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ABSTRACT 

Immersive virtual environments (IVEs) have been widely used as multipurpose tools in many 
research areas. As design tools, IVEs have shown the potential to observe human-building 
interactions for buildings under design. IVEs allow researchers or designers to understand 
human-building interactions and refine building functions to optimally fulfill design goals. 
However, due to limitations of the technology, practical use of IVE often result in small sample 
sizes, which may negatively impact those applications (e.g., machine learnings) that require a 
large amount of data. This paper demonstrates the application of a Gaussian mixture model 
(GMM) as a method for generating independent and identically distributed (IID) samples of data 
originally obtained from IVE applications to solve the issue of the small sample size associated 
with IVE experiments. In this study, GMM is tested using an application that involves light 
switch uses in a single office. First, an IVE of the office is created to simulate key artificial light 
use events during design. Then, light switch locations, tasks, work area illuminance, and factors 
potentially influencing light switch uses are modeled in the IVE experiment. Finally, thirty 
people participated in the experiment to collect data. The results of this study show that the IVE 
data and the IID samples are not significantly different, affirming that the GMM can be a good 
candidate for tackling a small sample size issue associated with IVE experiments.  

INTRODUCTION 

Many studies have proven that building designs significantly influence building performance 
in several aspects, such as energy consumption, occupancy comfort, and sustainability 
(Granadeiro et al. 2013, and Wang et al. 2005). Human-building interactions are one of the major 
contributing factors to large uncertainties in building performance (Zhu et al. 2018). A large 
body of research has been dedicated to study the impact of human-building interactions on 
building performances. For instance, Clevenger and Haymaker (2006) applied building energy 
simulation to study the impact of human-building interactions. They showed that the predicted 
energy consumption changed at least 150% if the maximum and minimum values of inputs 
related to human-building interactions were applied to the simulations. Santin et al. (2009) 
applied the historical survey data from 15,000 houses along with three years of energy usage to 
conduct a statistical analysis related to human-building interactions affecting energy 
consumptions. They reported that human-building interactions contributed to 7.2% of energy 
consumption variation. Similar results were found by Kavousian et al. (2013) and D’Oca et al. 
(2014). Therefore, human-building interactions are one of the most significant factors that cause 
variations in building energy consumption, even though building envelopes, functions, and 
environments may be identical. Human-building interactions are key factors that should be 
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considered during building designs to satisfy the goals and objectives of buildings.  
Several studies have dedicated to investigate human-building interactions, as it is mentioned 

previously. They mainly used traditional methods, e.g., questionnaires (Attia et al. 2012, and 
Feng et al. 2016), filed studies (Rijal et al. 2007, and Amir Seyed et al. 2016), and laboratories 
(Wienold and Christoffersen 2006, and Schweiker and Wagner 2016) to observe and collect 
human-building interaction data. However, the traditional methods typically rely on observations 
of human-building interactions in existing buildings. Therefore, applying such information to 
new designs may lead to significant failures of accompishing design goals and objectives.  

Immersive virtual environment (IVE) is a new tool that has been used in several research 
fields such as emergency evacuation (Kinateder et al. 2014 and Kobes et al. 2010), building 
designs (Tutt and Harty 2013, and Hong and Michalatos 2016), and occupant behavior 
predictions (Kwon et al. 2013 and Chokwitthaya et al. 2017). A growing number of research 
studies have recently highlighted the potential of IVE in studying human-building interactions. 
Heydarian et al. (2015) studied occupant lighting preferences in a single office using IVE. They 
concluded that IVE helped users to understand human-building interactions and satisfaction 
towards different design options. Saeidi et al. (2015) validated human-building interaction in 
light switching by using IVEs and showed that IVEs were capable of replicating experiences in a 
real environment. Niu et al. (2015) developed a framework to integrate building designs with 
IVEs to help building designers capture human-building interactions and identify context 
patterns. Recently, Saeidi et al. (2018) proposed a method to design experiments and collect 
human-building interaction data in IVEs, called spatial-temporal event-driven modeling (STED). 
They validated human-building interaction data obtained from an IVE experiment and 
statistically compare the data with human-building interaction obtained from a physical 
environment. They confirmed that IVEs had the capability of capturing human-building 
interactions since human-building interaction data obtained from the IVE experiment were not 
significantly different from those obtained from the real environment. 

Potentially, IVEs provide several advantages for researchers and designers to capture human-
building interactions such as replicating the context of buildings under design, allowing 
designers or researchers to control experimental conditions, and including interested variables, 
which may be difficult to do using traditional methods. Consequently, IVEs have strong 
potentials to support designers or researchers in observing and capturing human-building 
interactions in simulated building context during designs. However, IVEs have various 
limitations, including short experiment sessions, small data samples, and negative impacts on 
participants (Chokwitthaya et al. 2019a). Such limitations make it impossible to continuously 
collect human-building interactions data in IVEs for a long period of time. Therefore, most IVE 
experiments can only provide a small sample size that may not be sufficient to support 
sophisticated data-driven applications such as machine-learning algorithms (Chokwitthaya et al. 
2018).  

Several research studies have illustrated that data generated using machine learning 
techniques could be highly realistic, robust, and meaningful to replace real data (Jaderberg et al. 
2014) , and to be used for training and learning in machine-learning algorithms, especially when 
real data are scarce, and/or cannot be unveiled (Le et al. 2017, Tremblay et al. 2018).  

A Gaussian Mixture Model (GMM) (Bishop 2006) is one of the outstanding alternative 
approaches for generating a synthetic dataset based on data from IVE experiments (i.e., 
increasing the number of IID samples). A GMM is an unsupervised classification method, 
defined as a convex combination of multiple Gaussian (normal) distribution with individual 
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means and variances (Singh et al. 2010). The GMM has been proven to have better performance 
than many other clustering methods such as k-means (Guestrin 2007), k-nearest neighbor 
(Lanjewar et al. 2015), and multivariate kernel density (MVKD) (Morrison 2011). The GMM 
has been applied for data clustering in several research areas such as speech recognition 
(Muthusamy et al. 2015 and Lanjewar et al. 2015), false detection (Bo Zong et al. 2018), and 
image segmentation (Ragothaman et al. 2016). In a field of generating IID samples, the GMM 
has widely been used. Awwad et al. (2005) adapted the sequential EM algorithm in a GMM to 
generate synthetic data for adaption failure detection, where the data slowly change over time. In 
an IVEs-related study, Liu et al. (2019) used a GMM to augment the raw dataset obtained from 
the driving experiment in IVE and produce synthetic driving record. With the proven potentials 
of the GMM, it is a good candidate to generate IID samples of human-building interaction data 
obtained from an IVE experiment that can reduce the impact of a small sample size and enhance 
the effectiveness of IVE data. 

This paper presents the application of a GMM as a method to learn samples of IVE 
experiments and generate large IID dataset. In the following, the authors first define the research 
hypothesis, and then introduce the methodology along with the case study. Then, the results, 
conclusions, and future work are discussed based on the application.  

HYPOTHESIS 

The objective of this study is to prove that IID samples generated by GMM can represent 
human-building interaction data obtained from an IVE experiment. Therefore, the hypothesis 
tested in this study is that there is no statistically significant difference in means between IVE 
data and IID samples predicted using a GMM. A two-tailed t-test (α = 0.05, equal variance) is 
applied to investigate the statistically significant difference between the mean of the IVE data 
and the mean of the IID samples. The following equations represent the test of the hypothesis in 
this study: 
 0 :              0H mean of the IVE data mean of the IID samples    
 1 :              0H mean of the IVE data mean of the IID samples    

METHODOLOGY AND APPLICATION 

Human-Building Interactions in IVE Experiment 

The experimental configuration (Figure 1) is designed using the recommended space of a 
large private office with a dimension of 5.5 x 4.2 x 3.2 meters and a net area of 22 square meters 

(Voss 2000). The model is designed and drawn by using Autodesk AutoCAD 3D. Autodesk 
3DSmax is used to render the environmental brightness of the IVE experiment. Then, it is 
exported to Unreal Engine 4 (UE4) for constructing the IVE experiment, as shown in Figure 2.  

The human-building interaction on light switching is selected in the case study since the 
visual simulation is the most matured IVE capability (Chokwitthaya et al. 2019b). Variables 
considered in IVE are selected based on previous literature that shows influences of them on 
light switch uses, such as light switch locations (Heydarian et al. 2015), office tasks (Boyce 
2004), and work area illuminance (Hunt 1980). Table 1 shows variables considered in the IVE 
experiment, which involve switch locations, office tasks, and work area illuminance. Audio cues 
remind participants about tasks that they are supposed to do during the experiment as well as the 
locations of the switch. The actual switch is presented in the experiment.  
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Figure 1. The configuration in Autodesk AutoCAD 3D 

 
Figure 2. The configuration in the IVE 

Table 1. Conditions of variables considered in the IVE experiment 
Variables considered in IVE experiment 

Switch location Office task Work area 
illuminance (lux) 

On the wall by 
an entrance door Reading or writing which will take an hour 50 

100 
On the desk Relaxing (e.g., lunch break) which will 

take an hour 
150 

 200 
 A meeting which will take an hour 350 
 Precision drawing which will take an hour 500 

Total = 2 Total = 4 Total = 6 

Thirty college students participated in the experiment. They used a head-mounted display 
(HMD) to experience the IVE. They were placed at the desk and assumed to be an owner of the 
office, who could operate the switch. The experiment comprises a training part and an 
experimenting part. The training part introduces and immerses the participants with the IVE, 
which takes about 10 minutes. Then, the experimenting part begins. The experimenting part 
involves 48 scenarios according to variables in Table 1 (2 switch locations x 4 office tasks x 6 
work area illuminance), which takes about 40 minutes. The study has been approved by the local 
Institutional Review Board (IRB).  

During the experiment, the participants are asked to answer the following question “Please 
rate your need of turning the light on under the provided situation.” The participants answer the 
questions by selecting one of the choices shown in the experiment (i.e., very unlikely, not likely, 
neutral, likely, and very likely) designed based on Likert scale (Likert 1932). The interpretation 
of Likert scale for the IVE experiment is demonstrated in Table 2. 
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Table 2. Interpretation of Likert scale in the IVE experiment 
Choice Very unlikely Not likely Neutral Likely Very likely 
Probability of switching on (%) 1 25 50 75 99 

GMM to Generate IID Samples from the IVE Experimental Data  

The GMM first learns the obtained IVE data and then produces IID samples. The IVE data 
are modeled in terms of a mixture of multiple Gaussian components (1, …, z), where each 
component has its own mean (µ) and variance (σ2). The GMM assumes that each IVE data point 
(x) probabilistically belong to z, and it tries to infer the distribution for each component 
separately. Since each x probabilistically belongs to z, a mixing coefficient (πz) is introduced as a 
probability that x is drawn from z. Therefore, the joint distribution of x given z (i.e., p(x, z)) can 
be defined regarding a marginal distribution (i.e., p(z)) and a conditional distribution (i.e., p(x|z)), 
as it is shown in Equation (1) (Awwad et al. 2005):  
        2

1 1
, | | , , 1Z Z

z z z zz z z
p x z p z p x z Gaussian x where   

 
       (1) 

The GMM is trained by implementing an expectation-maximization (E-M) algorithm (Bishop 
2006). It comprises of an expectation step and a maximization step (see Figure 1). The 
expectation step (E-step) computes expectations, or responsibilities (i.e., γ(z)) by using current 
parameter values (i.e., µz, 2

z , and πz). The maximization step (M-step) re-estimates parameters 
using the expectations obtained from E-step. The maximum likelihood for Gaussian determines 
the convergence of the training process. In other words, the E-M algorithm tries to maximize 
Equarion (2) based on convergence criteria. For a best model selection, the values of the 
Bayesian Information Criterion (BIC) (Scott Shaobing and Gopalakrishnan 1998) and the Akaike 
Information Criterion (AIC) (Akaike 1998) are calculated to determine an optimal number of 
components (Z). The best model is the model that has minimum BIC or AIC. 
        2

1 1
| log | ,N N

z zi i
z log x z z Gaussian x convergencecriterion   

 
     (2) 

 
Figure 3. E-M algorithm 
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In this case study, the K-mean algorithm is used to initialize the GMM parameters (Lee 
2004). The IVE data are classified into four groups regarding the office tasks to avoid having too 
many GMM components in this case study. The convergence criterion for training the GMM is 
10-2. After training, the GMM is executed to generate IID samples regarding IVE data.  

RESULTS 

Table 1 illustrates the overall results of the case study, including the number of components 
of the optimal GMM models, means and standard errors (S.E.) of the probabilities of switching 
on, and the hypothesis testing for each individual group. From the values of BIC and AIC, the 
number of components of the optimal GMM models is obtained based on the criterion mentioned 
previously. A huge number of scenarios in the IVE experiment (48 scenarios) result in a 
widespread of the IVE data and a high number of components. From the results of the hypothesis 
testing, P-value is greater than 0.05 for all cases, meaning H0s are accepted for all cases. 
Therefore, the conclusion of the hypothesis testing can be drawn as there are no significant 
differences between the means of the IVE data and the IID samples predicted by the GMM. The 
results of hypothesis testing affirm that GMM is capable of being used as an alternative tool for 
generating IID samples of IVE data. 

Table 3. Results of the case study 

Group GMM component Dataset 
Mean ± S.E. 

of the probability of 
switching on 

Hypothesis 
Testing 
  

Drawing 47 
IVE 0.59 ± 0.018 P-value 0.753 
IID 

sample 0.59 ± 0.006 Accept H0? Yes 

Meeting 48 
IVE 0.62 ± 0.018 P-value 0.931 
IID 

sample 0.62 ± 0.006 Accept H0? Yes 

Reading 48 
IVE 0.58 ± 0.018 P-value 0.800 
IID 

sample 0.59 ± 0.006 Accept H0? Yes 

Relaxing 44 
IVE 0.30 ± 0.015 P-value 0.157 
IID 

sample 0.27 ± 0.005 Accept H0? Yes 

CONCLUSION AND FUTURE WORK 

In this paper, an application of GMM for generating IID samples of IVE data was illustrated. 
The presented case study used an IVE application to capture human-building interactions on the 
use of a light switch. Then, a GMM was trained by using the human-interactions data obtained 
from the IVE experiment. The IID samples were drawn for the trained GMM model. The IVE 
data and the IID samples were statistically compared by using the two-tailed t-test. The result of 
hypothesis testing demonstrated the potential of the GMM for generating IID samples of IVE 
data.  

The main contribution of this study is to solve the problem of small sample sizes associated 
with IVE experiments by drawing a large pool of IID samples from the GMM model. The main 
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advantage of having a large pool of IID samples of IVE data is to support further analyses that 
require large datasets, such as machine-learning algorithms. 

It should be noted that a major limitation of a GMM is overfitting, as it is mentioned in 
literature (Valente 2003, and Bone et al. 2011). Besides, only the mean values are used in this 
study to assess the quality of the synthetic generated data. As future work, additive white 
Gaussian noises (AWGN) will be added to the IVE data to prevent overfitting in the training 
process. Moreover, the diversity of participants may need to be considered to reduce the 
variation of IVE data and fit certain designs. It will be done using questionnaires to investigate 
the demographics and energy behaviors of participants. In addition, the satisfactory level of 
sense of presence needs to be analyzed to evaluate the quality of the IVE data in future works.  
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