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Abstract

We study the following problem, which to our knowledge1

has been addressed only partially in the literature and not in2

full generality. An agent observes two players play a zero-3

sum game that is known to the players but not the agent.4

The agent observes the actions and state transitions of their5

game play, but not rewards. The players may play either op-6

timally (according to some Nash equilibrium) or according7

to any other solution concept, such as a quantal response8

equilibrium. Following these observations, the agent must9

recommend a policy for one player, say Player 1. The goal10

is to recommend a policy that is minimally exploitable un-11

der the true, but unknown, game. We take a Bayesian ap-12

proach. We establish a likelihood function based on obser-13

vations and the specified solution concept. We then propose14

an approach based on Markov chain Monte Carlo (MCMC),15

which allows us to approximately sample games from the16

agent’s posterior belief distribution. Once we have a batch17

of independent samples from the posterior, we use linear pro-18

gramming and backward induction to compute a policy for19

Player 1 that minimizes the sum of exploitabilities over these20

games. This approximates the policy that minimizes the ex-21

pected exploitability under the full distribution. Our approach22

is also capable of handling counterfactuals, where known23

modifications are applied to the unknown game. We show24

that our Bayesian MCMC-based technique outperforms two25

other techniques—one based on the equilibrium policy of the26

maximum-probability game and the other based on imitation27

of observed behavior—on all the tested stochastic game envi-28

ronments.29

Introduction30

Multiagent reinforcement learning (MRL) extends reinforce-31

ment learning to multiple agents, and its environments32

are typically formulated as repeated games (Sandholm and33

Crites 1996) or more generally as stochastic games (Shapley34

1953), also known as Markov games. For stochastic games,35

Littman (1994) studies the two-player zero-sum case. Hu36

and Wellman (2003) extend this to the general-sum case,37

adopting the game-theoretic solution concept of the Nash38

equilibrium (Nash 1950, 1951), in which each agent’s strat-39

egy is a best response to the other agents’ strategies.40
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Inverse reinforcement learning (IRL) aims to recover the 41

reward (a.k.a. payoff) function of an agent given observa- 42

tions of its behavior. IRL was introduced by Russell (1998) 43

and formalized by Ng and Russell (2000). IRL may be use- 44

ful for apprenticeship learning to acquire skilled behaviour, 45

and for ascertaining the reward function being optimized 46

by a natural system. As Ng and Russell (2000) point out, 47

a major advantage of IRL is that, in many applications, the 48

reward function provides a parsimonious description of be- 49

havior that is succinct, robust, and transferable with respect 50

to changes in the environment. It can also yield insights into 51

the value systems driving agent behavior. 52

Most of the IRL literature assumes a single-agent setting. 53

Yet many real-world applications involve multiple agents. 54

The presence of these other agents makes the environment, 55

from the perspective of any one agent, potentially non- 56

stationary because the other agents might be learning and 57

thus changing their strategies (e.g., Sandholm and Crites 58

(1996)). So, different techniques are needed that take into 59

account the decision-making processes of other agents. 60

Multiagent inverse reinforcement learning (MIRL) ex- 61

tends IRL to multiple agents. The canonical MIRL problem 62

is estimating the payoffs of a stochastic game given obser- 63

vations of the actions taken by the players and their state 64

transitions. This brings several new challenges. For one, the 65

concept of single-agent optimality must be replaced with a 66

multiagent notion of optimal behavior, such as a Nash equi- 67

librium (Hu and Wellman 2003) or quantal response equi- 68

librium (McKelvey and Palfrey 1995; Mckelvey and Palfrey 69

1998). 70

Reddy et al. (2012) study MIRL to learn the reward func- 71

tion in a setting where the agents can either cooperate or be 72

strictly non-cooperative. They assume that the policies of the 73

agents are known and that the agents are rational and follow 74

an optimal policy in the sense of Nash equilibrium. Under 75

those assumptions, they reduce the problem to a distributed 76

solution where the reward function for each agent can be 77

solved independently using a similar formulation as in the 78

single-agent case. 79

Ling, Fang, and Kolter (2018) tackle the problem of learn- 80

ing the parameters of an unknown game, such as payoffs 81

or chance node probabilities, from observed actions. Their 82

goal is to maximize the likelihood of realizing the observed 83

sequence from the player, assuming they act according to a 84



quantal response equilibrium. To do this, they consider a reg-85

ularized version of the game that is equivalent to the quan-86

tal response equilibrium and develop a primal-dual Newton87

method for finding the solution. They also develop a back-88

propagation method that analytically computes gradients of89

all relevant game parameters through the solution itself. This90

lets them learn the game by incorporating the solver into the91

loop of larger deep network architectures and training in an92

end-to-end fashion.93

Wang and Klabjan (2018) study MIRL in zero-sum94

stochastic games when expert demonstrations are known to95

be suboptimal. They present an algorithm for estimating (us-96

ing deep learning) payoffs so that the players’ observed play97

is close to what Nash equilibrium policies would be under98

those payoffs. Their approach is not Bayesian. Lin, Adams,99

and Beling (2019) study MIRL in two-player general-sum100

stochastic games. They consider five variants of MIRL, dis-101

tinguished by solution concept used. That work assumes that102

the game observer either knows, or is able to accurately es-103

timate, the policies and solution concepts of the players. In104

a very different direction, Zhang et al. (2019) study IRL in105

two-player zero-sum setting where only one of the agents106

knows the utility function. By interacting with the informed107

player, the uninformed player attempts to both infer and op-108

timize its objective.109

In this paper, we extend MIRL beyond learning the110

game to making policy (strategy) recommendations, using111

a Bayesian approach. Specifically, we study the problem of112

recommending a policy for a zero-sum stochastic game with113

unknown parameters based only on observations of game114

play. We observe the actions and state transitions (but not re-115

wards) incurred during game play by two players playing the116

game. These players might be playing according to a Nash117

equilibrium or according to any other game-theoretic solu-118

tion concept, such as a quantal response equilibrium. Our119

objective is to minimize the expected exploitability of our120

recommended policy under the true, but unknown, game.121

To define the posterior distribution over the unknown122

game parameters, we require a likelihood function that tells123

us the probability of our observations given a candidate124

game. One of our recommendation strategies also requires125

sampling from the posterior distribution, for which we use126

Markov chain Monte Carlo (MCMC). Once we have a batch127

of independent samples from the posterior, we use linear128

programming and backward induction to compute a policy129

for Player 1 that minimizes the sum of exploitability over130

these games. This approximates the policy that minimizes131

the expected exploitability under the full distribution.132

We show that our Bayesian MCMC-based technique out-133

performs two other techniques—one based on the equilib-134

rium policy of the maximum-probability game and the other135

based on imitation of observed behavior—on all the tested136

stochastic game environments. Our approach can also han-137

dle the case where we want to recommend a strategy for a138

known modification of the unknown game.139

In this work, we take an emphatically instrumental view140

of IRL. The reason we are interested in the true parameters141

(e.g., rewards) of the game is because we are interested in142

doing something with this knowledge. We would like to rec-143

ommend a minimally-exploitable policy for Player 1 under 144

the same unknown game or a known modification thereof. 145

In terms of goals, the closest prior work is that of Lin, Bel- 146

ing, and Cogill (2018). They propose a Bayesian approach 147

to MIRL and establish a theoretical foundation for two-agent 148

zero-sum MIRL problems. Their generative model is based 149

on an assumption that the two agents follow a minimax pol- 150

icy profile; our approach works with a broad range of game- 151

theoretic behavioral models. Like us, they work in the con- 152

text of stochastic games. However, their aim is to estimate 153

what the true reward function of the stochastic game is. That 154

problem was previously studied in the one-stage setting by 155

Waugh, Ziebart, and Bagnell (2011) and in the setting of 156

non-competing agents by Natarajan et al. (2010). Our goal 157

is different and more end to end: making a good policy rec- 158

ommendation. Another difference is that Lin, Beling, and 159

Cogill (2018) measure the quality of learned rewards using 160

distance metrics in reward and probability space, as well as 161

the game play performance of agents using those learned 162

rewards as the basis for an equilibrium policy. Specifically, 163

they use the average reward distance (the average Euclidean 164

distance from the true rewards) and a domain-specific evalu- 165

ation metric. A further difference is that their model assumes 166

that the complete bi-policy of the two players is observed. 167

We only observe the players’ actions. Their approach also 168

requires knowing the state transition probabilities, whereas 169

in our work these must also be inferred. 170

Again, we emphasize that the recommender is not either 171

of the players who played the game. They are a third-party 172

observer, one who does not know the true game and does not 173

know what rewards the players received. We are also deal- 174

ing with an offline setting. That is, the recommender cannot 175

interact with the game. They only have empirical observa- 176

tions of gameplay. Therefore, they cannot use standard re- 177

inforcement learning to learn Player 1’s optimal policy, be- 178

cause they have no ability to interact with the environment 179

at all. 180

Zero-sum stochastic games 181

Let 4X denote the set of probability distributions on a set 182

X . Let [n] = {0, . . . , n− 1} for n : N. 183

A zero-sum finite-horizon stochastic game is a tuple g = 184

(S, s,A1,A2, R, T,H) : G where S is a set of states, s : S 185

is the initial state, Ai is the set of actions available to Player 186

i, R : S × A1 × A2 → R is the reward function (which 187

yields a reward to Player 1 for every state and action profile), 188

T : S × A1 × A2 → 4S is the state transition function 189

(which yields a distribution of next states for every state and 190

action profile), and H : N is the game’s time horizon (which 191

is the duration of each episode in timesteps). 192

A Player i policy is a function πi : Πi
def
= [H]×S → 4Ai 193

that yields a distribution of actions for every time horizon 194

(remaining number of timesteps) and state. A policy profile 195

is a policy for each player. The expected return of policy 196

profile (π1, π2) in game g is 197

u(g, π1, π2) = E
(at)i∼πi(H−1−t,st)

st+1∼T (st,at)

H−1∑
t=0

R(st, at) (1)



for Player 1 and −u(g, π1, π2) for Player 2. Under the as-198

sumption that Player 2 plays optimally, the utility to Player199

1 of policy π1 is u(g, π1) = minπ2:Π2
u(g, π1, π2). The op-200

timal policy is πO
1 = argmaxπ1:Π1

u(g, π1). The regret in-201

curred by a policy π1 is R(g, π1) = u(g, πO
1 )− u(g, π1).202

In the special case |S| = 1 we have a repeated game203

(Sandholm and Crites 1996). If in addition H = 1, we have204

a normal-form game. In the special case |A2| = 1 we have a205

single-player Markov decision process. If both of the above206

conditions hold, we have a multi-armed bandit. In the spe-207

cial case where the state transition graph induced by T is a208

tree, we have a perfect-information extensive-form game.209

Policy recommendation under uncertainty210

In this section we present three ways of recommending a211

policy in the end given our final pre-recommendation belief212

distribution over games. Later we show how the belief dis-213

tribution is constructed from observations.214

Bayesian recommendation215

Suppose we are uncertain about some aspects of the game,216

such as its rewards or state transition probabilities. Our be-217

liefs can be modelled by a belief distribution D : 4G over218

games. Given this belief distribution, what policy should we219

recommend for Player 1? We want to maximize expected220

utility, so we should recommend221

πB
1 = argmax

π1:Π1

E
g∼D

min
π2:Π2

u(g, π1). (2)

We call this the Bayesian recommendation.222

Since we lack a closed-form solution for πB
1 under general223

distributions D, we replace it with the approximation that is224

obtained by replacing the expectation with a Monte Carlo225

estimator (an empirical average):226

πMCB
1 = argmax

π1:Π1

∑
(j,g):B

min
π2:Π2

u(g, π1, π2) (3)

where B is a batch of independent samples from D.227

We can compute πMCB
1 as follows. Let R(j) and T (j) be228

the reward and transition functions of B(j). The V func-229

tion yields the expected utility for Player 1 in a given game230

when starting from a given horizon and state: V : domB ×231

[H]×S → R. The Q function yields the expected utility for232

Player 1 in a given game when starting from a given hori-233

zon, state, and action profile: Q : domB× [H]×S ×A1×234

A2 → R. Player 1’s recommended max-sum-min policy is235

π1 : [H]×S → 4A1 Player 2’s best-response policy in each236

game in the game batchB is π2 : domB×[H]×S → 4A2.237

We compute π1 using backward induction as follows. We238

initialize V (j, 0, s) = 0 and repeat239

Q(j, h, s, a1, a2) = R(j, s, a1, a2)+∑
s′:S

T (j, s, a1, a2, s
′)V (j, h, s′) (4)

240 π1(h, s) = argmax
σ1:4A1

∑
j:domB

min
σ2:4A2

Q(j, h, s, σ1, σ2)

π2(j, h, s) = argmin
σ2:4A2

Q(j, h, s, π1(h, s), σ2)

V (j, h+ 1, s) = Q(j, h, s, π1(h, s), π2(j, h, s))
(5)

from h = 0 to H − 1 (inclusive), where 241

Q(. . . , σ1, σ2)
def
=
∑
a1:A1

∑
a2:A2

σ1(a1)σ2(a2)Q(. . . , a1, a2)

(6)
for σi : 4Ai. To compute π1(h, s), we solve the following 242

linear program over variables σ1 : RA1 and v : RdomB . 243

maximize 1 · v
subject to 1 · σ1 = 1

σ1 ≥ 0

v(j) ≤ Q(j, . . . , σ1, a2) ∀j : domB, a2 : A2

(7)
Then πMCB

1 is the obtained π1. This algorithm also lets us 244

compute πO
1 by letting B contain just the true game g. 245

Maximum probability recommendation 246

The Bayesian recommendation is very different from maxi- 247

mizing utility under the most likely game, which is 248

πMP
1 = argmax

π1:Π2

min
π2:Π2

u(gMP, π1, π2) (8)

where gMP = argmaxg:G p(g) is the most likely game. The 249

latter is the objective sought by Lin, Beling, and Cogill 250

(2018), where selected rewards maximize the posterior of 251

the observed state-action pairs. We call this the maximum 252

probability recommendation. For our problem, it is subopti- 253

mal, since it does not maximize expected utility. 254

For a concrete example, suppose that Player 1 faces a 255

multi-armed bandit with two actions. We believe its rewards 256

are (1, 0) with 60% probability and (0, 2) with 40% proba- 257

bility. The maximum probability recommendation is to play 258

the first action, which yields an expected payoff of 0.6, while 259

the Bayesian recommendation is to play the second action, 260

which yields a higher expected payoff of 0.8. 261

Computing πMP
1 requires finding the global maximum of 262

D. To do this, we use the simplicial homology global opti- 263

misation (SHGO) algorithm (Endres, Sandrock, and Focke 264

2018) as implemented in SciPy 1.5.2 (Virtanen et al. 2020), 265

an open-source Python library for scientific computing. 266

SHGO is a general-purpose, derivative-free global optimi- 267

sation algorithm based on simplicial integral homology and 268

combinatorial topology. 269

Imitation recommendation 270

This recommendation simply tries to imitate Player 1’s pol- 271

icy based on the empirical frequencies of its actions: 272

πI
1(h, s, a1) =

α+ n(h, s, a1)∑
a′1:A1

(α+ n(h, s, a′1))
(9)

where n(h, s, a1) is the number of times Player 1 has played 273

a1 at time horizon h and state s. The pseudocount α > 0 274

is an additive smoothing parameter. From a Bayesian per- 275

spective, this can be interpreted as maintaining separate and 276

independent strategy distributions for each time horizon and 277

state. Each such distribution starts as a symmetric Dirichlet 278

distribution with concentration parameter α and is updated 279



according to Player 1’s actions. We use α = 1, which is the280

uniform Dirichlet distribution.281

Unlike the other two approaches, which are model-282

based (i.e., they explicitly model the game or a distribu-283

tion thereof), this approach cannot handle counterfactuals.284

The other two approaches can handle the scenario where a285

known modification or transformation f : G → G is ap-286

plied to the unknown game. A real-world example of such287

a known modification might be the introduction of an ob-288

stacle, elimination of a pathway, or other change in envi-289

ronmental conditions. Since the imitation recommendation290

simply tries to imitate Player 1’s policy under the original291

game, it can become useless under the modified game.292

Belief distribution: Concept and computation293

We now describe how the belief distributionD is determined294

and computed in our setting after we have observed the two295

players play the unknown game.296

Before observing the players’ game play, we start with297

some initial distribution over games—reflecting our prior298

beliefs. This prior can be as informative or uninformative as299

desired, depending on our a priori knowledge of the game300

environment. For example, we might place a Gaussian prior301

on the rewards for a particular state, or a Dirichlet prior on302

the transition probabilities for a different state. Our Bayesian303

framework is flexible in this regard, since it allows us to in-304

corporate any useful information into the prior.305

Bayes’ theorem tells us that our posterior distribution—306

that is, our distribution after making observations of the two307

players’ game play—is proportional (as a function of the308

game) to the product of the prior and the likelihood.309

p(game | observations)︸ ︷︷ ︸
posterior

∝ p(observations | game)︸ ︷︷ ︸
likelihood

p(game)︸ ︷︷ ︸
prior

(10)
The likelihood of a game g tells us the probability that we310

would have observed the behavior we did observe if this had311

been the true game.312

Our observations of the two players’ game play consti-313

tute a sequence of observation tuples. Each observation tu-314

ple (h, s, a1, a2, s
′) consists of the current horizon (number315

of remaining time steps) h, the current state s, Player 1’s316

action a1, Player 2’s action a2, and the next state s′.317

Using the chain rule for probability and the Markov prop-318

erty of the environment (state transition probabilities depend319

only on the current state and action profile, not the number320

of remaining time steps), we have321

p(s′, a1, a2 | h, s)
= p(s′ | h, s, a1, a2)p(a1, a2 | h, s)
= p(s′ | s, a1, a2)p(a1 | h, s)p(a2 | h, s)

(11)
To get the likelihood, we take the product of this expres-322

sion over all observation tuples. As this expression shows,323

there are three components to the likelihood. The first com-324

ponent is the probabilities of the observed state transitions325

given current states and action profiles. This component is326

purely a function of the environment itself (more precisely,327

its state transition function T ) and does not depend on the 328

players’ policies: p(s′ | s, a1, a2) = T (s, a1, a2)(s′). 329

The second and third components are the probabilities 330

of the observed actions given current states and time hori- 331

zons. These depend on the players’ policies: p(ai | h, s) = 332

πi(h, s)(ai) So, we must derive the policies for both players 333

under this game. This is a function of the players’ behav- 334

ior model. For example, we may assume they are playing 335

rationally according to a Nash equilibrium, or according to 336

a more relaxed game-theoretic solution concept such as a 337

quantal response equilibrium. We cover these in detail later. 338

A more concise representation of observations is in terms 339

of transition counts. Let n(h, s, a1, a2, s
′) denote the num- 340

ber of times (h, s, a1, a2, s
′) is observed. Missing entries im- 341

ply summation over those entries, for example 342

n(s, a1, a2) =
∑
h:[H]

∑
s′:S

n(h, s, a1, a2, s
′) (12)

If the true transition function were T , the counts for the 343

next state s′ would follow a multinomial distribution whose 344

probabilities are T (s, a1, a2): 345

n(s, a1, a2, s
′) ∼ multinomial(T (s, a1, a2), n(s, a1, a2))

(13)
and the counts for Player i’s action ai would follow a multi- 346

nomial distribution whose probabilities are πi(h, s): 347

n(h, s, ai) ∼ multinomial(πi(h, s), n(h, s)). (14)

In general, if x ∼ multinomial
(
θ,
∑
i:[k] xi

)
where x : 348

Nk and θ : 4[k], then the probability mass function is 349

p(x) =
(
∑
i:[k] xi)!∏
i:[k] xi!

∏
i:[k]

θxi
i (15)

In computations, we work with the logarithms of probabili- 350

ties to avoid numerical issues with underflow and overflow. 351

The likelihood tends to become more sharply peaked around 352

the true game as the number of observations increases. Fig- 353

ure 4 illustrates an example of how the likelihood evolves 354

when Nash equilibrium play is observed for a normal-form 355

game with two unknown parameters. 356

Nash equilibrium policies 357

We compute π1 and π2 using backward induction as follows. 358

Let V : [H] × S → R, Q : [H] × S × A1 ×A2 → R, and 359

[H]×S → 4Ai, as before. Initialize V (0, s) = 0 and repeat 360

Q(h, s, a1, a2) = R(s, a1, a2)+∑
s′:S

T (s, a1, a2, s
′)V (h, s′)

(π1(h, s), π2(h, s)) = argNash
(σ1,σ2):4A1×4A2

Q(h, s, ·, ·)

V (h+ 1, s) = Q(h, s, π1(h, s), π2(h, s))

(16)

from h = 0 to H − 1 (inclusive), where argNash denotes 361

the Nash equilibrium strategies of the specified normal-form 362

game. These strategies can be computed by solving the lin- 363

ear program in Equation 7 with | domB| = 1. Player 2’s 364

strategy σ2 : 4A2 is then contained in the the dual variables 365

of the solution that correspond to the last inequality. 366



Quantal response equilibrium policies367

The quantal response equilibrium (QRE) is a solution con-368

cept in game theory, like Nash equilibrium. It applies quan-369

tal choice analysis (McFadden 1976) to the game-theoretic370

setting. It was first defined for normal-form games in McK-371

elvey and Palfrey (1995) and extensive-form games in Mck-372

elvey and Palfrey (1998).373

QRE can model situations where payoff matrices are in-374

jected with noise, or where players are boundedly rational.375

Its smoothness makes gradient-based approaches feasible376

(Amin, Singh, and Wellman 2016). The most common type377

of QRE is a logit equilibrium (LQRE), where we have the378

fixpoint equations379

σi(ai) =
expλui(ai, σ−i)∑
a′i

expλui(a′i, σ−i)
(17)

over all players i, where σi is Player i’s strategy and380

ui(ai, σ−i) is their expected utility under action ai and the381

other players’ strategy profile σ−i.382

The number λ ≥ 0 acts a rationality parameter. As λ→ 0,383

the players become completely non-rational and play each384

action with equal probability. As λ → ∞, they become ra-385

tional and approach a Nash equilibrium.386

For a zero-sum normal-form game with payoff matrix P :387

Rn×m, the LQRE (σ1, σ2) satisfies388

σ1 = softmax(P ·σ2) and σ2 = softmax(−PT ·σ1) (18)
389

where softmax(x)i =
expxi∑
j expxj

. (19)

This is equivalent to solving the regularized max-min game390

max
x:Rn

min
y:Rm

xTPy +H(x)−H(y)

subject to 1Tx = 1, 1Ty = 1, x ≥ 0, y ≥ 0
(20)

where H(x) is the Gibbs entropy
∑
i xi log xi. Entropy reg-391

ularization encourages players to play more randomly and392

no action has zero probability. Furthermore, since the ob-393

jective is strictly a convex-concave problem, it has a unique394

saddle point (x, y), which is the LQRE.395

Ling, Fang, and Kolter (2018) compute this saddle point396

using a primal-dual Newton method. They also present the397

gradient with respect to P in terms of the obtained solution398

and gradients with respect to x and y, making the whole pro-399

cedure end-to-end differentiable. This means it can be inte-400

grated into differentiable learning procedures. It also opens401

the door to the use of gradient-based MCMC approaches.402

In our stochastic game setting, we define the LQRE as403

the policies derived by the backward induction procedure we404

used to find the Nash equilibrium policies, except we replace405

the strategies yielded by argNash with the strategies yielded406

by the normal-form game LQRE on Q(h, s, ·, ·).407

Sampling from the belief distribution408

To compute πMCB
1 , we must sample from D, the posterior409

belief distribution p(game | observations). One way to do410

this is to sample from the prior p(game) and then reweigh411

the sample’s contribution to the expectation according to the412

likelihood p(observations | game). The problem is that the 413

likelihood becomes very sharply peaked as the number of 414

observations grows (that is, fewer and fewer hypotheses are 415

able to explain the data well), so the likelihood is effectively 416

zero for the vast majority of samples from the prior (Figure 417

4), rendering the Monte Carlo estimate useless. 418

We could try using importance sampling to bias the dis- 419

tribution we sample from (and rescale the weights of the ex- 420

pectation accordingly) towards regions of higher posterior 421

probability. The problem with importance sampling is that, 422

in high-dimensional problems, it requires very careful tun- 423

ing of the proposal distribution. Importance weights tend to 424

blow up exponentially with dimensionality and it is easy for 425

the variance of the expectation estimator to diverge. 426

A different approach to the problem is Markov chain 427

Monte Carlo (MCMC). MCMC methods are a class of al- 428

gorithms for sampling from a probability distribution by 429

constructing a Markov chain over the sample space whose 430

limit distribution is the desired distribution f . That is, 431

limt→∞ p(xt = x) = f(x). To do this, we only need the 432

ability to query a function proportional to the desired dis- 433

tribution. In our case, this means we only need the prior 434

and likelihood, and not the evidence p(observations), which 435

would require computing an intractable integral. 436

The more MCMC steps are included, the more closely 437

the distribution of samples matches the actual desired dis- 438

tribution. One MCMC method is the Metropolis-Hastings 439

algorithm (Metropolis et al. 1953; Hastings 1970). Figure 5 440

shows an ensemble of walkers evolving according to that al- 441

gorithm. The proposal distribution used was a Gaussian dis- 442

tribution with variance 0.01. After many steps, the walkers 443

are approximately distributed according to the target distri- 444

bution. Therefore, to approximate a desired expectation, one 445

can average over the points where the walkers are located. 446

Metropolis-Hastings requires choosing a proposal distri- 447

bution. A bad proposal distribution may cause the chain to 448

take a long time to converge. For example, suppose the tar- 449

get distribution is a very elongated Gaussian but the proposal 450

distribution is circular. If the standard deviation of the latter 451

is small, it will take a long time to traverse the space. If the 452

standard deviation is large, the walker will frequently move 453

perpendicularly to the elongation into regions of very low 454

probability, resulting in high rejection rates. 455

Many other MCMC techniques and variants have been 456

developed, such as the Metropolis-adjusted Langevin al- 457

gorithm (Roberts and Tweedie 1996), parallel tempering 458

(Swendsen and Wang 1986; Geyer 1991), Hamiltonian 459

Monte Carlo (Duane et al. 1987; Neal 2012), No-U-Turn 460

Sampling (Hoffman and Gelman 2014), etc. Another exam- 461

ple is the Affine-Invariant Ensemble Sampler (AIES) pro- 462

posed by Goodman and Weare (2010). We use a well-tested 463

Python implementation of this algorithm called emcee 464

(Foreman-Mackey et al. 2013, 2019) in our experiments. 465

Experiments 466

We compare the performance of our recommendation strate- 467

gies on various stochastic games, evaluating the regret of the 468

recommended policy. 469



One class of games we use as a benchmark are randomly-470

generated stochastic games. For each state and action profile,471

transition probabilities are sampled from the uniform Dirich-472

let distribution and rewards are sampled from the standard473

uniform distribution. The games have 3 states, 3 actions per474

player at each state, and 10 time steps. 10 episodes of game475

play were observed under an LQRE rationality parameter of476

10 for both players. We used 100 walkers and did 10 trials.477

We let the unknown parameters be the rewards, using the478

standard uniform distribution as their prior. We let the modi-479

fied game be the same game with the rewards negated, effec-480

tively changing Player 1’s goal from reward maximization481

to reward minimization. Figure 1 shows the performance of482

each recommendation strategy on two such games with dif-483

ferent random seeds. Lines indicate the median and bands484

indicate the 25th and 75th percentiles.

Figure 1: Performance on randomly-generated games.

485
The MCB recommendation outperforms both the imita-486

tion and maximum probability recommendations in both the487

original game and the modified game, after enough MCMC488

iterations are performed for sufficient mixing.489

We also created a stochastic game, bombardment game490

(Figure 3), as a more structured benchmark. It is a491

gridworld-like environment in which Player 1 controls an492

entity that starts in the top left corner and moves around a493

maze for H time steps. In each step, Player 1 can choose494

to stay put or move in one of four cardinal directions.495

Player 2 (the crosshair) simultaneously chooses to target ei-496

ther Player 1’s current position or one of its 4 neighbor-497

ing positions. Player 1 receives a reward of -1 whenever498

Player 2’s crosshair coincides with Player 1’s next position.499

Therefore, in order to minimize damage, Player 1 should 500

move with some degree of unpredictability. 501

Each grid tile has an associated reward that is sampled 502

from the standard uniform distribution when the game is cre- 503

ated. We let the unknown parameters be these rewards and 504

use the same distribution as their priors. Again, the Bayesian 505

recommendation performed the best of the three. 506

We observed that Player 1 tends to seek areas with more 507

room for maneuverability. A corridor, for example, would 508

restrict Player 1’s next position to three possible locations, 509

making it an easier target. Player 2 knows this preference as 510

well and adjusts its bombardment strategy accordingly. This 511

interplay results in complex emergent behavior. 512

Conclusions and future research 513

We studied the problem of recommending a policy for an 514

unknown zero-sum stochastic game, given only observations 515

of the actions and state transitions incurred during play. The 516

players might play according to Nash equilibrium, quantal 517

response equilibrium, or any other behavioral assumption. 518

This work begets several future directions. First, the work 519

could be extended to general-sum stochastic games involv- 520

ing more than two players. In that setting, depending on the 521

game-theoretic solution concept used to model the players’ 522

observed behavior, one might have to deal with the problem 523

of selecting among equilibria with different payoffs. For in- 524

stance, in the case of multiple Nash equilibria, one might 525

choose payoff-dominant or risk-dominant equilibria. 526

Second, there are many gradient-based MCMC tech- 527

niques (such as Hamiltonian Monte Carlo) that make use 528

of the gradient of the posterior density to speed up conver- 529

gence. Ling, Fang, and Kolter (2018) show how to back- 530

propagate gradients through a quantal response equilibrium, 531

while Amos and Kolter (2017) show how to backpropagate 532

gradients through a linear program (and therefore, in our 533

case, a Nash equilibrium). By using these in our algorithms, 534

one could find the gradient of the posterior density with re- 535

spect to the unknown game parameters. 536

Third, one could relax the assumption that one knows the 537

players’ behavior model. For example, if they play accord- 538

ing to a quantal response equilibrium, one might have a be- 539

lief distribution over the rationality parameter of each player. 540

Fourth, one could generalize this work in the direction 541

of imperfect-information extensive-form games. In that set- 542

ting, algorithms such as counterfactual regret minimization 543

(Zinkevich et al. 2007), the excessive gap technique (Hoda 544

et al. 2010; Kroer et al. 2020), or full-width fictitious play 545

(Heinrich, Lanctot, and Silver 2015) can be used to con- 546

verge to a Nash equilibrium. Furthermore, Farina, Kroer, and 547

Sandholm (2018) present a regret-minimization algorithm 548

for computing reduced normal-form quantal response equi- 549

libria by minimizing local regrets, allowing one to compute 550

quantal response equilibria in extremely large games. To 551

make a Bayes-optimal recommendation under uncertainty, 552

one could sample multiple games from the belief distribu- 553

tion and place them under a root chance node, tagging the 554

information sets belonging to Player 2 with the correspond- 555

ing subtree so that Player 2, but not Player 1, knows which 556

game is being played. 557
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Appendix675

In this appendix we present additional technical material that676

did not fit in the body of the paper.677

Illustration of suboptimality of maximum678

probability recommendation679

For an intuitive visual illustration of this, suppose our be-680

lief distribution over a one-dimensional continuous param-681

eter is as shown in Figure 2. The mode, which is the peak682

on the right, is atypical of the vast majority of the distribu-683

tion, which lies on the left. Thus the maximum probability684

recommendation ignores the bulk of the distribution com-685

pletely, even though most of the probability mass lies there.686

Figure 2: The bimodal mixture distribution 0.95N (−4, 1)+
0.05N (4, 0.05), where N (µ, σ) is the normal distribution
with mean µ and standard deviation σ.

687

Additional figures688

Figure 3: An example layout of a bombardment game.

Figure 4: Likelihood function under Nash equilibrium play
for a normal-form game with two unknown parameters, with
a growing number of observations.

Figure 5: Evolution of the walker ensemble.


