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Thermal stability of a quantum rotation sensor
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We investigate the thermal instability of a Bose-Einstein condensate stirred by a rotating barrier in a

ring-shaped trap. One would expect the critical angular speed to decrease with increasing temperature due to

depletion of the condensate. However, we show that the critical velocity remains approximately constant within

a considerable range of temperatures, contrary to expectation, and the thermal cloud has a stabilizing effect.
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I. INTRODUCTION

Ultracold atomic circuits have been realized in toroidal

condensates with a tunable weak link [1–4]. Annular super-

fluids with a weak barrier inside can be used as nonlinear

interferometers and are suitable for high-precision quantum

devices or sensitive rotation sensors [5–8] and hence are prac-

tical in metrology [9].

Ring-shaped Bose-Einstein condensates in annular traps

have been investigated both experimentally and theoretically

[1–3,10–23]. In order to use such geometry for rotational

sensors, however, the condensate needs to be stirred, and the

decay of the persistent current via phase slips has to be con-

trolled accurately [24–26]. As the rotation rate, �, increases

from zero up to a few hertz, it may reach a threshold, �crit,

above which vortices enter into the bulk of the condensate.

Ramanathan et al. [2] have already reported measurements of

�crit in a superfluid ring by observing the decay of a persistent

current flowing past a stationary barrier.

Early experiments used simply connected condensates; the

perturbing potential moved through the condensate [27–32]

or used a phase imprinting technique [33,34], or the entire

trap was rotated [35–37] to create vortices or dark solitons.

Condensates in annular setups, however, represent a different

topology, and the effect of geometry can be investigated more

directly [38,39]. Furthermore, with the introduction of a weak

link this setup provides a platform for creating sensors sim-

ilar to the RF-superconducting quantum interference device

(SQUID).

In atomtronics, a ring condensate is a central atomic circuit

element; however, in practical applications one aims to control

the thermal behavior of a sensor to achieve higher precision or

less measurement uncertainty. Due to its practical importance,
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here we investigate the thermal dependence of the critical

angular frequency, �crit, in a ring-shaped Bose-Einstein con-

densate (see inset of Fig. 1). In Ref. [40] we demonstrated that

an effective one-dimensional model is sufficiently accurate to

estimate �crit, hence we use this model in the current study.

For traps confining both condensate and thermal cloud two

competitive phenomena, the depletion of the condensate and

the effective potential due to the thermal cloud, keep the criti-

cal rotation speed almost unchanged for a considerable range

of temperatures. This stability favors the further development

of atomtronic devices based on annular setup.

II. THE GOVERNING EQUATION

At sufficiently low temperature a homogeneous, noninter-

acting, three-dimensional boson system undergoes a phase

transition [41] and forms a Bose-Einstein condensate (BEC).

At zero temperature the single-particle Schrödinger equation

provides an adequate description. However, if weak and point-

like interaction is considered, then a term proportional to the

density must be included, and, in the mean-field approxima-

tion, one arrives at the Gross-Pitaevskii equation [11]

ih̄
∂�

∂t
=

[
−

h̄2

2m
∇2 + V +

4π h̄2(N − 1)as

m
|�|2

]
�.

Above h̄ is the reduced Planck constant, m and as are the

mass and s-wave scattering length of the particle species,

respectively, while V is an external trap, and N is the number

of particles.

In the following we focus on how thermal effects modify

the dynamics of the condensate stirred by a potential barrier in

an annular trap rotating at a rate of �. Transforming the equa-

tion of motion to a rotating reference frame introduces a new

term, −�Lz, where Lz = −ih̄[r × ∇]z. In order to render the

new equation of motion dimensionless a length and timescale,

a0 and ω−1 = (h̄/ma2
0 )−1, are introduced, and the variables

are transformed as t �→ t/ω, x �→ xa0, � �→ �a
−3/2
0 , � �→

�ω, and V �→ h̄ωV . Keeping the original denotations, the
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dimensionless Gross-Pitaevskii equation reads as

i
∂�

∂t
=

[
−

1

2
∇2 + V + u0N |�|2 − �Lz

]
�, (1)

where u0 = 4πas/a0 and (N − 1) in the self-interaction term

is replaced by N . For sodium atoms the parameters are

m = 3.8 × 10−26 kg, and as = 2.75 nm [42–44]. For units

we have chosen a0 = 10 µm and ω ∼= 2π × 4.4 rads−1, with

total number of atoms being N = 2.9 × 105 corresponding

to u0N ∼= 1000. These values are similar to the experimental

value in Refs. [24,45,46].

III. REDUCED MODELS

Equation (1) can be reduced to a two-dimensional equa-

tion by assuming that the wave function can be factorized,

�(x, y, z, t ) = ψ (x, y, t )ψ0(z), and in the z direction the con-

densate in its ground state, ψ0, of the trapping harmonic

potential with a stationary barrier included. Integrating Eq. (1)

with respect to z leads to [47]

i
∂ψ

∂t
=

[
−

1

2
∇2 + U + β|ψ |2 − �Lz

]
ψ.

The condensate and the thermal cloud of atoms are trapped

in the ring-shaped potential and then stirred by a potential

barrier. The potential is the sum of these two terms: U =

Utrap + Ubarrier. The rotating barrier expels some of the atoms

from a narrow arc in the trap, thereby creating a weak link

between the condensate on the two sides of the barrier. The

extent of this expulsion plays an important role in the follow-

ing.

The annular trap is defined as

Utrap(r) =
ut

2

[
tanh

(R1 − r

b

)
+ tanh

(r − R2

b

)
+ 2

]

in which ut is the depth of the potential trap and is taken to

be large enough so that both the condensate and the ther-

mal cloud are trapped within the annulus. The radii of the

inner and the outer edge of the trap are R1 = 20 µm and

R2 = 30 µm. These parameter values correspond to a criti-

cal temperature of ≈1020 nK. The parameter b controls the

sharpness of potential edges and is chosen to be b = 0.1 µm.

The stirrer can be created in an analogous manner, but in the

angular variable, θ ,

Ubarrier(θ, t ) =
ub

2

[
2 + tanh

(
1

b

[
θ − θ0(t ) +


θ

2

])

− tanh

(
1

b

[
θ − θ0(t ) −


θ

2

])]
,

where ub is height of the stirrer. The extra terms, compared

to Utrap are the azimuthal width of the barrier, 
θ , and the

instantaneous center of the barrier, θ0(t ). The latter depends

on time, and, for example, using θ0(t ) ∝ t would simulate

barrier rotating in a uniform manner. We change 
θ , and θ0(t )

to study their effect on the dynamics of the condensate and the

noncondensate cloud.

The two-dimensional problem can be simplified even

further by neglecting any appreciable dynamics in the

radial direction and considering the azimuthal angle θ or

R1 R2

θ

x

r

FIG. 1. Appearance of a phase slip (dashed line) through a dark

soliton (solid line) for barrier height ub = 20 and angular width of


θ = π/6. The snapshot is taken at t = 3.59 units after starting from

rest with acceleration θ̈ = 0.04. (Inset) Overview of the ring-shaped

confining trap (gray) with a barrier (dark gray) covering the entire

channel width.

the corresponding arc-length x, along an effective radius r,

to be the only degree of freedom; i.e., the wave-function

is further factorized as ψ (r, θ, t ) = �(x, t )R(r). Here R(r)

is calculated from the angular average of the ground-state

density profile: R2(r) =
∫

|ψgs(r, θ )|2 rdθ . The effective one-

dimensional Gross-Pitaevskii equation then becomes

i
∂�

∂t
= H� =

[
−

1

2

∂2

∂x2
+ Ubarrier + β ′|�|2 + ir�

∂

∂x

]
�,

(2)

augmented with periodic boundary condition for �. Further-

more, β ′ = u′
0N , where r and u′

0 are

r =

∫
r|R(r)|2 dr and u′

0 = u0

∫
|R(r)|4 dr.

In the two-dimensional problem the values ub = 4.3 nK,


θ = π/6 were used, which translate to r ∼= 25.3 µm, and

β ′ ∼= 963. These numerical values were used in the effective

one-dimensional description. Comparing the predictions of

the one- and two-dimensional descriptions we found �1D
crit =

1.21 and �2D
crit = 1.23.

A phase slip occurs in this one-dimensional model by the

creation of a dark soliton. In Fig. 1 one can see the process of

phase slip through creation of solitons in the one-dimensional

model.

In order to calculate the critical rotation speed of the barrier

accurately, we calculate the ground-state solution in a corotat-

ing frame with the barrier present, and then sweep the rotation

speed to see at what point the ground-state solution becomes

unstable and changes to a solution with a 2π phase jump.

IV. THERMAL EFFECTS ON �crit

Apart from the idealized case of noninteracting boson sys-

tem at absolute zero temperature, some atoms occupy excited

states and form a cloud. For an interacting system such a cloud

is always present, even at zero temperature. Let us investigate

the effect of this thermal cloud on �crit by calculating the
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excitations around a stationary solution of Eq. (2): � = �0 +

z. Substituting � and neglecting second-order terms in z we

obtain

i
dz

dt
= Lz + Mz∗ (3)

with L = − 1
2

∂2

∂x2 + Ubarrier + 2β ′|�0|
2 − �Lz − µ and M =

β�2
0. We also expand z in eigenmodes, uk and vk , considering

both positive and negative frequencies

z =
∑

k

uke−iωkt + v
∗
k eiωkt .

Substituting this expansion into Eq. (3) one obtains the

Bogoliubov–de Gennes (BdG) equations in the rotating frame:
(

L M

−M∗ −L∗

)(
uk

vk

)
= ωk

(
uk

vk

)
. (4)

If ωk is real, then the stationary solution is stable, while the

appearance of a complex frequency is a sign of instability. In

this one-dimensional model the lowest frequency approaches

zero as � → �crit [40].

As the temperature increases more and more atoms can

occupy higher energy states, hence the number of atoms

in the thermal cloud increases, and thus the condensate is

depleted more and more. Since �crit is proportional to the

condensate density, we expect �crit to decrease with in-

creasing temperature. However, contrary to our expectation,

the effective potential, created by the thermal cloud, pre-

vents the immediate reduction of �crit and compensates for

the depletion. The thermal cloud has a stabilizing effect

maintaining the critical speed more or less constant in the

temperature range examined. This conclusion is supported

by the numerical simulation relying on the dimension-

less Hartree-Fock-Bogoliubov approach augmented with the

Popov approximation in rotating frame
[
−

1

2

∂2

∂x2
+ Ubarr + 2u′

0ñ(x) + β ′′|�|2 − �Lz − µ

]
� = 0,

(5)

where β ′′ is the same as β ′ in Eq. (2) except the total number

of atoms N is replaced with the number of condensate atoms,

Nc. Furthermore, ñ(x) is the density of the thermal cloud

ñ(x) =
∑

k>0

[(1 + nk )|vk (x)|2 + nk|uk (x)|2], (6)

where nk is the occupation number of the kth excitation mode

with positive frequency, ωk , and is given by the Bose-Einstein

distribution. The number of atoms in the thermal cloud is

Nth(T ) =

∫
ñ(x) dx,

while in the condensate Nc(T ) = N − Nth(T ).

In order to find the critical speed of the barrier we start

with � ≪ �crit and solve Eq. (5) self-consistently for a

stable ground-state solution. First, we obtain the ground-

state solution �0 of Eq. (2). Next the frequency eigenvalues

and eigenfunctions are calculated from the BdG equation

(4) from which ñ(x) can be determined via Eq. (6). These

quantities in hand, we are in a position to calculate the

FIG. 2. Thermal behavior of the critical rotation speed of the

barrier as a function of temperature. The four barrier heights, ub, are

given in temperature equivalent unit. The colored lines use the HFB-

Popov approximation, while the black line assumes only depletion of

the atoms in the condensate.

updated ground-state wave function �0 via the Hartree-Fock-

Bogoliubov-Popov approximation (5). After updating β ′′, and

Veff = Ubarrier + 2u′
0ñ(x), we replace β ′ and Ubarrier with them

in the definition of L, respectively, and solve Eq. (4) to obtain

the new β ′′ and ñ(x). We keep doing this iterative proce-

dure until �0 converges. We gradually increase � until we

reach the critical value, �crit, for which convergence cannot

be achieved anymore. At �crit the condensate wave function

develops a 2π phase jump and a topologically different solu-

tion, a dark soliton, becomes the lowest energy solution. We

might expect that the dominant effect of the temperature is

to deplete the condensate, and this reduction in Nc decreases

the nonlinear coupling, β, and hence �crit decreases as well.

Our calculations, however, show that the thermal cloud creates

an effective potential, Veff = Ubarrier + 2u′
0ñ(x), and its distri-

bution is such that it compensates for the depletion of the

condensate for a wide range of temperatures.

In Fig. 2, �crit is plotted as a function of temperature

for five different barrier heights, ub, and for a case where

the Hartree-Fock-Bogoliubov approximation is not employed.

One may notice neglecting the effects of the thermal cloud

leads to a monotonically decreasing critical angular speed

(black), while the other curves seem to be concave from

below, even at a low barrier height. However, as ub decreases

(cf. top curve for the lowest ub), and consequently the effect

of thermal cloud is reduced, �crit is flat only very close to

the absolute zero and drops nearly at a similar rate as the

“no HFB” curve. Earlier studies of cylindrically trapped con-

densates [48,49], following similar theoretical models, also

support the conclusion that a rotating condensate can be stable

even at nonzero temperatures

It is clear that the effective potential of the thermal cloud

plays an important role even at zero temperature. To clarify

its effect, one can see a plot of the potential barrier and the

effective potential produced by the thermal cloud in Fig. 3

for � = 0.91 < �crit, and T = 100 nK. It is clear that the

effective potential is weaker in the barrier region as the density

of the thermal atoms are mostly expelled from that region;

however, the thermal cloud potential raises the level of the
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FIG. 3. The bare barrier potential and the effective potential cre-

ated by the thermal cloud are depicted as a function of the central

angle, θ . The sum of these two potentials form Veff, which has a

barrier with an effective height of ∼=18 instead of 20 units as in

the bare potential. Hence the thermal cloud effectively reduced the

barrier height.

total potential everywhere, but less in the barrier region, and

its net result is reducing the barrier height.

We have shown [40] that �crit ∝ β ′ and �crit ∝ 1/ub.

Hence, the result of this factor is to increase the critical ve-

locity. On the other hand, reducing the number of atoms in the

BEC by increasing temperature would tend to lower it. These

two competing factors cancel out each other in some range of

temperatures and causes the critical velocity to remain stable

against variation of temperature. To compare the influence

scale of these two factors, we can obtain the change in β ′ and

the final barrier height Veff at each temperature at a rotation

frequency that is not very far from the critical velocity. We

are aware of the fact that rotation changes the BdG spectrum,

and consequently the change in the condensate number, and

the effective barrier height. But we investigate what happens

in a region that is not far from the critical velocity to obtain a

qualitative explanation of the effect of these two factors.

In Ref. [40] we have given an implicit expression for �crit

in terms of the system parameters, e.g., the interaction strength

β ′ and the effective barrier height, and we use that expression

to evaluate the total change:


�crit =

(
∂�crit

∂β ′

)

Veff


β ′(T ) +

(
∂�crit

∂Veff

)

β ′


Veff(T ). (7)

Both terms depend on temperature, and both 
β ′ and 
Veff

are negative for a barrier of height ub = 20 and width

FIG. 4. (Top panel) Changes in the effective barrier height and

the effective β ′ as a function of temperature. (Bottom panel) Vari-

ation of the critical frequency to the linear order of 
β ′(T ), and


Veff(T ). They are calculated using our information about the ther-

mal changes in β ′, and Vb at a rotation close to the critical value

(� = 0.91).


θ = 1
6
π and at the rotation frequency � = 0.91. In Fig. 4

it is apparent that their scale of variation is quite different.

However, the sensitivity of the critical velocity to the barrier

height, ∂�crit/∂Veff, is stronger than that to β ′, and their signs

are opposite. In the bottom panel of Fig. 4, we have plotted the

first and second terms of Eq. (7) and their sum. It is apparent

that the additive terms in Eq. (7) have opposite signs and

nearly cancel each other; thus 
�crit barely varies within the

given temperature range.

V. CONCLUSION

We have studied the effect of thermal cloud on the critical

angular speed of a rotating barrier at a wide range of tem-

perature. We observed that the critical angular speed is quite

stable with respect to temperature changes for strong enough

barriers confining both the condensate and the thermal cloud.

The results are inconsistent with the intuitive expectation that

�crit should decrease as particles leave the condensate thereby

reducing the condensate density and consequently reducing

the effect of the nonlinear term as well. This stability is the

result of the reduction of the effective potential barrier height,

caused by the thermal cloud, and it can compensate the effect

of reduction of the condensate number.
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