
Recompose Event Sequences vs. Predict Next Events: A Novel
Anomaly Detection Approach for Discrete Event Logs

Lun-Pin Yuan
Pennsylvania State University

United States
lunpin@psu.edu

Peng Liu
Pennsylvania State University

United States
pxl20@psu.edu

Sencun Zhu
Pennsylvania State University

United States
sxz16@psu.edu

ABSTRACT
One of the most challenging problems in the field of intrusion detec-
tion is anomaly detection for discrete event logs. While most earlier
work focused on applying unsupervised learning upon engineered
features, most recent work has started to resolve this challenge
by applying deep learning methodology to abstraction of discrete
event entries. Inspired by natural language processing, LSTM-based
anomaly detection models were proposed. They try to predict up-
coming events, and raise an anomaly alert when a prediction fails to
meet a certain criterion. However, such a predict-next-event method-
ology has a fundamental limitation: event predictions may not be
able to fully exploit the distinctive characteristics of sequences. This
limitation leads to high false positives (FPs). It is also critical to
examine the structure of sequences and the bi-directional causality
among individual events. To this end, we propose a new methodol-
ogy: Recomposing event sequences as anomaly detection. We propose
DabLog, a LSTM-based Deep Autoencoder-Based anomaly detection
method for discrete event Logs. The fundamental difference is that,
rather than predicting upcoming events, our approach determines
whether a sequence is normal or abnormal by analyzing (encoding)
and reconstructing (decoding) the given sequence. Our evaluation
results show that our new methodology can significantly reduce
the numbers of FPs, hence achieving a higher 𝐹1 score.

CCS CONCEPTS
• Security and privacy → Intrusion/anomaly detection and
malware mitigation.

KEYWORDS
Computer Security, Anomaly Detection, Machine Learning

ACM Reference Format:
Lun-Pin Yuan, Peng Liu, and Sencun Zhu. 2021. Recompose Event Sequences
vs. Predict Next Events: A Novel Anomaly Detection Approach for Discrete
Event Logs. In Proceedings of the 2021 ACM Asia Conference on Computer
and Communications Security (ASIA CCS ’21), June 7–11, 2021, Virtual Event,
Hong Kong. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3433210.3453098

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8287-8/21/06. . . $15.00
https://doi.org/10.1145/3433210.3453098

1 INTRODUCTION
One of the most challenging problems in the field of intrusion de-
tection is anomaly detection for discrete event logs. Researchers have
been trying to resolve this challenge for two decades, and most
work have focused on applying unsupervised learning upon engi-
neered features from normal data, assuming unforeseen anomalies
do not follow the learned normal patterns (e.g., [1, 18, 20, 21, 23–
25, 27, 28, 31]). Recently, solving this challenge with deep learning
has gained a substantial amount of traction in the security com-
munity (e.g., [4, 10–12, 40]), partially due to the unique advantages
of deep learning in natural language processing. Researchers have
applied related language-processing methodologies to anomaly de-
tection for discrete event logs by treating discrete events as words
and logs as sentences, as if linguistic causality exists in the security
logs. The main benefit of this approach over machine learning upon
engineered features is that detailed domain knowledge, complex
feature extraction, and costly human interference are no longer
required (e.g., [9, 22, 23, 35, 41]).

Inspired by natural language processing, Long Short Term Mem-
ory (LSTM) [17] based anomaly detection models (e.g., [4, 10–
12, 40]) were proposed. These models try to predict upcoming log
events, and they raise an anomaly alert when a prediction fails
to meet a certain criterion. However, we found that the widely-
adopted methodology “using an LSTM-based model in predicting
next events” has a fundamental limitation: event predictions may
not be able to fully exploit the distinctive characteristics of
sequences. To be specific, event-prediction methodology assumes
the distribution of an event is affected only by the prior events be-
fore it (e.g., when a model sees an open file-operation, it can guess
such an open operation is followed by read operations); however,
the distribution can also be affected by later events (e.g., when a
model sees a read operation, it should examine whether it has seen
any open operation) or no events whatsoever (e.g., an event may
have nothing to do with the other events). Therefore, an anom-
aly detection method should also look deeper into the sequential
structure and the bi-directional causality among events. Because
of this limitation, the widely adopted methodology could lead to
numerous false positives (FPs).

The reason why the methodology could lead to FPs is illustrated
in the following example. Consider a normal sequence of file op-
erations [open A, read A, read A] and an upcoming event open B.
By seeing just the first few operations, a predictor-based anomaly
detection model may guess the upcoming event to be read A, be-
cause (1) it is one of the most frequent events that follow open A in
the training dataset while open B is less frequent, and (2) the first
few operations does not enclose prior knowledge which indicates B
will be soon opened; consequently, the predictor-based model may

https://doi.org/10.1145/3433210.3453098
https://doi.org/10.1145/3433210.3453098
https://doi.org/10.1145/3433210.3453098

wrongly report the sequence as abnormal, although in reality it is
also normal but less common. The fundamental issue is that, when
little necessary knowledge is available in a sequence (regardless of
sequence length), predictor-based anomaly detection always has to
make bold guesses. As an FN (false negative) example, consider an
abnormal sequence of file operations [read A, read A, close A] and
an upcoming event read A. If the predictor-based model does not
examine whether there is any open A before the upcoming read A,
it may consider this sequence normal, hence a false negative.

To address the fundamental limitation of not being able to fully
exploit the distinctive characteristics of sequences, we propose a dif-
ferent methodology: using an LSTM autoencoder to recompose
sequences. Compared to the existing methodology, the fundamen-
tal difference is that our LSTM autoencoder determines whether
a sequence is normal or abnormal by analyzing (encoding) and
reconstructing (decoding) the given sequence rather than predict-
ing upcoming individual events. The intuition is that an anomaly
detection method should see a sequence as an atomic instance, and
it should examine the structure of the sequence as well as the bi-
directional causality among the events. By doing so, our anomaly
detection model can detect not only sequences that include unseen
or rare events, but also structurally abnormal sequences. Note that,
our model is more than a standard autoencoder which reconstructs
input vectors. To work with discrete events, our solution is designed
as an embed-encode-decode-classify-critic model.

In this work, we propose DabLog, a Deep Autoencoder-Based
anomaly detection method for discrete event Logs. DabLog aims
to provide an anomaly detection function AD : S → {normal,
abnormal}. DabLog consists of four major components (Figure 2):
an embedding layer, a deep LSTM autoencoder, an event classifier,
and an anomaly critic. Our evaluation results show that the new
methodology can significantly reduce the number of FPs, while
achieving a better 𝐹1 score. Compared to our predictor-based base-
line model, DabLog reports 1,790 less FPs but 1,982 more TPs (true
positives) in our evaluation upon system logs with 101 distinct
events, and DabLog reports 2,419 less FPs with trade-off 83 less
TPs in our evaluation upon traffic logs with 706 distinct events.
Specifically, we make the following contributions.

(1) Through in-depth FP and FN case studies, we discover a
fundamental limitation of predictor-based models. We re-
solve this limitation by proposing a deep autoencoder-based
anomaly detection method for discrete event logs.

(2) We evaluate DabLog upon two datasets and our results show
that DabLog outperforms our re-implemented predictor-
based baseline model in terms of 𝐹1 score. DabLog achieves
97.18% and 80.25% 𝐹1 scores in evaluation upon HDFS sys-
tem logs (101 distinct events) and in evaluation upon UNSW-
NB15 traffic logs (706 distinct events), respectively, while
our baseline model achieves only 87.32% and 56.77%.

(3) To the best of our knowledge, we are the first to show that
autoencoders can effectively serve the purpose of detecting
time-sensitive anomalies in discrete event logs with more
distinct events, while the common practice is to apply pre-
dictors to time-sensitive data with fewer distinct events and
to apply autoencoders to time-insensitive data.

2 RELATEDWORK
Most anomaly detectionmethods are zero-positivemachine learning
models that are trained by only normal (i.e., negative) data and then
used in testing whether observation data is normal or abnormal,
assuming unforeseen anomalies do not follow the learned normal
patterns. For example, Kenaza et al. [20] integrated supports vector
data description and clustering algorithms, and Liuq et al. [25] inte-
grated K-prototype clustering and k-NN classification algorithms
to detect anomalous data points, assuming anomalies are rare or
accidental events. When prior domain knowledge is available for
linking causal or dependency relations among subjects and objects
and operations, graph-based anomaly detection methods (such as
Elicit [27], Log2Vec [21], Oprea et al. [31]) could be powerful. When
little prior domain knowledge is available, Principal Component
Analysis (PCA) based anomaly detection methods (for example, Hu
et al. [18] proposed an anomaly detection model for heterogeneous
logs using singular value decomposition) could be powerful. Oppo-
sitions to zero-positive anomaly detection are semi-supervised or
online learning anomaly detection, in which some anomalies will
be available over time [8].

Autoencoder framework is another PCA approach that is widely
used in anomaly detection. Briefly speaking, a typical autoencoder-
based anomaly detection method learns how to reconstruct normal
data, and it detects anomalies by checking whether the reconstruc-
tion error of a data point has exceeded a threshold. To detect anom-
alies, Zong et al. [43] proposed deep autoencoding Gaussianmixture
models, Chiba et al. [6] proposed autoencoders with back propaga-
tion, Sakurada and Yairi [34] proposed autoencoders with nonlinear
dimensionality reduction, Lu et al. proposed MC-AEN [26] which
is an autoencoder which is constrained by embedding manifold
learning, Nguyen et al. proposed GEE [30] which is a variational
autoencoder with gradient-based anomaly explanation, Wang et
al. proposed adVAE [37] which is a self-adversarial variational au-
toencoder with Gaussian anomaly prior assumption, Alam et al.
proposed AutoPerf [1] which is an ensemble of autoencoders ac-
companied by K-mean clustering algorithm, Mirsky et al. proposed
Kitsune [28] which is an ensemble of lightweight autoencoders,
Liu et al. [23, 24] proposed an ensemble of autoencoders for multi-
sourced heterogeneous logs, and Chalapathy et al. [5] and Zhou et
al. [42] proposed robust autoencoders.

The above methods only work with time-insensitive data (i.e.,
data points are independent to each other). To work with time-
sensitive data (i.e., dependencies exist among data points), re-
searchers have leveraged Long Short-Term Memory (LSTM) [17] in
building anomaly detection models. LSTM has been widely used in
learning sequences, and LSTM-based deep learning has been widely
used to extract patterns from massive data. Since most cyber opera-
tions are sequential (e.g., as in timestamped audit logs), LSTM-based
deep learning has great potential in serving anomaly detection ap-
plications. Inspired by natural language processing, Deeplog [10],
Brown et al. [4], DReAM [12], HAbAD [11], and nLSALog [40] were
proposed to build LSTM-based multi-class classifier in order to pre-
dict future log entries. We summarize these LSTM-based methods
in the next section; for other anomaly detection methods, recent
surveys and comparisons can be found in [2, 13].

𝐿
𝑆
𝑇
𝑀
1𝜙

𝐿
𝑆
𝑇
𝑀
1𝜙

𝐿
𝑆
𝑇
𝑀
1𝜙

𝐿
𝑆
𝑇
𝑀
2𝜙

𝐿
𝑆
𝑇
𝑀
2𝜙

𝐿
𝑆
𝑇
𝑀
2𝜙

𝑥2 𝑥3

𝑦1 𝑦2 𝑦3

𝑥1

ℎ1
2 ℎ2

2

ℎ1
1 ℎ2

1

Encoder 𝜙

Decoder 𝜓[]

[]

𝑌2 = 𝑥4, 𝑥5, x6

𝑌1 = 𝑥3, 𝑥2, x1

𝑌 =

Autoencoder

Predictor

𝐿
𝑆
𝑇
𝑀
1𝜓

𝐿
𝑆
𝑇
𝑀
1𝜓

𝐿
𝑆
𝑇
𝑀
1𝜓

𝐿
𝑆
𝑇
𝑀
2𝜓

𝐿
𝑆
𝑇
𝑀
2𝜓

𝐿
𝑆
𝑇
𝑀
2𝜓

ℎ′1
2 ℎ′2

2

ℎ′1
1 ℎ′2

1

R
ep

re
se

n
ta

ti
o

n
 C

o
d

e

Figure 1: Deep LSTM Encoder-Decoder Network

3 BACKGROUND KNOWLEDGE
To understand our approach, some background knowledge on
Deep LSTM Encoder-Decoder Network is essential. Cho et al. [7]
proposed an LSTM encoder-decoder network for statistical ma-
chine translation. Both encoder and decoder are recurrent net-
works. An encoder 𝜙 takes a variable-length input sequence 𝑋 =

[𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑇] of length 𝑇 and generates a brief fixed-length
representation code (also commonly referred to as the represen-
tation or the code) of 𝑋 , and the encoding operation is denoted as
code = 𝜙 (𝑋)). A decoder𝜓 then takes the representation code and
generates a variable-length target sequence 𝑌 = [𝑦1, 𝑦2, 𝑦3, . . . , 𝑦T]
of lengthT , and the decoding operation is denoted as𝑌 = 𝜓 (code) =
(𝜓 ◦𝜙) (𝑋). Depending on the application,𝑋 and 𝑌 may have differ-
ent lengths. Srivastava et al. [36] summarized three types of LSTM
encoder-decoder networks for unsupervised learning models.

(1) Autoencoder: The goal of an autoencoder is to enclose into
the representation code all needed to reconstruct the same
sequence. An autoencoder takes an input sequence 𝑋 =

[𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑇] and tries to reconstruct the target sequence
𝑌1 = [𝑥𝑇 , 𝑥𝑇−1, 𝑥𝑇−2, . . . , 𝑥1]. Note that the target sequence
is in the reverse order, as if the encoder recurrently encodes
(pushes) 𝑥𝑡 into the representation code, whereas the decoder
recurrently decodes (pops) 𝑥𝑡 from the code.

(2) Predictor: The goal of a predictor is to predict future sequence
based on what it has observed. The representation code plays
the role of an internal hidden state. A predictor takes the in-
put sequence 𝑋 = [𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑇] and tries to predict the
target sequence 𝑌2 = [𝑥𝑇+1, 𝑥𝑇+2, 𝑥𝑇+3, . . . , 𝑥𝑇+T]. If T = 1,
then it is a single-event predictor.

(3) Composite: Merging the above two models, a composite
model tries to reconstruct-predict 𝑌3 = [𝑌1, 𝑌2].

Each LSTM encoder-decoder network listed above can be con-
ditional or unconditional, depending on whether the true 𝑦𝜏
(condition) is provided to the decoder (as an additional input) when
the decoder tries to decode 𝑦𝜏+1. In an autoencoder, 𝑦𝜏 = 𝑥𝑇−𝜏+1,
whereas in a predictor 𝑦𝜏 = 𝑥𝑇+𝜏 .

The time-sensitive anomaly detection models for discrete event
logs, mentioned in Section 2, are predictors. These predictors typ-
ically consider an upcoming event 𝑥𝑇+𝜏 normal if the probability

Pr(𝑥𝑇+𝜏 |𝑥1, 𝑥2, . . . , 𝑥𝑇+𝜏−1) is within a threshold (or alternatively
𝑥𝑇+𝜏 is within the top-𝑁 prediction); otherwise abnormal. Specif-
ically, DeepLog [10] leverages a two-layer LSTM network that
works on one-hot representation of log entries. Brown et al. [4]
leverages bidirectional LSTM, word embedding, and five atten-
tion mechanisms. Both HAbAD [11] and DReAM [12] build an
embed-encoder-attention-decoder framework. nLSALog [40] lever-
ages n-layer stacked LSTM, embedding layer, and self-attention
mechanism. Some of the above models further incorporate an em-
bedding layer (here embedding is a learned representation of log
entries) in their encoders in order to include correlation among log
entries, and some incorporate an attention layer (here attention is
an aggregated state of hidden states from each time-step or each
neuron) in their decoders in order to improve prediction accuracy.

Predictors and autocoders have been extensively studied for
time-sensitive anomaly detection, and for time-insensitive anomaly
detection, respectively. However, to our best knowledge, whether
autoencoders can serve time-sensitive anomaly detection have not
yet been investigated until this work. Conceptually, an LSTM au-
toencoder is essentially trying to learn the identity function of the
input data distribution. Such identity function will definitely fail
to fit every input data because, at high-level, there are only a fixed
number of hidden units at each layer (in both encoder and decoder)
and thus very unlikely they can learn everything needed for recon-
struction. Moreover, hidden states (e.g., ℎ𝑖

𝑗
and ℎ′𝑖

𝑗
in Figure 1) and

representation codes are too small to enclose detailed information
of the input data. Based on these constraints, autoencoders are
forced to learn more meaningful concepts and relationships inside
the input data. Trained with only normal input, autoencoders can
be used in detecting anomalies in case of poor reconstruction.

4 MOTIVATION
We define an anomaly detection function for discrete events as
AD : S → {normal, abnormal}, where a sequence of events 𝑆 =

[𝑒𝑡 |1 ≤ 𝑡 ≤ 𝑇] ∈ S is essentially a set of relevant events (e.g.,
events of the same subject) sorted by timestamps (e.g., from past to
present). Each discrete event 𝑒𝑡 is represented by a distinct event
key 𝑘𝑖 ∈ K , which is a string template. Distinct event keys are
referred to as logkey in DeepLog [10], log template in nLSALog [40],
and discrete keys in Du et al. [8]’s work.

Among the aforementioned related work, we find DeepLog [10]
and nLSALog [40] representative of predictor-based anomaly de-
tection methods. They are similar predictors that predict only sin-
gle upcoming event 𝑒𝑇+1 for each sliding-window subsequence
𝑠𝑇 = [𝑒𝑡 |max(1,𝑇 − 9) ≤ 𝑡 ≤ 𝑇], whose window size |𝑠𝑇 | is at most
ten (we refer this configuration to as seqlen = 10). They consider 𝑆
anomalous if any prediction 𝑒𝑇+1 ∈ 𝑆 is not an instance of event
key 𝑘 𝑗 ∈ K in its top-9 predictions out of 28 event keys, or equiv-
alently top-32% predictions. Both methods were evaluated upon
the same HDFS dataset [38, 39] and seemed promising based on
accuracy = (𝑇𝑃 +𝑇𝑁)/(𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 +𝑇𝑁).

Single-event prediction, however, is not an ideal solution for
sequence-based anomaly detectionAD : S → {normal, abnormal}.
Typical anomaly detection methods are based on the variance of an
instance, or equivalently the error from particular expectation of
an instance. In our context, the instances are the sequences 𝑆 ∈ S,

and hence intuitively we should consider an individual sequence
𝑆 as an atomic instance. Yet, by examining whether an individ-
ual event 𝑒𝑇+1 ∈ 𝑆 is in top-𝑁 expectation based on prior events,
single-event prediction obviously considers the individual event
𝑒𝑇+1 as an atomic instance. As such, it seems to us that single-event
prediction is more like anomalous event detection, or somewhat
rare event detection considering their configuration setup. The
problem is twofold. On one hand, a rare event does not necessarily
make the event itself or the sequence abnormal, and hence wrongly
reporting rare events as abnormal will cause more FPs (a case study
is provided below in the following subsection). On the other hand,
the absence of abnormal events does not necessarily makes the
sequence normal. That is, a sequence without abnormal events can
still be structurally abnormal; therefore, not checking sequential
structure may cause FNs (a case study is provided in Section 6).
Based on the above observations, it is important to examine the
structure of a sequence (and even to reconstruct it) as well as its
bi-directional causality.

The anomaly criterion “top-9 predictions out of 28 event keys”
with the HDFS dataset [38, 39] is also problematic: top-9 is too high
and |K | = 28 is too small. The reason is twofold. On one hand, since
the top-9 most frequent event keys dominate 98.66% of the entire
dataset, a trivial model that always blindly guess top-9 frequent
keys can already achieve 85.58% accuracy and 14.33% FP rate, and
yet we have no clue about why a sequence is abnormal besides event
frequency. Apparently, we need a much more precise criterion, so
that it is easier to tell “what are normal” in order to figure out “why
anomalies are abnormal”. A more reasonable criterion could be top-
3 or equivalently top-10% (top-3 event keys dominate 42.37% of the
dataset). On the other hand, if we look at the distinct sequential
patterns under configuration seqlen = 10, we have in total 28,961
patterns, among which 13,056 are always normal and 11,099 are
always abnormal. The number of patterns is so small that any
anomaly function, that merely learns these 13,056 normal patterns
and reports the others as anomalies, can get reasonable results. This
is the reason why prior work can be trained by only incredibly few
data of size just 4,855 out of 575 thousand sessions. However, in
practice, the number of distinct event keys can exceed a hundred,
and the number of patterns can become unlearnable due to the
scale. One may argue that the number of keys can be reduced by
abstracting and aggregating multiple keys, but we argue that by
doing so one may no longer know what exactly happened due to
lack of critical fine-grained information.

4.1 Motivating Example: FP Case Study
We are particularly interested in how predictor-based approach
can be applied to scenarios where finer grained prediction is re-
quired and more event keys are involved. We re-implement a pre-
dictor model (referred to as the Baseline model) which is similar
to DeepLog [10, 38] and nLSALog [40], except it checks top-10%
keys. We also re-engineered the event keys from the same HDFS
dataset [39], so that we have |K ′ | = 101. With K ′, we have in
total 256,574 patterns, among which 220,912 are always normal and
35,662 are always abnormal. Trained by 200,000 sessions, Baseline
can only achieve roughly 80% 𝐹1 score.

We use the following FP case (session ID: -3547984959929874282)
to motivate our autoencoder-based anomaly detection. The events
are listed in Table 1. This session has in total 25 events, and the
Baseline model reports the fifth event 𝑒5 as an abnormal event.
Baseline reports 𝑒5 = 𝑘3 as abnormal, because 𝑘3 is not within
the top-10% predictions for 𝑒5. Top-10% predictions include the
variants of 𝑘4 = “addStoredBlock: blockMap updated ...”, 𝑘5 = “block
terminating”, and𝑘6 = “Received block of size 60-70MB from 10.251.∗”.
We can tell that 𝑘3 and 𝑘6 are variants of “Received block of size ∗
from ∗”. In fact, the corresponding embedded vectors E(𝑘3) and
E(𝑘6) are close to each other in the hyper-dimensional embedding
universe U, meaning that their abstract concepts are similar in
Baseline’s point of view. However, the fact that 𝑘3 is not in top-10%
but at top-63% causes this FP.

The fundamental problem is that, without the pre-knowledge
of the block-size information for this particular session, Baseline
would rather guess “60-70 MB” as the block size by seeing just
𝑠4 = [𝑘1, 𝑘2, 𝑘2, 𝑘2], since Baseline has learned through the training
data that 𝑘6 is a very frequent key (dominating 10.77% of the entire
dataset), while𝑘3 is actually an extremely rare key (only dominating
0.05%). In otherwords, there aremuchmore blocks of size “60-70MB”
than blocks of size “20-30 MB”. This problem is similar to the cold-
start problem in a recommendation system, where, not knowing
personal preference, a recommendation system often recommends
new users with most popular products among the others. Similarly,
not knowing information about this particular session, Baseline
can only make bold guesses based on characteristics of the other
sessions, and hence it produces this FP case. Once Baseline knows
the size from 𝑒5, it can then correctly predict events 𝑒6, 𝑒7, and 𝑒8.

In contrast, an LSTM autoencoder-based anomaly-detection
model can resolve this issue, by first analyzing (encoding) the se-
quence and then reconstructing (decoding) the sequence, as if the se-
quence is an atomic instance. By analyzing 𝑠10 = [𝑒1, 𝑒2, 𝑒3, . . . , 𝑒10],
an autoencoder model already knows that the transmission is of
size “20-30 MB” and not “60-70 MB”, even though 𝑘3 is an extremely
rare event. Our autoencoder-based model not only can correctly
reconstruct 𝑠10 with 𝑘3 in 𝑒5’s top-10% reconstructions, but also
can correctly reconstruct other subsequences from 𝑠11 to 𝑠15 that
also involve 𝑒5. As a result, our autoencoder model does not falsely
report this session as abnormal. Furthermore, with configuration
seqlen = 10 and top-10% criterion, our autoencoder model reported
3,187 less FPs and 2,145 more TPs than our Baseline model.

5 OUR DABLOG APPROACH
We propose DabLog, a Deep Autoencoder-Based anomaly detec-
tion method for discrete event Logs. DabLog is an unsupervised
and offline machine-learning model. The fundamental differences
between DabLog and the aforementioned predictor-based related
work is that, DabLog determines whether 𝑆 is abnormal by recon-
structing 𝑆 rather than predicting (or sometime guessing) upcoming
individual events. The intuition is that, to avoid guessing, an anom-
aly detection method should see a sequence as an atomic instance,
and it should examine the structure of the sequence as well as the
bi-directional causality among the events. In the event of poor re-
construction, DabLog can detect not only sequences that include
unseen or rare events, but also structurally abnormal sequences.

Table 1: Example Sequential Discrete Events

Event Key

𝑒0 <begin of sequence>
𝑒1 𝑘1 NameSystem.allocatedBlock /usr/root/...
𝑒2 𝑘2 Receiving block within the localhost
𝑒3 𝑘2 Receiving block within the localhost
𝑒4 𝑘2 Receiving block within the localhost
𝑒5∗ 𝑘3 Received block of size 20-30 MB from 10.250.∗
𝑒6 blockMap updated: 10.251.∗ added of size 20-30 MB
𝑒7 blockMap updated: 10.251.∗ added of size 20-30 MB
𝑒8 blockMap updated: 10.250.∗ added of size 20-30 MB
𝑒9 PacketResponder 1 for block terminating
𝑒10 Received block of size 20-30 MB from 10.251.∗

𝒜𝒟: 𝒮 → {normal, abnormal}

𝑆
=

𝑒 1
,𝑒

2
,⋯

,𝑒
𝑇

𝑋
𝑒
=

𝑥 1
,𝑥

2
,⋯

,𝑥
𝑇

𝑌
=

𝑥
𝑇
,𝑥

𝑇
−
1
,⋯

,𝑥
1

𝒫
=

𝑃
𝑇
,𝑃

𝑇
−
1
,⋯

,𝑃
1

Em
b

ed
d

in
g
ℰ

A
u

to
en

co
d

er
 𝜙

∘
𝜓

C
la

ss
if

ie
r
𝛾

O
n

e-
H

o
t

𝑋
1
=

 𝑃 1
,
 𝑃
2
,⋯

,
 𝑃
𝑇

R
ev

er
se

 𝒫
=

 𝑃
𝑇
,
 𝑃
𝑇
−
1
,⋯

,
 𝑃 1

C
ri

ti
c normal

or
abnormal

minimize

ℒ 𝒫,𝒫

Figure 2: DabLog Anomaly Detection Model

DabLog focuses ondiscrete events, which are essentially discrete-
log representation derived from discrete log entries. Each log event
𝑒𝑡 is represented as a discrete event key 𝑘𝑖 (which is an abstrac-
tion string), and the key set is K = {𝑘𝑖 |1 ≤ 𝑖 ≤ 𝑉 }, where 𝑉
is the number of unique discrete events (vocabulary size). Much
work [9, 22, 35, 41] has been done for automatic discovery of unique
discrete keys from security logs.

We make a Time-Sensitive Distribution Assumption: we as-
sume that the value of the time-sensitive distributionD of an event
𝑒𝑡 at time 𝑡 may depend on both the past and future events; that is,
one can expect both past and future causal events 𝑒𝑖 and 𝑒 𝑗 when
observing an event 𝑒𝑡 , where 𝑖 < 𝑡 < 𝑗 . For example, if 𝑒𝑡 is “delet-
ing a remote object”, then one can expect there is a past event 𝑒𝑖
like “ask to delete a remote object” and a future event 𝑒 𝑗 like either
“deleted an remote object” or “deletion error” (if such audit logs are
available). We define the probability function of 𝑒𝑡 for 𝑡 in 𝑖 ≤ 𝑡 ≤ 𝑗

by Pr(𝑒𝑡 |𝑒𝑖 , 𝑒𝑖+1, . . . , 𝑒 𝑗); this assumption is not applicable to pre-
dictors, whose probability mass functions are typically defined by
only the past, that is Pr(𝑥𝑡 |𝑥𝑡−1, . . . , 𝑥1).

In summary, DabLog aims to provide an anomaly detection func-
tion AD : S → {normal, abnormal}. DabLog consists of four
major components (Figure 2): an embedding layer, a deep LSTM

autoencoder, an event classifier, and an anomaly critic. The work-
flow is stated as follows. Given a sequence 𝑆 ∈ S, the embedding
layer E embeds 𝑆 into an embedded distribution 𝑋𝑒 , the autoen-
coder then analyzes (encodes) 𝑋𝑒 and reconstructs (decodes) the
categorical logit distribution 𝑌 , the event classifier then transforms
𝑌 into categorical probability distribution P, and lastly the critic
compares P with 𝑆 and reports whether 𝑆 is normal or abnormal.

5.1 Embedding Layer
Since our anomaly detection takes a sequence of discrete events
𝑆 = [𝑒𝑡 |1 ≤ 𝑡 ≤ 𝑇] as input, we need to embed discrete events
𝑒𝑡 ∈ K into a particular model-recognizable vector, where K =

{𝑘𝑖 |1 ≤ 𝑘 ≤ 𝑉 } is the set of discrete event keys of vocabulary size
𝑉 = |K |. We denote an embedding function as E : S → X and
the procedure as 𝑋𝑒 = E(𝑆), where 𝑋𝑒 = [𝑥𝑡 |1 ≤ 𝑡 ≤ 𝑇] ∈ X is
an embedded distribution of 𝑆 , and 𝑥𝑡 is the embedded vector of
𝑒𝑡 . There are three common embedding options adopted by prior
work: (1) embedding with one-hot representation, (2) embedding
using pre-trained natural linguistic packages, and (3) embedding by
training an additional embedding layer along with the other layers.

We adopt the last option, because the other two options have
major drawbacks. On one hand, one-hot representation, in which
𝑥𝑡 = [𝑣𝑖 |1 ≤ 𝑖 ≤ 𝑉] where 𝑣𝑖 ∈ {0, 1} and ∑

𝑖 𝑣𝑖 = 1, not only lacks
the ability to embed the semantic or correlation features among
keys, but also causes the model to suffer from dimension explosion
when 𝑉 is large (dimension explosion causes run-time inefficiency
in machine learning). As a consequence, leveraging one-hot rep-
resentation, DeepLog [10] does not work well on datasets with
more keys (even the HDFS dataset), even though its accuracy has
been improved by stacking two LSTM layers. On the other hand,
while directly using pre-trained natural linguistic packages (e.g.,
Word2Vec and GloVe) seems convenient, it may not work well on
security audit logs that lack natural linguistic properties [23]. The
reasons include that (1) a JSON-formatted or CSV-formatted log
may not demonstrate syntactic structure, (2) duplicate or redun-
dant attributes may introduce unwanted noise, and (3) arbitrary
abbreviated strings may not have a match in the existing packages.

Although the last option training an additional embedding layer
is slower, the embedding function E can be well customized for the
specific log dataset. That is, rather than no correlation (with one-hot
representation) or syntactic correlation (using linguistic packages),
the underlying correlation between discrete events 𝑘𝑖 ∈ K (for
example, 𝑘3 and 𝑘6 in Table 1) can be found by E.

In our approach, an embedding layer is instantiated by𝑉 and the
size of output dimension 𝛿 , and then it holds a random matrix that
maps 𝑒𝑡 = 𝑘𝑖 to 𝑥𝑡 , where 𝑥𝑡 is an embedded vector of size 𝛿 . This
matrix is then trained by back propagation during its training phase
along with the time-sensitive encoder-decoder network. In addition
to event keys, we incorporate three special padding keys begin-of-
sequence, end-of-sequence and unknown in our embedding layer. On
one hand, the keys begin-of-sequence and end-of-sequence provide
additional sequential characteristics to LSTM models, and we no-
ticed a slight improvement for both autoencoders and predictors in
detection results. On the other hand, the unknown key is used for
improving computational performance. The problem of not using
unknown key is that, the embedding function in prior work initiates

untrained embedding vectors for all unknown events, and simi-
larly the event classifier also initiates unused logit dimensions for
unknown events. It is inefficient to train such a machine-learning
model when unknown events unnecessarily use much resource.

5.2 Deep LSTM Autoencoder
Deep autoencoders have been used in time-insensitive anomaly de-
tection. Conceptually, an autoencoder learns the identity function
of the normal data and reconstructs normal data distribution; hence
the input data leading to poor reconstruction is potentially abnor-
mal. Since we are tackling time-sensitive discrete events instead of
engineered features, our autoencoder is different from typical ones
that reconstruct the input features. Rather, it tries to reconstruct
the logit distribution of categorical events.

A typical autoencoder is trained by minimizing the function:
𝜙,𝜓 = arg min𝜙,𝜓 ∥𝑋 − (𝜓 ◦ 𝜙) (𝑋)∥, where 𝜙 is an encoder, 𝜓 is
a decoder, 𝑋 is the input distribution, and 𝜓 ◦ 𝜙 (𝑋) is the target
(reconstructed) distribution. To tackle time-sensitive discrete events,
our autoencoder (Figure 1) is trained by minimizing the function:

𝜙,𝜓 = arg min
𝜙,𝜓

∥𝑋 − 𝑌 ∥2

= arg min
𝜙,𝜓

∥rev(𝑋𝑒) − (𝜓 ◦ 𝜙) (𝑋𝑒)∥2

= arg min
𝜙,𝜓

∥(rev ◦ E)(𝑆) − (𝜓 ◦ 𝜙 ◦ E)(𝑆)∥2

where 𝜙 is a deep encoder, 𝜓 is a deep decoder, and rev is a func-
tion that reverses a distribution matrix. The encoder 𝜙 maps an
E-embedded matrix 𝑋𝑒 = E(𝑆) into a representation code = 𝜙 (𝑋𝑒),
whereas the decoder𝜓 maps the code into a target distribution ma-
trix𝑌 = 𝜓 (code). Hence, the reconstructed distribution through the
embed-encode-decode procedure is denoted as 𝑌 = (𝜓 ◦ 𝜙 ◦ E)(𝑆).
The function rev is involved because 𝑌 is in the reverse order from
𝑋𝑒 due to LSTM’s hidden state ℎ𝑡 , which is explained below.

We build our encoder 𝜙 and decoder𝜓 by stacking vanilla Long
Short-TermMemory (LSTM) [17] (variants are applicable as well [15,
19]). The advantage of using an recurrent LSTM network over tradi-
tional recurrent neural networks is that an LSTM unit calculates a
hidden state that conceptually remembers past activities as well as
long-term dependencies [3]. For presentation purpose, we denote
the computation of hidden state ℎ𝑡 by

ℎ𝑡 = LSTM (𝑥𝑡 , ℎ𝑡−1)

That is, at each time-step 𝑡 , an LSTM unit takes two inputs 𝑥𝑡 (the
current data point) and ℎ𝑡−1 (previous hidden state), and it gener-
ates an output ℎ𝑡 (current hidden state). Multiple LSTM layers each
calculates its own hidden state, as illustrated in Figure 1. The rep-
resentation code = 𝜙 (E(𝑆)) is essentially the transferable hidden
state ℎ𝑇 at the last time-step 𝑇 , and ℎ𝑇 is calculated by applying
LSTM function iteratively from 𝑡 = 1 up until the last time-step
𝑡 = 𝑇 . We can conceptually think of this procedure as “pushing 𝑥𝑡
into a state stack ℎ𝑇 ” ; hence, the conceptual procedure for decoder
is “popping 𝑥𝑡 out from a state stack ℎ𝑇 ”. Therefore, the distribution
𝑋𝑒 and 𝑌 are in reverse order.

Our deep LSTM autoencoders are similar to traditional autoen-
coders that consist of deep encoders and deep decoders, except that
our encoder 𝜙 and decoder𝜓 are implemented with stacked LSTMs

(of at least two layers). The number of hidden units decreases (e.g.,
by half) layer-by-layer in 𝜙 , and increases (e.g., doubled) layer-by-
layer in𝜓 . Some research work [14, 16, 32] have addressed the main
benefit of stacking multiple LSTM layers over using a single layer:
stacking hidden states potentially allows hidden states at each layer
to reflect information at different timescale, and the final layer can
gain benefits from learning or combining representations given by
prior layers (hence better results).

Our autoencoder is unconditional, meaning that we do not pro-
vide a condition 𝑦𝜏 = 𝑒𝑇−𝜏+1 to the decoder𝜓 when it is decoding
𝑦𝜏+1 for any 𝑦𝜏 in 𝑌 = [𝑦𝜏 |1 ≤ 𝜏 ≤ 𝑇]. This decision is made
differently from some predictor-based anomaly detection meth-
ods [4, 10–12, 40] that either provide 𝑒𝑇+𝑘−1 to𝜓 when decoding
𝑒𝑇+𝑘 or predict only 𝑒𝑇+1 for any input sequence 𝑆 = [𝑒𝑡 |1 ≤ 𝑡 ≤ 𝑇].
Srivastava et al. [36] have shown that, although conditional de-
coders could provide slightly better results in predictors, uncon-
ditional decoders are more suitable for autoencoders. There are
two reasons. First, autoencoders have only one expected output
from any input sequence, which is the reconstruction of the input,
whereas predictors could have multiple expected outputs (say 𝑆1
and 𝑆2 have the same prefix of length𝑇 but different suffices). While
the condition acts as a hint about which suffix should be decoded
in predictors, providing conditions serves no additional purpose
in autoencoders. Second, usually there is strong short-term depen-
dency among adjacent events, and hence it is not ideal to provide a
condition that may cause the model to easily pick up short-term
dependencies but omit long-term dependencies.

5.3 Event Classifier and Anomaly Critic
Since our goal is to provide an anomaly detection method AD :
S → {normal, abnormal}, simply combining an embedding layer
and a deep LSTM autoencoder will not accomplish our goal. Similar
to prior predictor-based anomaly detection methods [4, 10, 12, 40],
right after our deep autoencoder, we add an additional single-layer
fully connected feed-forward network 𝛾 , which is activated by a
softmax function. The last layer 𝛾 acts as a multi-class classifier
that takes input 𝑌 (which is the reconstructed distribution from𝜓)
and generates a probabilistic matrix P = [𝑃𝜏 |1 ≤ 𝜏 ≤ 𝑇], where
𝑃𝜏 = [𝑝𝑖 |1 ≤ 𝑖 ≤ 𝑉] and 𝑝𝑖 can be interpreted as the likelihood
of the discrete event 𝑒𝑡 = 𝑒𝑇−𝜏+1 being an instance of discrete
event key 𝑘𝑖 (that is, 𝛾 is an event classifier). We explain why we
need 𝛾 in the following paragraph. In order to train 𝛾 , one-hot
representation of 𝑆 is provided as true probabilistic matrix, denoted
as 𝑋1 = onehot(𝑆) = [𝑃𝑡 |1 ≤ 𝑡 ≤ 𝑇], where 𝑃𝑡 = [𝑝𝑖 |1 ≤ 𝑖 ≤ 𝑉]
and 𝑝𝑖 ∈ [0, 1] and ∑

𝑖 𝑝𝑖 = 1. Similar to the embedding function
E, we also include three additional special padding keys begin-
of-sequence, end-of-sequence, and unknown in the onehot function.
Note that 𝑋1 and P are in reverse order, so P̂ = rev(𝑋1). In our
design, the multi-class classifier 𝛾 is trained by minimizing the

categorical cross-entropy loss function:

L(P̂,P) =
𝑇∑
𝜏

𝐿(𝑥𝑇−𝜏+1, 𝑃𝜏), where

𝐿(𝑥𝑡 , 𝑃𝜏) = −
𝑉∑
𝑖

𝑝𝑖 × log(𝑝𝑖)

In summary, the overall embedder-encoder-decoder-classifier
network tries to minimize the function:

E, 𝜙,𝜓,𝛾 = arg min
E,𝜙,𝜓,𝛾

∥(rev ◦ onehot) (𝑆) − (𝛾 ◦𝜓 ◦ 𝜙 ◦ E)(𝑆)∥

Unlike typical time-insensitive autoencoder-based anomaly de-
tection methods, we do not directly use scalar reconstruction errors
(e.g., root-mean-square error) as anomaly scores. The reason is
that our problem—identifying time-sensitive anomaly by examining
discrete events—is more like a language processing problem. We
can view sequences 𝑆 as sentences and events 𝑒𝑡 as words, and
we care more about wording (e.g., “which words 𝑒𝑡 better fit in the
current sentence 𝑆”) rather than embedding (e.g., “which vector 𝑦𝜏
better vectorize 𝑒𝑡 in the current sentence 𝑆”). As such, we need the
event classifier 𝛾 as well as certain reasonable “wording options”
that help us with finding “fitting words” and “unfitting words”, or
equivalently, normal events and abnormal events in 𝑆 .

Rank-based criterion and threshold-based criterion are two com-
mon “wording options” adopted by previous predictor-based anom-
aly detection methods. Say a discrete event 𝑒𝑡 is an instance of 𝑘𝑖 , a
rank-based criterion will consider 𝑒𝑡 anomalous if 𝑝𝑖 is not in top-𝑁
prediction (e.g., 𝑁 = 𝑉 /10) in 𝑃𝜏 , and a threshold-based criterion
will consider 𝑒𝑡 anomalous if 𝑝𝑖 ∈ 𝑃𝜏 is under a particular thresh-
old 𝜃𝑃 . In other words, discrete keys {𝑘 𝑗 |∀𝑗 s.t. 𝑝 𝑗 ∈ arg top𝑁 (𝑃𝜏)}
and {𝑘 𝑗 |∀𝑗 s.t. 𝑝 𝑗 > 𝜃𝑃 } are normal discrete keys. Our autoencoder-
based anomaly detection adopts both threshold-based and rank-
based criteria, but for presentation purpose we demonstrate the
rank-based criterion (Figure 3) in this paper in order to compare
our work with prior predictor-based methods [10, 40]. However,
both rank-based and threshold-based criteria have the same major
drawback: they brutally divide 𝑃𝜏 while omitting the correlation
between the true 𝑘𝑖 and the supposedly normal keys; hence, be-
sides the aforementioned two criteria, our anomaly detection has
an option of a novel criterion, which is discussed in Section 7.2.

Similar to prior anomaly detection work [10, 40] that conducted
experiments on the same dataset [38, 39], in which anomaly la-
bels (e.g., normal or abnormal) are given at the sequence level,
our anomaly detection model gives labels to sequences. We say a
sequence 𝑆 = [𝑒𝑡 |1 ≤ 𝑡 ≤ 𝑇] is abnormal if any 𝑒𝑡 ∈ 𝑆 is abnor-
mal. With aforementioned criteria, our anomaly detection method
AD : S → {normal, abnormal} is complete.

6 EVALUATION
We motivate our evaluation with three questions: (1) how better is
DabLog in comparison with a predictor-based baseline model, (2)
how does having more keys impact the detection results, and (3) how
does the fundamental difference make DabLog more advantageous.
To answer these questions, we evaluate DabLog with two datasets:

𝑃𝜏 = [𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, 𝑝8, 𝑝9, ⋯ , 𝑝𝑉]

sorted 𝑃𝜏 = [𝑝5, 𝑝9, 𝑝1, 𝑝3, 𝑝2, 𝑝6, 𝑝7, 𝑝8, 𝑝4, ⋯ , 𝑝𝑉]

high low

Top-𝑁 are normal keys abnormal

Figure 3: An example of the rank-based criterion

normal
or

abnormal

𝑠 𝑇
=

𝑒 1
,𝑒
2
,⋯

,𝑒
𝑇

𝑃
𝑇
+
1
=

𝑝
1
,𝑝

2
,…

𝑝
𝑉

Em
b

ed
d

in
g

La
ye

r

D
en

se
 L

ay
er

2
-L

ay
er

ed
 L

ST
M

R
an

k-
B

as
ed

 C
ri

ti
c

𝑒
𝑇
+
1

Figure 4: Predictor-Based Baseline Model

UNSW-NB15 [29] traffic logs and HDFS console logs [39]. This
section, however, mainly focuses on the UNSW-NB15 dataset, as its
context is more comprehensive and security related than the HDFS
dataset. For the HDFS dataset, we will only briefly summarize our
results due to the page limit.

6.1 DabLog and Baseline Implementation
We implement both Baseline and DabLog models with 3K lines of
Python 3.7.4 scripts, and we leverage deep-learning utilities from
Tensorflow 2.0.0. To train DabLog and Baseline, Adam optimizer is
used with accuracy metric in minimizing categorical cross-entropy.
We use the same sequence-length configuration seqlen = 10.

Baseline Model Implementation: Section 5.1 elaborated our
design choice for adopting an embedding layer instead of one-
hot representation. It will be unfair to compare our work with
the vanilla DeepLog [10] due to its use of one-hot representation.
Therefore, we slightly revise DeepLog and refer to it as the Baseline
model. The performance difference between one-hot representation
and embedding layer has been addressed in [4, 11, 12, 40]. The other
parameters, including the numbers of layers and the numbers of
hidden units, are the same. Similar to DeepLog and nLSALog [40],
Baseline (illustrated in Figure 4) has a two-layer LSTM network,
a multi-class classifier, and a rank-based critic, except that unlike
DeepLog it does not learn one-hot representation, and unlike nLSA-
Log it does not include a self-attention layer (note that, nLSALog’s
source code was not available when writing this paper). We lever-
age tensorflow.keras.layers.Embedding as the embedding layer, and
we include three additional special padding keys begin-of-sequence,
end-of-sequence, and unknown in learning sequences (they slightly
improve the detection performance). The two-layered LSTM net-
work is implemented by stacking two tensorflow.keras.layers.LSTM
layers activated by ReLU. Each LSTM layer is configured to have 64

hidden units. The event classifier layer is implemented with tensor-
flow.keras.layers.Dense, which is activated by the softmax function.
In event classifier, we include the three additional padding keys.

DabLog Model Implementation: Our encoder and decoder are
implemented by stacking two tensorflow.keras.layers.LSTM layers,
and each is activated by ReLU. The encoder is configured to have 64
and 32 hidden units for its 1st and the 2nd layer respectively, and the
decoder is configured to have 32 and 64 hidden units for its 1st and
the 2nd layer respectively, as we follow the common practice that
the representation code is a downgraded abstraction. The embed-
ding layer and the event classifier are implemented in the same way
as the ones in the Baselinemodel. In DabLog, the encoder network is
connected with the decoder by tensorflow.keras.layers.RepeatVector,
and the decoder network is connected with the classifier by tensor-
flow.keras.layers.TimeDistributed.

6.2 Experiment Setup for Traffic Logs
The UNSW-NB15 dataset [29] encloses 2.84 million log entries from
a testbed that runs a IXIA PerfectStorm (traffic generator), a firewall,
three servers, two routers, four attackers, and 30 endpoints, across
31 hours. All parties are identified by their IPs. Among these 30
endpoints, 10 are benign traffic initiators that tried to access the
other 20 service endpoints that each ran several services. Among
these 20 service endpoints, 10 are normal and 10 are victims of nine
cyberattack categories, including fuzzers, penetration, backdoors,
denial of service, exploits, reconnaissance, shellcode, worms, and
other generic attacks. Each log entry is an aggregation of several
packets that flowed from one source to one destination, and each
entry contains 49 fields, including timestamps, IPs, ports, internet
protocol, service type, packet counts, and byte counts. Anomaly
labels (i.e., normal and abnormal) are provided at the event level,
and there are 321 thousand abnormal events. Moustafa et al. [29]
addressed that their labelling is done bymatching processed records
according to the particular NIDS scenario with transaction records.

6.2.1 Redefining Sequences. The original UNSW-NB15 dataset
presents four massive sequences, and we need to split them into
shorter sequences. Splitting them not only provides us with more
sequences for training and testing, but also enables us to pinpoint
anomalies within a shorter range. We split the four massive se-
quences based on source IP, destination IP, and timestamps. The
split is twofold: First, different log entries that have different source-
destination pairs are put into different sequences. For example, an
entry for traffic from 10.0.0.1 to 10.0.0.2 and an entry for traffic
from 10.0.0.1 to 10.0.0.3 are put into different sequences (hence, a
sequence between two particular entities includes nothing irrele-
vant from the other entities); moreover, an entry for traffic from
10.0.0.1 to 10.0.0.2 and an entry for traffic from 10.0.0.2 to 10.0.0.1 are
also put into different sequences (hence, sequences are directional).
Second, log entries that were audited during different time periods,
in terms of half-hour (30 minutes) or quarter-hour (15 minutes), are
put into different sequences; for example, an entry audited at 10:01
and an entry audited at 10:31 are put into two different sequences.
Let H1 denote the set of sequences split by half-hour interval, and
H2 denote the set of sequences split by quarter-hour interval, then
we have statistics shown in Table 2. We later demonstrate through
H1 andH2 how ourmodels are impacted by the length of sequences.

Table 2: Post-Processed UNSW-NB15 Dataset

Training Testing Testing Average Max.
Sequences (Normal) (Abnormal) Length Length

H1 5, 000 5, 039 1, 166 378.95 28, 971
H2 9, 900 9, 939 2, 278 191.80 15, 951

Within a sequence, entries are sorted chronologically based on their
timestamps. We say a sequence is abnormal if it includes at least
one abnormal log entry.

6.2.2 Dataset Engineering. UNSW-NB15 provides a few infor-
mative features that we can directly or easily make use of. These
features include text features, binary features, and integer features.
We compose our event keys by concatenating the following nine fea-
tures: protocol (text), state (text), service (text), loopback (binary),
FTP-login (binary), FTP-commands (integer), HTTP-methods
(integer), transaction-depth (integer), and packet-count (inte-
ger). For the packet-count feature, we split its 1, 948 distinct values
into 1000-packet intervals (resulting in 13 intervals from 0-1000 to
12000-13000) and 100-packet intervals (resulting in 95 intervals).
We compose event keys by concatenating the above features; for ex-
ample, “tcp,FIN,-,False,False,0,0,0,0-1000” is the most common event
key which dominates 24.16% of the dataset. Let K1 denote the key
set that leverage 1000-packet intervals, and K2 denote the key set
that leverage 100-packet intervals, then we have |K1 | = 366 keys
and |K2 | = 706 keys. We later demonstrate throughK1 andK2 how
our models are impacted by the number of distinct event keys. Note
that one benefit of applying machine learning to discrete events
is that, detailed domain knowledge is no longer required. While
our method of abstracting keys does not look perfect, we argue
that, this method serves our purpose of evaluating the performance
difference between DabLog and Baseline, as we do not intent to
make them know any domain details.

6.2.3 Training Datasets and Testing Datasets. After having
5,000 and 9,000 sequences (H1 andH2) of 366 event keys and 706
event keys (K1 andK2), we then transform them into subsequences
of 𝑠𝑒𝑞𝑙𝑒𝑛 = 10. We have in total more than 187 millions in the train-
ing dataset and more than 221 millions subsequences in the testing
dataset The numbers of distinct subsequences (which we refer to
as patterns) are listed in Table 3. The training datasets include the
sequences of traffics that were “sent from” the 10 benign traffic
initiators, whereas the testing datasets include the sequences repre-
senting traffics that were “sent to” the 20 service endpoints. That is,
in this evaluation, DabLog and Baseline learn from the send-from se-
quences about how to reconstruct or predict the send-to sequences.
Each normal event between a traffic initiator and a service endpoint
is used twice: one in the send-from sequence whose subject is the
traffic initiator, and one in a send-to sequence whose subject is
the service endpoint. However, in terms of normal sequences, the
training datasets are different from the testing datasets, though
events observed by both ends share the same nature. The difference
includes loop-back traffics that were not observed by the other
party, and (2) normal traffics that were sent from the four attackers
(there are 39 normal subsequences from attackers).

Table 3: Statistics of Sequential Patterns of 𝑠𝑒𝑞𝑙𝑒𝑛 = 10

|K∗ | Normal Abnormal Undecidable
Size Patterns Patterns Patterns

K1 366 1, 036, 098 50, 032 824
K2 706 1, 660, 669 52, 454 532

Table 4: Metrics for Traffic Logs when 𝜃 = 10%

Model TP FP TN FN Precision Recall 𝐹1

DabLog 2145 922 9017 133 69.93% 94.16% 80.25%
Baseline 2228 3341 6598 50 40.00% 97.80% 56.77%

Frequency 2278 9939 0 0 18.64% 100.00% 31.42%

6.3 Anomaly Detection Results for Traffic Logs
To compare differentmodels, we leverage the 𝐹1 scoremetric, whose
equations are listed below, where 𝑇𝑃 , 𝐹𝑃 , 𝑇𝑁 , and 𝐹𝑁 denote the
numbers of true positives, false positives, true negatives, and false
negatives, respectively. The higher the 𝐹1 score, the better themodel
in providing good anomaly detection results. Note that, unlike
prior work, we do not leverage the accuracy metric, because it
is misleading for imbalanced dataset where there are way more
negatives (i.e., normal subsequences) than positives (i.e., abnormal
subsequences): a blind model that always returns normal for any
sequences can achieve high accuracy because 𝑇𝑁 ≫ 𝐹𝑁 .

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
𝐹1 Score = 2 × Precision × Recall

Precision + Recall

Recall = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
Accuracy =

𝑇𝑃 +𝑇𝑁
𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Figure 5(a) to Figure 5(c) depict the 𝐹1 score trends of different
models upon different datasetsH1 andH2, and different key sets
K1 and K2. The X-axis represents the variable ranking threshold
𝑁 in a normalized form 𝜃𝑁 = 𝑁 /K∗, and the Y-axis represents the
𝐹1 score of each model.

From Figure 5(a), we can see that DabLog is more advantageous
for critics where fine-grained reconstruction, say 𝜃𝑁 ≤ 10%, is used.
Baseline is only slightly more advantageous when coarse-grained
reconstruction, say 𝜃𝑁 ≥ 25%, is used, but the advantage is very
small. If we set the threshold at 𝜃𝑁 = 10%, or equivalently 𝑁 = 70
keys, then DabLog has 2,419 less FPs, in exchange of 83 less TPs.
As such, DabLogs reaches a 𝐹1 score 80.25%, whereas Baseline can
only reach 56.77%. The metrics are listed in Table 4. For reference
purpose, we also include a trivial frequency model that blindly
guesses top-frequent keys. Since most sequences inevitably include
event keys that are not top-𝜃𝑁 frequent, the frequencymodel simply
reports every sequence abnormal when 𝜃𝑁 < 71%.

Figure 5(b) and Figure 5(c) further show the 𝐹1 trends of DabLog
and Baseline under different configurations (i.e., K∗ andH∗), and
Table 5 lists their area under the 𝐹1 curves. From them, we have
three common observations for DabLog and Baseline. First, the
shorter theH∗ interval, the better the detection performance when
fine-grained reconstruction is used. We can see in Figure 5(b) and

Table 5: Area Under the 𝐹1 Curve

Half-Hour Window H1 Quarter-Hour Window H2
|K1 | = 366 |K2 | = 706 |K1 | = 366 |K2 | = 706

DabLog 80.93% 81.72% 75.01% 83.30%
Baseline 71.76% 77.77% 63.48% 74.89%

Figure 5(c) that all the 𝐹1 trends for models under the H2 config-
uration are more advantageous before 𝜃𝑁 ≤ 10% than the ones
underH1. This is good, because it is easier to narrow down what
is abnormal when the intervals are shorter. Second, the more event
keys, the better the detection performance. Although in Figure 5(b)
we see that the line for K1 and H2 reaches its plateau earlier than
the line for K2 and H2, the latter has a higher plateau. In the end,
having more keys (i.e., K2) results in DabLog getting a larger area
under the 𝐹1 curve. As shown in Table 5, having more keys withK2
is more advantageous than withK1 for both models under the same
interval configurationH∗ (the area is calculated with 0 ≤ 𝜃𝑁 ≤ 1
though 0.5 < 𝜃𝑁 is not plotted). Last but not least, DabLog is more
advantageous than Baseline in terms of the area under the 𝐹1 curve
under all K∗ and K∗ configuration combinations.

In comparison, in terms of 𝐹1 curves, DabLog has better perfor-
mance when it has more event keys (i.e., K2) and shorter intervals
(i.e.,H2) compared to itself and compared to Baseline. DabLog is
8.41%more advantageous than Baseline withK2 andH2, and 3.45%
more advantageous than Baseline with K2 and H1.

6.4 Case Studies
Wemotivate our case studies with this question: how does the funda-
mental difference make DabLog more advantageous? We discuss why
DabLog is more advantageous than Baseline by studying sequential
patterns. By patterns, we mean the distinct subsequences of length
10. Upon K2, H2, and 𝜃𝑁 = 10%, DabLog and Baseline reported
2,111 common TPs, 789 common FPs, and 16 common FNs. DabLog
reported 34 exclusive TPs with trade-off 133 exclusive FPs, whereas
Baseline reported 117 exclusive TPs but 2,552 exclusive FPs.

6.4.1 DabLog’s TPs but Baseline’s FNs. DabLog reported 34
exclusive TPs. These TPs are short sequences whose length are
less than eight events (nine of which have only one events, and
three of which have seven events). Sequence 1 and Sequence 2
listed in Table 6 are two examples of such sequences, sent from
175.45.176.0 (attacker) to 149.171.126.18 (endpoint). There are two
instances of Sequence 1: one is a web-exploit (CVE 2014-2324), and
the other is an IMAP-service buffer-overflow attack (CVE 2004-
2501). Sequence 2 encloses an executable file attachment in 𝑒4,
whereas 𝑒5 is a benign event. The events marked by asterisks (i.e.,
𝑒0 and 𝑒3) are the events reported as anomalies by DabLog. In
DabLog’s point of view, begin-of-sequence has zero chance being
before 𝑒1 and 𝑒4 when there are only few events happened within
the 15-minute window; that is, DabLog expects events before 𝑒1 and
𝑒4. Top reconstruction for 𝑒0 includes TCP entries for SSH, SMTP,
and HTTP services. Contrarily, in Baseline’s point of view, 𝑒0 to
𝑒6 are all normal, where 𝑒1 is the most frequent event key, 𝑒4 is
the eighth frequent event key, and 𝑒5 is the sixth frequent event
key. As such, Baseline seems to be more like a frequency-based

(a) Comparison of Models upon K2 and H2 (b) DabLog with Different Configuration (c) Baseline with Different Configuration

Figure 5: 𝐹1 Metric Comparison Among Different Models and Different Configurations (Traffic-Log Dataset)

Table 6: Example Sequential Discrete Events

DabLog Baseline Event Key
1 TP FN 𝑒0∗ begin-of-sequence

𝑒1 TCP,FIN,-,False,False,0,0,0,0-100
𝑒2 end-of-sequence

2 TP FN 𝑒3∗ being-of-sequence
𝑒4 TCP,FIN,SMTP,False,False,0,0,0,0-100
𝑒5 TCP,FIN,HTTP,False,False,0,1,1,0-100
𝑒6 end-of-sequence

3 TN FP
.
.
.

𝑒7 UDP,CON,DNS,False,False,0,0,0,0-100
𝑒8 UDP,CON,DNS,False,False,0,0,0,0-100
𝑒9∗ TCP,FIN,HTTP,False,False,0,4,1,1000-1100

4 FN TP 𝑒10 begin-of-sequence
𝑒11 TCP,FIN,-,False,False,0,0,0,0-100
𝑒12 TCP,FIN,HTTP,False,False,0,1,1,0-100
𝑒13 TCP,FIN,-,False,False,0,0,0,0-100
𝑒14∗ UDP,INT,-,False,False,0,0,0,0-100
𝑒15 TCP,FIN,HTTP,False,False,0,1,1,0-100
𝑒16 TCP,FIN,-,False,False,0,0,0,0-100
𝑒17 TCP,FIN,HTTP,False,False,0,1,1,0-100
𝑒18 TCP,FIN,-,False,False,0,0,0,0-100
𝑒19∗ UDP,INT,-,False,False,0,0,0,0-100

model. Its fundamental limitation is that Baseline cannot foresee
upcoming events, and hence it has less information to correctly
judge a sequence when only few information is seen.

6.4.2 DabLog’s FPs. DabLog reported 922 FPs, 789 of which are
exclusive FPs (that Baseline did not report) and 133 of which are
common FPs (that Baseline also reported). We studied these FPs,
and we found out all these FPs were of rare patterns. Recall that,
we have in total 1.66 million normal patterns (Table 3), and it is
infeasible to memorize all of them considering the limited numbers
of LSTM cells. Each FP pattern (out of 3746 patterns in the 789
exclusive FPs) has only zero or one occurrence in the training set,
and each pattern (out of 432 patterns in the 133 common FPs) has
a maximum of two occurrences in the training set. Their rarity
makes them very hard to learn. The factor that caused 789 different
judgements (DabLog’s FPs but Baseline’s TN) is, again, event key
frequency. The top three abnormal keys that both DabLog and
Baseline reported abnormal (in common FPs) each has 34, 44, and

50 occurrences (in the entire dataset of size 2.84 million events),
respectively. Baseline reported them abnormal because they are
extremely rare events. In contrast, the top three abnormal keys
that DabLog exclusively reported abnormal (in the 789 exclusive
FPs) are the top-8th, 13th, and 32th frequent keys, respectively.
Baseline did not report them abnormal because these frequent keys
are in Baseline’s top 𝜃𝑁 = 10% predictions due to their frequency.
While Baseline has these 789 exclusive TNs, it has a tradeoff of
2,552 exclusive FPs due to false prediction based on frequency.

6.4.3 DabLog’s TNsbutBaseline’s FPs. Baseline reported 2,552
exclusive FPs, and all these sequences are long sequences, with av-
erage length of 203 events. The longer a sequence, the more likely
it includes a rare key that will cause Baseline to produce FPs. Se-
quence 3 listed in Table 6 is an example, in which Baseline reported
𝑒9 as an anomaly. In the sequence, 𝑒9 is a HTTP entry that follows
two DNS entries, and 𝑒9 is an event key has 430 occurrences in
the entire dataset. Events before 𝑒7 include other DNS entries and
SSH entries. Baseline reported 𝑒9 as an anomaly because 𝑒9 is at
rank 15.46%, while in DabLog’s point of view 𝑒9 is at rank 3.4%.
DabLog not only can reconstruct this subsequence but also all 2,552
exclusive FPs of Baseline, or equivalently 493,285 subsequences
of 2,550 patterns. These 2,550 patterns together have 6,441 occur-
rences in our training dataset, and DabLog has learned how to
reconstruct them. The fundamental difference between DabLog
and Baseline that causes these 2,552 different judgements is that,
DabLog sees sequences as atomic instances and tries to reconstruct
them, whereas Baseline sees events as atomic instances and tries
to “predict” them based on what subsequences Baseline has seen.
With this fundamental difference, DabLog is more advantageous
not only in finding TPs within short sequences, but also in avoiding
FPs within long sequences.

6.4.4 DabLog’s FNs. DabLog reported 133 FNs, 117 of which are
exclusives FNs (that Baseline did not report) and 13 of which are
common FNs (that Baseline also reported). Among the 133 exclu-
sive FNs, there are 34,802 occurrences of 113 abnormal patterns.
We studied them and found out that these 133 abnormal patterns
are also in our training set as normal patterns. The way we engi-
neered event keys cannot avoid two traffics (one benign and one
malicious) having a same subsequence of length 10. There are 1,965

Figure 6: 𝐹1 Metric Comparison (System-Log Dataset)

occurrences of these 113 abnormal patterns in our training dataset.
They are so frequent that DabLog learned how to reconstruct them
(and Baseline learned to predict 12 out of 113 abnormal patterns).
It is similar to the dataset poisoning problem, which is a common
challenges to machine-learning techniques for anomaly detection.
Forcibly reporting any of these 113 abnormal patters as anomalies
will inevitably cause massive amount of FPs, as they have 3,930
normal occurrences in our testing set. The factor that causes 117
different judgements (DabLog’s FNs but Baseline’s TP) is, again,
event-key frequency, and a case study is outlined below.

DabLog’s FNs but Baseline’s TP: In Table 6, Sequence 4 is an
example sent from 175.45.176.3 to 149.171.126.18. It is a combination
of reconnaissance, remote-code execution, buffer-overflow, DoS,
and race-condition exploits. The events marked by asterisks (i.e.,
𝑒14 and 𝑒19) are the events reported as anomalies by Baseline, and
they are of the same event key which is the 12th most-frequent key.
Baseline reported them as anomalies because they are not within
𝜃𝑁 = 10% threshold, with 𝑒14 ranked at 13.74% and 𝑒19 ranked at
13.74%. The events 𝑒14 and 𝑒19 are in-fact SunRPC UDP Portmapper
GETPORT Requests. These events are labeled as reconnaissance but
did not do anything truly malicious. Although Baseline correctly
reported Sequence 4, it is not based on attacks or exploits but key
frequency. Top predictions include top-10 most-frequent keys, and
the 11th key has less than 1% probability in its predictions. The
fundamental limitation is that, again, when Baseline only has few
information, it can only blindly guess upcoming events. There are
many similar instances where events are reported as anomalies
because it did not see sufficient information but event keys are not
top frequent. As such, Baseline reported 2,552 exclusive FPs.

6.5 Evaluation Summary for System Log
The HDFS dataset [39] encloses 558,223 normal sessions and 16,838
abnormal sessions. To measure how well the related work can be
applied to scenarios where more event keys are involved, we re-
crafted the event keys intoK ′. With |K ′ | = 101 and 𝑠𝑒𝑞𝑙𝑒𝑛 = 10, the
post-processed HDFS dataset has in total 276,499 patterns, 220,912
of which are normal patterns and 35,662 are abnormal patters. The
training dataset consists of 200,000 normal sessions, and the test-
ing datasets consists of non-overlapping 200,000 normal sessions
and 16,868 abnormal sessions. Figure 6 depicts the 𝐹1 score trends.

DabLog has its peak 𝐹1 score 97.18% at 𝜃𝑁 = 9%, whereas Baseline
has its peak 𝐹1 Score 87.32% at 𝜃𝑁 = 10%. We can see that DabLog
is more advantageous for critics where fine-grained reconstruction,
say 𝑁 ≤ 10, is used. Previous work [10, 40] was also evaluated by
the area under Receiver Operating Characteristic (ROC). DabLog
achieves an area of 99.44%, whereas Baseline achieves an area of
97.23%. We can see that DabLog is more advantageous.

7 DISCUSSION AND FUTUREWORK
7.1 A More Comprehensive Embedding
Our embedding layer has the drawback of handling unknown event
keys that are not in the training data but in the testing data. In
the literature of natural language processing, this problem is also
known as the out-of-vocabulary problem, and there are two common
workaround options for it. One option is to substitute the designated
“unknown” word for not only unknown words but also rare words,
so that “unknown” is trained as if it is some known rare events. This
option, however, is not applicable to security audit logs, because
unknown events can be frequent and similar to known events (e.g.,
read X is similar to read A), and wrongly treating unknown events
as rare events may cause FPs. The other option is to leverage a
pre-trained Word2Vec embedding in building a new embedding
model (e.g. Mimick embeding [33]). Inspired by the latter option,
one of our future work is to build an Event2Vec embedding model,
which can derive the embedding by examining words in 𝑘∗.

7.2 A Double-Threshold Criterion
We presented DabLog’s critic as a rank-based criterion in order to
compare DabLog with existing work [10, 40]. However, both rank-
based and threshold-based criteria have the same major drawback:
they brutally divide the probabilistic distribution 𝑃𝜏 into two parts
(normal and abnormal), while omitting the correlation between the
true 𝑘𝑖 and the top-𝑁 prediction keys 𝑘 𝑗 . Let us consider a case
in which |𝑝𝑖 − 𝑝 𝑗 | is small and |E(𝑘𝑖) − E(𝑘 𝑗) | is small, meaning
that the corresponding keys 𝑘𝑖 and 𝑘 𝑗 are almost equivalent to the
model, still 𝑘𝑖 could be abnormal while 𝑘 𝑗 is normal if the pivotal
point sits in between (hence a FP). If a criterion can also examine the
underlying correlation between 𝑘𝑖 and 𝑘 𝑗 , that is |E(𝑘𝑖) − E(𝑘 𝑗) |,
such a FP can be avoided. One of our future work is to study the
performance of such a rank-distance double-threshold criterion).

7.3 DabLog is beyond a Standard Autoencoder
We would like emphasize again that, although DabLog is based
on the autoencoder methodology, DabLog is more than a standard
autoencoder. Compared to the reconstruction problem for standard
autoencoders, our problem—identifying time-sensitive anomaly by
examining discrete events—is more like a language processing prob-
lem. We can view sequences 𝑆 as sentences and events 𝑒𝑡 as words,
and we care more about wording (e.g., “which words 𝑒𝑡 better fit in
the current sentence 𝑆”) rather than embedding (e.g., “which vector
𝑦𝜏 better vectorize 𝑒𝑡 in the current sentence 𝑆”). As such, DabLog is
designed as an embed-encode-decode-classify-critic model, so that it
can help us with finding “fitting words” and “unfitting words”, or
equivalently, normal events and abnormal events in the sequential
context of 𝑆 . In contrast, typical time-insensitive autoencoder-based

anomaly detectionmethods directly use scalar reconstruction errors
(e.g., root-mean-square error) as anomaly scores.

8 CONCLUSION
With regard to anomaly detection approaches for discrete events, we
address a fundamental limitation of the widely adopted predictor-
based methodology through our in-depth case studies. We argue
that recomposing sequences is also an attractive methodology, espe-
cially in real-world contexts where the need of detection with more
keys cannot be well satisfied by predictor-based methodology. We
propose DabLog and evaluate DabLog with UNSW-NB15 dataset
and HDFS dataset. Our results showed that DabLog outperforms
our predictor-based baseline model in terms of 𝐹1 score. With recon-
struction of sequential events, DabLog not only introduces much
fewer FPs, but also improves awareness regarding what is normal
in contexts that involve more keys.

ACKNOWLEDGMENTS
Peng Liu was supported by ARO W911NF-13-1-0421 (MURI), NSF
CNS-1814679, and NSF CNS-2019340.

REFERENCES
[1] Mejbah Alam, Justin Gottschlich, Nesime Tatbul, Javier Turek, Timothy Mattson,

and Abdullah Muzahid. 2017. A Zero-Positive Learning Approach for Diagnosing
Software Performance Regressions. arXiv:1709.07536 [cs.SE]

[2] Arwa Aldweesh, Abdelouahid Derhab, and Ahmed Z. Emam. 2020. Deep learning
approaches for anomaly-based intrusion detection systems: A survey, taxonomy,
and open issues. Knowledge-Based Systems 189 (2020), 105124.

[3] Y. Bengio, P. Simard, and P. Frasconi. 1994. Learning long-term dependencies
with gradient descent is difficult. IEEE Transactions on Neural Networks 5, 2 (1994),
157–166.

[4] Andy Brown, Aaron Tuor, Brian Hutchinson, and Nicole Nichols. 2018. Recurrent
Neural Network Attention Mechanisms for Interpretable System Log Anomaly
Detection. In Proceedings of the First Workshop onMachine Learning for Computing
Systems (Tempe, AZ, USA) (MLCS’18). Association for Computing Machinery,
New York, NY, USA, Article 1, 8 pages.

[5] Raghavendra Chalapathy, Aditya Krishna Menon, and Sanjay Chawla. 2017. Ro-
bust, Deep and Inductive Anomaly Detection. InMachine Learning and Knowledge
Discovery in Databases, Michelangelo Ceci, Jaakko Hollmén, Ljupčo Todorovski,
Celine Vens, and Sašo Džeroski (Eds.). Springer International Publishing, Cham,
36–51.

[6] Zouhair Chiba, Noureddine Abghour, Khalid Moussaid, Amina El Omri, and
Mohamed Rida. 2018. A novel architecture combined with optimal parameters
for back propagation neural networks applied to anomaly network intrusion
detection. Computers & Security 75 (2018), 36 – 58.

[7] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation. CoRR abs/1406.1078 (2014).
arXiv:1406.1078

[8] Min Du, Zhi Chen, Chang Liu, Rajvardhan Oak, and Dawn Song. 2019. Lifelong
Anomaly Detection Through Unlearning. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security (London, United Kingdom)
(CCS ’19). Association for ComputingMachinery, New York, NY, USA, 1283–1297.

[9] M. Du and F. Li. 2016. Spell: Streaming Parsing of System Event Logs. In 2016
IEEE 16th International Conference on Data Mining (ICDM). 859–864.

[10] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. DeepLog: Anomaly
Detection and Diagnosis from System Logs Through Deep Learning. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security (Dallas, Texas, USA) (CCS ’17). ACM, New York, NY, USA, 1285–1298.

[11] M. O. Ezeme, Q. H. Mahmoud, and A. Azim. 2018. Hierarchical Attention-Based
Anomaly Detection Model for Embedded Operating Systems. In 2018 IEEE 24th
International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA). 225–231.

[12] O. M. Ezeme, Q. H. Mahmoud, and A. Azim. 2019. DReAM: Deep Recursive
Attentive Model for Anomaly Detection in Kernel Events. IEEE Access 7 (2019),
18860–18870.

[13] Filipe Falcão, Tommaso Zoppi, Caio Barbosa Viera Silva, Anderson Santos, Bal-
doino Fonseca, Andrea Ceccarelli, and Andrea Bondavalli. 2019. Quantitative

Comparison of Unsupervised Anomaly Detection Algorithms for Intrusion De-
tection. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing
(Limassol, Cyprus) (SAC ’19). Association for Computing Machinery, New York,
NY, USA, 318–327.

[14] Alex Graves, Abdel rahman Mohamed, and Geoffrey Hinton. 2013. Speech
Recognition with Deep Recurrent Neural Networks. arXiv:1303.5778 [cs.NE]

[15] Klaus Greff, Rupesh Kumar Srivastava, Jan Koutník, Bas R. Steunebrink, and
Jürgen Schmidhuber. 2015. LSTM: A Search Space Odyssey. CoRR abs/1503.04069
(2015). arXiv:1503.04069

[16] Michiel Hermans and Benjamin Schrauwen. 2013. Training and Analysing Deep
Recurrent Neural Networks. InAdvances in Neural Information Processing Systems
26, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger
(Eds.). Curran Associates, Inc., 190–198.

[17] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Computation 9, 8 (1997), 1735–1780.

[18] Q. Hu, B. Tang, and D. Lin. 2017. Anomalous User Activity Detection in Enter-
prise Multi-source Logs. In 2017 IEEE International Conference on Data Mining
Workshops (ICDMW). 797–803.

[19] Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. 2015. An empirical
exploration of recurrent network architectures. In International conference on
machine learning. 2342–2350.

[20] Tayeb Kenaza, Khadidja Bennaceur, and Abdenour Labed. 2018. An Efficient
Hybrid SVDD/Clustering Approach for Anomaly-Based Intrusion Detection. In
Proceedings of the 33rd Annual ACM Symposium on Applied Computing (Pau,
France) (SAC ’18). Association for Computing Machinery, New York, NY, USA,
435–443.

[21] Fucheng Liu, Yu Wen, Dongxue Zhang, Xihe Jiang, Xinyu Xing, and Dan Meng.
2019. Log2vec: A Heterogeneous Graph Embedding Based Approach for Detect-
ing Cyber Threats within Enterprise. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security (London, United Kingdom)
(CCS ’19). Association for ComputingMachinery, New York, NY, USA, 1777–1794.

[22] L. Liu, C. Chen, J. Zhang, O. De Vel, and Y. Xiang. 2019. Insider Threat Identifica-
tion Using the Simultaneous Neural Learning of Multi-Source Logs. IEEE Access
7 (2019), 183162–183176.

[23] Liu Liu, Chao Chen, Jun Zhang, Olivier De Vel, and Yang Xiang. 2019. Unsu-
pervised Insider Detection Through Neural Feature Learning and Model Opti-
misation. In Network and System Security, Joseph K. Liu and Xinyi Huang (Eds.).
Springer International Publishing, Cham, 18–36.

[24] L. Liu, O. De Vel, C. Chen, J. Zhang, and Y. Xiang. 2018. Anomaly-Based Insider
Threat Detection Using Deep Autoencoders. In 2018 IEEE International Conference
on Data Mining Workshops (ICDMW). 39–48.

[25] Z. Liu, T. Qin, X. Guan, H. Jiang, and C. Wang. 2018. An Integrated Method for
Anomaly Detection From Massive System Logs. IEEE Access 6 (2018), 30602–
30611.

[26] X. Lu, W. Zhang, and J. Huang. 2020. Exploiting Embedding Manifold of Autoen-
coders for Hyperspectral Anomaly Detection. IEEE Transactions on Geoscience
and Remote Sensing 58, 3 (March 2020), 1527–1537.

[27] Marcus A. Maloof and Gregory D. Stephens. 2007. ELICIT: A System for Detecting
Insiders Who Violate Need-to-Know. In Proceedings of the 10th International
Conference on Recent Advances in Intrusion Detection (Gold Goast, Australia)
(RAID’07). Springer-Verlag, Berlin, Heidelberg, 146–166.

[28] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. 2018. Kit-
sune: An Ensemble of Autoencoders for Online Network Intrusion Detection.
arXiv:1802.09089 [cs.CR]

[29] N. Moustafa and J. Slay. 2015. UNSW-NB15: a comprehensive data set for network
intrusion detection systems (UNSW-NB15 network data set). In 2015 Military
Communications and Information Systems Conference (MilCIS). 1–6.

[30] Q. P. Nguyen, K. W. Lim, D. M. Divakaran, K. H. Low, and M. C. Chan. 2019. GEE:
A Gradient-based Explainable Variational Autoencoder for Network Anomaly
Detection. In 2019 IEEE Conference on Communications and Network Security
(CNS). 91–99.

[31] A. Oprea, Z. Li, T. Yen, S. H. Chin, and S. Alrwais. 2015. Detection of Early-
Stage Enterprise Infection by Mining Large-Scale Log Data. In 2015 45th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks. 45–56.

[32] Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. 2013.
How to Construct Deep Recurrent Neural Networks. arXiv:1312.6026 [cs.NE]

[33] Yuval Pinter, Robert Guthrie, and Jacob Eisenstein. 2017. Mimicking Word
Embeddings using Subword RNNs. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing. Association for Computational
Linguistics, Copenhagen, Denmark, 102–112.

[34] Mayu Sakurada and Takehisa Yairi. 2014. Anomaly Detection Using Autoencoders
with Nonlinear Dimensionality Reduction. In Proceedings of the MLSDA 2014 2nd
Workshop on Machine Learning for Sensory Data Analysis (Gold Coast, Australia
QLD, Australia) (MLSDA’14). Association for Computing Machinery, New York,
NY, USA, 4–11.

[35] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi. 2018. A Deep Learning Approach to
Network Intrusion Detection. IEEE Transactions on Emerging Topics in Computa-
tional Intelligence 2, 1 (Feb 2018), 41–50.

https://arxiv.org/abs/1709.07536
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1303.5778
https://arxiv.org/abs/1503.04069
https://arxiv.org/abs/1802.09089
https://arxiv.org/abs/1312.6026

[36] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdinov. 2015. Unsuper-
vised Learning of Video Representations using LSTMs. CoRR abs/1502.04681
(2015). arXiv:1502.04681

[37] Xuhong Wang, Ying Du, Shijie Lin, Ping Cui, Yuntian Shen, and Yupu Yang. 2020.
adVAE: A self-adversarial variational autoencoder with Gaussian anomaly prior
knowledge for anomaly detection. Knowledge-Based Systems 190 (2020), 105187.

[38] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael Jordan. 2009.
Online System Problem Detection by Mining Patterns of Console Logs. In Pro-
ceedings of the 2009 Ninth IEEE International Conference on Data Mining (ICDM
’09). IEEE Computer Society, USA, 588–597.

[39] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I. Jordan. 2009.
Detecting Large-Scale System Problems by Mining Console Logs. In Proceedings
of the ACM SIGOPS 22nd Symposium on Operating Systems Principles (Big Sky,
Montana, USA) (SOSP ’09). Association for Computing Machinery, New York, NY,
USA, 117–132.

[40] R. Yang, D. Qu, Y. Gao, Y. Qian, and Y. Tang. 2019. nLSALog: An Anomaly
Detection Framework for Log Sequence in Security Management. IEEE Access 7
(2019), 181152–181164.

[41] M. Yousefi-Azar, V. Varadharajan, L. Hamey, and U. Tupakula. 2017. Autoencoder-
based feature learning for cyber security applications. In 2017 International Joint
Conference on Neural Networks (IJCNN). 3854–3861.

[42] Chong Zhou and Randy C. Paffenroth. 2017. Anomaly Detection with Robust
Deep Autoencoders. In Proceedings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (Halifax, NS, Canada) (KDD ’17).
Association for Computing Machinery, New York, NY, USA, 665–674.

[43] Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki
Cho, and Haifeng Chen. 2018. Deep Autoencoding Gaussian Mixture Model
for Unsupervised Anomaly Detection. In International Conference on Learning
Representations.

https://arxiv.org/abs/1502.04681

	Abstract
	1 Introduction
	2 Related Work
	3 Background Knowledge
	4 Motivation
	4.1 Motivating Example: FP Case Study

	5 Our DabLog Approach
	5.1 Embedding Layer
	5.2 Deep LSTM Autoencoder
	5.3 Event Classifier and Anomaly Critic

	6 Evaluation
	6.1 DabLog and Baseline Implementation
	6.2 Experiment Setup for Traffic Logs
	6.3 Anomaly Detection Results for Traffic Logs
	6.4 Case Studies
	6.5 Evaluation Summary for System Log

	7 Discussion and Future Work
	7.1 A More Comprehensive Embedding
	7.2 A Double-Threshold Criterion
	7.3 DabLog is beyond a Standard Autoencoder

	8 Conclusion
	Acknowledgments
	References

