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Signal decomposition is an effective tool to assist identification of modal information in time-
domain signals. Two signal decomposition methods, including the empirical wavelet transform
(EWT) and Fourier decomposition method (FDM), have been developed based on Fourier theory.
However, the EWT can suffer from a mode mixing problem for signals with closely-spaced modes
and from a trivial component problem resulting in a trivial residual in the first decomposed
component. Decomposition results by FDM can suffer from an inconsistency problem. In this
work, an accurate adaptive signal decomposition method, called the empirical Fourier decom-
position (EFD), is proposed to solve the aforementioned problems. The proposed EFD combines
the uses of an improved Fourier spectrum segmentation technique and a zero-phase filter bank.
The segmentation technique solves the trivial component problem by an adaptive sorting process
and the inconsistency problem by predefining the number of components in a signal to be
decomposed. The zero-phase filter bank has no transition phases, which exist in the EWT, in its
each filter function, and it can solve the mode mixing problem. Numerical investigations are
conducted to study the effectiveness and accuracy of the EFD. It is shown that the EFD can yield
accurate and consistent decomposition results for signals with multiple non-stationary modes and
those with closely-spaced modes, compared with decomposition results by the EWT, FDM, vari-
ational mode decomposition and empirical mode decomposition. It is also shown that the EFD can
yield accurate time-frequency representation results and it has the highest computational effi-
ciency among the compared decomposition methods. An experimental validation is also con-
ducted to study the effectiveness of the EFD for experimentally measured signals with closely-
spaced modes. It is shown that the EFD can decompose a signal with closely-spaced modes
with higher accuracy, compared with the other decomposition methods.

1. Introduction

Signal decomposition is a widely used numerical tool in different fields, such as biomedical signal analysis [1], seismic signal
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analysis [2], mechanical vibration signal analysis [3,4], and speech enhancement [5]. Time-domain signals that derive from a physical
system usually comprise several superposed components, which are referred to as modes [6], and the modes can encompass mean-
ingful frequency-domain information of the signals, referred to as modal information. Hence, it is crucial to obtain signal decompo-
sition results with high accuracy and efficiency.

In the past few decades, several signal decomposition methods have been developed, and the empirical mode decomposition (EMD)
[7] is one of the most significant methods, even though its mathematical understanding is limited and it has some known shortcomings,
such as robustness of mode mixing [8] and end effects [9]. Improved versions of the EMD have been developed to overcome the
shortcomings. The ensemble EMD [10] has been developed by adding white noise with finite amplitudes to alleviate the mode mixing
and end effects problems. The complete ensemble EMD [11] has been developed to further improve the EMD by adding completeness
and a full data-driven number of modes, which are missing in the ensemble EMD. Permutation entropy has been introduced by Zheng
et al. [12] to quantify intermittency and noise in a signal to be decomposed by the partly ensemble EMD, by which fewer false
components are obtained in decomposition results than those by the ensemble EMD and complete ensemble EMD. Lang et al. [13]
replaced the mean operator with the median operator in the ensemble EMD to solve the mode splitting problem in the ensemble EMD
[14]. Li et al. presented a time-varying filter technique to solve the mode mixing problem [15]. However, these EMD methods cannot
fundamentally solve the mode mixing and end effects problems. The variational mode decomposition (VMD) [16] is a non-recursive
signal decomposition method, which has been developed based on a generalization of Wiener filters. Recently, the successive VMD has
been developed by adding several criteria to ensure that modes of interest do not or less overlap with other modes in decomposition
results [17]. The added criteria in the successive VMD can eliminate the requirement of predefining the number of components in a
signal to be decomposed in the VMD [16]. Besides, to avoid the failure of the VMD for non-stationary time-domain signals with chirp
modes, McNeill [18] proposed the use of an optimized objective function with constraints on short-time narrow-band modes and Chen
et al. [19] exploited a complete variational framework to generalize the VMD. The empirical wavelet transform (EWT) employs an
adaptive wavelet filter bank based on segments of Fourier spectra [20]. The workability of the EWT has been improved in Refs.
[21-23] to eliminate its requirement for a high signal-to-noise ratio in a signal to be decomposed. The EWT has been enhanced by using
Fourier-Bessel series expansion method to improve time—frequency representations (TFRs) of non-stationary signals [24]. However,
transition phases between filter functions in a wavelet filter bank in the EWT can lead to the model mixing problem for signals with
closely-spaced modes. Besides, a trivial component problem can occur, where the first decomposed component by the EWT corre-
sponds to a trivial residual. Due to the inclusion of the trivial decomposed component, the number of predefined components in a
signal to be decomposed is hard to determine. Fourier decomposition method (FDM) [25] is an adaptive non-stationary, non-linear
signal decomposition method that decomposes a zero-mean signal into a set of Fourier intrinsic band functions (FIBFs) based on
Fourier theory and Hilbert transform. Several limitations of the FDM have been identified. To obtain a FIBF, two frequency scan
techniques are developed. One is called the low-to-high (LTH) technique and the other is the high-to-low (HTL) technique. The LTH
and HTL techniques recursively estimate FIBFs by using forward manner and backward manner, respectively. However, decomposition
results by the FDM with the two frequency scan techniques, i.e., FDM-HTL and FDM-LTH, can be inconsistent and one cannot
determine which decomposition results are correct. Further, the two frequency scan techniques are both iterative and require long
computation times for FDM. Recently, uses of discrete cosine transforms (DCTs), non-causal infinite impulse response filters and finite
impulse response filters have been introduced to generalize the FDM [26,27]. For example, the DCT based FDM (FDM-DCT) uses DCTs
to obtain several analytic FIBFs with predefined cut-off frequencies, and it improves the accuracy of TFRs by the FDM [27].

In this work, the EWT and the FDM are briefly reviewed. The segmentation technique and construction of a wavelet filter bank in
the EWT are described, and the construction of FIBFs and the two frequency scan techniques for the FDM are described. A new adaptive
signal decomposition method, called the empirical Fourier decomposition (EFD), is proposed to solve the aforementioned problems of
the EWT and FDM. The main contributions of the EFD are: (1) it can simultaneously solve the trivial component problem and mode
mixing problem that occur to decomposition results by the EWT, and (2) it can solve the inconsistency problem in decomposition
results by FDM. The two contributions of the proposed EFD are significant and they derive from the combination of an improved
segmentation technique and a zero-phase filter bank. Numerical investigations are conducted to study the accuracy of decomposition
results by the EFD for two non-stationary signals and two signals with closely-spaced modes by comparing with decomposition results
by the EMD, VMD, EWT and FDM. In addition, the accuracy of TFRs and computational efficiency of the EFD are compared with those
associated with the other methods. An experimental validation is also conducted to study the effectiveness of the EFD for experi-
mentally measured signals with closely-spaced modes.

The remnant of the paper is arranged as follows. In Section 2, the EWT and FDM are briefly reviewed. In Section 3, the proposed
EFD is described. In Section 4, the numerical investigations are presented. In Section 5, the experimental investigation is presented.
Conclusions and some discussions on future works are presented in Section 6.

2. Reviews of EWT and FDM
2.1. EWT

The EWT employs an adaptive wavelet transform algorithm based on segments of Fourier spectra [20]. The two most important
steps of the EWT are: (1) use of an adaptive segmentation technique to divide Fourier spectrum of a signal to be decomposed and (2)
construction of a wavelet filter bank [28]. Assume that the spectrum is defined on a normalized frequency range | —x,z]. The seg-
mentation technique and wavelet filter bank for the spectrum in the frequency range [0, 7] are described below, and those for the
spectrum in the frequency range [—z,0] can be deduced based on Hermitian symmetry of Fourier spectrum in the normalized
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frequency range | —r, x].

One segmentation technique for the EWT is the local maxima technique [20], in which the spectrum in [0, #] is divided into N
contiguous frequency segments. Each segment is denoted by S, = [wn_1, wn| withn € [1,N],wo = 0 and wy = 7. To determine values of
wp, the first N —1 largest local maxima of the spectrum magnitude are identified. The frequencies that uniquely correspond to the
identified maxima are re-indexed in descending order and denoted by [Q,Q,,...Qy_1] such that Q; < Qy < ... < Qu_1; in addition,
Qo = 0 is defined. The value of w, is expressed by

Q1 +Q,

5 nE LN 1] @

w, =
which concludes the local maxima technique. As an alternative to the local maxima technique, the lowest minima technique [29] was
developed for the EWT: the spectrum division and frequency reindexing procedures, which are the same as those in the local maxima
technique, are first carried out. Then the minimum of the spectrum magnitude in the frequency range [Q,_1, ;] is identified and the
value of w, is determined by

o, = argmin X, (o) (2)

where X, (w) denotes spectrum magnitudes between in [Q,_1, Q,] and argmin(-) denotes argument of the minimum, respectively, which
concludes the lowest minima technique.

The wavelet filter bank is then constructed, and it consists of an empirical scaling function 31 (w) and a series of empirical wavelet
functions y,(w), which are expressed by

1 if |w|<w, — 17
qAS,(w) = { cos Eﬂ(%l(r] + |o| — wﬂ)} if o, — 7,<|w|<w; + 1 3)
0 otherwise
and
1 if w, + 7,<|0|<Wu 1 — Tpi

fis 1 .
cos |:7/;<7 (Tn+l + |CU‘ - wn+l)> :| if Wpy1 — T,,+1S|(U|<(j),,+1 + Tt
2 27/1+1

w,(0) = X @
.2

in|=p( — - i —1,<|w|<

sin {2,6(21’1 (7 + || a)n)> } if w, — 7,<|w|<w, + 1,

0 otherwise

in which respectively, = denotes Fourier transform of a function, w the circular frequency, # an arbitrary function and 7, a parameter
that determines the size of the transition phase [20] associated with the n-th and (n + 1)-th segments; the transition phase ranges in
[wn —7n, @n + 7). One of the most used forms of $ in Eqgs. (3) and (4) with a variable x is [28]:

0 if x <0
Bx) = { x*(35 — 84x +70x* —20x°) if O <x <1 (5)
1 if x>1
The parameter 7, is calculated by
Ty = Yy, (6)

where 7 is a sufficiently small parameter, so that it prevents overlapping between boundaries of non-zero @1 (w) and @, (w). A criterion
for an acceptable value of y is:

/ < min (u) e

n \Wpi1 + @y

for all n values, and its value can be determined by
. R—1 . Wy — Wy
= (o min (1) ®

where R is the number of discrete data in the signal to be decomposed. The determination of $1(a)) and ,(w) concludes the con-

struction of the wavelet filter bank. Graphical illustrations of ¢, (w) and y,(w) are shown in Fig. 1(a) and (b), respectively.
After applying a segmentation technique and constructing a filter bank, a decomposed signal can be reconstructed as
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N—-1

F(0) = W00y (0) + 3 Wi(n, 1)y, (1) ©
n=1

where the asterisk * denotes the convolution of two functions, W¢(0,t) and W;(n, t) are called the approximation coefficient function

and detail coefficient function, respectively. The function W;(0, t) is expressed by

w1 +T1

We0,0) = F () (@) = / F@h & Dde (10)

—w) -1y

where the overbar denotes complex conjugation and F~! denotes the inverse Fourier transform of a function. Note that F~! (¢, (w)) =
¢1(t) and F~1(,(®)) = y,(t). The function Wi(n, t) is expressed by

n—Wn "Wy 1 +Tpt |
W) =FGp,@)= [ femEnes [ fen e an
Resulting decomposed components of the signal can be expressed by
Jo(t) = W(0,0)*¢, (1) (12)
and
Ja(t) = Wi(n, 1)y, (1) a3

A step-by-step description of the EWT for a signal f(t) is provided as follows.

Step 1. Obtain a Fourier spectrum of f(t) using Fourier transform.

Step 2. Segment the spectrum in Step 1 using a segmentation technique, such as the local maxima technique and lowest minimum
technique.

Step 3. Construct a wavelet filter bank based on the frequency segments in Step 2.

Step 4. Express approximation and detail coefficient functions based on the wavelet filter bank in Step 3.

Step 5. Decompose f(t) and reconstruct it using Eq. (9).

The EWT can yield accurate decomposition results when f(t) does not have closely-spaced modes. However, when f(t) has closely-
spaced modes, a mode mixing problem can occur due to the transition phase.

2.2. FDM

Assume that f(u) is zero-mean, discrete, and a length-limited signal within one period U, which is an even integer; the fundamental
frequency of f(u) can be expressed by

271
== 14
Do U (14)
In the FDV, f(u) is approximated by a summation of K orthogonal FIBFs g (u) [25]:
K
Fw) =>"glu) (15)
k=1
Based on Eq. (15), the analytical signal of f(u) can be expressed by [30]
@) 4
S
0 0 -
orT @) ot b3 OpTy @ 1T, Ot Tl @t Dy Ty T

Frequency (rad/s) Frequency (rad/s)

Fig. 1. Graphical illustrations of (a) $1(w) and (b) ¥, (w). Shaded parts are transition phases.
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" los (o) +3H ()] = > 2w 16)

k=1

2(u)  =f(u) +jH(f(u)) =

k

where H(-) denotes Hilbert transform of a function, j = v/—1, and 2x(u) = gk (u) + jH(gk(u)). The term 2 (u) can be considered as the
analytical signal corresponding to gi(u). Note that z(u) can be expressed as Fourier series:

U/2-1
z(u) = Z a, e a7
m=1
where
5 Ul .
a, = U Zf(u)eﬂmqiou (18)
u=0

and values of a,, can be estimated using discrete Fourier transform.

Initialize M; =0, M=1, k=1

A,
— 9.(il)=afg[ > ﬂue’”‘] -«

6, -6 -
MM+ | | o (=2 )=6 "D Mi=Miy+1

A
Yes
No
M, =Maxima (M,) for £, (u)=0 k=k+1
No
Yes

Fig. 2. Flowchart of the LTH technique.

5
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The analytical signal 2 (u) can be considered as a filtered signal by Hilbert transform filter [31], which is the counterpart of a filter
in the wavelet filter bank in the EWT, and 2 (u) can be further expressed by
My )
a@= Y aem 19
m=Mp_+1

where M, ranges from 1 to (U/2 —1) with M, = 0. Determination of values of M is similar to the segmentation in the EWT. In the FDM,
two frequency scan techniques have been proposed to determine the values of My in Eq. (19), including the LTH technique and the HTL
technique [25]. Flowcharts of the LTH and HTL techniques are shown in Figs. 2 and 3, respectively. In the LTH technique, K values of
M are searched in a forward manner so that M; < My < ... < M... < Mg, with which

M,

L) = Y a,e
m=Mg+1 (20)

M,

n) = Y a,em

m=M +1

@= U2, Mi=U/2-1, k=1

Mol
—» G (u)=arg| Y ae™" -

m=\M,

6 1)-6, (u-
Mi=Mi-1 Z,(u) (’”) (u-1) Mi=Mj1-1

M, =Minima (M,) for {; (#)20 k=k+1

No
Mk=1
Yes

Fig. 3. Flowchart of the HTL technique.
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Mg

K (Lt) — Z e ejmr/:n u

m=Mg_1+1

where My = 0 and Mg = U/2 —1. The signal 2 (u) can further be expressed by

Zk(M) _ Ak(u)ej”k(u) (21)
where
My _
AwW= 3 g (22)
m=M_,+1 2
and
My .
O (u) = arg|: Z ame'”””ﬂ":| (23)
m=M;_+1

denote instantaneous amplitude and phase of z(u), respectively, in which || - ||, and arg(-) calculate Euclidean norm and argument of a
complex quantity, respectively. The FIBFs g (u) can be obtained by

gi(u) = Re[A(u)e ] 249

where Re(-) is the real part of a function. In the HTL technique, K values of M are searched in a backward manner so that
Mg < ..M < Mg_1 < ... < My, with which

Mo—1 )
zi(w) = > a,"™"

m=M

M—1 ) (25)
n) = > ae"™"

m=M,

Mg_,—1 .
w(w) = Y ape"”

m=Mg

where My = U/2 and Mg = 1.

A step-by-step description of the FDM for f(u) is as follows.

Step 1. Obtain a Fourier spectrum of f(u) using Fourier transform.

Step 2. Express z(u) using the spectrum of f(u) obtained in Step 1.

Step 3. Obtain K z,(u) using the LTH or HTL technique.

Step 4. Obtain FIBFs g (u) from the real part of z(u) obtained in Step 3.

Step 5. Reconstruct f(u) as a summation of FIBFs g, (u) obtained in Step 4.

An issue of the FDM is that its decomposition results using the LTH technique can be inconsistent with that using the HTL technique,
and the issue will be verified in the numerical investigation in Section 4.

3. EFD

Similar to the EWT and FDM, the EFD consists of two critical steps: an improved segmentation technique and construction of a zero-
phase filter bank. In the EFD, Fourier spectrum of a signal to be decomposed is defined on a normalized frequency range [ —z,z], and the
improved segmentation technique and construction of a zero-phase filter bank for the spectrum in the frequency range [0, z] are
described below.

3.1. Improved segmentation technique

The improved segmentation technique is proposed based on the lowest minima technique [29] described in Section 2.1. In the
improved segmentation technique, [0, #] is divided into N contiguous frequency segments. Unlike the local maxima and lowest minima
techniques, wy and wy are not necessarily equal to 0 and z, respectively, and their values are determined in an adaptative sorting
process. In the sorting process, Fourier spectrum magnitudes at ® = 0 and @ = r and their local maxima are identified and extracted to
a series. All magnitudes in the series are sorted in descending order. Frequencies corresponding to the first N largest values in the sorted
series are denoted by [Q1,Q,...Qy]. In addition, Q¢ = 0 and Qy1 = 7 are defined. Boundaries of each segment are determined by
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w (26)

argminX, (o) if 0<n<N and Q, # Q.
w, =
Q, if O<n<N and Q, = Q,;

where X, (w) denotes the Fourier spectrum magnitudes between , and Q,,1, which concludes the improved segmentation technique.
3.2. Construction of a zero-phase filter bank

Both the EWT and FDM consist of a step of constructing a filter bank. In the EWT, a wavelet filter bank is formed by the empirical
scaling function and wavelet functions. In the FDM, Hilbert transform filter bank is constructed based on Fourier spectrum of the
analytical signal associated with a signal to be decomposed. In the EFD, a zero-phase filter bank is constructed based on frequency
segments obtained by the improved segmentation technique. In each frequency segment, a zero-phase filter [32] is a band-pass filter
with w, 1 and w, serving as its cut-off frequencies and it has not transition phases. Hence, the zero-phase filter retains the major
Fourier spectrum component in the segment and all other Fourier spectrum components beyond the segment are excluded.

Fourier transform of a signal to be decomposed f(t) is expressed as

qosy " faedr @

a zero-phase filter bank can be constructed by 7, () :

1 if o, 1<|o|<w,
0 otherwise

Ao = (28)

where 1<n<N and values of w, are determined by Eq. (26). A graphical illustration of the zero-phase filter bank is shown in Fig. 4.
Filtered signals that correspond to ji,(w) are calculated by

o ose [Fo)if o,0<ol<o, 29
7(@) = i (@)f (@) { 0 otherwise (29)
Decomposed components in the time domain can be obtained using the inverse Fourier transform:
. 0 X —Wn—-1 . On .
L) =F[h@)] = / (@)™ do = / F@edo+ [ Fw)e”do (30)
—00 —Wy Wy

The reconstructed signal is calculated as a summation of all decomposed components:

OEDYAG 31

A flowchart of the EFD is shown in Fig. 5 and a step-by-step description of the EFD is provided as follows.

Step 1. Obtain Fourier spectrum of a signal to be decomposed f(t) using Fourier transform.

Step 2. Determine boundaries of segment w, using the improved segmentation technique based on Fourier spectrum obtained in
Step 1.

Step 3. Construct a zero-phase filter bank i, (w) based on w, obtained in Step 2.

Step 4. Obtain filtered signals ﬁ(w) in the frequency domain using Ji,(w) obtained in Step 3.

Step 5. Obtain decomposed components f,(t) in the time-domain using inverse Fourier transforms of ﬁ(a)) obtained in Step 4.

A
1—
(@) a,(o)
) ) ! ) l >
T >
0 o)) ®,, Wy T

Frequency (rad/s)

Fig. 4. Graphical illustration of an ideal filter bank of the EFD.
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A

Decomposed‘s_iw

A

Obtain Fourier spectrum of A7)

A

Determine boundaries of segment w,

A 4

Construct a zero-phase filter bank /2, ()

Reconstruct f7) by
summing ()
F s

y

Filter signal by the zero-phase filter bank

\ 4

Convert the filtered signal to time
domain by inverse Fourier transform

A 4

-

Decomposed components f,(7)

Fig. 5. Flowchart of the EFD.
4. Numerical investigation

In this section, the effectiveness of the lowest minima and improved segmentation techniques are compared based on two typical
signals that have multiple modes, denoted by fsi¢1 (t) and fsigo(t). Decomposition accuracy of the proposed EFD method is compared
with those of the EWT [20], FDM [25], VMD [16] and EMD [7] methods for two typical non-stationary time-domain signals fs;,3(t) and
fsiga(t), and two stationary time-domain signals fsis(t) and fsig(t), with closely-spaced modes. For the EFD, EWT and VMD, the
numbers of decomposed components are listed in Table 1.

4.1. Comparison of segmentation techniques

The signals fsio1 (t) and fsigo(t) are expressed by
Ssig1 (1) = 61 + cos(24nt) + cos(50xt) + 5(r) (32)
and

Jsig2 (1) = cos(20xt) + cos(24nt) + cos(50xt) + 5(r) (33)

where §(t) is a random white-noise such that fs;s () and fs;e2 (t) have signal-to-noise-ratios of 10 dB. Segmentation results of fs;e1 (t) by
the lowest minima and improved segmentation techniques are shown in Fig. 6: the first two segments by the two techniques are the

Table 1

Numbers of components to be decomposed for.
Signal Decomposition method

EFD EWT VMD

Fsie1 (8) 3 3 _
fsie2(£) 3 4 .
figs (0) 2 2 2
Ssiga(t) 3 3 3
fsigs (t) 3 4 3
fsigs (£) 2 3 2
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same, but the last segment in the improved segmentation technique has a narrower frequency range than that by the lowest minima
technique. Therefore, the improved segmentation technique alleviates the effect of noise on the decomposed component associated
with the last segment. Segmentation results of fs;,2 (t) by the lowest minima and improved segmentation techniques are shown in Fig. 7.
The first segment by the lowest minima technique, shown in Fig. 7(a), can be considered trivial as it does not contain a meaningful
Fourier spectrum component and its associated decomposed component consists of noise only. On the other hand, the trivial segment is
excluded in segmentation results by the improved segmentation technique, shown in Fig. 7(b), and its first resulting segment contains a
meaningful Fourier spectrum component. Hence, the improved segmentation technique solves the trivial component problem in the
EWT. Segmentation results of the last segments by the two techniques are similar to those of fi;,1(t): the decomposed component
associated with the improved segmentation technique has a lower level of noise than that by the lowest minima technique.

4.2. Non-stationary multimode signals

The non-stationary multimode signal fs;g3(t) is expressed by
-~ 1
1.2 + cos(2xt)

_cos(32at + 0.2cos(64x1)) (34)
1.5 + sin(271)

Soiez(t) = fsigac1 (1) + fsigzca (1)

Ssigzct (1)

Ssigaca (1)

The signal fs;,3(t) consists of two modes fsig3c1 and fsig3c2 in Eq. (34), which are shown in Fig. 8(a) and (b) [33], and f;e3(t) is similar to
the expression of a solution to Duffing equation [7]. The signal fs;,3(t) is sampled at a frequency of 1000 Hz for one second and shown
in Fig. 8(c).

Decomposition results of fsig3(t) by the EFD, EWT, FDM-LTH, FDM-HTL, VMD, and EMD are shown in Fig. 9. Root-mean-square
errors (RMSEs) between the decomposition results and analytical ones are calculated by

RMSE = (35)

where y, is the analytical component at the r-th discrete instant, and y, is the corresponding component at the r-th discrete instant
obtained by a decomposition method. RMSEs associated with the aforementioned decomposition methods are calculated and listed in
Table 2. For fsjgact, it can be seen that the RMSE associated with the EMD is the smallest and that associated with the EFD is the second
smallest. While the RMSEs associated with the EWT, VMD and FDM-LTH are relatively small, that associated with the FDM-HTL is
large. For fsje3c2, results similar to fsi,3c1 can be observed: RMSEs associated with the EMD and EFD are the smallest, and the RMSEs of
the EWT, VMD and FDM-LTH are relatively small. In addition, the RMSE associated with the FDM-HTL is also large. It is indicated that
the EFD accurately decomposes the non-stationary multimode signal. The inconsistency of decomposition results by the FDM-LTH and
FDM-HTL is verified.
Another non-stationary multimode signal fs;q4(t) is expressed by [33]

Ssigac1 () =6t

Ssigaca (1) = cos(8xt)

fzi:z(t) = 0.5cos(4071) (36)
Ssiga(t) = fsigact () + fsigaca (1) + foigacs (1)

The signal fs;q4(t) consists of three modes: one mode fsiz4c1 with a monotonically increasing amplitude as shown in Fig. 10(a) and two
modes fsigaco and fsigacs with sinusoidal amplitudes as shown in Fig. 10(b) and (c), respectively. The signal fs;,4(t) is sampled at a
frequency of 1000 Hz for one second and shown in Fig. 10(d).

The EFD, EWT, FDM-LTH, FDM-HTL, VMD and EMD are employed to decompose the sampled fs;4(t). Their results are compared
with the analytical ones as shown in Fig. 11 and corresponding RMSEs in Eq. (35) are calculated and listed in Table 3. For fsjs4c1, the
RMSE associated with the EFD is the smallest, and those associated with the EWT, VMD and EMD are relatively small. RMSEs asso-
ciated with the FDM-LTH and FDM-HTL are large. For fsizac2, RMSE associated with the EMD is the smallest, and those associated with
the EFD and VMD are slightly larger than that associated with the EMD. The RMSEs associated with the EWT, FDM-LTH and FDM-HTL
are large and that associated with the FDM is the largest. For fs;,4c3, the RMSE associated with the EFD is the smallest while those
associated with the VMD and EMD are slightly larger than that associated with the EFD. Similar to the observations for fsjsc2, the
RMSEs associated with the EWT, FDM-TLH and FDM-HTL are larger than others. In theory, segmentations by the EFD and EWT are the
same for fs.4. However, filters in the wavelet filter bank in the EWT have transition phases that can cause mode mixing, while those in
the zero-phase filter bank in the EFD do not suffer from mode mixing. Hence, the EFD can yield decomposition results with a smaller
error than the EWT. It is indicated again that the EFD accurately decomposes a multimode signal. In addition, it is shown that both the
FDM-LTH and FDM-HTL yields inaccurate decomposition results.
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Table 2
Results of the RMSEs for fi;,3(t).
Component Decomposition method
EFD EWT FDM-LTH FDM-HTL VMD EMD
fsigac1 1.12x 1072 4.19x 1072 2.43x 1072 2.11x 107! 3.74 x 1072 9.54x 1073
Ssigac2 9.85x 1073 2.12x 1072 7.89x 1072 2.24x 107! 5.41 x 1072 9.54 x 1073
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Fig. 10. (a) Modes fsigac1, (b) fsigaca, (€) fsigacs and (d) the non-stationary signal fsie4(t) that consists of the three

expressed in Eq. (36).
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Table 3
Results of the RMSEs for fi;e4(t).
Component Decomposition method
EFD EWT FDM-LTH FDM-HTL VMD EMD
Sfsigact 4.67 x 1072 1.07 x 1071 1.08 x 10° 1.08 x 10° 8.40 x 102 6.46 x 102
fsigaca 8.33x 1072 2.23x 107! 1.02 x 10° 1.02 x 10° 9.14 x 1072 6.38 x 1072
fsigacs 7.01x 1073 7.43 x 1072 3.81x 107! 3.98 x 10! 9.93x 1073 8.10x 1073
4.3. Closely-spaced modes
A stationary signal fsis(t) with two closely-spaced modes is expressed by
Ssigsc1 (f) = cos(2mA,t)
fSigSCZ (l) = COS(ZIM.[,I)
(37)
fSig5C3 (l) = COS(Zﬂ/{CI)
Ssies(t) = fsigsc1 (1) + fsigsca(t) + fsigscs (1)
where 1, = 1.1 Hz, 4, = 1.3 Hz and A, = 3.1 Hz, and it consists of a pair of closely-spaced modes shown in Figs. 12(a) and (b), and a

13
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mode with a frequency greatly larger than those of the closely-spaced modes is shown in Fig. 12(c). The signal fs;,s(t) is sampled at a
frequency of 50 Hz for 20 s and shown in Fig. 12(d).

The EFD, EWT, FDM-LTH, FDM-HTL, VMD, and EMD are used to decompose the sampled fs;gs(t). Their results are shown in Fig. 13
and corresponding RMSEs in Eq. (36) are calculated and listed in Table 4. Note that in the decomposition result by the FDM-LTH, only
two components are obtained as fsjo5c1 and fsigsco exist in the first component and RMSEs corresponding to fsissc1 and fsigsc2 are mixed
as one mode. For fs;,5c1, the RMSE associated with the FDM-HTL is the smallest and those associated with the VMD and EFD are
relatively small, and those associated with the EWT, FDM-LTH and EMD are large. For fs;s5c2, similar observations can be obtained: the
RMSE associated with the FDM-HTL is the smallest, those associated with the VMD and EFD are relatively small, and those associated
with EWT, FDM-LTH and EMD are large. For fsisc3, the RMSEs associated with the FDM-LTH and FDM-HTL are the smallest and those
associated with other methods are relatively small. It is indicated that the EFD yields decomposition results for signals with closely-
spaced modes with higher accuracy than the EWT and EMD. In addition, the inconsistency between decomposition results by the FDM-
LTH and FDM-HTL is verified again.

Another stationary signal with two modes [34] denoted by fsie6(t) is constructed to further compare performances of the different
decomposition methods for signals with closely-spaced modes, which is expressed by

fsigec1 () = cos(2nt)
fsigoc2(t) = acos(2xA,t) 39
fSigﬁ (t) :féig(»Cl (l) +fsig(,cz (l‘)

where a and 4, denote a ratio between the amplitudes of fg;6c2(t) and fsigec1(t) and that between the frequencies of figsca(t) and
fsigec1 (t), respectively; 0.01 < a <100 and 0.01 < A, < 1. When 4, approaches to 1, fsisec2 (t) and fsigec1 (t) become closely-spaced modes.
The signal fsig(t) is sampled at a frequency of 10 Hz for 300 s. The EFD, EWT, FDM-LTH, FDM-HLT, VMD and EMD are deployed to
decompose fs;e6(t). A two-dimensional binary quantity Q(a, 4,) is used to measure the decomposition performance [34] of the different
methods for fi;ee(t) with different values of a and A,, and it is expressed by

0 if HCI _fSig6C1H2<8
fsigsc |l
0la,2,) = 39)
L N = fwall,

HfSig6C2 | ‘ 2

where C1 is the decomposed component by a decomposition method corresponding to fsiesc1 (t) and ¢ is the threshold of Q. A zero value
and a unit value of Q indicate an acceptable decomposition result and an unacceptable decomposition one, respectively, and the value
of ¢ is chosen to be 0.5 in this study, which was also the case in Refs. [4,15,34]. Resulting Q(a, 4,) corresponding to the six methods are
shown in Fig. 14, where the colors of blue and yellow correspond to Q values of 0 and 1, respectively. It can be seen that the yellow area
corresponding to the EFD is the smallest among the six Q results. Even as 1, approaches to 1, fs;.s(t) can still be well decomposed.
However, the decomposition by the EFD is affected when a approaches to 0.01. Further, the yellow area corresponding to the EWT is
the second smallest but its decomposition performance is affected when a approaches to 0.01 and 4, is larger than 0.8. The yellow area
corresponding to the VMD is the third smallest. Similar to Q corresponding to the EFD, as 4, approaches to 1, fsies(t) can still be well
decomposed. However, the decomposition performance associated with the VMD is affected when a is close to 0.01 and 100. The
yellow area corresponding to the EMD is the fourth smallest. The EMD cannot decompose fs;,6 (t), when 4, is larger than 0.65 for all a. In
addition, worse decomposition results are obtained when a approaches to 100. For the FDM-LTH and FDM-HTL, decomposition
performances are almost the same but the worst among the six methods. Their decomposition results are greatly affected by the value
of a. They hardly decompose fsig(t), when a is smaller than 1 for 1,>0.01. Based on the observations, it is indicated that the EFD
robustly and accurately decomposes fsig (t) as its decomposition results are the most accurate even when fs;q6 (t) becomes a signal with
closely-spaced modes, and both the FDM-LTH and FDM-HTL yield inaccurate decomposition results for fsige(t).

4.4. TFR

TFRs of fs;,3(t) of components decomposed by the six methods are compared to further study their performances. TFR of
decomposed components by the EFD, EWT, VMD and EMD are calculated using Hilbert transform and those by the FDM-HTL, FDM-

Table 4
Results of the RMSEs for fi;,s (t).
Component Decomposition method
EFD EWT FDM-LTH FDM-HTL VMD EMD
fsigac1 2.20 x 1072 1.11x 107! 7.07 x 1071 0.00 1.90 x 1072 7.02x 107!
fsigaca 1.60 x 102 1.10x 107! 7.07 x 107! 0.00 1.50 x 1072 6.94x 107!
fsigacs 1.20 x 1072 1.20 x 1072 0.00 0.00 1.41x 1072 4.58 x 1072
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Fig. 14. Decomposition performance with respect to (a, 1) by the (a) EFD, (b) EWT, (c¢) FDM-LTH, (d) FDM-HTL, (e) VMD and (f) EMD.

LTH and FDM-DCT [35] are directly obtained as instantaneous amplitude and frequency. For the FDM-DCT, two frequency ranges of
[0, 8] Hz and [8, 500] Hz are selected for f;,3(t) here, while a selection of frequency ranges for decomposition is not required by the
other compared methods. A benchmark TFR is obtained by using Hilbert transforms of theoretical components. TFRs corresponding to
seven decomposition methods and the benchmark one are shown in Fig. 15 and RMSEs corresponding to TFR are calculated and listed
in Table 5. From Fig. 15, it can be found that the TFRs associated with the EFD and FDM-DCT compare well with the benchmark one,
while the comparisons between the TFRs associated with the EWT, FDM-LTH and EMD and the benchmark one are acceptable.
However, large differences can be observed for the TFRs corresponding to the VMD and FDM-HTL with the benchmark one.

In addition, RMSEs of between magnitudes in the TFRs by the seven methods and those in the benchmark TFR at all frequencies and
times are calculated and listed in Table 5. It can be seen that the RMSEs associated with the TFRs by the EFD and EWT are the smallest.
Those associated with the TFR by the FDM-DCT and EMD are relatively small, while those associated with the TFRs by the FDM-LTH,
FDM-HTL and VMD are large. The TFRs shown in Fig. 15 and the RMSEs in Table 5 show that the EFD yields accurate TFR, and the
inconsistency between TFR results by the FDM-LTH and FDM-HTL is observed. Besides, it is observed that the FDM-DCT improves the
accuracy of TFR compared with those by the FDM-LTH and FDM-HTL.

4.5. Computational cost

To explore the computational cost of the EFD, computation times by the EFD, EWT, FDM, VMD and EMD for fsig3(t), fsies(t) and
fsigs(t) are listed in Table 6. All computations are conducted on MATLAB R2020a on a PC with an Intel Xeon W-2123 CPU, 16.0 GB of
RAM and 64-bit Windows 10. It can be seen that the EFD requires the shortest computation time among the six methods. The
computation times associated with the EFD and EWT are comparable and while those of the FDM-HTL and FDM-LTW are large. The
computational times of the VMD and EMD depended on their parameters; though they greatly vary, they are longer than that of the
EFD. Hence, it can be concluded that the EFD is the most computationally efficient.

5. Experimental validation

In this section, an experimentally measured signal is used to validate the effectiveness of the proposed EFD. The signal was acquired
from an experiment of the structural health monitoring benchmark problem in Refs. [36,37], where a four-story steel structure was
tested. The structure had a height of 3.6 m and a square platform profile with an equilateral side length of 2.5 m, as shown in Fig. 16.
More detailed descriptions of the benchmark problem and structure can be found in Ref. [36]. In one test case of the benchmark
problem, two impacts were applied at the southeast corner of the first story of the structure in the north and west, i.e., along the y- and
x-axes indicated in Fig. 16, respectively. Fifteen accelerometers were numbered and attached to measure the impact response of the
structure with a sampling frequency of 1000 Hz. The accelerometer 15 measured the response of a point on the structure in the south, i.
e., along the y-axis indicated in Fig. 16. Its measured response with a duration of 20 s was extracted after the first impact was applied. A
low-pass filter with a cut-off frequency of 16 Hz was applied to the extracted response so that modal information associated with the
first three modes of the structure could be reserved [38], and the filtered response is used for the validation here and shown in Fig. 17.

The filtered response is decomposed by the EFD, EWT, FDM-LTH, FDM-HTL, VMD, and EMD. Note that three, three and four
components are predefined for the EFD, VMD and EWT, respectively. Decomposition results in the time- and frequency-domains by the
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Table 5
Calculated RMSEs of TFR associated with fgje3(t).
EFD EWT FDM-LTH FDM-HTL FDM-DCT VMD EMD
1.00 x 107! 1.01x 107! 1.27 x 107! 1.36 x 107! 1.12x 107! 1.33x 107! 1.13x 107!
Table 6
Computation time for fsie3(t), fsies(t) and fsies(t) by the EFD, EWT, FDM-LTH, FDM-HTL, VMD and EMD.
Signal Computation Time (s)
EFD EWT FDM-LTH FDM-HTL VMD EMD
fsiga(t) 1.66 x 102 6.33 x 1072 1.75x 1071 1.09x 1071 1.75x 1071 8.21 x 1072
fsiga(t) 1.54 x 102 6.61 x 102 2.59 x 10! 1.04x 10! 1.96 x 10°° 9.58 x 102
figs (t) 1.67 x 1072 7.02x 1072 159 x 107! 1.16 x 107! 1.41x10°° 1.51 x 10°

Accelerometer 15
North

0.9

0.9

Impact 1

mpact 2

Fig. 16. Dimensions of the 4-story benchmark structure (unit: m), and locations and directions of applied impacts and response by the acceler-

ometer 15.
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Time (s)

Fig. 17. Filtered response measured from the accelerometer 15 in the range of 5 to 25 s.
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EFD, which correspond to the first three modes of the structure, are shown in Fig. 18. It can be observed that amplitudes of decomposed
components 1 and 3 in the time-domain decay exponentially, while the amplitude of decomposed component 2 does not decay
exponentially in a uniform manner might be due to the existence of measurement noise. Further, decomposition results in the
frequency-domain show that the first two modes, which are considered closely-spaced, can be well decomposed by the EFD.
Decomposition results in the time and frequency-domains by the EWT are shown in Fig. 19. Similar to the decomposition results by
the EFD, amplitudes of the decomposed components 1 and 3 in the time-domain by the EWT decay exponentially. But amplitudes of the
decomposed component 2 in the time-domain does not decay exponentially in a uniform manner. Note that decomposed components 1
and 2 in the frequency-domain are different to those by the EFD, as shown in Fig. 20, where the mode-mixing problem occurs. In Fig. 20
(a), a frequency component, which corresponds to the component 2, exists in the frequency-domain decomposition result associated
with the component 1. The issue is more obviously observed in Fig. 20(b): a frequency component, which corresponds to the
component 1, exists with a high magnitude in the frequency-domain decomposition result associated with the component 2.
Decomposition results in the time-domain and frequency-domain by the FDM-LTH, FDM-HTL, VMD and EMD are shown in
Figs. 21-24, respectively. It can be observed that the two closely-spaced modes cannot be decomposed for the four methods. Besides,
the decomposition result by the FDM-LTH, which corresponds to the component 1, is problematic due to the inclusion of the
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Fig. 19. Decomposition results by the EWT: (a) component 1 in time-domain, (b) component 1 in frequency-domain, (¢) component 2 in time-
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component 3. Results by the different decomposition method for the experimentally obtained data validate that the proposed EFD can
yield the most accurate and robust decomposition results.

6. Conclusion

In this paper, an accurate and efficient EFD method is proposed to decompose time-domain signals. The EFD consists of two critical
steps: an improved segmentation technique and the construction of a zero-phase filter bank. In the improved segmentation technique,
an adaptive sorting process is developed to yield accurate segmentation results and eliminate a possible trivial residual in the first
decomposed component, which corresponds to the trivial component problem in the EWT. The use of the zero-phase filter bank fa-
cilitates accurate decomposition for signals with closely-spaced modes by eliminating transition phases that can cause the mode mixing
problem in EWT. The inconsistency problem in FDM is solved by the segmentation technique, where the number of components in a
signal to be decomposed is predefined. Two numerical investigations are conducted on non-stationary signals. It is shown that the EFD
yields decomposition results with high accuracy and consistency. Two numerical investigations are conducted on two stationary
signals to study the decomposition performance of the EFD for closely-spaced modes. It is shown that the EFD yields decomposition
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results for the closely-spaced modes with high accuracy and consistency and its decomposition results are more accurate than those by
the other decomposition methods. In addition, it is shown that the EFD yields accurate TFRs for non-stationary signals. Comparisons
between computation times by the EFD, EWT, FDM, VMD and EMD show that the EFD is the most computationally efficient. An
experimental validation is also conducted using an experimentally acquired response from a benchmark problem. It is shown that the
EFD can yield the most accurate decomposition results, compared with those by the other decomposition methods. However, a
shortcoming of the EFD should be noted that signals with components crossing in the frequency domain cannot be decomposed
accurately. The reason is that the improved segmentation method cannot differentiate such components at time instants when they
cross in the frequency domain. A future work can be an investigation of the applicability of the EFD to signals/data of higher di-
mensions, such as digital images and vibration measurements by continuous scanning laser Doppler vibrometry. An implementation of
the EFD along with code is available on GitHub.'
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