(6):82

Buttazzo G, Bini E, Wu Y (2010) Partitioning parallel applications on multiprocessor reservations. In:
22th Euromicro Conference on Real-Time Systems (ECRTS)

Buttazzo G, Bini E, Wu Y (2011) Partitioning real-time applications over multicore reservations. IEEE
Trans Ind Inform 7(2):302-315

Calandrino JM, Leontyev H, Block A, Devi UC, Anderson JH (2006) LITMUSRT: a testbed for empiri-
cally comparing real-time multiprocessor schedulers. In: 27th IEEE Real-Time Systems Symposium
(RTSS). IEEE, pp 111-126

Chen T, Phan LTX (2018) Safemc: a system for the design and evaluation of mode-change protocols. In: 25th
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE, pp 105-116

Chen WIJ, Huang PC, Leng Q, Mok AK, Han S (2017) Regular composite resource partition in open sys-
tems. In: 38th IEEE Real-Time Systems Symposium (RTSS). IEEE, pp 34-44

Davis RI, Altmeyer S, Burns A (2018) Mixed criticality systems with varying context switch costs. In: 24th
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE, pp 140-151

de Niz D, Phan LT (2014) Partitioned scheduling of multi-modal mixed-criticality real-time systems on
multiprocessor platforms. In: 2014 IEEE 19th Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS). IEEE, pp 111-122

Deng Z, Liu JS (1997) Scheduling real-time applications in an open environment. In: 18th IEEE Real-
Time Systems Symposium (RTSS). IEEE, pp 308-319

Easwaran A, Anand M, Lee I (2007) Compositional analysis framework using EDP resource models. In:
28th IEEE Real-Time Systems Symposium (RTSS). IEEE, pp 129-138

Evripidou C, Burns A (2016) Scheduling for mixed-criticality hypervisor systems in the automotive
domain. In: WMC 2016 4th International Workshop on Mixed Criticality Systems

Fltenth (2019) Fltenth. http://f1tenth.org/

Feng AX (2004) Design of real-time virtual resource architecture for largescale embedded systems. PhD
thesis, Department of Computer Science, The University of Texas at Austin

Gu X, Easwaran A (2016) Dynamic budget management with service guarantees for mixed-criticality
systems. In: 2016 IEEE Real-Time Systems Symposium (RTSS). IEEE, pp 47-56

Gurobi (2019) Gurobi. http://gurobi.com/

Han S, Chen D, Xiong M, Lam KY, Mok AK, Ramamritham K (2012) Schedulability analysis of
deferrable scheduling algorithms for maintain ingreal-time data freshness. IEEE Trans Comput
63(4):979-994

Herterich MM, Uebernickel F, Brenner W (2015) The impact of cyber-physical systems on industrial
services in manufacturing. Procedia Cirp 30:323-328

@ Springer


http://f1tenth.org/
http://gurobi.com/

Real-Time Systems (2021) 57:302-345 343

Hu B, Huang K, Chen G, Cheng L, Knoll A (2016) Adaptive workload management in mixed-criticality
systems. ACM Trans Embed Comput Syst 16(1):14

Hu B, Thiele L, Huang P, Huang K, Griesbeck C, Knoll A (2018) Ffob: efficient online mode-switch pro-
crastination in mixed-criticality systems. Real-Time Systems, pp 1-43

Lee J, Chwa HS, Phan LT, Shin I, Lee I (2017) Mc-adapt: adaptive task dropping in mixed-criticality
scheduling. ACM Trans Embed Comput Syst 16(5s):163

Li Y, Cheng AM (2012) Static approximation algorithms for regularity-based resource partitioning. In:
33rd IEEE Real-Time Systems Symposium (RTSS). IEEE, pp 137-148

Li Y, Cheng AM (2017) Toward a practical regularity-based model: the impact of evenly distributed tem-
poral resource partitions. ACM Trans Embed Comput Syst 16(4):111

Li Y, Cheng AMK (2015) Transparent real-time task scheduling on temporal resource partitions. IEEE
Trans Comput 65(5):1646-1655

LiH, XuM, Li C, Lu C, Gill C, Phan L, Lee I, Sokolsky O (2018) Multi-mode virtualization for soft real-
time systems. In: 24th IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS). IEEE, pp 117-128

Liu CL, Layland JW (1973) Scheduling algorithms for multiprogramming in a hard-real-time environ-
ment. J] ACM 20(1):46-61

Mok AK, Alex X (2001) Towards compositionality in real-time resource partitioning based on regularity
bounds. In: 22nd IEEE Real-Time Systems Symposium (RTSS). IEEE, pp 129-138

Neukirchner M, Lampka K, Quinton S, Ernst R (2013) Multi-mode monitoring for mixed-criticality real-
time systems. In: 2013 International Conference on Hardware/Software Codesign and System Syn-
thesis (CODES+ ISSS). IEEE, pp 1-10

Nikolov V, Wesner S, Frasch E, Hauck FJ (2017) A hierarchical scheduling model for dynamic soft-real-
time system. In: 29th Euromicro Conference on Real-Time Systems (ECRTS), Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik

NVIDIA (2019) Embedded systems developer kits. http://devblogs.nvidia.com/jetson-tx2-delivers-twice
-intelligence-edge/

Phan LT, Lee I, Sokolsky O (2010) Compositional analysis of multi-mode systems. In: 22nd Euromicro
Conference on Real-Time Systems (ECRTS). IEEE, pp 197-206

Real J, Crespo A (2004) Mode change protocols for real-time systems: a survey and a new proposal. Real-
Time Syst 26(2):161-197

ROS (2019) Ros framework. http://wiki.ros.org/

Schlatow J, Mostl M, Ernst R, Nolte M, Jatzkowski I, Maurer M, Herber C, Herkersdorf A (2017) Self-
awareness in autonomous automotive systems. In: Proceedings of the Conference on Design, Auto-
mation & Test in Europe, European Design and Automation Association, pp 10501055

Shin I, Lee I (2003) Periodic resource model for compositional real-time guarantees. In: 24th IEEE Real-
Time Systems Symposium (RTSS). IEEE, pp 2-13

Shirero S, Takashi M, Kei H (1999) On the schedulability conditions on partial time slots. In: Interna-
tional Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA)

Xu H, Burns A (2019) A semi-partitioned model for mixed criticality systems. J Syst Softw 150:51-63

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

@ Springer


http://devblogs.nvidia.com/jetson-tx2-delivers-twice-intelligence-edge/
http://devblogs.nvidia.com/jetson-tx2-delivers-twice-intelligence-edge/
http://wiki.ros.org/

344 Real-Time Systems (2021) 57:302-345
Wei-Ju Chen received the B.S. degree and the M.S. degree from the
National Taiwan University, Taiwan, in 2005 and 2012. He received
his Ph.D. from the University of Texas at Austin in 2020. His
research interests include real-time systems, wireless networks and
scheduling algorithms.
NS
-
=
=
= ‘
= i
by : ~——

@ Springer

Peng Wu received the B.S. degree and M.S. degree from the Depart-
ment of Electrical Engineering at Southwest Jiaotong University,
Chengdu, China, in 2012 and 2015. He is currently a Phd student in
the Department of Computer Science and Engineering at the Univer-
sity of Connecticut. His research interests include wireless networked
control systems, real-time systems, and scheduling algorithms.

Pei-Chi Huang received her Ph.D. from the University of Texas at
Austin, Texas, USA, in 2017. She is currently an assistant professor
with the Robotics, Networking, Artificial intelligence (R. N. A.) Lab-
oratory, in the department of Computer Science at University of
Nebraska Omaha. Her research interests include cyber-physical sys-
tems, robotics, and machine learning.



Real-Time Systems (2021) 57:302-345 345

Aloysius K. Mok holds the Quincy Lee Centennial Professorship in
Computer Science at the University of Texas at Austin. Dr. Mok
received his Ph.D., M.S. and B.S. degrees from the Massachusetts
Institute of Technology and his research is in real-time systems,
cyber-physical systems. He was a past recipient of the IEEE TC on
Real-Time Systems Award and has received commendations from
the United States Air Force for his advisory work on advanced
systems.

S N

\

Song Han received the B.S. degree from Nanjing University in 2003,
the M.Phil. degree from the City University of Hong Kong in 2006,
and the Ph.D. degree from the University of Texas at Austin in 2012,
all in Computer Science. He is currently an Associate Professor in
the Department of Computer Science and Engineering at the Univer-
sity of Connecticut. His research interests include cyber-physical
systems, real-time and embedded systems, and wireless networks.

Authors and Affiliations

Wei-Ju Chen'® . Peng Wu? - Pei-Chi Huang? - Aloysius K. Mok’ - Song Han?

Peng Wu
peng.wu@uconn.edu

Pei-Chi Huang
phuang @unomaha.edu

Aloysius K. Mok
mok @cs.utexas.edu

Song Han
song.han@uconn.edu
' The University of Texas at Austin, Austin, TX, USA
The University of Connecticut, Storrs, CT, USA
3 The University of Nebraska at Omaha, Omaha, NE, USA

@ Springer


http://orcid.org/0000-0001-5978-9235

	Online reconfiguration of regularity-based resource partitions in cyber-physical systems
	Abstract
	1 Introduction
	2 Related work
	3 RRP model
	3.1 Time systems
	3.2 Regularity-based resource partition in uniform environment
	3.3 RRP scheduling algorithms

	4 Resource reconfigurability in RRP model
	4.1 Challenges
	4.2 Dynamic partition reconfiguration problem
	4.3 Three-stage DPR algorithm
	4.3.1 Stage 1: partition system initialization
	4.3.2 Stage 2: transition schedule computation
	4.3.3 Stage 3: cyclic schedule computation

	4.4 Analyses and properties of the DPR algorithm

	5 Performance evaluation
	5.1 Simulation-based experiments
	5.1.1 DPR algorithm v.s. the naive algorithm and ILP-based solution
	5.1.2 Performance of the DPR algorithm in different settings

	5.2 Case study on the autonomous F110 model car

	6 Conclusion and future work
	Acknowledgements 
	References




