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Abstract—The service-oriented nature of the Universal Plug-
and-Play (UPnP) protocol supports the creation of flexible, open,
and dynamic systems. As such, it is widely used in Internet-of-
Things (IoT) deployments. However, the protocol’s service access
mechanism does not consider security from the first principles
and is therefore vulnerable to various attacks. In this article, we
present an in-depth analysis of the service advertisement, discov-
ery, and access methods of the UPnP protocol stack and identify
security issues in an IoT network. Our analysis shows that
adversaries can perform resource exhaustion, buffer overflow,
reflection, and amplification attacks by exploiting the vulnerabil-
ities of the UPnP protocol. To address these issues, we propose a
capability-based security model for UPnP to ensure secure discov-
ery, advertisement, and access of the UPnP services that considers
the resource limitations of IoT devices. Our analysis shows the
effectiveness of the proposed model against potential attacks, and
our experimental evaluation highlights the feasibility of imple-
menting our Secure UPnP (SUPnP) protocol in a network of IoT
devices, incurring minimal network and performance overhead.

Index Terms—Access, discovery, Internet of Things (IoT),
network attacks, registration, security, Universal Plug and Play
(UPnP).

I. INTRODUCTION

THE Internet of Things (IoT) is propelling a paradigm
shift in next-generation computing systems [1]. The IoT

is rapidly becoming an essential element of applications across
many domains, such as healthcare services, manufacturing
industry, military domains, and transportation system, offering
sensing, computation, and connectivity across a wide variety of
smart devices [2]–[6]. The interest in IoT deployments con-
tinues to grow; the number of Internet-connected devices is
projected to reach 24 billion by the end of 2020 [7].

Service-oriented architectures are well suited to support IoT-
enabled systems, allowing IoT devices to advertise software
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(SW) services that leverage their unique sensing and actua-
tion capabilities, which can then be discovered and used by
applications. The Universal Plug-and-Play (UPnP) protocol
has become widely used to support the dynamic advertise-
ment, discovery, and access of SW services distributed across
a network [8], [9]. UPnP is particularly well suited for IoT
deployments that support opportunistic interactions across a
large network of heterogeneous devices; the protocol offers
interoperability, language independence, and decentralization
in service-oriented pervasive networks [10] and supports the
creation of open, scalable systems, requiring little to no con-
figuration to deploy new IoT devices and to support discovery
of the services that they offer.

However, a major limitation of the UPnP protocol is that it
does not adequately address security, particularly with respect
to service discovery, access control, and data integrity mech-
anisms. For example, an service device (SD) that provides
services cannot verify the authenticity and integrity of a mes-
sage send by a service consumer. Likewise, a control point
(CP) that consumes services cannot verify the service provider.
The detailed analysis of the UPnP security threats and vulner-
abilities are provided in the next section. Research suggested
that more than 20% of UPnP-enabled products are exposed
to external and internal threats that take advantage of the
UPnP protocol stack [11]–[14]. Network security scanners,
such as Shodan and ZMap reported millions of vulnerable
IoT devices around the globe where enabling UPnP is the root
cause of the vulnerability [15], [16]. As such, enabling unse-
cured UPnP to support applications across IoT networks can
have severe consequences, as illustrated by the Mirai, Qbot,
and CallStranger attacks in recent years [17]–[19]. Therefore,
securing the enormous number of IoT devices that use UPnP
is a prime challenge for security researchers and application
developers [12]. Compounding the challenge is the fact that
most IoT devices are battery-powered and have limited compu-
tational capabilities, making it difficult to simply adapt existing
security solutions [20]–[22] and to build secure models for
UPnP-enabled IoT (UIoT) devices.

In this article, we analyze the security vulnerabilities of
UPnP service discovery, advertisement, eventing, and con-
trol methods in IoT networks. The current implementation
of UPnP cannot verify the capability of the service provider
to provide an advertised service or identify if a consumer
is authorized to use a service. We, therefore, identify var-
ious network attacks that adversaries can launch exploiting
these vulnerabilities. We propose a capability-based security
method to protect the UIoT devices from adversarial activities
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that exploit service advertisement, discovery, eventing, and
control vulnerabilities of UPnP that is feasible for implemen-
tation in IoT networks. Our proposed scheme, Secure UPnP
(SUPnP), assigns a capability token to a UIoT device, which
acts as an credential of that device. The capability token
is cryptographically secure and cannot be forged. A UIoT
device needs to present the token to a peer device in the
IoT network for exchanging UPnP messages. The proposed
model allows a service consumer device to verify the service
provider device’s capability to serve certain services. Similarly,
it also enables the service provider device to verify the autho-
rization of a service consumer device to consume requested
services. Furthermore, a service provider device can verify the
authenticity and integrity of a particular operation requested
on a service. Thus, the proposed model serves to prevent the
identified attacks in networks of UIoT devices. Finally, we
also conduct an experimental evaluation using a prototype,
emulating real-life scenarios to demonstrate the feasibility of
deployment of this solution in IoT networks, exploring energy
consumption, network throughput, request drop rate (RDR),
and request response time (RRT).
Contribution: The contributions of this work are summa-

rized as follows.
1) Despite the existence of some potential access-control

solutions to deal with unauthorized access to UPnP
services, the vulnerabilities associated with the service
discovery methods in the context of UIoT are not yet
addressed. We present a security analysis and identify
vulnerabilities present in the stages of UPnP for ser-
vice registration, advertisement, discovery, eventing, and
control in UIoT systems.

2) To mitigate vulnerabilities in UIoT systems, we propose
SUPnP, a capability-based security scheme for UPnP. We
present algorithms for device enrollment, service regis-
tration, and capability verification as part of the SUPnP
protocol.

3) We show that the proposed SUPnP scheme protects
UIoT devices against network attacks with respect to
trustworthiness, impersonation, authentication, and mes-
sage freshness.

4) We implement a prototype of the SUPnP protocol and
conduct an experimental evaluation. Our experiments,
which focus on energy consumption, throughput, mes-
sage RDR, and response time and demonstrate the
feasibility of adopting SUPnP in UIoT settings.

Organization: The remainder of this article is organized as
follows. Section II presents background on the UPnP vulnera-
bilities and the attacks exploit these vulnerabilities. Section III
describes the proposed SUPnP scheme. The security analysis
of the proposed SUPnP model is given in Section IV, fol-
lowed by the experimental evaluation in Section V. Section VI
presents related works with a comparative discussion and draw
conclusions in Section VII.

II. THREAT MODEL

The design of the UPnP protocol does not consider security
with respect to service discovery, advertisements, actions, and
events among IoT devices. Although several access control

Fig. 1. Phases of UPnP.

TABLE I
NOTATIONS USED IN THIS WORK

methods [23]–[28] have been proposed to prevent unautho-
rized access to IoT services, the vulnerabilities of the service
discovery and access methods in UPnP have been largely over-
looked. In this section, we derive a threat model for its use;
a quick reference to the notations is provided in Table I for
convenience. We begin by presenting a brief overview of the
UPnP model.

A UPnP network includes two primary types of
devices: 1) SD and 2) CP. Each SD offers one or more services
for use in the UPnP network. CPs act as users of the services
provided by the SDs. Fig. 1 shows the phases of UPnP pro-
tocol. In the first phase, SDs perform the advertisement of
services while CPs perform discovery of advertised services.
The UPnP standards do not provide any suitable mechanism
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Fig. 2. UPnP messages.

TABLE II
THREAT MODEL

for the verification of the multicast service discovery messages
or the authorization of the sender. Next, in the description
phase, a CP uses the information received in an advertise-
ment message to send a description request in order to collect
detailed information about an SD and the services it provides.
The description documents sent in response include the name
of the actions supported by the service, the parameters of the
actions, the states of the service that can be monitored, etc.
The UPnP protocol does not include any measures to verify
the description documents received by the CP. After receiving
all the required information about the SD and the services it
provides, the CP can invokes a particular action on the SD
in the control phase. Alternatively, the CP can subscribe to
monitor a specific state of the service by invoking the event-
ing phase. Both control and event subscription messages are
vulnerable to unauthorized requests, as the SD cannot verify
and authorize these requests.

A malicious SD can exploit vulnerabilities in the UPnP
to provide forged services. The vulnerabilities can also be
exploited by a malicious CP to trick an SD and perform adver-
sarial activity. In this section, we provide the details of the
vulnerabilities and the attacks that malicious SDs and CPs can
perform by exploiting the vulnerabilities of the UPnP discov-
ery, description, eventing, and control phases in IoT networks.
Table II presents a summary of the vulnerabilities and attacks.

A. Vulnerable Advertisement and Description

In UPnP, any participant can start advertising a service
in the network. Moreover, an interested CP cannot verify
an advertisement message and the sender SD of that adver-
tisement message. Exploiting this vulnerability, an malicious
participant can start advertising false service performing ser-
vice impersonation. Moreover, a malicious advertisement can
provide a malicious description location and fool the CP by
redirecting to a malicious URL. These forgeries can lead to
different service impersonation attacks. For example: a com-
promised refrigerator can impersonate a security camera of a
smart home to provide a false service: MonitorOccupancy.
When the home owner searches for a service to moni-
tor the home, the compromised refrigerator advertises the
MonitorOccupancy service. When a service offered by
the compromised refrigerator is discovered and used, the com-
promised refrigerator device can provide arbitrary readings to
the home owner in the reply of action invocations; for exam-
ple, the impersonation of the getLastOccupancy service
could be used to mask a potential physical security breach in
the home.
1) Service Impersonation Using Device Description

Forgery: An SD announces its services periodically to
the known multicast address 239.255.255.250:1900
through a service advertisement message (Fig. 2). A CP
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Fig. 3. UPnP description architecture.

listens to this address to receive advertisement messages.
Upon receipt of an advertisement message, the CP retrieves
the sender’s device description document (DDD) using the
URI specified in the LOCATION field of the advertisement.
The UPnP description architecture is shown in Fig. 3. The CP
first sends an HTTP GET request to retrieve the DDD, which
includes the description of the device and a list of services.
Then, the CP sends another HTTP GET request to get the
service description of the interested service. The location of
the service description document (SDD) is mentioned in the
SVC_URL field of the DDD.

A malicious SD can modify its DDD to add additional
services in the service list (Fig. 3) for which it does not
have SW or hardware (HW) capabilities. In the current imple-
mentation of UPnP, the CP cannot verify the authenticity
and integrity of the DDD and treats the malicious SD as a
legitimate SD.
2) Service Impersonation Using Advertisement Forgery:

A malicious SD can advertise a service without having the
capability to provide the service. As shown in Fig. 4, a
legitimate SD (security camera) advertises its services in
the network. A CP and a malicious refrigerator receive the
advertisement as the message is multicasted in the network.
The malicious refrigerator device retrieves the security cam-
era’s device description and SDDs using a LOCATION URI
(e.g., GET http://securitycamera-ip:port:/
description.xml) and stores it locally. A URI repre-
sents an absolute location of a resource. For instance, the
LOCATION field of an advertisement message specifies the
relative location of a resource, such as /description.xml
or /service.xml. A CP constructs the LOCATION URI for
the resource by prepending the IP address and port information
to the LOCATION: http://ip:port/resource.xml.
Next, the refrigerator replays the advertisement message

Fig. 4. Service impersonation using LOCATION forgery.

to impersonate the security camera. The CP receives the
replayed advertisement message and believes that the refrig-
erator provides the security camera’s services, as the CP
cannot verify the authenticity of the LOCATION URI for
the advertisement message. The CP retrieves the device
and SDD using the LOCATION URI of the replayed adver-
tisement: GET http:/refrigerator-ip:port:/
description.xml. At this point, the CP may attempt to
invoke service requests directed to the impersonating device.

An adversarial CP can impersonate a legitimate CP to
prevent an SD from carrying out important tasks. For example,
a smartphone can impersonate another control device associ-
ated with the owner of a smart home and can send repeated
requests to security camera of the house, which provides a
very important service: MonitorOccupancy. The adversary
can prevent the security camera from providing the occupancy
monitoring service by keeping it busy with answering adver-
sarial service requests. Thus, a malicious CP can prevent a
crucial SD from providing real-time data to a legitimate CP
through impersonation of the CP. Moreover, the malicious
CP can invoke actions to change the state of an SD. For
example, an IoT-enabled pacemaker implanted in a patient’s
body can be affected by a malicious action invocation, such
as increaseHeartRate, by an adversary impersonating a
physician’s CP, which can be life threatening for the patient.

B. Vulnerable Discovery

Any participant of the UPnP network can multicast a discov-
ery message in the UPnP network. There is no authentication
involved in sending and receiving the discovery message. For
instance, an SD cannot verify the integrity of the discovery
message it receives neither can authenticate the sender of
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Fig. 5. CP impersonation attack.

Fig. 6. DoS using discovery flooding.

the discovery message. An adversary takes advantage of this
vulnerability and performs several malicious attacks.
1) Discovery Message Replay: In the current implementa-

tion of the UPnP, a malicious CP can interact with an SD,
although it does not have capabilities to process the data pro-
vided by the service. As shown in Fig. 5, a legitimate CP
broadcasts a discovery request in the network looking for a
security camera services. An SD and a malicious CP receive
the discovery request. Later, the malicious CP replays the
discovery message in the network searching for the security
camera services, impersonating the real CP. The SD replies to
the malicious discovery request as it cannot validate the CP’s
authorization to use its services. The CP uses the information
included in the discovery response to perform various actions
on the SD, although it does not process the action responses
as expected.
2) Search Target Forgery: Suppose that a CP can inter-

act with a given IoT device, for example, a thermostat. Now,
suppose that the CP is malicious and wants to search for secu-
rity camera services, even though it cannot process the data
returned from the services. The CP forges a discovery message
by setting the ST field to “service:SecurityCamera”
and multicasts it in the network. A security camera receives
the discovery request and replies, as it cannot detect the forged
request. Thus, a malicious CP tricks the SD into thinking that
the discovery message is sent by a legitimate CP.
3) Discovery Flooding by Control Point: A malicious CP

sends a large number of discovery message in a short span of
time to search for a service in the network (see Fig. 6). An
SD receives the malicious discovery messages and replies to
requests. Receiving a huge number of discovery requests and

Fig. 7. Reflection and amplification using malicious discovery requests.

replying to them can exhaust the CPU and radio transceiver
of the SD and prevent the SD from processing legitimate
requests. Moreover, the processing of the malicious requests
increases the power consumption of the SD, which can cause
a significant decrease of the battery life of the SD. However,
the current implementation of the UPnP does not have meth-
ods to defend against such flooding attacks to protect the IoT
SDs.
4) Reflection and Amplification Using Spoofed IPs: The

UPnP device and service discovery request is vulnerable to
reflection and amplification attack in the discovery phase. As
shown in Fig. 7, a malicious CP sends a discovery request to
UPnP network searching for a service. The CP uses HTTPU
(HTTP over UDP) to make the request. Unlike TCP, UDP
packets are vulnerable to source address spoofing. Leveraging
this fact, the malicious CP uses a victim device’s IP address
as the source of the UDP request. Consequently, an SD sends
the discovery reply to the victim device. A study shows this
spoofed discovery request amplify the reflected traffic from
an SD to target up to 30.8 times [29]. Moreover, the service
discovery message is muliticasted to a standard address and
port (239.255.255.250:1900) in the network according
to the UPnP standards [30]. So, all the SD providing the ser-
vice in the network will receive the discovery request and reply
to the victim device. This incredibly large amount of mali-
cious traffic is used to generate a DDoS attack by reflecting
the amplified traffic to the target’s address.

C. Vulnerable Eventing

A CP subscribes to get notification of a state change event of
a service by sending a event subscription request (see Fig. 2).
The SD that accepts the event subscription request will publish
the event to CALLBACK URL specified in the event subscrip-
tion message. The SD cannot verify the sender of the event
subscription message and its sender. Moreover, there is no
mechanism to verify the CALLBACK URL used to publish
the event as well. A attacker exploits these vulnerabilities and
perform several adversarial activity.

D. Event Subscription List Overflow Attack

In the current implementation of the UPnP, an SD can-
not verify the authenticity of an event subscription request.
Once the service description is leaked an adversary has
all the information (such as event URL) needed to send
a event subscription message. Therefore, a malicious CP
can subscribe to an event using a forged CALLBACK
URL. As shown in Fig. 8, a malicious CP sends a large
number of event subscription requests, each containing a
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Fig. 8. Buffer overflow using forged event subscription requests.

(a)

(b)

Fig. 9. (a) Reflection and (b) amplification using event subscription
CALLBACK.

forged CALLBACK URL, to overflow the memory of an
SD. An SD receives the request and stores it in a sub-
scription list as a tuple <subscription-UUID (SID),
callback-URL, timeout, http-version>. As the
SD gets a huge number of malicious event subscription
requests in a short period of time, the subscription list grows
in such a way that it exhausts the SD’s memory. As such, the
SD cannot process any service requests.

E. Event URL Forgery Attack

A malicious CP can use a spoofed CALLBACK URL in
the event subscription request. As the SD cannot verify the
authenticity of the request, the SD accepts the request and pub-
lishes all the service events to the forged CALLBACK URL.
As shown in Fig. 9 the malicious CP subscribes to events
using spoofed CALLBACK URLs. The CP uses a spoofed
CALLBACK URL to subscribe to events and enable SDs to
publish their events to the victim devices.

III. PROPOSED SCHEME

In light of the security threats identified, we propose a
security scheme for UPnP that prevents malicious SDs from
providing forged services and CPs from impersonating legiti-
mate service consumers in IoT networks. Our proposed SUPnP
protocol can identify forged discovery messages, advisement

messages, DDDs, and SDDs. Our approach considers sev-
eral access control models, including role-based access control
(RBAC) [23], capability-based access control (CapBAC) [24],
and attribute-based access control (ABAC) [26], adapting and
integrating features as part of a model that is appropriate for
use in IoT networks.

While each of these access control models offers benefits,
when applied in isolation, they do not adequately address the
needs for secure service advertisement, discovery, and usage
in IoT networks. RBAC manages access based on a hierarchy
of the rights assigned to the specific roles. This model allows
multiple users to be grouped into roles that need access to
resource, which can be useful for limiting the number of access
policies but is not suitable for large, complex IoT networks.
ABAC provides more fine-gained and contextualized access
control, which is desirable for IoT scenarios. Access requests
in ABAC are evaluated against a range of attributes that define
the user, the action, the resource, and the context. Defining
a set of generalized attributes can be difficult when applying
this model in a heterogeneous and dynamic IoT network. Both
RBAC and ABAC use a centralized approach. Though these
models have been applied in IoT-specific scenarios, achiev-
ing end-to-end security using a centralized architecture on a
distributed system such as the IoT can be quite challenging.
Unlike other models, the CapBAC model is based on capabil-
ity of the subjects. Every entity of an IoT system is given a
unforgeable capability token that uniquely references an object
as well as an associated set of access rights or privileges.
A major advantage of this model is that distributed devices
do not have to manage complex sets of policies or carry out
elaborate authentication protocols, which makes it suitable for
resource-constrained IoT devices.

Considering the nature of IoT networks, we choose a
combination of CapBAC and ABAC models to achieve a fine-
gained and distributed solution in our proposed model. SUPnP
utilizes capability-based and ABAC methods to validate an
SD’s capability to provide a service and a CP’s capability to
interact with a service. Importantly, our approach is feasible
for implementation in networks of resource-constrained IoT
devices.

Fig. 10 presents an overview of the proposed scheme. In
SUPnP, a trusted entity, such as the UPnP certification author-
ity (UCA) [31], a device manufacturer, or a service provider,
issues a device specification document (DSD) and a service
action document (SAD) to an SD and a CP, respectively
(step 1). A DSD contains an SD’s capability to provide certain
services. Likewise, a SAD includes a CPs capability to interact
with a service. A DSD and SAD are signed and cryptograph-
ically protected; therefore, they cannot be forged. An SD has
to contact a registration authority (RA) to provide services in a
UPnP network (step 2). The RA validates the SD’s DSD, DDD
and SDD and ensures that the device can provide services that
are specified in the SDD and DDD. The RA issues a capability
token (CapTokensd) to the SD. The device uses the CapTokensd
as a proof of the service authenticity (step 4). Similarly, a CP
submits its SAD to the RA for validation. The RA verifies the
authenticity of the SAD and confirms that the CP can con-
sume services that can be specified in its discovery messages.
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Fig. 10. Overview of SUPnP.

Fig. 11. Components of SUPnP.

To this end, the RA issues CapTokencp to the CP which the
device can use as the proof of its capability of consuming
certain services (steps 3 and 5).

Fig. 11 presents the components of SUPnP. The SUPnP has
three phases: 1) device enrollment; 2) service and device regis-
tration; and 3) service access. In the device enrollment phase,
an SD and a CP are issued a DSD and a SAD, respectively. An
SD’s capability to provide services and a CP’s authorization
to use services are validated in the registration phase. Finally,
the service access phase ensures the secure service discovery
and advertisement. The details of the phases are provided as
follows.

A. Device Enrollment

1) SD Enrollment: An SD needs to have a DSD provided
by a trusted entity in order to provide a service in the UIoT
network. To acquire the DSD for an SD, either the device

Fig. 12. DSD for SD.

Listing 1. Example DSD of an SD.

manufacturer or the service provider can submit a request to
the UCA. Fig. 12 presents the details on issuing a DSD to
an SD. The UCA receives the HW and SW specifications of
an SD from a manufacture or service provider. The UCA also
receives the details of the services, such as service names,
actions, and events, provided by the SD. The UCA validates
the device specifications, ensuring that the device can provide
the services specified in the service detail, and executes various
test case scenarios to validate the operations of the services.

After the successful validation of the capabilities of the SD,
the UCA generates a DSD for the SD and signs the DSD using
the private key of its private (SKuca) and public (PKuca) key
pair. Next, the requester issues a private (SKsd) and public
(PKsd) key pair to the SD and signs the DSD using the SKsd
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of the device. Hence, the DSD is contains a 2-of-2 multisig-
nature, requiring verification of both the signature of the UCA
and the signature of the device to check the authenticity of the
DSD document. The SD is also issued a certificate Certsd by
a known certificate authority, such as DigiCert1 or Verisign,2

containing the public key PKsd of the device. Additionally,
the device is provided the certificate of the UCA Certuca. The
Certuca, Certsd, SKsd, PKsd, and DSD document are stored in
the device. These information are used to verify the authentic-
ity of an SD’s capability to provide certain services. Listing 1
shows an example DSD.

Components in the DSD include as follows.
1) TYPE: The type of the participant. Here, the type is

“SD.”
2) SD_PK: Public key of the SD.
3) Hardware: HW description of the device (e.g., CPU,

RAM, ROM, and network interfaces).
4) Software: SW specification of the device (e.g., operating

system and runtime environment).
5) SERVICES: The list of services, represented as (name,

type) pairs, that are provided by the SD.
6) SIG-OWNER: The signature of owner, generated from

the SAD document contents using the secret key of the
SD.

7) SIG-UCA: The signature of the UCA, generated from
the SAD document contents using the secret key of the
UCA.

8) SIG-VER-CON: The verification condition of the SAD.
The “CON” field value “2-of-2” means both signatures
mentioned in the “SIGS” field need to be verified to
prove the authenticity of this document.

9) SIGS: The signatures need to be verified to check the
authenticity of this document.

2) CP Enrollment: A CP device runs an application that
interactions with an SD. The UCA is contacted with the list
of the services the CP wants to access along with the actions
it can perform and a list of events it can subscribe. The UCA
validates the capabilities of the CP to interact with the pro-
vided services and issues a SAD document. The UCA signs
the SAD document using its private key SKuca. The application
developer or provider of the CP also signs the SAD document
using the private key of the CP’s private (SKcp) public (PKcp)
key pair. Hence, the SAD is signed with a 2-of-2 multisig-
nature. The CP is also issued a certificate (Certcp), which is
signed by a known certificate authority, containing PKcp so
that the CP can use it to proof the authenticity of its key pair.
An example of the SAD is shown in Listing 2. The fields of
the SAD are as follows.

1) TYPE: The type of the participant. Here, the type is
“CP.”

2) Name: A user-friendly name of the participant given by
the manufacturer.

3) CP_PK: The public key of the CP.
4) SERVICES: The list of services, represented as (name,

type) pairs, that the CP will be authorized to use.

1https://www.digicert.com/
2https://www.verisign.com/

Listing 2. Example SAD of a CP.

Fig. 13. RA discovery messages.

5) SIG-OWNER: The signature of the owner is generated
from the content of the SAD document using the secret
key of the CP.

6) SIG-UCA: The signature of the UCA, generated from
the SAD document contents using the secret key of the
UCA.

7) SIG-VER-CON: The verification condition of the SAD.
Here, the “CON” field value “2-of-2” means both
signatures mentioned in the “SIGS” field need to be
verified to prove the authenticity of this document.

8) SIGS: The signatures need to be verified to check the
authenticity of this document.

B. Registration Process

1) Registration Authority Discovery: The RA is a UPnP
service, which is hosted by the Internet Gateway device [32]
or a standalone device, such as a workstation or a server, on
the network. When a new participant (SD or a CP) enters
a UPnP network, it needs to discover the RA service. The
participant sends an SSDP M-SEARCH message to the known
multicast address 239.255.255.250 on port 1900 via the
UDP protocol (see Fig. 13).

The RA replies with a unicast response that contains the
location (IP:Port) of the RA service (Fig. 13). After the
RA discovery, the participant sends its specification document
(DSD or SAD) to the RA, which can validate the authentic-
ity of the document and the authorization of the participant
to provide or use services. After the successful verification
of the document and capability, the participant is issued a
CapToken so that it can provide or access services. Fig. 14
gives an overview of the registration process.
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Fig. 14. Registration process.

Fig. 15. DSD/SAD verification process.

2) Verification of Specification Document (DSD/SAD):
Fig. 15 presents the messages exchanged between a new
participant (SD or a CP) the RA for the verification of its
specification document. The details of the verification steps
shown in Fig. 15 are as follows.

1) Step 1: A participant sends its DSD or SAD, Certp, and
Certuca to the RA, such that Certp ∈ {Certsd, Certcp}.
The Certsd and Certcp are the certificates of an SD and
a CP, respectively.

2) Step 2: The RA validates the authenticity of the par-
ticipant’s public key PKp and the UCA’s public key
PKuca included in the Certp and Certuca, respectively,
by verifying the signatures of these certificates. Note
that PKp ∈ {PKsd, PKcp}, and PKsd and PKcp are the
public keys of an SD and CP, respectively.

3) Step 3: The RA verifies the authenticity and integrity of
the specification document DSD or SAD. The RA vali-
dates the multisignature “SIG-DEV,” and “SIG-UCA”
using the public key PKd and PKuca, respectively, as a
DSD or SAD is a 2-of-2 multiple signature document.

4) Steps 4 and 5: The RA needs to verify that a DSD
(or SAD) document is really belong an SD (or a CP).
To make sure that the participant is legitimate, the
RA sends a challenge to the participant. The RA gen-
erates a nonce N and encrypts the challenge using
the public key of the participant as challenge =
Encrypt(PKp,N). The RA sends that challenge to
the participant.

Fig. 16. Example of an attribute ledger.

5) Steps 6–8: The participant decrypts the challenge
using its secret key SKp to retrieve the nonce N. Note
that SKp ∈ {SKsd, SKcp}, and SKsd and SKcp are the
private keys of an SD and CP, respectively. Next, the
participant generates a signed response to challenge
by encrypting the hash of the nonce N (HN = Hash(N))
with the secret key of the device as response =
Encrypt(SKp,HN). The SD sends the response to the
RA.

6) Steps 9–11: The RA decrypts the response using PKp

and retrieves HN . The RA computes the hash of the
nonce (H′

N = Hash(N)) and authenticates the participant
if H′ matches H. Otherwise, the RA determines that the
DSD or SAD submitted by an SD or a CP is forged. In
case of a verification failure in any step, the RA adds
the SD or the CP to the revocation list.

7) Step 12: The RA needs to verify that the capability of
an SD matches its DDD. The RA retrieves the device
description document of the SD. The RA matches the
services provided by the SD with its HW and SW spec-
ification included in the DSD. The RA uses an attribute
ledger to perform the validation. The ledger maintains
a mapping between a service type and the HW and SW
attributes require to provide the service. Fig. 16 shows
an example of the attribute ledger.

Through these steps, the RA authenticates the participant.
The participant also can request the certificate of the RA.
3) CapToken Generation: The RA generates and assigns a

capability token (CapToken) to a new participant after the
success full verification of a specification document is passed.
An SD presents its CapToken to a CP to show it is capable
and authorized to provide the specified services. Similarly, a
CP presents its CapToken to an SD to show that is authorized
to use services provided by the SD.
CapToken Generation for SDs: The RA issues a CapToken

to an SD. Listing 3 shows the fields of the CapToken.
The RA uses Algorithm 1 to generate the CapToken. A
number of signatures are included in the CapToken: the
advertisement signature (ADVERTISEMENT-SIG), descrip-
tion signature (DESCRIPTION-SIG), and service signature
(SERVICE-SIG).

The RA computes a DESCRIPTION-SIG as SIGN(SKRA,
device-description) = ENCRYPT (SKRA, Hash
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Listing 3. Example CapToken issued to an SD.

Listing 4. Example CapToken for a CP.

(device-description-content)) to protect the
integrity and authenticity of a DDD. The SKRA and PKRA are
the RA’s private and public keys, respectively. A DDD includes
a list of services an SD intends to provide. The modification
in the service list will invalidate the DESCRIPTION-SIG.
Hence, the verification of the DESCRIPTION-SIG enables
a CP to identify forged services.

Next, the RA computes a SERVICE-SIG as SIGN(SKRA,
service-description) = SIGN(SKRA, Hash
(service-description-content)) to protect the
integrity and authenticity of an SDD. As shown in Listing 3,
the RA computes a SERVICE-SIG for each of the services
provided by an SD. An SDD contains a list of actions that are
used to control (or interaction with) an SD. The modification
in the SDD (add or remove actions) will invalidate the
SERVICE-SIG signature. Hence, the verification of the
SERVICE-SIG enables a CP to identify forged actions.

As shown in Listing 3, the RA also computes an
ADVERTISEMENT-SIG, which protects the integrity
of the locations URIs of the device description and the
CapToken. The RA computes the ADVERTISEMENT-
SIG as SIGN(SKRA, device-description-uri,
captoken-uri) = ENCRYPT(SKRA, Hash (device-
description-uri || captoken-uri)). A CP uses
captoken-uri to retrieve a CapToken issued to the
SD and the device-description-uri to fetch the
DDD that includes the list of services that the SD provides.
The captoken-uri and device-description-uri
are the absolute locations of the CapToken and device-
description document, respectively, and are expressed as

Algorithm 1 CapToken Generation for SD
1: procedure SD_TOKEN_GENERATION(sdInfo)
2: /* Get RA public PKRA, private key SKRA*/
3: (PKRA, SKRA) = getKeyPair();
4: ip-port = append(sdInfo.IP, sdInfo.port);
5: capToken = getCapTokenInstance();
6: capToken.ID = getRandomID();//Generate token ID
7: capToken.RA_PK = PKRA; //Add RA Public key
8: /*Retrieve the device specification info*/
9: specInfo = sdInfo.getDSD();

10: /*Generate and add SERVICE-SIGs to CapToken */
11: serviceList = specInfo.getServiceList();
12: for each svc in serviceList do
13: svcSig = Sign(SKRA, Hash(svc.description));
14: capToken.addService(svcSig, svc.type);
15: end for
16: /*Compute and add DESCRIPTION-SIG.*/
17: des-uri = append(ip-port, sd.askDescriptionURI());
18: capToken.DESCRIPTION-SIG = Sign(SKRA,
19: Hash(des-uri.content));
20: /*Compute ADVERTISEMENT-SIG.*/
21: token-uri= append(ip-port, getCapTokenLocation());
22: capToken.ADVERTISEMENT-SIG=Sign(SKRA,
23: Hash(description-uri || token-uri));
24: /*Generate and add RA-SIG to CapToken */
25: capToken.RA-SIG=Sign(SKRA, Hash(capToken.content));
26: return capToken;
27: end procedure

Algorithm 2 CapToken Generation for CP
1: procedure CP_TOKEN_GENERATION(cpInfo)
2: /* Get RA public (PKRA), private key (SKRA)*/
3: (PKRA, SKRA) = getKeyPair();
4: ip-port = append(cpInfo.IP, cpInfo.port);
5: capToken = getCapTokenInstance();
6: capToken.ID = getRandomID();//Generate token ID
7: capToken.RA_PK= PKRA; //Add RA Public key
8: /*Retrieve the control point specification info*/
9: specInfo = cpInfo.getSAD();

10: /*Add service types to CapToken*/
11: serviceList = specInfo.getServiceList();
12: for each svc in serviceList do
13: capToken.add(svc.type);
14: end for
15: /*Generate and add CAPTOKEN-URI-SIG */
16: token-uri= append(ip-port, getCapTokenLocation());
17: capToken.CAPTOKEN-URI-SIG =
18: Sign(SKRA,Hash(captoken-uri));
19: /*Generate and add RA-SIG to CapToken */
20: capToken.RA-SIG=Sign(SKRA, Hash(capToken.content));
21: return capToken;
22: end procedure

captoken-uri = http://sd-ip:port/captoken.json
and device-description-uri = http://sd-
ip:port/description.xlm. To this end, the RA signs
the CapToken (RA-SIG) to protect the integrity and
authenticity of the CapToken’s contents.
CapToken Generation for CPs: Listing 4 shows the details

of the fields of a CapToken issued to a CP. The RA uses
Algorithm 2 to issue a CapToken to a CP. The RA issues a
SERVICE-SIG for each of the service the CP can consume.
The RA computes the SERVICE-SIG as SIGN(SKRA,
service-name, service-type) = ENCRYPT(SKRA,
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Hash (service-name || service-type)). The RA
uses the service names and types included in a CP’s SAD
document to compute the SERVICE-SIG (see Listing 2).
Next, the RA computes a CAPTOKEN-LOCATION-SIG
as SIGN(SKRA, captoken-uri) = ENCRYPT(SKRA,
Hash (captoken-uri)). A CP serves its CapToken
from the captoken-uri, which is expressed as
http://cp-ip:port/captoken.json. The CP
attaches the CAPTOKEN-URI-SIG with a discovery, action,
and event subscription requests. Hence, an SD is protected
from processing forged discovery, action, and event requests
sent from a malicious device with spoofed IP addresses. After
the generation of all necessary signatures, the RA prepares
a CapToken document and signs it to protects the integrity
and authenticity of the CapToken.

C. Capability Enforcement and Secure Communication

After the participant is finished the registration process suc-
cessfully a CapToken assigned by the RA. The CapToken,
is used in the verification of the messages send by the
participant. In this section, we will explain the capability
enforcement process in UPnP operations.
1) Secure Advertisement: An SD periodically sends

advertise messages in the network to announce its services.
Fig. 17 shows the advertisement message sent by an SD.
The SD adds two additional fields in the advertisement
message: 1) CapToken location (CAPTOKEN-LOCATION)
and 2) advertisement signature (ADVERTISEMENT-SIG).
Upon receiving an advertisement, a CP validates the
signature using the public key (PKRA) of the RA as
Hash(CAPTOKEN-LOCATION URI || LOCATION
URI) == DECRYPT(PKRA, ADVERTISEMENT-SIG) ?
Authentic : Forged. The value of the LOCATION and
CAPTOKEN-LOCATION fields specify the relative paths to
the DDD and CapToken, respectively. The CP constructs the
LOCATION URI as http://sd-ip:port/LOCATION
and the CAPTOKEN-LOCATION URI as http://sd-
ip:port/CAPTOKEN-LOCATION. If the
ADVERTISEMENT-SIG verification results in Authentic,
then the CP ensures that the location of the CapToken
(CAPTOKEN-LOCATION) or the location of the device
description (LOCATION) is not forged. Hence, the CP
validates the authenticity and integrity of the advertisement
message.
2) Secure Description: After the successful verification of

ADVERTISEMENT-SIG, the CP retrieves the CapToken
from the CAPTOKEN-LOCATION. The CP validates RA-SIG
using the RA’s public key PKRA. Hence, the CP ensures
the authenticity and integrity of the CapToken. Next, the
CP retrieves the DDD using the location URI (LOCATION).
The CP validates DESCRIPTION-SIG to ensure that
the SD does not modify (added or removed services
in the service list) the description document after the
registration. The CP validates the DESCRIPTION-SIG
as Hash(Device Description) == DECRYPT(PKRA,
DESCRIPTION-SIG) ? Authentic : Forged. The
steps of the secure description process are shown is Fig. 17.

Fig. 17. Secure service advertisement.

Fig. 18. Secure service discovery.

3) Secure Discovery: A CP sends a discovery request to
find out a targeted service in the network. Fig. 18 shows
the discovery message of SUPnP. The CP adds additional
headers fields: CAPTOKEN-LOCATION, CAPTOKEN-
LOCATION-SIG, DISCOVERY-SIG, and NONCE to an
discovery request. Upon receiving a discovery message
SD first checks the NONCE. If the NONCE value has seen
before, the SD drops the discovery request. The value of the
CAPTOKEN-LOCATION fields specify the relative paths to the
CapToken. The SD constructs the CAPTOKEN-LOCATION
URI as http://cp-ip:port/CAPTOKEN-LOCATION.
The SD validates the CAPTOKEN-LOCATION-SIG using the
public key of RA (PKRA) as Hash(CAPTOKEN-LOCATION
URI) == DECRYPT(PKRA, CAPTOKEN-
LOCATION-SIG) ? Authentic : Forged. If the
CAPTOKEN-LOCATION-SIG verification results in
Authentic, then the SD ensures that the location of
the CapToken (CAPTOKEN-LOCATION) is not forged.
After that, the SD retrieves the CapToken from the
CAPTOKEN-LOCATION URI. The SD validates RA-SIG
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TABLE III
PROPERTIES EVALUATED IN THE SECURITY ANALYSIS OF SUPNP

Fig. 19. Secure control and eventing.

using the RA’s public key (PKRA). Hence, the verification
ensures the authenticity and integrity of the CapToken. The
SD then retrieves the public key of the CP (PKCP) and verifies
the DISCOVERY-SIG as NONCE == DECRYPT(PKCP,
DISCOVERY-SIG) ? Authentic : Forged. Hence,
the verification of DISCOVERY-SIG enables the SD to
ensure the authenticity and integrity of the NONCE value.

4) Secure Control: A CP invokes actions to interact
with an SD. Fig. 19 shows the interaction between CP
and SD in secure control. The CP adds additional head-
ers CAPTOKEN-LOCATION, CAPTOKEN-LOCATION-SIG,
CONTROL-SIG, and NONCE to an action request. The
CP copies the value of the CAPTOKEN-LOCATION-SIG
from its CapToken and adds it to the request header.
The field ACTION-SIG includes a signature of the CP
computed as SIGN(SKCP, NONCE) = ENCRYPT(SKCP,
Hash(NONCE)). An SD receives an action request and
then validates the CAPTOKEN-URI-SIG using PKRA

and CAPTOKEN-LOCATION. Next, the SD retrieves the
CapToken from CAPTOKEN-LOCATION. The SD validates
RA-SIG of the CapToken to ensure the CapToken’s
authenticity and integrity. Afterward, the SD extracts the
service type (e.g., serviceType1) from the SOAPACTION
header and confirms that the service type is included
in the CapToken. Hence, the SD ensures that the CP
has the ability to consume the requested service. To this
end, the SD extracts the CP’s public key KCP from
the CapToken and validates ACTION-SIG using the
NONCE and PKCP. Thus, the SD authenticates the CP
and ensures that the action request is not forged or
spoofed.
5) Secure Eventing: An event request is just like

another action on the service. Fig. 19 shows the event
subscription message of SUPnP. The CP sends an event
subscription request and adds CAPTOKEN-URI-SIG,
CAPTOKEN-LOCATION, EVENT-SIG, and NONCE
headers to the request (see Fig. 17). The CP computes the
EVENT-SIG as SIGN(SKCP,Hash(CALLBACK||NONCE)).
An SD receives the event subscription request and validates
the CAPTOKEN-URI-SIG using the PKRA and ensures the
authenticity and integrity of CAPTOKEN-LOCATION. The SD
retrieves the CP’s CapToken from CAPTOKEN-LOCATION
and validates the RA-SIG to ensure the CapToken
is not forged. Next, the SD validate EVENT-SIG as
Hash(CALLBACK || NONCE) == DECRYPT(PKCP,
EVENT-SIG)? Authentic : Forged. Hence,
the SD ensures that the CALLBACK URL is not
forged.
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IV. SECURITY ANALYSIS

In this section, we present a security analysis to show that
SUPnP ensures the security properties outlined in Table III
under various threat scenarios that align with the threat model
presented in Section II.

A. Trustworthy Capability Verification

A malicious SD or CP may attempt alter specification
documents to add forged hardware capabilities or authorized
services in the service list (Listings 1 and 2). However, in
SUPnP, such modifications in the DSD or SAD will invalidate
the CA signature (SIG-UCA) of the specification document.
An adversary can also try to use a leaked specification docu-
ment as it’s own. But this will invalidate the owner’s signature
(SIG-OWNER). As part of the SUPnP protocol, a RA will
identify the modification during the registration process, as
the specification document verification includes verification of
both SIG-UCA and SIG-OWNER using the public key of the
owner (PKp) and the public key of the CA (PKUCA) (step 3
in Fig. 15).

B. Service-Device Impersonation Mitigation

As shown in Fig. 4, a malicious SD (MSD)
may attempt to replay an advertisement message
to impersonate a legitimate SD. The CP receives
the advertisement and constructs LOCATION URI
= http://msd-ip:port//description.xml
and CAPTOKEN-LOCATION URI =
http://msd-ip:port//captoken.xml. Next,
the CP computes a hash Hlu= Hash(LOCATION URI
|| CAPTOKEN-LOCATION URI) and validates the
ADVERTISEMENT-SIG as Hlu== DECRYPT(PK_RA,
ADVERTISEMENT-SIG)? Authentic : Forged. Given
UPnP’s requirement for signatures and verification, the
verification step identifies the advertisement as Forged,
since the Malicious SD’s IP address is different than the
legitimate SD’s IP address (step 2 of Fig. 17).

In a similar attack scenario, a malicious SD includes
additional services in the device-description document
(Section II-A1). However, a CP identifies the modifica-
tion in the device-description document as it validates
DESCRIPTION-SIG at step 6 of Fig. 17.

C. Control Point Impersonation Mitigation

As shown in Fig. 5, a malicious CP (MCP) may attempt
to impersonate a legitimate CP by replaying a discov-
ery message. The SD receives the discovery request and
checks the NONCE value. If the NONCE is previously
seen, the request will be dropped immediately (step 2
in Fig. 18). The MCP can use a new NONCE value
to avoid an immediate drop of the request. In this
case, the SD constructs a CAPTOKEN-LOCATION URI =
http://mcp-ip:port//captoken.xml. Next, the CP
computes a hash Hlu = Hash(CAPTOKEN-LOCATION
URI) and validates the CAPTOKEN-LOCATION-SIG (step 3
of Fig. 18). Given the requirement of the capability token and

signature verification in SUPnP, this attack will fail; the dis-
covery request will be identified as Forged, since the mcp-ip
is different than the legitimate CP’s IP address.

In a similar attack scenario, the MCP may attempt to send a
discovery message for a service that it is not authorized to use.
The MCP forges the service type (ST) field of the discovery
message to align with the service of interest and multicasts it
in the network. The SD receives the forged discovery message
and retrieves the CapToken of the MCP and the content of
the CapToken using the RA-SIG (steps 5 and 6 in Fig. 18).
After that, the SD matches the service name and type with the
service name and type mentioned in the CapToken (step 7 in
Fig. 18). Because of the SUPnP’s use of capability tokens, the
forged discovery message will not succeed; since the MCP’s
CapToken does not contain the name and type of the service
of interest, the SD will detect the forgery and drop the request.

D. Action Authentication

A malicious CP (MCP) may attempt to use a leaked ser-
vice description document to identify the information required
to invoke an action, such as the control URL, the name of
the actions provided by the service, the arguments of the
actions (see Fig. 3). The MCP sends unauthorized action
requests to the control URLs using the leaked information.
The SUPnP use of capability tokens prevents against such
an attack. An SD verifies the CapToken location and
CapToken content using the CAPTOKEN-LOCATION-SIG
and RA-SIG, respectively, (steps 3–5 in Fig. 19). The MCP
cannot provide a valid, unmodified CapToken, so the vali-
dations fails. However, the MCP may have acquired a valid
CapToken of its own; as such, it can pass verification
of the CAPTOKEN-LOCATION-SIG and RA-SIG, but the
CapToken does not include the name of the service of
interest. The SD matches the service types mentioned in the
CapToken with the service type of the action request send by
the MCP (secure control step 6 in Fig. 19). As the MCP is
not allowed to invoke the action on the service of interest, the
service type is not found in the CapToken, and the SUPnP-
enabled SD will therefore identify and reject the unauthorized
action invocation requests.

E. Event Subscription Authentication

A malicious CP (MCP) may attempt to eavesdrop on the
event subscription request from a legitimate CP. The MCP
may then store the subscription request and replay it later to
an SD. The SD first verifies the NONCE field for both of the
event subscription request if the NONCE field (secure event
subscription step 2 in Fig. 19). As the message is replayed and
the NONCE value is previously seen the SD drops the requests
immediately. The MCP can go one step further and change
the NONCE value to avoid an immediate rejection. In SUPnP,
the SD receives the request and verifies the location and con-
tent using the CAPTOKEN-LOCATION-SIG and RA-SIG,
respectively. Then, the SD retrieves the public key (PKcp) of
the MCP from the CapToken and validates the EVENT-SIG
as HASH(CALLBACK ||NONCE) == DECRYPT(PK_CP,
EVENT-SIG)?Authentic:Forged. This verification
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results in Forged during to modification of the NONCE
value and the SD detects the modification of the malicious
event subscription message (secure event subscription step 7
in Fig. 19).

In another attack scenario, the MCP gains unauthorized
access to the description documents of an SD. Then, the
MCP uses the event url field, EVE_URL (see Fig. 3) to send
a malicious event subscription request. The MCP forges a
CALLBACK URL in order to perform a reflection and ampli-
fication attack (Fig. 9) or DoS attack (Fig. 8). Consequently,
the SD verifies the EVENT-SIG using the hash of CALLBACK
URL and the NONCE value as stated in the last attack scenario.
The verification of the EVENT-SIG fails as the MCP modifies
the CALLBACK URL. The SD detects malicious modification
of the CALLBACK URL by the MCP and rejects the event
subscription request.

V. EXPERIMENT AND EVALUATION

In this section, we present an experimental evaluation of the
SUPnP protocol through simulation to demonstrate the feasi-
bility of implementing the approach in an IoT network con-
taining resource-constrained devices. Our evaluation compares
the performance of our SUPnP solution to the UPnP protocol,
under typical operation and in various attack scenarios.

A. Experimental Model

To demonstrate the feasibility of implementing SUPnP,
our evaluation focuses on metrics that are relevant to the
performance and scalability in networks of the resource-
constrained IoT devices. Specifically, we compare SUPnP and
UPnP in terms of energy consumption in resource-constrained
IoT devices, network throughput, and latency while perform-
ing service registration, advertisement, and discovery opera-
tions. In our experiments, we configured attacking participants
such a way that they make use of CP impersonation, discov-
ery message forgery and discovery message flooding attacks
against an SD.
1) Network Setup: We emulate a real-world UPnP network,

configured as shown in Fig. 20. Using the Cooja [33] simu-
lator, we create a IoT network which consists a number of
simulated Z1 [34] devices, shown in the gray box. One of the
Z1 devices acts as a 6LoWPAN border router (represented as
the blue node) using Contiki’s 6LBR package [35]. In addi-
tion to the simulated IoT devices, the experimental network
includes real physical devices: the desktop computer, support-
ing the RA; a wireless access point (WAP), connected through
the Ethernet (eth0) interface with the desktop (RA); an Android
smartphone, connected to the WAP via WiFi interface; an
laptop, connected to the WAP through WiFi interface. The sim-
ulated network is connected to the desktop (RA) through Serial
LineIP (tun0) [36] using the Tunslip utility [37] provided
in Cooja.
2) Device Configurations: The HW and SW configurations

of the devices used in the experimental setup is shown in
Table IV. All of the devices except the Android smartphone,
were configured either as a CP or an SD. The Android smart-
phone was configured both as CP and SD. All the Z1 IoT

TABLE IV
DESCRIPTION OF EXPERIMENTAL DEVICES

devices except one are configured as CPs. One Z1 device
was configured as an SD. The SDs (the Z1 device and the
smartphone) were configured to provide three services each
containing three actions. The CPs sent discovery message to
find the services provided by the SDs in an interval I, where
I∈ {1000 ms, 2000 ms, 3000 ms}. We varied the interval
I, to show the effects on the discovery message frequency
in our evaluation metrics. We introduced nodes as attacking
CPs, which send the discovery requests more frequently than
the normal nodes; we varied the number of malicious CPs,
Nmalicious ∈ {1, 2, 4} to show the effects of different number
of attackers in the UPnP network. All devices in the network
use UDP as the transport-layer protocol to exchange UPnP dis-
covery and advertisement messages. The desktop implemented
all the RA services in a JAVA-based implementation.
3) Data Collection and Prepossessing: We used the RPL

UDP [38] example of the Contiki to implement the UPnP SD
and CP in Z1 IoT devices. We measured the energy consump-
tion of the Z1 devices using the Powertrace library [39]
which uses the Contiki’s energy APIs to measure the power
consumption of CPU and radio transceiver. To measure the
throughput we leveraged the Contiki logging [40] mechanism
to log the timing and size of the data received by a Z1 device.
We implemented a Python-based Contiki Log Parse to
extract the data readings from the Contiki raw logs.

We developed an Android application for the smartphone
that sends discovery and advertisement messages. We collect
the timing information and size of the data received from the
Android log and parse it using a Python engine. Similarly, in
the laptop, we implemented a Java-based UPnP CP to send
discovery messages and log the data into a log file for further
analysis.

B. Energy Consumption Analysis

In this experiment, we analyze the effect of the UPnP dis-
covery flooding attack (see Fig. 6) on an IoT SD’s energy
consumption using SUPnP and compare it with basic UPnP.
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Fig. 20. Experimental UPnP network.

(a)

(b)

(c)

Fig. 21. Average energy consumption UPnP versus SUPnP under differ-
ent attack interval. (a) Attack interval 1000 ms. (b) Attack interval 2000
ms. (c) Attack interval 3000 ms.

In the first part of our energy analysis, we emulated a real-
world UPnP scenario, where four CPs searching for the same
service in the network, with one of these CPs acting as an
adversary. A fifth Z1 device acts as an SD that provides the
service requested by the CPs. The environment is reflective
of the number of devices in a real-world IoT application for
smart homes or a similar scenario. The malicious CP sent a
forged discovery message, where the CAPTOKEN_URI_SIG
is forged. The cooperative CPs sent the discovery requests
periodically at a reasonable interval (10 000 ms) while the
adversary sends discovery request more frequently. Fig. 21
shows that the average energy consumed under SUPnP is lower
than UPnP.

In the next part of our experiment, we increase the num-
ber of attackers. With 1, 2, and 4 attackers SUPnP gains 36,
19.5, and 10 mJ of energy on average, respectively. This is

Fig. 22. Gain in energy consumption SUPnP versus UPnP (under attack).

because, with SUPnP, the SD detected and rejected the mali-
cious requests, reducing the energy consumed by eliminating
the transmission of response messages to forged discovery
requests. Although some computational energy is required to
verify an authentic discovery request, it is substantially less
than the energy required to reply to the message. It follows that
as the frequency of malicious requests increases, the average
energy gain by SUPnP increases as well. Similarly, as shown
in Fig. 22, the energy gain for SUPnP increases as the number
of malicious CPs increases or the frequency of the malicious
request increases. For example: with 2000-ms attack frequency
and four attacking nodes, SUPnP achieves an energy gain of
96 mJ compared to UPnP. If the attack frequency is lower to
1000 ms with four attacking nodes, the said gains becomes
111 mJ.

Under normal network scenarios, SUPnP incurs some addi-
tional overhead due to the extra operations required in the
discovery phase for authentication. Research shows that select-
ing good intervals for advertisement and discovery is not easy
considering network congestion, power consumption, and user
experience [41], [42]. In our experiments, we set advertise-
ment interval for a normal SD to 15 min, which is half of
the default advertisement time to live, CACHE-CONTROL (see
Fig. 2) field based on the recommendation of UPnP specifi-
cation [30]. To show the overhead of SUPnP under normal
network scenario (without any malicious CPs), we compare
the energy consumption of SUPnP with basic UPnP under
three scenarios, executed over a 60-min time window: 1) no
CP is requesting discovery and the SD periodically advertises
a service according in 15-min interval; 2) four CPs are issu-
ing service discovery requests every 2 min; and 3) eight CPs
are requesting service discovery every 2 min. We repeated the
experiment ten times and average the result for better consis-
tency. Fig. 23 shows the experimental results. The data clearly
show that the average energy consumption for SUPnP is negli-
gible. For example, when eight nonmalicious clients asked for
legitimate discovery, SUPnP causes only around a 3% increase
in normal energy consumption. The minimal energy overhead
indicates that SUPnP is applicable for resource constrained
UPnP-enabled IoT devices.

C. Throughput Analysis

Usually, as part of an IoT system, SDs are deployed in lossy
networks (e.g., a 6LoWPAN network) like our experimental
setting. With a large number of requests, the rate of the request
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Fig. 23. Energy consumption comparison SUPnP versus UPnP (normal
scenario).

drop increases and the network throughput decreases. The
malicious CPs can leverage this limitation of lossy networks by
sending a large number of UPnP discovery packets toward an
SD, resulting in a decrease in throughput and eventually lead-
ing to denial of service (see Section II). In this experiment, we
assessed how the throughput was impacted for requests made
by a nonmalicious CP to a nonmalicious SD when numerous
discovery flooding attacks are employed by other malicious
CPs in an IoT network. Specifically, we measure

Throughout = total nonmalicious bytes received by a SD

Total End-to-end delay to send the byte
.

(1)

We created a real-life scenario by considering a smart-
phone as CP and tried to discover a service from an IoT
SD. Here, the smartphone acted as the nonmalicious CP con-
nected to the UPnP network via the WiFi interface and the
IoT SD that provides the targeted service is located in the
lossy network (see Fig. 20). Meanwhile, some other malicious
CPs flood the lossy network, targeting the service provider
SD. We varied the number of malicious CPs to observe the
affect in the network throughput with an increasing number of
active attackers deploying discovering flooding attack. We also
changed the frequency of the malicious discovery requests to
see the impact on throughput with a large number of malicious
requests.

In the experimental scenario, the smartphone sent discov-
ery requests to an SD with an interval of 10 000 ms. Different
number of malicious CP deployed discovery attack using dif-
ferent time intervals. In measuring the throughout we only
considered the discovery requests by nonmalicious CP as
shown in (2). The effect of throughput under different attack
scenarios are shown in Fig. 24. As shown, as the number
of attackers increases, the throughput of the SDs decreases
for basic UPnP. In contrast, the throughput does not change
substantially for SUPnP. This is because, with SUPnP valida-
tion mechanisms, the SD detects the malicious requests and
drops them without replying, which can reduce the potential
for network congestion. For example, SUPnP gains almost
153% in network throughput with four attacking CPs and
with attack frequency 2000 ms. As such, SUPnP provides

Fig. 24. Throughput comparison SUPnP versus UPnP (attack scenario).

Fig. 25. RDR SUPnP versus UPnP (attack scenario).

significant performance gains in terms of throughput in dis-
covery flooding attack scenarios, with minimal reductions in
throughput under normal scenarios, as compared to UPnP.
1) Request Drop Rate: As we mentioned earlier, IoT

applications are often supported in lossy networks (e.g.,
6LoWPAN). While there is large network traffic the requests
are often dropped in lossy networks. Exploiting this property,
a malicious CP can deploy discovery flooding attacks to cause
a congestion in the lossy network, which, in turn, increase the
rate of legitimate UPnP request drop. In this experiment, we
measured the RDR when the UPnP network is going though
a flooding attack. Similar to the throughput, in measuring the
RDR, we considered a nonmalicious CP making request to a
nonmalicious SD, while another malicious CP is flooding the
network with discovery message. We used the below equation
to measure the RDR

RDR = Total nonmalicious request sent

Total nonmalicious request received
. (2)

Here, the nonmalicious CP sent the discovery messages
periodically at a reasonable interval (10 000 ms) and the mali-
cious CP sent the discovery message in different more frequent
intervals. We present the result of our experiment in Fig. 25.
We performed the experiments 100 times and average the
results for better accuracy. As shown in Fig. 25 the value of
RDR in SUPnP was lower than UPnP in all different attack
frequencies. Although, without any attacking CP, RDR was
very similar for both SUPnP and UPnP. SUPnP discards the
malicious discovery requests without responding, which limits
the impact of network congestion caused by the attack, and
therefore in SUPnP the RDR is lower. On the other hand, in
UPnP, the SD had to reply all the discovery messages, includ-
ing the malicious ones, which, in turn, increase the RDT value.
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TABLE V
SECURITY PROPERTIES COMPARISON OF SUPNP WITH RELATED WORK

Fig. 26. RRT UPnP versus SUPnP.

Our experimental results showed that SUPnP improved the ser-
vice quality by decreasing the RDR value, which is desired in
lossy IoT networks.
2) Request Response Time: We measure the time required

for an SD to reply a legitimate UPnP request using the
following equation:

RRT = T1 + T2 + T3. (3)

Here, RRT = Request Response Time, T1 = the time
required to transmit a message from the CP to the SD,
T2 = the time to verify the message (CapToken verification),
and T3 = the time to prepare and send a response.

We conducted this experiment in both WiFi (data-rate
600 Mb/s) and 6LoWPAN (data-rate 128 kb/s) medium as the
communication links. In both cases, a nonmalicious CP send
a discovery message to a nonmalicious SD. In WiFi medium,
the laptop acted as the CP and the smartphone acted as the SD.
Similarly in 6LoWPAN medium a Z1 device acted as the SD
and another Z1 device acted as the CP. Fig. 26 shows the result
of our experiments. We conducted 100 iterations of the exper-
iment report the mean result. Our result shows that the delay
incurred by SUPnP in both traditional UPnP networks (Wifi
medium) and IoT network (6LoWPAN) is very low compare
to the basic UPnP: 1.33% for WiFi and 3.15% for 6LoWPAN.
That indicated that SUPnP has a small execution time over-
head due to the computation costs for capability verification.
Thus, our experimental result indicate the feasibility of SUPnP
in terms of the service response time in service oriented UPnP
IoT networks.

VI. RELATED WORKS AND COMPARATIVE DISCUSSION

In this section, we present the prior efforts to secure the
IoT devices and UPnP network. The security risks of IoT-
integrated cyber–physical systems are well explored. Although
interest continues to grow in the development of approaches
grounded in artificial intelligence and machine learning to
detecting security threats in IoT networks [49]–[53], we focus
on developing a UPnP-enabled solution that addresses identi-
fied threats. Here, we present efforts related to devising secure
UPnP protocols. Table V presents a summarized comparison
of how existing UPnP protocols address the security properties
embodied by our SUPnP solution.

U-PoT [44] takes a different approach in securing UPnP,
making use of honey pots to mitigate the attacks on the discov-
ery and description phase of UPnP. In this approach, a honey
pot is generated by automatically creating an emulated UPnP
device from a UPnP device description document. While this
approach may show promise in terms of detecting malicious
actions, event subscriptions, and replay attacks in the UPnP
IoT network, it is costly and difficult to deploy. Moreover,
unlike SUPnP, U-Pot does not prevent unauthorised discovery
and access of the UPnP services.

UPnP-UP [43] is an extension of the UPnP that enables a
multilevel security protocol that can be used for user authenti-
cation and authorization and to achieve interoperability among
the available services in a network. UPnP-UP provides a
network manager with ability to define access control policies
using a well-defined user interface. In addition, this provides
a flexible way to select the security properties based on the
need of pervasive networks (such as residence environment,
commercial environment, and secure environment). However,
UPnP-UP only focuses on the service requests and invocations
of actions which is associated with the eventing and control
phase of UPnP. Unlike SUPnP, it does not provide any security
mechanisms that address vulnerabilities in the discovery and
advertisement phase of UPnP. Moreover, this scheme cannot
verify the capability of the UPnP devices before joining the
network, as SUPnP does.

Guo and Li [46] designed an UPnP key management
scheme that based on the group signature algorithm. The
scheme includes the member join, signature verification, and
secure communication among the group members. But the
assumption of this work is a small amount devices need
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interoperability which is not suitable for IoT scenarios. If the
group consists a large amount of IoT devices group signature-
based approach is not be scalable, thus cannot be deployed in
large scale IoT networks. In contrast, SUPnP does not require
to maintain any information in any centralized entity, thus does
not have scalability issue. Besides, this work focuses only
on the securing action invocation request, does not include
securing discovery, advertisement and eventing as SUPnP
does.

KUPnP [45] proposes a UPnP extension based on the
Kerberos service [54] to secure the UPnP devices and con-
trol points by introducing a key distribution center (KDC) as
a central manager to handle authentication between devices
and key management. However, the KDC needs to centrally
maintain a database consisting all the secret keys of the control
points and service devices that causes a scalability issue with
large number of participants. SUPnP addresses this issues by
assigning a CapToken to the devices, which is used in authen-
tication process, so there is no need to maintain a centralized
database. Finally, KUPnP does not defend against imperson-
ations attacks by an adversary changing the service description
file and removing the service required to perform Kerberos-
based authentication. In contrast, SUPnP detects and prevents
impersonation attacks caused by modification the description
files.

Pehkonen and Koivisto [47] proposed a secure UPnP
network architecture using transport-layer security (TLS) to
secure all TCP traffic, which carries most of UPnP discovery
and advertisement messages. However, this work only focuses
on the discovery architecture of UPnP, unlike SUPnP it does
not provide any secure solution for UPnP control and eventing
mechanism.

Islam et al. [48] proposed a simpler access control system
without incorporating any complex authentication procedures
by adopting access control list (ACL) to defend DLNA sup-
ported devices from unwanted control points. This work uses
a particular field in requests or responses to identify a control
point and manages a list of access rules. That approach is a
good candidate to protect the UPnP devices from unauthorized
control points due the lightweight nature of the authentication
procedures. But maintain a large number of access rules is
always challenging, even not feasible in large IoT networks.
SUPnP does to need to store any access rules, so it has no
scalability issue and suitable for IoT networks. Moreover,
this work focuses on the control phase of UPnP, unlike
SUPnP, does not include the security concerns of discovery,
advertisement and eventing phases.

VII. CONCLUDING REMARKS

In this work, we conducted a security analysis of the
UPnP protocol, resulting in the identification of security vul-
nerabilities in service discovery, advertisement, control, and
eventing phases. Our analysis highlighted how an adversary
can launch service device impersonation, control-point imper-
sonation, denial of service, and resource exhaustion attacks
when UPnP is deployed in service-oriented systems in IoT
networks. To address these issues, we introduced a capability-
based security scheme SUPnP, which enables both service

devices and control points to verify that service devices are
capable of and authorized to support and use services. Our
experimental evaluation of our implementation of the SUPnP
protocol highlighted the feasibility of deploying the proposed
scheme in real-world IoT scenarios; SUPnP shows significant
reductions in energy consumption and substantial increases
in throughput under several attack scenarios compared to
UPnP, with reasonable tradeoffs in energy consumption and
negligible increases in latency under normal scenarios.

As shown in our analysis, the SUPnP defends against var-
ious critical attacks and ensures secure service advertisement
and discovery. It prevents impersonations and DoS attacks
and helps to avoid buffer overflows. Nevertheless, the SUPnP
does not consider the access control from the individual user’s
perspective and is, therefore, unable to restrict the network
access based on their roles. Role-based access control is highly
important to facilitate secure access in large organizations such
as hospitals, where hundreds of users and thousands of per-
missions are required in a hierarchical manner. However, the
conventional access control methods cannot be applied directly
to UIoT settings due to the resource constraints and distributed
architecture of the relevant systems. Therefore, the investi-
gation for the lightweight and scalable solutions for secure
access control for UPnP-enabled IoT can be worthy research.
We can also investigate machine learning-based and deep
learning-based solutions exploiting the fusion of statistical
and contextual user request behaviors to execute a large-scale
secure access for UPnP-enabled IoT networks.
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