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Abstract—The ubiquitous nature of IoT devices has brought
new and exciting applications in computing and communica-
tion paradigms. Due to its ability to enable auto-configurable
communication between IoT devices, pervasive applications, and
remote clients, the use of the Universal Plug and Play (UPnP)
protocol is widespread. However, the advertisement and discovery
mechanism of UPnP incurs significant overhead on resource-
constrained IoT devices. In this paper, we propose a delegation-
based approach that extends the UPnP protocol by offloading
the service advertisement and discovery-related overhead from
resource-limited IoT devices to the resource-rich neighbours of
a UPnP-enabled IoT network. Our experimental evaluations
demonstrate that the proposed scheme shows significant improve-
ment over the basic UPnP, reducing energy consumption and
network overhead.

Index Terms—UPnP, Internet of Things, Service Discovery,
Service Advertisement, Virtual Service Device, Delegation.

I. INTRODUCTION

The past decade has seen substantial growth in the manufac-

turing of Internet of Things (IoT) devices. As the availability

of a range of different types of sensor- and actuator-enabled

IoT devices at the network’s edge has increased, a number of

IoT deployments have emerged, including smart home systems

[1] that integrate home security [2], management, and conve-

nience for home owners; health and wellness services [3]–[5]

that allow for remote, continuous, multi-modal monitoring of

physiological and behavioral characteristics [6]; and intelli-

gent agriculture systems [7] that can optimize crop growth

and harvesting. Common to these and future IoT application

deployments is the need for an open system that supports fluid,

dynamic, opportunistic integration of potentially mobile clients

and services supported by IoT devices at scale, with minimal

configuration.

Given these needs, service-oriented architectures are well-

suited to support IoT-enabled systems, providing the ability for

resource-constrained IoT devices to advertise software services

that can be discovered and used by applications. The Universal

Plug and Play (UPnP) [8] protocol, which implements a

service-oriented model and can be used to connect clients

and services across a network, has been widely adopted for

use to support IoT systems. UPnP supports dynamic service

advertisement and service discovery, and supports zero con-

figuration networking. It also offers language independence

and interoperability, supporting the incorporation of a wide

variety of devices from different manufacturers with varying

capabilities and configurations.

However, supporting UPnP on the types of small, resource-

constrained devices that are common in IoT networks is not

without challenges. In particular, despite recent advances in

device and network protocol design, the substantial power con-

sumption required to send and receive messages via a wireless

medium makes communication overhead a significant concern

for small, battery-powered sensor devices. Specifically, in

the UPnP context, an IoT device acting as a service device

(SD) typically needs to periodically multicast advertisements

to announce the availability of the services it provides. The

advertisement message also contains the information needed

to access the services provided by the SD. As the IoT devices

are resource-constrained and usually battery-powered, this

periodic multicast advertisement message incurs considerable

energy overhead.

In this work, we build on the observation that resource-

constrained IoT devices at the edge of the network are often

connected to a more resource-rich neighbours, such as a

gateway device. In general, a gateway device act as a bridge

between heterogeneous IoT devices within the local area

network and remote devices, performing protocol translation,

packet fragmentation, and communication bridging between

different communication technologies (e.g., BLE [9], Zigbee

[10], 6LoWPAN [11]). With respect to supporting UPnP in

IoT networks, the gateway can also serve to assist resource-

constrained IoT service devices by supporting delegation of

service advertisements. Essentially, the gateway device can

act as a Virtual Service Device (VSD), which emulates the

advertisement behavior of an SD; it handles sending the978-1-7281-9656-5/20/$31.00 ©2020 IEEE
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service advertisement and serves the service discovery requests

from interested clients. This approach can reduce the network

overhead, and therefore the energy consumption, incurred on

IoT service devices in the UPnP-enabled network.

In this work, we extend the UPnP protocol to incorporate

service advertisement delegation from IoT service devices to

a resource-rich Virtual Service Device (VSD) and propose a

Virtual Service Device Management (VSDM) scheme. The

contributions of this work are summarized as follows:

• We identify the energy consumption of UPnP service

devices to advertise the targeted services of an IoT

network.

• We propose a Virtual Service Device Management

(VSDM) scheme, delegating the service advertisement

overheads to a resource-rich network member for re-

source constrained IoT devices.

• We implement a prototype of VSDM and conduct an

experimental evaluation. Our experiments focus on ex-

ploring the energy consumption and network overheads

in basic UPnP and VSDM-enabled UPnP in an both IoT

network.

II. BACKGROUND

A. UPnP based IoT Systems

Figure 1 shows an example UPnP network with IoT devices.

In a UPnP network, devices can be located in different types

of networks such as BLE, Zigbee, and 6LoWPAN. The par-

ticipants from different communication mediums can interact

with each other to perform UPnP operations. For example,

a smart phone that uses WiFi can act as a CP to discover

a service provided by an IoT device in the 6LoWPAN net-

work. The gateway device in responsible in bridging different

communication technologies.
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Fig. 1: A UPnP Network with IoT devices.

B. UPnP Components

The components of a UPnP based system are classified into

three categories: Service Device (SD), Control Point (CP), and

Service.

Control Point (CP) Service Device (SD)

2. Send Discovery message

3. Reply Discovery message

Discovery/

Advertisement

4. Get Device Description

Description
5. Get Service Description

Control

Eventing

6. Send Action Invocation Request

7. Send Action Invocation Reply

8. Send Event Subscription

10. Publish Event

1. Send Advertisement
HTTPU

HTTPU

HTTP GET

HTTP GET

Fig. 2: Interaction between a CP and an SD.

NOTIFY * HTTP/1.1 

HOST: 239.255.255.250:1900

CACHE-CONTROL: expiration time

LOCATION: URL for description

NT: notification type

NTS: ssdp:alive

USN: identifier for the advertisement

Other optional fields: value

M-SEARCH * HTTP/1.1 

HOST: 239.255.255.250:1900

MAN: ssdp:discover

MX: seconds to delay response

ST: search target

USER-AGENT: optional field

Service Advertisement Service Discovery

Fig. 3: UPnP Advertisement and Discovery messages.

1) Service Device (SD): In UPnP, an SD functions as

a server that provides useful services to the clients upon

request. In IoT-based scenarios, SDs are embedded with

sensors that collect contextual information, actuators that can

perform actions in response to sensed information, and radio

transceivers for communication, with the support of a real-

time operating system. For example, a service device may be

a smart refrigerator, doorlock, or security camera in a smart

home network.

2) Control Point (CP): A CP acts as a client that requests

and consumes the services provided by the SDs. A CP

can discover the available services, control the services, and

request updates on the state change of the services.

3) Service: A service is a unit of functionality implemented

by an SD located on the edge of the network. For example,

a smart refrigerator device may offer a service to check the

temperature of the vegetable drawer or to add an item to a

shopping list.

C. UPnP Phases and Operations

Figure 2 shows the operations performed in UPnP com-

munication by the SDs and the CPs in different phases. As

shown in the figure, there are four essential phases of the UPnP

protocol: Advertisement, Discovery, Description, Control, and

Eventing.

1) Advertisement: In the UPnP protocol [12], an SD pe-

riodically sends advertisement messages to the network by
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multi-casting to a standard address and port. Figure 3 shows

an advertisement message sent by an SD. In the advertise-

ment message (Figure 3), the SD provides a URI (via the

LOCATION field) that allows the CP to retrieve additional

information about the device and its services. An SD will also

unicast a similar message in response to a discovery message

received from a CP.

2) Discovery: A CP searches a desired service in the

network by broadcasting a discovery message. Figure 3 shows

a sample discovery message sent by a CP. A CP defines the

target service of the discovery message using the ST field (See

Figure 3). In reply of a discovery message, the CP receives a

message similar to the advertisement revealing the description

of the services.

3) Description: After the advertisement and discovery, a

CP only knows a URI location that provides the details of the

services by a particular SD. In the description phase, the CP

requests the URI location to retrieve the device description of

the SD.

4) Control: After retrieving the description of the services

in the previous phase, a CP knows the name of the actions

supported by the service, their parameters, and the way to

invoke them. The CP sends control request to the service to

perform the targeted actions.

5) Eventing: Additionally, a CP also knows all the state

variables of a service from its description and can subscribe to

monitor the state variables. A subscription is when the targeted

state variable of the specific services changes, every subscriber

(in this case the CP) gets a notification from the SD.

For IoT devices, periodic multicasting of advertisement

message can be prohibitively costly in terms of energy con-

sumption due to communication overhead. Additionally, IoT

service devices are vulnerable to service discovery flooding

attacks, in which a malicious CP repeatedly sends service

discovery messages; at a minimum, the IoT service device

will incur significant communication overhead (and therefore,

energy consumption) in responding to high volumes of ser-

vice discovery requests and the IoT service device can be

overwhelmed by the requests, effectively resulting in a a

denial of service. We discuss these limitations of UPnP service

advertisement in further detail in Section III to motivate our

proposed scheme.

III. PROPOSED SCHEME: VSDM

To support UPnP in IoT networks, an IoT SD multicasts

periodic advertisement messages, which consumes significant

energy for a resource-constrained device. The IoT SD must

also reply to discovery requests of the CPs. As such, IoT

service devices are vulnerable to large volumes of service

requests, whether originating from legitimate control points or

malicious actors. In any case, so called “discovery flooding”

incurs significant communication overhead on the IoT SD,

which must respond to the high volumes of service discovery

requests, and can ultimately exhaust the energy in a battery-

powered IoT device. The IoT service device’s buffer and

processor can also be overwhelmed by the requests, effectively
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Fig. 4: VSDM System Components.

resulting in a different type of a denial of service, impacting

the performance of the IoT system. Moreover, IoT devices

are often deployed in low power and lossy networks (LLN)

like 6LoWPAN. LLN networks are very constrained, and, in

case of discovery flooding, these networks become congested,

resulting in yet another type of performance impact.

In response to aforementioned limitations of deploying

UPnP service advertisement in IoT networks, we propose

a Virtual Service Device Management (VSDM) scheme to

offload the advertisement and discovery reply to a resource-

rich device in the IoT network. In VSDM scheme, the pe-

riodical advertisement and discovery reply is delegated to a

virtual service device (VSD) which is a resource-rich member

of the UPnP enabled IoT network. The VSDs take care of

the advertisement and discovery reply, offloading the resource

constrained IoT SDs. For later UPnP phases after discovery

and advertisement, such as action request (control) and event

subscription (eventing), the VSD redirects the requests to the

SD. In this work, we focus on presenting a solution that

extends the UPnP protocol to incorporate a single VSD in an

UPnP-enabled IoT networks. However, we note that multiple

VSDs can be deployed in a VSDM-enabled UPnP solution for

IoT networks. Such a solution can offer additional benefits,

including load balancing across VSDs and fault tolerance.

A. VSDM Components

Figure 4 shows the system components of VSDM scheme.

The Virtual Service Device (VSD) is implemented

in the gateway device or in a resource-rich device in the

same communication network. As most IoT networks are

accompanied by relatively resource rich gateway devices, they

are excellent candidates to implement a VSD. However, the

gateway device is not the only candidate to become a VSD;

any other participants that have enough resources can even-

tually implement the characteristics of the VSD. Every VSD

implements a service named VSD-Agent, keeps a Service

Directory, and maintains Service Map.

1) VSD-Agent: The VSD-Agent is the service implemented

by every VSD to support delegation. The description of the

VSD-Agent service is maintained in a service description

0426
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document. Figure 5 shows the JSON envelope of the service

description document of the VSD-Agent service. This descrip-

tion document provides the URL to send action invocation

requests, and exposes the name and arguments of the actions to

be invoked. There are four actions implemented by the VSD-

Agent service:

• Service-add: Service-add is invoked by a SD

when it tries to enroll itself to the VSD for delegation

or it has a new service to provide. This action

takes a list of service information as a parameter.

Each entry of the service information list is a

tuple like, <service-name, service-type,

description-location-url, control-url,

event-url>. Service-add retrieves the service

description from the original SDs and stores them in

the Service Directory. It also inserts an entry to the

Service-map mapping the delegation information.

• Service-remove: Service-remove is invoked by a

SD when a previously advertised service is no longer

available or the SD is leaving the UPnP network. This

action also takes a list of service information as a

parameter. Service-remove removes the delegated

service description stored in the Service Directory and

the Service-map entries for the associated services.

• Service-update: When a SD has an update for exiting

service, it invokes the Service-update action. This

action retrieves the new service description document

from the SD and updates the Service-Directory and

Service-map with the updated information.

• Discovery-reply: This action is invoked by the VSD

that implements the VSD-Agent service upon receiving a

discovery request from a CP. Discovery-reply takes

the name of the targeted service and the address of the

CP that issued the discovery request as a parameter. This

action finds the targeted service name from the Service

Map, constructs a delegated discovery reply, and sends

the discovery reply to the CP.

• Multicast-Advertisement : This action is also invoked

by the VSD periodically multicasting the advertisement

for the available services. Discovery-reply iterates

through the Service Map, constructs delegated adver-

tisement messages for each entry, and multicasts the

advertisements in the network.

2) Service Directory: VSD retrieves the service descrip-

tions of the SDs and stores them into the Service Directory to

perform the delegation. While advertising the service provided

by an SD, VSD uses the corresponding service description

stored in the Service Directory as the delegated service de-

scription location.

3) Service-Map: Service-Map keeps the mapping of a

service name and type to the description, control and event

URLS and the Owner SD that provides the original service.

The Service Map is implemented as a hashtable with separate

chaining. Figure 6 shows an example of the Service Map

data structure. There the description location (Location) is a

{

Type                   :    “VSD”,
UUID                 :   VSD-UUID

ServiceList : [

{

ServiceName : “VSD-Agent”,
Control-URL : <VSD-IP:PORT>/ACTIONS,

Actions          : [

{name: “Service-add”,        args: <list-of-service-info>},

{name: “Service-remove”,  args: <list-of-service-info>},

{name: “Service-update”,    args: <list-of-service-info>},

{name: “Multicast-Advertisement”, args:<target-service>},

{name: “Discovery-reply”,  args:<CP-address,  target-service>}

]

}

]

}

Fig. 5: The JSON envelope of the VSD service description

document.

CameraControl:Action . . . TempatureSettings:Setting

Owner: <CameraDevice1> 

Location: <delegatedURL>

CTRL_URL: <SD-CTRL-URL>

EventURL:  <SD-EVENT-URL>

Owner: <CameraDevice2> 

Location: < delegatedURL >

CTRL_URL: <SD-CTRL-URL>

EventURL:  <SD-EVENT-URL>

Owner: <Thermostate1> 

Location: < delegatedURL >

CTRL_URL: <SD-CTRL-URL>

EventURL:  <SD-EVENT-URL>

Owner: < Thermostate2> 

Location: < delegatedURL >

CTRL_URL: <SD-CTRL-URL>

EventURL:  <SD-EVENT-URL>

Fig. 6: Structure of the Service Map.

delegated URL pointed to a URL stored in Service Directory.

The control URL (CTRL_URL) and the event URL are the

absolute URL’s provided by the SD.

B. SD Enrollment

Figure 7 shows the enrollment process for a SD. Step 1:

When a new SD enters the UPnP network, it multicasts a

VSD discovery message in the network to find the VGD-Agent

service. The VSD discovery message is based on the SSDP

M-SEARCH message like UPnP discovery, where the search

target (ST) is (VSD:VSD-AGENT). Step 2: The VSD device

replies to the SD with the description location of the VSD-

Agent service (LOCATION field). Step 3: The SD sends a

HTTP GET request to retrieve the description of the VSD-

Agent service (see Figure 5). Step 4: The SD invokes the

Service-add action of the VSD-Agent service with a list

of the service information it wants to advertise in the network.

Step 5: The VSD-Agent sends HTTP GET request to retrieve

the service description documents of the services hosted by

the SD. Step 6-8: After receiving the service documents

of the SD, VSD-Agent stores them it the Service Directory

and creates a delegated description URL. Then VSD-Agent
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Service Device (SD)

M-SEARCH * HTTP/1.1 

HOST: 239.255.255.250:1900

ST : VSD:VSD-AGENT

SD Enrollment

NOTIFY * HTTP/1.1 

HOST: 239.255.255.250:1900

LOCATION: <VSD-description-location>

NT: VSD

NTS: ssdp:alive

1.

2.

3. HTTP Get : <VSD-description-location>

4. Invoke action : Service-add (List_of_service_information)

5. HTTP Get : Service-Decription-Documents

6. Stores the Service Descriptions in Service Directory

7. Prepare a Delegated Description URL

8. Insert the delegation information in Service-Map 

Virtual Service Device (VSD) 

Fig. 7: Enrollment of an SD in VSDM.

inserts an entry to the Service-Map with the service name,

type, delegated description URL, control and the event URL

of the SD for each service.

C. Delegated Discovery Reply and Description

Figure 8 shows the delegated discovery and the description

phases of VSDM. Step 1: The CP multicasts a discovery

message in the network. Step 2: As the discovery message

is sent using multicast, both the SD and the VSD receive

it. As the SD delegates the discovery reply to the VSD, it

ignores the discovery message. Step 3: The VDS invokes the

Discovery-reply action of the VSD-Agent and prepares

a discovery reply using the delegated LOCATION URL. Step

4: The CP uses the delegated description location to get the

service description documents from the VSD.

D. VDSM Control and Eventing

Figure 9 shows the control and eventing phases of the

VDSM. After getting the description of the services from the

VSD, a CP performs action request invocation. As the CP gets

the description documents from the VSD, naturally it appends

the address of the VSD with the relative control URL provided

in the service description to invoke action invocation request

(Step 1 Figure 9). The VSD retrieves the absolute address of

the control URL to the original SD from the Service-Map (see

Figure 6). Then the VSD redirects the control request to the

original SD using HTTP 302 redirection (Step 3 in Figure 9).

Thus the action invocation request of the CP is directly served

by the original SD.

Similarly, the event subscription request is also redirected

by the VSD to the original SD to publish the events to the CP.

IV. EXPERIMENT AND EVALUATION

A. Experimental Setup

The experimental UPnP network imitating a real-world

UPnP enabled IoT setting is illustrated in Figure 10. We used

Contiki operating system based simulator Cooja [13]. We build

Virtual Service 

Device

(VSD)

Service Device 

(SD)

Control Point

(CP)

NOTIFY * HTTP/1.1 

HOST: 239.255.255.250:1900

LOCATION: <delegated-location>

NTS: ssdp:alive

1.2 Multicast Discovery

1.1 Multicast Discovery

3.

2.1 Discard 
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2.2 Prepare Delegated Reply

4. HTTP GET: <delegated-location>

Fig. 8: Delegated Discovery and Description of VSDM.
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1. Event Subscription Request

URL : <VSD-IP:PORT>/event-URL

2. Prepare URL to SD 
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LOCATION: <SD-IP:PORT>/event-URL
3.

4. Event Subscription 

Request. URL : 

<SD-IP:PORT>/crtl-URL

6. Publish Event

Fig. 9: VSDM Control and Eventing Phase.

an IoT device network that consists of some physical device

and a number simulated devices. The simulated IoT network,

includes a number of Z1 [14] mote devices, with commu-

nications supported by 6LoWPAN and the RPL [15] routing

protocol. In addition to the simulated Z1 devices that comprise

the simulated IoT network, our experimental setup includes

real physical devices; a desktop computer supporting the VSD

is connected to a Wireless Access Point (WAP) through the

Ethernet (eth0) interface, which, in turn, is connected to a

physical Android smart phone, and a laptop computer. The

WAP bridges the eth0 interface to the WiFi medium. A bridge

is configured to connect the (simulated) 6LoWPAN network

and the gateway device using the Tunslip utility [16] of

Cooja. All the devices in the network use UDP as the transport
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Fig. 10: Experimental Network of VSDM .

layer protocol to exchange UPnP discovery and advertisement

messages.

A simulated device is configured as a resource constrained

SD which provides three UPnP services, each providing two

actions that can be invoked. The rest of the simulated devices

are configured as CPs, which issue discovery messages to

search for UPnP services provided by the SD. The smart phone

(connected via WiFi) runs an application that is configured as

both a CP and a SD. The laptop is configured as a traditional

CP and connects via the WiFi interface. A desktop computer

serves as the gateway device in the experimental network.

Our experiments evaluated the performances of basic UPnP

and VSDM explored the energy consumption of the resource

constrained IoT devices. We also analyze the throughput of

the IoT network in both tradition UPnP network (WiFi) and

constrained IoT UPnP network (6LoWPAN).

B. Energy Consumption Analysis

In our experimental setup, the smart phone acting as a

CP that sends discovery messages to the experimental UPnP

network, searching for the services provided by the IoT SD

located in the IoT network. In addition, we included IoT CPs,

varying their number to explore how energy consumption is

impacted as the number and source of discovery messages

increases. We also varied the frequency of the discovery

messages to 1000 ms, 2000 ms, and 3000 ms. We chose

a fixed 2 min interval between advertisement messages for

a service. Each round of our experiment was 20 minutes

long. We repeated each experiment 10 times and reported

the averaged outcomes. To explore power consumption, our

experiments leveraged the Powertrace library [17] which used

the Contiki’s energy APIs to measure the power consumption

of CPU and radio transceiver in the SD.

Figure 11 shows the result of the energy-consumption

experiments. As expected, as we increase the number of

CPs (and therefore, the number of discovery messages), we

see an increase in the energy gain of the VSDM over

basic UPnP. This is due to the service discovery delegation

approach embodied in VSDM . With a VSD, the discovery
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Fig. 11: Gain in energy consumption UPnP vs VSDM

message send by a CP is not received by the SP; instead

the VSD receives and replies to the discovery messages on

behalf of the SP. As a result, in VSDM , the SD replies

to fewer messages compared to the basic UPnP. We see this

benefit increase as the number of CPs who are requesting

to discover services increases. For example, with discovery

message frequency of 1000 ms, with 1, 2 , and 4 CPs the

SD saved 34 mj, 92 mj, and 117 mj of energy, respectively.

We also observed, with decreasing discovery frequency, the

energy savings provided by VSDM decreases. As with less

frequent discovery requests, the SD had less discovery reply

to delegate. With 2 participating CPs, the SD saved 67.6%,

41%, and 57% of energy for 1000 ms, 2000 ms, and 3000

ms frequency, respectively. Our energy experiments show that

the introduction of the VSD can dramatically reduce energy

consumption due to discovery request and advertisement in

resource-constrained IoT SDs in the VSDM compared to the

basic UPnP protocol.

C. Throughput Analysis

To measure the throughput of an UPnP, we choose a targeted

CP and some participating CP. We assumed that the targeted

CP already received the advertisement of the SD and know

how to invoke service actions from the device and service

. Th targeted CP send action invocation requests to the SD

using the control messages of UPnP with an interval of

10 seconds. Meanwhile, the participating CPs were sending

discovery messages in random intervals (between 1000 ms

and 3000 ms inclusive) to the SD searching for the services.

As we wanted to measure the effects of the discovery reply

messages and advertisements in the service action invocation

requests in an UPnP network, we measure the throughout for

the targeted CP using the below formula:

Throughout =
bytes received by SD for Service Access

Total End-to-end delay to send the bytes

Here, we define service access as an action invocation request

(control message) or a event subscription request (eventing)

sent by the targeted CP. In the resource-constrained IoT

network experiments, the IoT devices act as SDs. The smart

phone acts as a CP. Like in the previous experiments, we varied

the number of IoT CPs, which sent discovery messages, and

varied the intervals at which discovery messages were sent by
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Fig. 12: Throughput comparison of VSDM vs UPnP network.

the CPs to the IoT SD. Figure 12a shows the result of these

experiments. In the traditional UPnP network experiments,

we used the smart phone as the SD and the laptop as the

targeted CP. Different number of IoT CPs also took part in

the experiment by sending discovery message to the smart

phones. Figure 12b shows the result of the experiments for

traditional UPnP network.

For both traditional and resource-constrained IoT UPnP net-

works, VSDM outperforms the basic UPnP protocol. In this

VSDM , the VSD served the discovery replies that enabled the

SDs to serve the service action invocation requests quickly. We

also observed that as the frequency of the discovery message

increases, the throughput decreases in both UPnP and VSDM

. However, throughput decreases in VSDM at a slower rate

than for the basic UPnP. We also find that the throughput

gain for VSDM is positively correlated with the number of

participating CPs; as more CPs send more discovery messages,

the SD offloads more work to the VSD, which results in

increased throughput.

D. Comparative Discussion

Yiqin et al. [18] proposes a UPnP based networking solution

to monitor and control the home appliances and smart devices

by the remotes, smart phones, laptops etc in a home network.

Arunachalam et al. [19] proposes an extension of UPnP to

improve the interoperability among heterogeneous devices in

IoT heavy home networks. The authors introduce an UPnP

Application Architecture along with the UPnP application

template and UPnP service template to develop applications

that run on heterogenous devices. The proposed extension

basically enhance the device interoperability of UPnP to

application interoperability. In [20], researchers propose new

Constrained Application Protocol (CoAP) [21] methods so

that the UPnP services offered by a constrained network can

be discovered via a CoAP/UPnP bridge co-located on the

constrained network gateway. In the proposed method, UPnP

messages are translated to the extended CoAP methods at

the bridge and vice versa. Another similar approach [22] is

proposed to bridge the Zigbee and the UPnP leveraging the

low energy footprint of the Zigbee protocol to reduce the

energy consumption of the UPnP devices in a constrained

network. Researchers [23] propose a new service discovery

protocol to make the UPnP service discovery more efficient

and compact in IoT based IPv6 home networks. This extension

take advantage of the improved design of IPv6 to build a

new service discovery method that increase the efficiency of

transmission.

The prior works do not recognise that the resource con-

strained IoT devices can reside with resource rich devices.

And the overhead of performing UPnP service advertisement

and discovery can be offloaded to resource-heavy counter parts

of the constrained networks. Our proposed scheme achieves

better energy efficiency by delegating the advertisement and

handling the discovery requests in resource rich members of

the constrained UPnP enabled IoT network.

s

V. CONCLUDING REMARKS

This paper proposes an extension of the basic UPnP pro-

tocol that delegates the service advertisements and discovery

requests replies from the resource-constrained IoT devices to

the resource-rich elements of an UPnP-enabled IoT network.

The proposed scheme leverages the insight that the resource-

limited IoT devices are often co-located with resource-rich

neighbours that have the potential to carry out the UPnP tasks

on behalf of the IoT devices. The prototype-based evaluation

shows that the proposed extension outperforms the conven-

tional UPnP in terms of energy consumption and network

throughput.

In the given solution, we have proposed the VSDM to

delegate advertisement and discovery related tasks from IoT

service devices. We have argued that the use of multiple

VSDs in the delegation process achieve more flexibility in the

implementation. In future, it would be worth investigating, the

delegation among a number of VSDs that can be optimized by

distributing the delegated tasks to get improved performances.

The trade-off between the number of VSDs placement and

performance in an UPnP-based IoT network can also be

subjected to future works.
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