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Abstract—The second-order converse bound of multiple access
channels is an intriguing problem in information theory. In this
work, in the setting of the two-user discrete memoryless multiple
access channel (DM-MAC) under the maximal error probability
criterion, we investigate the gap between the best achievable rates
and the asymptotic capacity region. With “wringing techniques”
and meta-converse arguments, we show that gap at blocklength
n is upper bounded by O(1/

√
n).

I. INTRODUCTION

The multiple-access channel (MAC) is a fundamental in-
formation theory problem, which admits multiple independent
users (transmitters) to deliver signal to a noisy channel, and
the signal sent by corresponding sources must be recovered at
the receiver.

The MAC was first alluded to by Shannon [1] more than
half century ago. Since then, it attracted significant amount
of attention and became a fruitful research field [2]. For the
discrete memoryless multiple-access channel (DM-MAC), the
capacity region was derived by Liao [3] and Ahlswede [4].
For the Gaussian MAC, the capacity region was introduced by
Wyner [5] and Cover [6]. Dueck [7] showed that for maximal
errors the capacity region of the MAC (and also for Shannon’s
two-way channel) can be strictly smaller than the one for
average errors. However, these results were in the context of
first-order asymptotic, that is, the error probability approaches
to zero and and blocklength grows to infinity. Naturally, one
may ask that, if we have finite blocklength and constrained
error probability, how does the capacity region change?

The strong converse shows that with error probability fixed
to be greater than zero, the set of achievable coding rates
approaches to the standard capacity region when blocklength
grows to infinity. For the DM-MAC, the strong converse
was first given by Dueck [8] using the blowing-up lemma
and a wringing step. Ahlswede [9] presented an alternative
proof using Augustin’s converse argument [10] instead of the
blowing-up lemma and also improved the wringing technique.
For the Gaussian MAC, a strong converse was given by Fong
and Tan [11] by applying Ahlswede’s wringing technique.
Based on the strong converse, one may further ask, given fixed
error probability, how quickly do the achievable coding rates
approach to the standard capacity region as the blocklength
grows?

The answer to this question is the second-order coding rate,
which is the gap between the best achievable rates and the
asymptotic capacity region given finite blocklength. Strassen
[12] showed that the gap at blocklength n for point-to-point
channel is O(1/

√
n). This result was refined by Polyanskiy

et al. [13] and also brought renewed interest regarding the
second-order rates. Second-order achievable results for the
MAC under average probability of error were found in [14]–
[18]. For the problem variant with degraded message sets,
second-order results, including matching converses, were de-
rived in [19], [20]. However, for the standard MAC, exist-
ing second-order achievability and converse bounds do not
coincide. Second-order converse bounds have been found by
Kosut [21] under the average error probability criterion, and
by Moulin [22] under the maximal error probability criterion.
However, we have been unable to verify the proof of [22]
(specifically, the transition from equation (27) to (28)). Thus,
in this work, we present an alternative proof of a second-
order converse for MAC under the maximal error probability
criterion. Our work has a different approach which mainly
uses wringing-based techniques (which will be introduced in
detail later), and claims similar results as of [22].

II. PRELIMINARIES

A. Basic Notations

For a random variable X , we use calligraphic letter X to
represent the alphabet, and the lower case x to represent a
realization. We denote the set of all possible distributions on
X as P(X ). Given a distribution PX and a subset A ⊂ X ,
we may represent

∑
x∈A PX(x) as PX(A). At times, for

simplicity we may omit the subscript, e.g., we may use P (x)
instead of PX(x). And we denote a vector of random variables
(X1, . . . , Xn) as Xn, and set {1, . . . , n} as [n].

Given distributions P,Q ∈ P(X ), the Kullback-Leibler
divergence is given by

D(P‖Q) = EP
[
log

P (X)

Q(X)

]
.

The Rényi divergence of order ∞ is given by

D∞(P‖Q) = sup
A⊂X

log
P (A)

Q(A)
.



The divergence variance is defined as

V (P‖Q) = VarP

[
log

P (X)

Q(X)

]
,

and the conditional divergence variance is defined as

V (PY |X‖QY |X |UX) =
∑
x∈X

UX(x)V (PY |X=x‖QY |X=x).

We take the standard Q−1(p) as the inverse of the comple-
mentrary Gaussian CDF. We also adopt the standard O(·) nota-
tion, that is, g(n) = O(f(n)) means lim supn7→∞

∣∣∣ g(n)
f(n)

∣∣∣ <∞.
B. Multiple Access Channel

In this work, we consider a discrete memoryless multiple-
access channel (DM-MAC) with two independent users (trans-
mitters) S1 and S2. For i = 1, 2, Si independently generates
message mi ∈ Mi (|Mi|= Mi), then mi is encoded into
channel input xi via deterministic encoding function Xi :
Mi 7→ Xi. The MAC is defined by channel law

WY |X1,X2
∈ P(X1 ×X2 7→ Y),

where X1, X2 are input alphabets and Y is the output al-
phabet. In what follows, given a message tuple (m1,m2)
and encoding functions X1, X2, for simplicity we may use
WY to represent WY |X1,X2

, use W (y|m1,m2) to represent
WY |X1,X2

(y|X1(m1), X2(m2)), and use WY |m1,m2
to rep-

resent WY |X1(m1),X2(m2). Given a one-shot channel W , the
product channel of blocklength n is given by

W (yn|xn1 , xn2 ) =

n∏
i=1

W (yi|x1i, x2i).

The receiver has a decoding function φde : Yn 7→ M1 ×
M2. The decoding error probability for each message tuple
(m1,m2) is

e(m1,m2) =
∑

yn∈Yn

Wn(yn|Xn
1 (m1), Xn

2 (m2))

· 1(φde(y
n) 6= (m1,m2)).

Here 1(·) is the indicator function. The maximal error proba-
bility emax is defined as

emax = max
m1,m2

e(m1,m2).

A (n,M1,M2) DM-MAC code consists of codebooks
{Xn

i (mi) : mi ∈ Mi} for i = 1, 2. We say a rate pair
(R1, R2) is (n, ε) achievable if there exists a (n,M1,M2)
MAC code with maximal error probability ε, where 2nR1 ≤
M1 and 2nR2 ≤M2.

III. MAIN RESULTS

Assuming X1, X2 are independent, we define

Csum , max
PX1

PX2

I(X1, X2;Y ).

We assume the maximum is achieved at unique (P ∗X1
, P ∗X2

),
such that WY |X1X2

P ∗X1
P ∗X2

is our optimal joint distribution

for (X1, X2, Y ) which achieves Csum. Therefore, the corre-
sponding unique distribution of Y is

P ∗Y (y) =
∑
x1,x2

W (y|x1, x2)P ∗(x1)P ∗(x2).

And we define

V ∗ , V (WY |X1,X2
‖P ∗Y |P ∗X1

P ∗X2
).

Note that in general the sum capacity for the maximal error
setting is unknown, so we choose to write our converse bounds
in terms of the average-error sum capacity, which is Csum as
we defined. Our goal of this work is to prove the following
theorem.

Theorem 1. For every (n,M1,M2) DM-MAC code with
maximal error probability ε ∈ (0, 1), it holds that

logM1M2 ≤ nCsum −
√
nV ∗Q−1(ε) + o(

√
n).

IV. PROOF TOOLS

The proof consists of four steps. Step 1), we use an
averaging argument with Markov’s inequality to find a subset
Ω of message pairs with a desired property. Step 2), we use the
wringing technique to find subsets M̄1, M̄2 and define subset
Ω̄ = (M̄1×M̄2)∩Ω such that inputs are almost independent
when restricted to Ω̄. Step 3), we prove a converse bound on
the subset Ω̄ and relate it back to the original code.

A. The Wringing Technique

The history of the wringing technique can be tracked back
to the work of Dueck [8] and Ahlswede [9] in the 1980s,
and it was refined by Kosut [21] recently. Roughly speaking,
given any subset Ω of a MAC code, the goal of the wringing
technique is to “wring out” the dependence in the subset by
taking Ω̄ ⊂ Ω, such that inputs are “almost independent” when
restricted to be taken from Ω̄.

Definition 1 (Wringing Dependence). Given random variables
X,Y with joint distribution PX,Y , the Wringing dependence
between X and Y is given by

∆(X;Y ) = inf
PX ,PY

sup
A⊂X ,B⊂Y

inf{δ ≥ 0 :

PX,Y (A,B)1+δ ≤ PX(A)PY (B)}

Lemma 1 (The Wringing Lemma in [21]). Let PX,Y ∈ P(X×
Y), PX ∈ P(X ), and PY ∈ P(Y) be distributions such that

D∞(PX,Y ‖PXPY ) ≤ σ

where σ is finite. For any δ > 0, there exist sets X̄ ⊂ X ,
Ȳ ⊂ Y such that

PX,Y (X̄ × Ȳ) ≥ exp
{
−σ
δ

}
and

∆(X̄; Ȳ ) ≤ δ

where (X̄, Ȳ ) are distributed according to PX,Y |X∈X̄ ,Y ∈Ȳ .



B. Hypothesis Testing

Definition 2. Consider a hypothesis testing between two
distributions P and Q. Let ψ : X 7→ [0, 1] be a randomized
decision rule that ψ(x) = Pr[Give P |X = x]. The Type-II
error probability of the Neyman-Pearson test at significance
level 1− ε is given by

β1−ε(P,Q) = min
ψ:EP [ψ(X)]≥1−ε

EQ[ψ(X)].

Lemma 2 (Proposition 2.1 from [22]). For any (n,M1,M2)-
MAC code with maximal error probability ε over channel Wn,
the following holds for any subset Ω∗ of M1 ×M2 and any
distribution PY n ∈ P(Yn),

1

|Ω∗|
≥ 1

|Ω∗|
∑

(m1,m2)∈Ω∗

β1−ε(W
n
Y n|Xn

1 (m1),Xn
2 (m2), PY n).

V. PROOF OF THE THEOREM

We let (m1,m2) be drawn uniformly at random fromM1×
M2. This is an artificial distribution for the purposes of the
proof, rather than an assumption on the true distribution of
the messages. Consequently, from encoding functions {X1i :
i ∈ [n]} and {X2i : i ∈ [n]}, we obtain distributions QX1i ∈
P(X1) and QX2i ∈ P(X2) as follows. For any (x1, x2) ∈
X1 ×X2,

QX1i(x1) ,
∑
m1

P (m1) · 1(X1i(m1) = x1),

QX2i
(x2) ,

∑
m2

P (m2) · 1(X2i(m2) = x2).

Note that QX1i,X2i
(x1, x2) = QX1i

(x1) ·QX2i
(x2), and

QYi(y) ,
∑
x1,x2

W (y|x1, x2) ·QX1i,X2i(x1, x2).

For each message tuple (m1,m2), we define the average
divergence as

D(m1,m2) ,
1

n

n∑
i=1

D(WYi|X1i(m1),X2i(m2)‖QYi),

and define the divergence variance as

V (m1,m2) ,
1

n

n∑
i=1

V (WYi|X1i(m1),X2i(m2)‖QYi
),

and we assume V (m1,m2) > 0. Additionally, for X1i ∼ QX1i

and X2i ∼ QX2i , Yi ∼ QYi for each i ∈ [n] we define

I3 ,
1

n

n∑
i=1

I(X1i, X2i;Yi).

and we have the following lemma.

Lemma 3.
I3 = Em1,m2 [D(m1,m2)].

Proof.

I3 =
1

n

n∑
i=1

∑
x1i,x2i,yi

P (x1i, x2i, yi) log
W (yi|x1i, x2i)

Q(yi)

=
∑
m1,m2

P (m1,m2)
1

n

n∑
i=1

D(WYi|X1i(m1),X2i(m2)‖QYi
)

=EPm1,m2
[D(m1,m2)].

Lemma 4. Let Ω , {(m1,m2) ∈M1 ×M2 : D(m1,m2) ≤
I3 + 1

n}, it holds that |Ω|≥ M1M2

nI3+1 .

Proof. As (m1,m2) is uniform overM1×M2, by Markov’s
inequality and Lemma 3, we have

|Ω|
M1M2

= Pr

(
D(m1,m2) ≤ I3 +

1

n

)
≥1−

EPm1,m2
[D(m1,m2)]

I3 + 1
n

=1− I3

I3 + 1
n

.

Given Ω and Pm1,m2 , we define P ′m1,m2
as

P ′(m1,m2) ,Pm1,m2|(m1,m2)∈Ω(m1,m2) =
1

|Ω|
for each (m1,m2) ∈ Ω, and P ′(m1,m2) = 0 otherwise.
Accordingly, for any (m1,m2) it holds that

log
P ′(m1,m2)

P (m1)P (m2)
≤ log(nI3 + 1).

Therefore,

D∞(P ′m1,m2
‖Pm1Pm2) ≤ log(nI3 + 1) , σ.

Given Pm1
, Pm2

, and P ′m1m2
, by Lemma 1, for any δ > 0

there exists M̄1 ⊆M1 and M̄2 ⊆M2, such that

P ′m1,m2
(M̄1 × M̄2) ≥ exp

(
−σ
δ

)
, (1)

and
∆(m̄1; m̄2) ≤ δ, (2)

where (m̄1, m̄2) ∼ P ′
m1,m2|m1∈M̄1,m2∈M̄2

.
We define Ω̄ , (M̄1×M̄2)∩Ω. The definition of P ′m1,m2

implies that P ′m1,m2
(M̄1 × M̄2) = P ′m1,m2

(Ω̄), therefore (1)
implies

P ′m1,m2
(Ω̄) =

|Ω̄|
|Ω|
≥ exp

(
−σ
δ

)
. (3)

We define P̄m1,m2 as

P̄m1,m2
(m1,m2) ,P ′m1,m2|m1∈M̄1,m2∈M̄2

(m1,m2) =
1

|Ω̄|

for each (m1,m2) ∈ Ω̄, and P̄m1,m2(m1,m2) = 0 otherwise.
By (3) and Lemma 4, it holds that

|Ω̄|
M1M2

=
|Ω̄|
|Ω|
· |Ω|
M1M2

= P ′m1,m2
(Ω̄) · |Ω|

M1M2

≥ exp
(
−σ
δ

)
· 1

nI3 + 1
,



which implies

log|Ω̄|− log(M1M2) ≥ −σ
δ
− log(nI3 + 1)

∗
= −

(
1 +

1

δ

)
log(nI3 + 1),

where (*) holds as we defined σ = log(nI3 + 1). Thus,

logM1M2 ≤ log|Ω̄|+
(

1 +
1

δ

)
log(nI3 + 1). (4)

We apply the meta-converse of Lemma 2 to the set Ω̄, with
PY n =

∏n
i=1QYi . Thus

1

|Ω̄|
≥ 1

|Ω̄|
∑

(m1,m2)∈Ω̄

β1−ε

(
Wn
yn|m1,m2

,
n∏
i=1

QYi

)
. (5)

For any (m1,m2), the following asymptotics hold for the
Neyman–Pearson test [23]:

− log β1−ε(W
n
Y n|m1,m2

, QY n)

=nD(m1,m2)−
√
nV (m1,m2)Q−1(ε)

+
1

2
log n+O(1).

(6)

Combining (5) and (6) gives

log|Ω̄|≤ − log

 1

|Ω̄|
∑

(m1,m2)∈Ω̄

exp (−nD(m1,m2)

+
√
nV (m1,m2)Q−1(ε)− 1

2
log n−O(1)

)]
(a)

≤ − log

 1

|Ω̄|
∑

(m1,m2)∈Ω̄

exp
(√

nV (m1,m2)Q−1(ε)
)

+ nI3 +
1

2
log n+O(1)

(b)

≤ − log

exp

√√√√ 1

|Ω̄|
∑

(m1,m2)∈Ω̄

nV (m1,m2)Q−1(ε)




+ nI3 +
1

2
log n+O(1)

=nI3 −

√√√√ ∑
(m1,m2)∈Ω̄

nV (m1,m2)

|Ω̄|
Q−1(ε) +

1

2
log n+O(1).

(7)
Here, (a) holds by the definition of set Ω and Ω̄ ⊂ Ω. (b) holds
by the fact that function f(x) = ec

√
x is convex for x > 0

when c < 0 and x > c−2 when c > 0. Where as ε < 1/2
implies Q−1(ε) > 0 and we have nV (m1,m2) > (Q−1(ε))−2

when n is large. And Q−1(ε) ≤ 0 when ε ≥ 1/2.
Now combining (4) and (7) gives

logM1M2 ≤nI3 −

√√√√ ∑
(m1,m2)∈Ω̄

nV (m1,m2)

|Ω̄|
Q−1(ε)

+
1

2
log n+O(1) +

(
1 +

1

δ

)
log(nI3 + 1).

(8)

We want to prove that either I3 is bounded away from Csum,
or ∑

(m1,m2)∈Ω̄

V (m1,m2)

|Ω̄|
≈ V ∗.

Given encoding functions {X1i : i ∈ [n]}, {X2i : i ∈ [n]},
let P̄Xn

1 ,X
n
2

be the distribution induced by P̄m1,m2
, and P̄Xn

1
,

P̄Xn
2

be the marginals. That is,

P̄Xn
1 ,X

n
2

(xn1 , x
n
2 )

,
∑

(m1,m2)∈Ω̄

P̄ (m1,m2) · 1(Xn
1 (m1) = xn1 , X

n
2 (m2) = xn2 ).

We first focus on the second-order term in (8), note that

n∑
i=1

V (WYi|X1iX2i
‖QYi |P̄X1iX2i

)

=
n∑
i=1

∑
x1i,x2i

P̄ (x1i, x2i)V
(
WYi|x1i,x2i

‖QYi

)
=

n∑
i=1

∑
x1i,x2i

∑
(m1,m2)∈Ω̄

1(X1i(m1) = x1i, X2i(m2) = x2i)

· P̄ (m1,m2)V
(
WYi|x1i,x2i

‖QYi

)
=

n∑
i=1

∑
(m1,m2)∈Ω̄

V (WYi|X1i(m1),X2i(m2)‖QYi
)

|Ω̄|

=
∑

(m1,m2)∈Ω̄

nV (m1,m2)

|Ω̄|
.

(9)
Regarding each channel use i, for any (x1, x2) ∈ Ω̄x ,
{(x1, x2) : x1 = X1i(m1), x2 = X2i(m2), (m1,m2) ∈ Ω̄},
let A = {m1 : 1(X1i(m1) = x1)}, B = {m2 : 1(X2i(m2) =
x2)}. By (2) and Property 3 of Theorem 2 in [21], we have

|P̄m1,m2
(A,B)− P̄m1

(A)P̄m2
(B)|≤ 2δ.

By our definitions P̄X1
(x1) = P̄m1

(A), P̄X2
(x2) = P̄m2

(B),
and P̄X1,X2(x1, x2) = P̄m1,m2(A,B), such that for any
(x1, x2) ∈ Ω̄x we have

|P̄ (x1, x2)− P̄ (x1)P̄ (x2)|≤ 2δ. (10)

For any distribution PY ∈ P(Y), by (10), for each i ∈ [n]∑
x1i,x2i

P̄ (x1i, x2i)V (WYi|x1i,x2i
‖PY )

=
∑
x1i,x2i

P̄ (x1i, x2i)V (WYi|x1i,x2i
‖PY ),

≥
∑
x1i,x2i

(
P̄ (x1i)P̄ (x2i)− 2δ

)
V (WYi|x1i,x2i

‖PY )

=V (WYi|X1i,X2i
‖PY |P̄X1i P̄X2i)

− 2δ
∑
x1i,x2i

V (WYi|x1i,x2i
‖PY ).

(11)



By (9) and (11),∑
(m1,m2)∈Ω̄

V (m1,m2)

|Ω̄|
≥ 1

n

n∑
i=1

[
V (WYi|X1i,X2i

‖QYi
|P̄X1i

P̄X2i
)

−2δV ′]
(12)

where V ′ =
∑
x1i,x2i

V (WYi|x1i,x2i
‖QYi

).
It remains to prove that QYi

≈ P ∗Y , P̄X1i
≈ P ∗X1

, and
P̄X2i

≈ P ∗X2
. Regarding the first-order term in (7), if nI3 <

nCsum−
√
nV ∗Q−1(ε), then by (8) we are done with the proof.

Hence we assume

nCsum −
√
nV ∗Q−1(ε) ≤ nI3 =

n∑
i=1

I(X1i, X2i;Yi).

Recall that X1i is independent of X2i, so I(X1i, X2i;Yi) ≤
Csum. Define the set

A = {i ∈ [n] : I(X1i, X2i;Yi) < Csum − n−1/4}.

We have

nCsum −O(
√
n) ≤

n∑
i=1

I(X1i, X2i;Yi)

≤ |A|(Csum − n−1/4) + (n− |A|)Csum.

Thus |A|≤ O(n3/4). For any i /∈ A, we have

Csum − n−1/4 ≤ I(X1i, X2i;Yi) ≤ Csum.

Recall that we have unique optimizer (P ∗X1
, P ∗X2

) =
arg maxPX1

,PX2
I(X1, X2;Y ) and the mutual information can

be considered as a continuous function of (PX1
, PX2

). Thus,
for any i /∈ A,

|QYi
(y)− P ∗Y (y)|≤ o(1) for all y.

Define the distribution

¯̄PYi(y) =
∑
x1,x2

W (y|x1, x2)P̄X1i(x1)P̄X2i(x2).

We again apply the meta-converse of Lemma 2 on Ω̄, but now
with PY n =

∏n
i=1

¯̄PYi
. By applying a similar technique as in

(7), it holds that

log|Ω̄|≤
n∑
i=1

D(WYi|X1i,X2i
‖ ¯̄PYi
|P̄X1i,X2i

)−O(
√
n)

≤
n∑
i=1

[
D(WYi|X1iX2i

‖ ¯̄PYi
|P̄X1i

P̄X2i
) +O(δ)

]
−O(

√
n)

≤
n∑
i=1

I ¯̄P (X1i, X2i;Yi) +O(nδ)−O(
√
n).

(13)
Where I ¯̄P is the mutual information respect to P̄X1i

, P̄X2i
,

and ¯̄PYi . If
∑n
i=1 I ¯̄P (X1i, X2i;Yi)+O(nδ) < nCsum−O(

√
n)

then we are done. Therefore we assume
n∑
i=1

I ¯̄P (X1i, X2i;Yi) +O(nδ) ≥ nCsum −O(
√
n). (14)

As described in detail below, we will choose δ =
O(
√

log n/n1/4). Thus
n∑
i=1

I ¯̄P (X1i, X2i;Yi) ≥ nCsum −O
(
n

√
log n

n1/4

)
.

Applying a similar argument to above, there exists a set B ⊂
[n] where |B|= o(n) and for each i /∈ B,

I ¯̄P (X1i, X2i;Yi) ≥ Csum − o(1).

Therefore, again by continuity of the mutual information, for
all i /∈ B,

|P̄X1i(x1)− P ∗X1
(x1)|≤ o(1) for all x1

and a similar result for P̄X2i .
Thus, by (12), when n is large, it holds that∑
(m1,m2)∈Ω̄

V (m1,m2)

|Ω̄|

≥ 1

n

∑
i∈(A∪B)c

V (WYi|X1i,X2i
‖QYi

|P̄X1i
, P̄X2i

)− 2δV ′

≥ n− |A|−|B|
n

(V ∗ − o(1))− 2δV ′

≥ V ∗ − o(1)− 2δV ′,
(15)

where in the last inequality, we have used the fact that both
A and B have cardinality that is o(n). Applying the bound of
(15) to (8), we have

logM1M2 ≤nCsum −
√
n(V ∗ − 2δV ′ − o(1))Q−1(ε)

+
1

2
log n+O(1) +

(
1 +

1

δ

)
log(nI3 + 1).

By applying Taylor expansion with respect to δ at δ = 0, we
have

−
√
n(V ∗ − 2δV ′ + o(1))Q−1(ε)

= −
√
n(V ∗ + o(1))Q−1(ε) +O(δ

√
n).

We achieve

min
δ
O(δ
√
n) +

1

δ
log(nI3 + 1) = O(n

1
4

√
log n)

which is achieved by δ = O(
√

log n/n1/4). Thus, the proof
concludes as

logM1M2

≤ nCsum −
√
nV ∗ + o(n))Q−1(ε) +O(n

1
4

√
log n)

≤ nCsum −
√
nV ∗Q−1(ε) + o(

√
n).
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