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ABSTRACT high-link-rate switches with a large number of ports (called high-

In this work, we first propose a parallel batch switching algorithm
called Small-Batch Queue-Proportional Sampling (SB-QPS). Com-
pared to other batch switching algorithms, SB-QPS significantly
reduces the batch size without sacrificing the throughput perfor-
mance and hence has much lower delay when traffic load is light
to moderate. It also achieves the lowest possible time complexity
of O(1) per matching computation per port, via parallelization. We
then propose another algorithm called Sliding-Window QPS (SW-
QPS). SW-QPS retains and enhances all benefits of SB-QPS, and
reduces the batching delay to zero via a novel switching framework
called sliding-window switching. In addition, SW-QPS computes
matchings of much higher qualities, as measured by the resulting
throughput and delay performances, than QPS-1, the state-of-the-
art regular switching algorithm that builds upon the same underly-
ing bipartite matching algorithm.
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1 INTRODUCTION

Many present day switching systems in Internet routers and data-
center switches employ an input-queued crossbar to interconnect
their input ports and output ports. In an N X N input-queued
crossbar switch, each input port has N Virtual Output Queues
(VOQs). A VOQ j at input port i serves as a buffer for the packets
going into input port i destined for output port j. The use of VOQs
solves the Head-of-Line (HOL) blocking issue [13], which severely
limits the throughput of input-queued switches.

In an N XN input-queued crossbar switch, each input port can be
connected to only one output port and vice versa in each switching
cycle or time slot. Hence, in every time slot, the switch needs to
compute a one-to-one matching (i.e., the crossbar schedule) between
input and output ports . A major research challenge of designing
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radix [3]) is to develop switching algorithms that can compute “high
quality” matchings — those that result in high switch throughput
and low queueing delays for packets — in a short time slot.

1.1 Existing Approaches

While many switching algorithms have been proposed for input-
queued switches, they either have a (relatively) high time complex-
ity that prevents a matching computation from being completed
in a short time slot, or cannot produce high-quality matchings
that translate into excellent throughput and delay performances.
For example, the widely-used iSLIP algorithm [14] can empirically
achieve over 80% throughputs under most of traffic patterns, as will
be shown in §.2. However, even with a parallel iterative implemen-
tation, its time complexity per port is O(log? N), which is still too
high when the switch size N is large and the time slot is short (say
a few nanoseconds long).

It is possible to improve the quality of the matching without
increasing the time complexity of the switching algorithm using a
strategy called batching [1, 16, 18]. Unlike in a regular switching
algorithm, where a matching decision is computed for every time
slot, in a batch switching algorithm, multiple (say T) consecutive
time slots are grouped as a batch and these T matching decisions
are batch-computed. Hence, in a batch switching algorithm, each
of the T matchings-under-compuation in a batch has a period of T
time slots to find opportunities to have the quality of the matching
improved by the underlying bipartite matching algorithm, whereas
in a regular switching algorithm, each matching has only a single
time slot to find such opportunities. As a result, a batch switching
algorithm can usually produce matchings of higher qualities than a
regular switching algorithm using the same underlying bipartite
matching algorithm, because such opportunities for improving the
quality of a certain matching usually do not all present themselves
in a single designated time slot (for a regular switching algorithm
to compute this matching). Intuitively, the larger the batch size T
is, the better the quality of a resulting matching is, since a larger
T provides a wider “window of opportunities” for improving the
quality of the matching as just explained.

However, existing batch switching algorithms are not without
shortcomings. They all suffer from at least one of the following two
problems. First, all existing batch switching algorithms except [18]
are serial algorithms and it is not known whether any of them can
be parallelized. As a result, they all have a time complexity of at
least O(N) per matching computation, since it takes O(N) time
just to “print out" the computed result. This O(N) time complexity
is clearly too high for high-radix high-line-rate switches as just
explained. Second, most existing switching algorithms require a
large batch size T to produce high-quality matchings that can lead
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to high throughputs, as will be elaborated in §5. For example, it
was reported in [18] that the batch size had to be 3,096 (for N =300
ports) for the algorithm to attain 96% throughputs under some
traffic patterns. A large batch size T is certain to lead to poor delay
performance: Regardless of the offered load condition, the average
packet delay for any batch switching algorithm due to batching is
at least T/2, since any packet belonging to the current batch has to
wait till at least the beginning of the next batch to be switched.

1.2 Our Contributions

The first contribution of this work is a novel batch switching al-
gorithm, called SB-QPS (Small-Batch QPS), that addresses both
weaknesses of existing batch switching algorithms. First, it can
attain a high throughout of over 85%, under various traffic load pat-
terns, using only a small batch size of T = 16 time slots. This much
smaller batch size translates into much better delay performances
than those of existing batch switching algorithms, as will be shown
in §6.3. Second, SB-QPS is a fully distributed algorithm so that the
matching computation load can be efficiently divided evenly across
the 2N input and output ports. As a result, its time complexity is
the lowest possible: O(1) per matching computation per port.

The design of the SB-QPS algorithm is extremely simple. Only T
rounds of request-accept message exchanges by the input and the
output ports are required for computing the T matchings used (as
the crossbar configurations) in a batch of T time slots. In each round,
each input port i sends a pairing request to an output port that is
sampled (by input port i) in a random queue-proportional fashion:
Each output port j is sampled with a probability proportional to
the length of the corresponding VOQ. For this reason, we call this
algorithm small-batch QPS (queue-proportional sampling). Since
each QPS operation can be performed in O(1) time using a simple
data structure as shown in [9], the time complexity of SB-QPS is
O(1) per matching computation per port. As will be explained in §.2,
the way QPS is used in this work (SB-QPS) is very different than
that in [9]. For one thing, whereas in [9] QPS is used as an auxiliary
component to other switching algorithms such as iSLIP [14] and
SERENA [7], in this work, QPS serves the primary building block
for SB-QPS.

Even though SB-QPS has a much smaller batching delay than
other batch switching algorithms due to its much smaller T, the
batching delay accounts for the bulk of the total packet delay under
light to moderate traffic loads, when all other delays are compar-
atively much smaller. The second contribution of the work is to
achieve the unthinkable: a novel switching algorithm called SW-
QPS (SW for sliding window) that inherits and enhances all the
good features of SB-QPS yet pays zero batching delay. More pre-
cisely, it has the same O(1) time complexity as and achieves strictly
better throughput and delay performances than SB-QPS.

SW-QPS does so by solving the switching problem under a
novel framework called sliding-window switching. A sliding-window
switching algorithm is different than a batch algorithm only in
the following aspect. In a batch switching algorithm, a batch of T
matchings are produced every T time slots. In contrast, in a sliding-
window switching algorithm, each window is still of size T but a
single matching is produced every time slot just like in a regular
switching algorithm. More precisely, at the beginning of time slot
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t, the sliding window contains matchings-under-computation for
the T time slots t, ¢t + 1, ---, t + T — 1. The “leading edge of the
window", corresponding to the matching for the time slot ¢ (the
“senior class"), “graduates” and is used as the crossbar configuration
for the current time slot ¢. Then at the end of time slot ¢, a new and
currently empty matching is added to the “tail end of the window"
as the “freshman class". This matching will be computed in the next
T time slots and hopefully becomes a high-quality matching by
the time ¢ + T, when it “graduates". SW-QPS completely removes
the batching delay because “it graduates a class every year" and
furthermore always schedules an incoming packet to “graduate" at
the earliest “year" possible.

We consider SW-QPS to be the only research outcome of this
work, since it strictly outperforms SB-QPS. However, we describe
both SB-QPS and SW-QPS in detail for two reasons. First, the in-
cremental contributions of SB-QPS over existing batch switching
algorithms and that of SW-QPS over SB-QPS are orthogonal to each
other: The former is to significantly reduce the batch size without
sacrificing the throughput performance much and to reduce the
time complexity to O(1) via parallelization, whereas the latter is to
retain the full benefits of batching without paying the batching de-
lay. Second, thanks to this orthogonality, explaining the differences
between SB-QPS and existing batch switching algorithms and that
between SW-QPS and SB-QPS separately and incrementally makes
the presentation much easier, as will become apparent in §3 and §4.

The rest of this paper is organized as follows. In §2, we state
assumptions and the problem model used in this work. §3 and §
detail the SB-QPS and SW-QPS algorithms respectively. In §5, we
survey the related works. Then, we evaluate the performances of
SB-QPS and SW-QPS in §6 and in §7, we conclude this paper.

2 ASSUMPTIONS AND PROBLEM MODEL

In this work, we make the following two assumptions that are
widely adopted in the literature (e.g., [10, 14]). First, we assume
that all incoming variable-length packets are first segmented into
fixed-length packets, which are then reassembled before leaving
the switch. Hence, we consider the switching of only fixed-length
packets in the sequel, and each such fixed-length packet takes
exactly one time slot to transmit. Second, we assume that input
ports, output ports and the crossbar operate at the same speed.

An N X N input-queued crossbar can be modeled as a weighted
bipartite graph, of which the two disjoint vertex sets are the N
input ports and the N output ports respectively. We note that the
edge set in this bipartite graph might change from a time slot to
another. In this bipartite graph during a certain time slot ¢, there is
an edge between input port i and output port j, if and only if the
jth vOQ at input port i, the corresponding VOQ, is nonempty (at t).
The weight of this edge is defined as the length of (i.e., the number
of packets buffered at) this VOQ. A set of such edges constitutes
a valid crossbar schedule, or a matching, if any two of them do not
share a common vertex.

3 SMALL-BATCH QPS

3.1 Batch Switching Algorithms

Since Small-Batch QPS (SB-QPS) is a batch switching algorithm [1,
16, 18], we first provide some background on batch switching. In a
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Figure 1: A joint calendar. means unmatched.
batch switching algorithm, the T matchings for a batch of T future
time slots are batch-computed. These T matchings form a joint
calendar (schedule) of the N output ports that can be encoded as
a T X N table with TN cells in it, as illustrated by an example
shown in Figure 1. Each column corresponds to the calendar of an
output port and each row a time slot. The content of the cell at the
intersection of the ' row and the j‘# column is the input port that
Oj is to pair with during the t* h time slot in this batch. Hence, each
cell also corresponds to an edge (between the input and the output
port pair) and each row also corresponds to a matching (under
computation for the corresponding time slot). In the example shown
in Figure 1, output port Oj is to pair with I3 during the 1%¢ time
slot (in this batch), Is during the 24 time slot, and is unmatched
during the Tt time slot.

At each input port, all packets that were in queue before a cutoff
time (for the current batch), including those that belong to either
the current batch, or previous batches but could not be served then,
are waiting to be inserted into the respective calendars (i.e., columns
of cells) of the corresponding output ports. The design objective of
a batch switching algorithm is to pack as many such packets across
the N input ports as possible into the TN cells in this joint calendar.
After the computation of the current joint calendar is completed,
the T matchings in it will be used as the crossbar configurations
for a batch of T future time slots. In the meantime, the switch is
switching packets according to the T matchings specified in a past
joint calendar that was computed earlier.

3.2 The SB-QPS Algorithm

In this section, we describe in detail SB-QPS, a batch switching
algorithm that uses a small constant batch size T that is independent
of N. SB-QPS is a parallel iterative algorithm: The input and output
ports run T QPS-like iterations (request-accept message exchanges)
to collaboratively pack the joint calendar. The operation of each
iteration is extremely simple: Input ports request for cells in the
joint calendar, and output ports accept or reject the requests. More
precisely, each iteration of SB-QPS, like that of QPS [9], consists of
two phases: a proposing phase and an accepting phase.

Proposing Phase. We adopt the same proposing strategy as in
QPS [9]. In this phase, each input port, unless it has no packet to
transmit, proposes to exactly one output port that is decided by the
QPS strategy. Here, we will only describe the operations at input
port 1; those at any other input port are identical. Like in [9], we
denote by my, my, - - - , my the respective queue lengths of the N
VOQs at input port 1, and by m their sum (i.e, m= Zszl my). At
first, input port 1 simply samples an output port j with probability
mj/m, i.e., proportional to mj, the length of the corresponding
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VOQ:; it then sends a proposal to output port j. The content of the
proposal in SB-QPS is slightly different than that in QPS. In QPS, the
proposal contains only the VOQ length information (i.e., the value
m;), whereas in SB-QPS, it contains also the following availability
information (of input port 1): Out of the T time slots in the batch,
what (time slots) are still available for input port 1 to pair with an
output port? The time complexity of this QPS operation, carried
out using the data structure proposed in [9], is O(1) per input port.
Accepting Phase. In SB-QPS, the accepting phase at an output port
is quite different than that in QPS [9]. Whereas the latter allows at
most one proposal to be accepted at any output port (as QPSis a
part of a regular switching algorithm that is concerned with only
a single time slot at a time), the former allows an output port to
accept multiple (up to T) proposals (as each output port has up to
T cells in its calendar to be filled). Here, we describe the accepting
phase at output port 1; that at any other output port is identical.
The operations at output port 1 depend on the number of proposals
it receives. If output port 1 receives exactly one proposal from an
input port (say input port i), it tries to accommodate this proposal
using an accepting strategy we call First Fit Accepting (FFA). The
FFA strategy is to match in this case input port i and output port 1 at
the earliest time slot (in the batch of T time slots) during which both
are still available (for pairing); if they have “schedule conflicts" over
all T time slots, this proposal is rejected. If output port 1 receives
proposals from multiple input ports, then it first sorts (with ties
broken arbitrarily) these proposals in a descending order according
to their corresponding VOQ lengths, and then tries to accept each
of them using the FFA strategy.

In SB-QPS, opportunities — in the form of proposals from input

ports — can arise, throughout the time window (up to T time slots
long) for computing the join calendar, to fill any of its TN cells. As
explained earlier, this “capturing every opportunity" to fill the joint
calendar allows a batch switching algorithm to produce matchings
of much higher qualities than a regular switching algorithm that
is based on the same underlying bipartite matching algorithm can.
Indeed, SB-QPS, the batch switching algorithm that is based on the
QPS bipartite matching primitive, significantly outperforms QPS-1,
the regular switching algorithm that is also based on QPS, as we
will show in §6.
Time Complexity. The time complexity for the accepting phase
at an output port is O(1) on average, although in theory it can be
as high as O(N log N) since an output port can receive up to N
proposals and have to sort them based on their corresponding VOQ
lengths. Like in [9], this time complexity can be made O(1) even
in the worst case by letting the output port drop (“knock out") all
proposals except the earliest few (say 3) to arrive. In this work, we
indeed set this threshold to 3 and find that it has a negligible effect
on the quality of resulting matchings.

We now explain how to carry out an FFA operation in O(1) time.
In SB-QPS, we encode the availability information of an input port
i as a T-bit-long bitmap B;[1..T], where B;[t] =1 if input port i is
available (i.e., not already matched with an output port) at time
slot t and B;[t] = 0 otherwise. The availability information of an
output port o is similarly encoded into a T-bit-long bitmap B,[1..T].
When input port i sends a proposal, which contains the availabil-
ity information B;[1..T], to output port o, the corresponding FFA
operation is for the output port o to find the first bit in the bitmap
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(Bij&B,)[1..T] that has value 1, where “&" denotes bitwise-AND.
Since the batch size T in SB-QPS is a small constant (say T=16),
both bitmaps can fit into a single CPU word and “finding the first
1" is an instruction on most modern CPUs.

To summarize, the worst-case time complexity of SB-QPS is

O(T) per input or output port for the joint calendar consisting of T
matchings, since SB-QPS runs T iterations and each iteration has
O(1) worst-case time complexity per input or output port. Hence
the worst-case time complexity for computing each matching is
O(1) per input or output port.
Message Complexity. The message complexity of each “propose-
accept” iteration is O(1) messages per input or output port, be-
cause each input port sends at most one proposing message per
iteration and each output port sends out at most 3 acceptance mes-
sages (where 3 is the “knockout" threshold explained above). Each
proposing message is T +[log, W bits long (T bits for encoding
the availability information and [log, W1 bits for encoding the cor-
responding VOQ length), where W is the longest possible VOQ
length. Each acceptance message is [log, T bits long (for encoding
the time slot the pairing is to be made).

4 SLIDING-WINDOW QPS

In this section, we present in detail the Sliding-Window QPS (SW-
QPS) algorithm, the final and only research product of this work.
Before we do so, we describe next the sliding-window framework
that SW-QPS builds on.

4.1 Sliding-Window Switching

l next window ‘

l current window ‘

o o o | | | o« o o | | | o o o timeslots
t t+1 t+T-1 t+T

Figure 2: Sliding-window switching.

As mentioned earlier, the only difference between SW-QPS and
SB-QPS is that SW-QPS changes the batch switching operation of
SB-QPS to a sliding-window switching operation. Sliding-window
switching combines regular switching with batch switching and
gets the better of both worlds, as follows. On one hand, during each
time slot, under a sliding-window switching operation, there are
T matchings under computation, just like under a batch switching
operation. Each such matching has had or will have a window of
T time slots to find opportunities to have its quality improved by
the underlying bipartite matching algorithm before it “graduates”.
Hence, each such matching, when it “graduates”, can have a similar
or even better quality than that computed by the batch switching
algorithm that is based on the same underlying bipartite matching
algorithm, as will be confirmed in §6.

On the other hand, under a sliding-window switching operation,
the “windows of opportunities" of these T matchings are staggered
so that one matching (“class") is output (“graduated") every time slot.
This matching is to be used as the crossbar configuration for the
current time slot. In this respect, it behaves like a regular switching
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algorithm and hence completely eliminates the batching delay of
the batch switching. More specifically, at the beginning of time
slot ¢, the most senior matching (“class") in the window was added
(“enrolled") to the window at the end of time slot t — T — 1 and
is to “graduate" at the beginning of time slot ¢, so its “window of
opportunity” (to have its quality improved) is [t — T, ¢ — 1]. The
“window of opportunity” for the second most senior matching is
[t =T + 1,t] and so on. At the end of time slot ¢, a “freshman class”
(an empty matching) is “enrolled" and scheduled to “graduate” at
time slot t + T + 1 in the future.

Figure 2 shows how the sliding window evolves from time slot ¢
to time slot ¢ + 1. In Figure 2, each interval along the timeline corre-
sponds to a “class". As shown in Figure 2, at the beginning of time
slot ¢, the current window contains “classes of years" (matchings-
under-computation to be used as crossbar schedules for time slots)
t,t+1,---,and t+T —1. Then, at the beginning of time slot ¢ + 1, the
current window slides right by 1 (time slot), and the new window
contains “classes of years" t + 1,t + 2, ---, and t + T, because the
“class of year t" just graduated and the “class of year ¢ + T" was just
“enrolled".

In theory, almost any batch switching algorithm can be converted
into a sliding-window switching algorithm by making the “windows
of opportunity” for the batch of T matchings-under-computation
staggered instead of aligned. This conversion would in general
improve switching performance by eliminating the batching delay.
Hence, this sliding-window switching framework is itself a separate
contribution of this work.

4.2 The SW-QPS Algorithm

SW-QPS is exactly such a conversion of the batch switching algo-
rithm SB-QPS into a sliding-window switching algorithm. SW-QPS
is also a parallel iterative algorithm whose each iteration is identi-
cal to that of SB-QPS. Hence SW-QPS has the same O(1) time and
O(1) message complexities (per port per matching computation)
as SB-QPS. The only major difference is that, SW-QPS “graduates”
a matching every time slot whereas SB-QPS “batch-graduates” T
matchings every T time slots. This “graduating a class each year"
allows SW-QPS to completely eliminate the batching delay. As ex-
plained earlier, in SW-QPS, at the beginning of time slot ¢, the joint
calendar consists of the T matchings-under-computation that are to
“graduate” in “years" (time slots) t, ¢ + 1, - - -, t + T — 1 respectively.
Hence at time slot ¢, the T-bit-long availability bitmap of an input
port i indicates the availabilities of i during [t,t + T — 1].

Note that SW-QPS inherits the FFA (First Fit Accepting) strategy
of SB-QPS that is to arrange for an input-output pairing — and hence
the switching of a packet between the pair — at the earliest mutually
available time slot. In other words, an incoming packet is always
“advanced to the most senior class that it can fit in schedule-wise"
so that it can “graduate” at the earliest “year” possible. This greedy
strategy further reduces the queueing delay of a packet, as will be
shown in §6.

5 RELATED WORK

In this section, we provide a brief survey of prior studies that are
directly related to ours.



SW-QPS

Regular Switching Algorithms. Using MWM (Maximum
Weighted Matching) as crossbar schedules is known to result in
100% switch throughput and near-optimal queueing delays under
various traffic patterns [15], but each MWM takes O(N?-> log W)
time to compute using the state-of-the-art algorithm [4], where
W is the maximum possible length of a VOQ. Motivated by this,
varjous parallel exact or approximate MWM algorithms (e.g., [2, 5])
have been proposed to reduce its time complexity. However, the
time complexities of all these algorithms above are still too high to
be used in high-line-rate high-radix switches.

The family of parallel iterative algorithms [10-12, 14] generally

has a low time complexity per port. However, their throughput
and delay performances are generally much worse than those of
MWM. We note that QPS-r [10], the state-of-the-art algorithm in
this family, also builds on QPS [9]. It simply runs r (a small constant)
iterations of QPS to arrive at a final matching. We will compare our
SB-QPS and SW-QPS with it in §6.
Batch Switching Algorithms. Most of the existing batch switch-
ing algorithms [1, 16, 18] model the process of packing the joint
calendar as an edge-coloring problem, but until now, most practi-
cal solutions to the latter problem are centralized and have high
complexity. For example, the Fair-Frame algorithm [16] based on
the Birkhoff von Neumann Decomposition (BvND) has a time com-
plexity of O(N'-3 log N) per matching computation.

A recent work, based on parallel edge coloring, has been pro-
posed in [18]. It pushes the per-port time complexity (per matching
computation) down to O(log N). It requires a bath size of only
O(log N), but as mentioned in §1, the constant factor hidden in the
big-O is very large.

6 PERFORMANCE EVALUATION

In this section, we evaluate, through simulations, the throughput
and delay performances of SB-QPS and SW-QPS under various
load conditions and traffic patterns. Our algorithms are compared
against iSLIP [14], which runs log, N request-grant-accept iter-
ations and is hence much more expensive computationally. Our
algorithms are also compared against QPS-1 (QPS-r with r=1 it-
eration) [10]. This is a fair comparison because QPS-1, like our
algorithms, runs only a single iteration to compute a matching.
The MWM algorithm, which delivers near-optimal delay perfor-
mance [17], is also compared against as a benchmark.

6.1 Simulation Setup

In our simulations, we fix the number of input and output ports
N to 64; we however will investigate in §A.1 how the mean delay
performances of these algorithms scale with respect to N. To accu-
rately measure throughput and delay, we assume that each VOQ
has an infinite buffer size, so no packet is dropped at any input
port. Each simulation run follows the stopping rule in [6, 8]: The
number of time slots simulated is at least 500N? and guarantees
the difference between the estimated and the actual average delays
to be within 0.01 time slots with at least 0.98 probability.

We assume in our simulations that each traffic arrival matrix
A(t) is i.i.d. Bernoulli with its traffic rate matrix equal to the prod-
uct of the offered load and a traffic pattern matrix (defined next).
Similar Bernoulli arrivals were studied in [7, 9, 14]. Later, in §A.2,
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we will look at burst traffic arrivals. Note that only synthetic traffic
(instead of that derived from packet traces) is used in our simula-
tions because, to the best of our knowledge, there is no meaningful
way to combine packet traces into switch-wide traffic workloads.
The following four standard types of normalized (with each row
or column sum equal to 1) traffic patterns are used: (I) Uniform:
packets arriving at any input port go to each output port with prob-
ability ﬁ (I) Quasi-diagonal: packets arriving at input port i go
to output port j=i with probability % and go to any other output

1
2N-D)

port with probability (IIT) Log-diagonal: packets arriving at
2(N-1)
2N—1
any other output port j with probability equal % of the probability
of output port j — 1 (note: output port 0 equals output port N). (IV)
Diagonal: packets arriving at input port i go to output port j=i with
probability %, or go to output port (i mod N) + 1 with probability %
These traffic patterns are listed in order of how skewed the volumes
of traffic arrivals to different output ports are: from uniform being
the least skewed, to diagonal being the most skewed.

When implementing SB-QPS and SW-QPS, we have to first de-
cide on the value of batch (for SB-QPS) or window (for SW-QPS)
size T. As explained earlier in §1, for SB-QPS, a larger batch size T
generally results in matchings of higher qualities and hence leads
to better throughput performances. However, a larger T results in
longer batching delays and hence can lead to worse overall delay
performances for SB-QPS. In addition, since the availability infor-
mation in a proposal message is T bits long, a larger T leads to
a higher communication complexity for SB-QPS. Through simu-
lations (results not shown here in the interest of space), we have
found that T = 16 strikes a nice performance-cost tradeoff: The
batching delay is reasonably low and the proposal message size is
small when T = 16, yet the throughput gains when increasing T
beyond 16 (say to 32) are marginal for SB-QPS. Hence we set T = 16
for SB-QPS. SB-QPS clearly deserves its name (small-batch) since
this tiny batch size of 16 is much smaller than that of any other
batch switching algorithm.

Since SW-QPS completely eliminates the batching delay, the only
cost of increasing T for SW-QPS is the larger proposal message size.
Nonetheless, we have found that T = 16 is a nice performance-cost
tradeoff point, and hence is adopted, also for SW-QPS. For SW-QPS,
T does not have to grow with N (to deliver similar throughput
and delay performances), as we will show in §A.1 that the delay
performance of SW-QPS (with T = 16) does not degrade when N
grows larger.

input port i go to output port j = i with probability and go to

6.2 Throughput Performance Results

Table 1: Maximum achievable throughput.

Traffic Uniform | Quasi-diag | Log-diag | Diag

SB-QPS 86.88% 87.10% 87.31% 86.47%
SW-QPS | 92.56% 91.71% 91.40% | 87.74%
iSLIP 99.56% 80.43% 83.16% 82.96%
QPS-1 63.54% 66.60% 68.78% 75.16%
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Figure 3: Mean delays of SB-QPS, SW-QPS, iSLIP, QPS-1, and MWM under the 4 traffic patterns.

Table 1 presents the maximum achievable throughput of SB-QPS,
SW-QPS, iSLIP, and QPS-1, under the aforementioned four stan-
dard traffic patterns and an offered load close to 1 (more precisely,
0.9999). We do not include the throughout of MWM in Table 1,
because it can provably attain 100% throughput. We make three
observations from Table 1. First, SW-QPS significantly improves
the throughput performance of QPS-1, increasing it by an additive
term of 0.2902, 0.2511, 0.2262, and 0.1258 for the uniform, quasi-
diagonal, log-diagonal, and diagonal traffic patterns respectively.
Second, the throughput of SW-QPS is consistently higher than that
of SB-QPS under the four traffic patterns. Third, under all traffic
patterns except uniform, SW-QPS significantly outperforms iSLIP,
which is much more expensive computationally as it runs log, N
iterations for each matching computation.

6.3 Delay Performance Results

Figure 3 shows the mean delays of SB-QPS, SW-QPS, iSLIP, QPS-1,
and MWM under the aforementioned four traffic patterns. As we
have shown in §6.2, SB-QPS, SW-QPS, iSLIP and QPS-1 generally
cannot attain 100% throughput, so we only measure their delay
performances for the offered loads under which they are stable; in
all figures in the sequel, each “missing point” on a plot indicates that
the corresponding algorithm is not stable under the corresponding
traffic pattern and offered load. Figure 3 shows that, when the
offered load is not very high (say < 0.6), SB-QPS has a much higher
mean overall delay than others thanks to its batching delay that
is still relatively quite high (despite a small batch size of T = 16);
in comparison, SW-QPS completely eliminates this batching delay.
Figure 3 also shows that SW-QPS outperforms QPS-1 everywhere
and outperforms iSLIP under all traffic patterns except uniform.
Since as shown in Table 1 and Figure 3, the throughput and the
delay performances of SW-QPS are strictly better than those of
SB-QPS, we will show the performance results of only SW-QPS
in Appendix A, in which we present more evaluation results.

7 CONCLUSION

In this work, we first propose a batch switching algorithm called
SB-QPS that significantly reduces the batch size without sacrificing
the throughput performance much, and achieves a time complex-
ity of O(1) per matching computation per port via parallelization.

We then propose a regular switching algorithm called SW-QPS
that improves on SB-QPS using a novel sliding-window switching
framework. SW-QPS inherits and enhances all benefits of SB-QPS
and reduces the batching delay to zero. We show, through simula-
tions, that the throughput and delay performances of SW-QPS are
much better than those of QPS-1, the state-of-the-art regular switch-
ing algorithm based on the same underlying bipartite matching
algorithm.
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A MORE EVALUATION RESULTS
A.1 How Mean Delay Scales with N

In this section, we investigate how the mean delays of SW-QPS,
iSLIP, QPS-1, and MWM scale with the number of input/output
ports N under (non-bursty)ii.d. Bernoulli traffic. We have simulated
seven different N values: N = 8, 16, 32, 64, 128, 256, 512. We have
simulated various offered loads, but here we only present the results
under an offered load of 0.8; other offered loads (say 0.6) lead to
similar conclusions. Figure 4 shows the simulation results, under
the 4 different traffic patterns under an offered load of 0.8. The
results of QPS-1 are not shown, because it is not stable when the
offered load is 0.8 under all four traffic patterns. Some points for
iSLIP are missing because iSLIP is not stable when N > 64 under
the quasi-diagonal traffic pattern. The missing points for MWM
are due to the fact we are not able to obtain its mean delays when
N=512 in a reasonable amount of time (thanks to the high time
complexity of the MWM algorithm). Figure 4 shows that mean
delays of SW-QPS, like those of MWM, are almost independent
of N. We have also found through simulations that the maximum
achievable throughputs of SW-QPS are also almost independent of
N.

A.2 Bursty Arrivals

In real networks, packet arrivals are likely to be bursty. In this
section, we evaluate the performances of SW-QPS, iSLIP, QPS-1,
and MWM under bursty traffic, generated by a two-state ON-OFF
arrival process. The durations of each ON (burst) stage and OFF
(no burst) stage are geometrically distributed: the probabilities
that the ON and OFF states last for ¢ > 0 time slots are given by
Pon(t) = p(1 - p)t and Popp(t) = q(1 — q)?, with the parameters
D> q € (0, 1) respectively. As such, the average duration of the ON
and OFF states are (1 — p)/p and (1 — q)/q time slots respectively.
In an OFF state, an incoming packet’s destination (i.e., output
port) is generated according to the corresponding traffic pattern. In
an ON state, all incoming packet arrivals to an input port would be
destined to the same output port, thus simulating a burst of packet
arrivals. By controlling p, we can control the desired average burst
size while by adjusting g, we can control the load of the traffic.
We evaluate the mean delay performances of these four algo-
rithms, with the average burst size ranging from 16 to 1,024 packets,
under a moderate offered load of 0.6 and a heavy offered load of
0.8, respectively. The simulation results for the former are shown
in Figure 5; those for the later are omitted, since they are similar
except that iSLIP is not stable for some, and QPS-1 is not stable
for all, average burst sizes under the offered load of 0.8. One point
for QPS-1 is missing in the leftmost sub-figure in Figure 5, because
QPS-1 is not stable when the average burst size becomes 1,024 un-
der the uniform traffic pattern and an offered load of 0.6. Figure 5
clearly shows that SW-QPS outperforms iSLIP (under all traffic
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patterns except uniform), and QPS-1 (under all traffic patterns) by
an increasingly wider margin in both absolute and relative terms
as the average burst size becomes larger.
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