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Abstract—This paper proposes a co-design adaptive defense
scheme against a class of zero-day buffer over-read attacks
that follow unknown stationary probability distributions. In
particular, the co-design scheme integrates an improved UCB
algorithm and a customized server. The improved UCB algorithm
adaptively allocates guard pages on a heap based on induced
damage of the guard pages so as to minimize the accumulated
damage over time. The security damages of the improved UCB
algorithm are proven to be always below a temporal bound
without knowing which attack is launched when the buffer
allocation follows a certain stationary probability distribution.
Then an efficient server modification is introduced to randomly
allocate buffers. Moreover, the damages of our scheme asymptot-
ically converge to those of the optimal defense policy where the
launched attacks and their distributions are known in advance.
Further, the co-design scheme is evaluated with several real-
world Heartbleed attacks. The experiment results demonstrate
the validity of the upper bound and show that the adaptive
defense is effective against all the attacks of interest with runtime
overheads as low as 5%.

Index Terms—Adaptive Defense, Buffer Over-read Attacks,
Reinforcement Learning

I. INTRODUCTION

UFFER over-read attacks [1]-[3] are unauthorized reads
which go beyond the boundaries of vulnerable buffers.
Many buffer over-read attacks are zero-day attacks since the
locations of vulnerable buffers are usually unknown to security
analysts. Also, buffer over-read attacks are difficult to detect
because they do not tamper any content in the memory. As
a result, zero-day buffer over-read attacks can produce severe
damages to servers. In August 2014, 4.5 million patient records
are stolen from Community Health System by manipulating
Heartbleed [4]. And according to [5], [6], 24-55% of HTTPS
servers in the Alexa Top 1 Million were initially vulnerable
to Heartbleed, allowing theft of the servers’ private keys and
users’ session cookies and passwords.
A variety of techniques have been proposed to deal with
buffer over-read attacks. The techniques can be classified
into two categories according to their requirements of the
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knowledge of vulnerabilities. The first category of techniques
need to identify the vulnerabilities; i.e., the locations of
vulnerable buffers, and then generate tailored defenses. One
typical example is patching [7]. However, the process of
patching is very time-consuming. According to the report from
Google Project Zero team [8], across all vendors, it takes
15 days on average to patch a vulnerability that is being
used in active attacks. Complementary defenses should be
deployed to mitigate zero-day attacks and before any patches
are generated. The second category of techniques do not need
to identify the vulnerabilities in advance. Instead, they deploy
memory safety retrofitting or preliminary defense actions;
e.g., guard pages, to increase the difficulty for the attacker
to succeed. For instance, DieHard [9] applies randomization
and replication to heap allocation. Large distances between
buffers make it more difficult for the attacker to over-read
valid data. HeapTherapy [10] places inaccessible guard pages
randomly throughout the heap space to prevent over-reads
accessing undesired area. The second category of techniques
can partially mitigate zero-day buffer over-read attacks. In this
paper, we focus on zero-day over-read attacks and the second
category of techniques.

4
4509 : r : : >
- '}?mg(lnralg;lr?%el(rabound o
4 | | —e~fixed len | S
--o-fixed length 64KB L
w35 IID lengths -~
=
o 3
S25
g2
T 2
g
= 5t
#

2000 4000 6000 8000 10000 12000 14000
Time (s)

Fig. 1. The security damages under the protection of DieHard against different
Heartbleed attacks.

As mentioned, buffer over-read attacks do not tamper the
content in the memory. Therefore, security analysts usually
do not know when the attacks start or end. However, we can
evaluate the defense techniques afterwards by analyzing their
temporal security damages. Fig. 1 shows the temporal security
damages (the x axis indicates the time after the attacks are
launched) under the protection of DieHard in terms of the
number of valid over-reads. Here valid over-reads refer to the
Heartbleed requests that read valid buffer content. DieHard is
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able to mitigate a particular Heartbleed attack [11] where each
Heartbleed request has a fixed over-read length as 8KB (the
red solid line with circle markers). However, when the over-
read lengths are slightly modified, the security damages are
much more severe. This is because DieHard allocates multiple
miniheaps for the buffers with fixed size and the largest
distance between two buffers is also fixed. If the attacker over-
reads more than the largest distance, valid data objects can be
read. In particular, the green dashed line with triangle markers
represents a mutated attack where the over-read lengths of
Heartbleed requests are independent and identically distributed
(IID) and their distributions are uniform over 4KB to 64KB.
The black dotted line with circle markers represents another
mutated attack which fixes the over-read length to 64KB for all
Heartbleed requests. It can be seen that the security damages
after 10,000 seconds increase from 12,500 to 21,000 to 31,000
valid over-reads for three attacks. Similarly, the mutant attacks
significantly increase the damages at other time instances. In
real world, the attacker can easily possess a larger set of attack
scripts by modifying the existing attack scripts as shown in
the example. Since the adopted attack script is unknown, it is
difficult for the defender to guarantee the security damages of
its defenses.

The above observation motivates a question: Can we design
a defense under which its temporal security damages are
always below a temporal bound; e.g., the blue dashed line
in Fig. 1, against a class of zero-day buffer over-read attack
scripts without knowing which script is actually used by the
attacker? In this paper, we only focus on a class of mutants of
Heartbleed attacks and refer the class of attacks as Heartbleed-
like attacks. The Heartbleed-like attacks have two salient
features. First, the attacker probes victim systems with a large
number of requests during a relatively long period. Second,
the attack actions of each attack are IID random variables.
In addition, the Heartbleed-like attacks only read contigu-
ous buffers. The Heartbleed-like attacks include the original
Heartbleed attack [12], [13] as a special case. In particular,
the original Heartbleed attack typically requires hundreds of
thousands of requests and could last hours. And the original
Heartbleed attack adopts fixed over-read lengths, a special
probability distribution. To the authors’ best knowledge, the
question remains open. The problem is challenging because
1. the locations of the vulnerable buffers are unknown; 2. the
attack actions; e.g., over-read lengths, are unknown.

To address the above two challenges, we propose a new
co-design scheme which integrates an improved UCB (Upper
Confidence Bound [14]) algorithm, named UCB-Z (UCB zero-
day) algorithm, and allocator customization. The defender
uses guard pages; i.e., the inaccessible area on the heap, as
the preliminary defense actions. When an over-read request
touches a deployed guard page, the defender can observe
a segmentation fault that indicates the over-read request is
blocked. Deploying guard pages induces availability damage
of the server. Then the defender follows the UCB-Z algorithm
to deploy guard pages at certain locations and reduce security
damages.

In particular, the UCB-Z algorithm proceeds in defense
cycles. At the beginning of each defense cycle, the defender
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subtracts the number of guard pages from the number of
segmentation faults to quantify the instant damage mitigated
by the action deployed in the last defense cycle. The algorithm
then maintains the empirical average mitigated damage for
each defense action over time. Then the defender, on the one
hand, exploits the defense action with the highest average mit-
igated damage, and on the other hand, explores other defense
actions. The defender balances between the exploitation and
exploration to minimize accumulated damage over time. To
implement the algorithm, the defender only needs to access
induced segmentation faults after the actions are taken but is
not required to know the cause of the segmentation faults; e.g.,
the portion of over-read memory. This information is hard to
gather when defending zero-day over-read attacks. Compared
to the classic UCB algorithm [14], the UCB-Z algorithm takes
many issues in real-world servers (e.g., communication errors
or transmission delays between the defender and the server)
into account. As mentioned, the attack can send a large number
of Heartbleed requests within a relatively long time. Repeated
interactions between the attack and the server provide the
UCB-Z algorithm sufficient information and time to observe,
learn and adapt.

We prove that the UCB-Z algorithm provides a temporal
damage upper bound which asymptotically converges to the
damage of the optimal defense policy even when observed
segmentation faults are subject to delays and errors. This
upper bound is valid for the class of attacks when the attack
and buffer allocation follow certain stationary probability
distributions, respectively. The random allocation of buffers
is motivated by the feature that some existing allocators;
e.g., HeapAlloc [15], [16], allocate part of buffers at random
addresses on the heap. However, the randomness of heap
object allocation is limited by memory alignment enforced
in operating systems [17]. For example, HeapAlloc always
allocates buffers larger than 512KB into a separate heap
block. Therefore, directly implementing the UCB-Z algorithm
on the current servers cannot guarantee the damage bound.
Another issue is that segmentation faults brought by guard
pages usually crash the servers. These two issues necessitate
server modification. Our customized allocator provides two
properties. First, all buffers, including vulnerable buffers, are
allocated on the heap by a given fixed distribution. Second, the
allocator is equipped with a signal handler to guarantee that
the system can operate normally without being interrupted by
segmentation faults.

Contribution. In this paper, we develop a co-design scheme
which integrates the UCB-Z algorithm and a customized
allocator to defend against the Heartbleed-like attacks. We
prove that the security damages of UCB-Z are always below
a temporal bound without knowing which attack in the class
is launched. Moreover, the explicit form of the upper bound
is derived and its dependency on the unknown distribution
of over-read lengths is highlighted. The upper bound also
indicates that the security damages of UCB-Z asymptotically
converge to those of the optimal defense policy where the
distribution of over-read lengths is known in advance. We
introduce an efficient server modification to randomly allocate
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Notation Meaning
a,A, © attack action, attacker’s action space, probability distributions space over .A
Py € © a specific Heartbleed-like attack: a probability distribution of over-read lengths
pi, H, L, M page, heap, size upper bound of buffers, number upper bound of alive buffers
SA, Psa, Qsa starting addresses of buffers, probability distribution of starting addresses, space of all possible starting addresses
d, D defense action, defense action space
u(d, a, SA), c(d), u(d, a, SA) effectiveness function, cost function, utility function
h(t), T; the number of the utility values received at ¢, utility delay
e(t), € utility error, utility error upper bound
o () received utility values at defense cycle ¢
@, Do (Pg, N), n(t) defense algorithm, induced security dam-age up to defense cycle NV, information set of the defender
1my, Ta(t) indicator function, number of times defense action d has been chosen by defense cycle ¢ — 1
an(t) empirical average utility of defense action d by the end of defense cycle ¢t — 1
I4(t) upper confidence index of defense action d at the beginning of defense cycle ¢
BR(Py), BR2c(Pp) best response to the attack Pg, 2¢ best response
Hmin the smallest expected utility value when the defender adopts the best response
APy, d) sub-optimality of defense action a against attack Py
Anmin the smallest sub-optimality when the defender adopts the 2e best response

TABLE I
SYMBOLS AND NOTATIONS.

buffers and handle segmentation faults. We evaluate the co- ; :

design scheme with several real-world Heartbleed attacks. The ; s
experiment results demonstrate the validity of the upper bound Trpesreavest
and show that the adaptive defense is effective against all the | payloads Bjx
attacks of interest with runtime overheads as low as 5%. - length b ;

The remainder of the paper is organized as follows. Sec- : /{_%m —a By
tion II introduces the attack model and formulates the se- ' Payload | |
curity problem of interest as an optimal sequential decision- B
making problem. Section III gives an overview of our adaptive : Padding
defen'se S des1g.n and pr0V1'des the ?nalyt1cal r(?sult§ of the B,
algorithm. Section IV describes the implementation issues of e/
our adaptive defense. Section V presents the evaluation results. Attacker Server

Lastly, the paper is concluded in Section VI.
Fig. 2. A pair of Heartbleed request and reply.

II. BACKGROUND AND PROBLEM STATEMENT
In this section, we introduce the background of Heartbleed B. Problem Statement
attack and the formal statement of the problem of interest. For
convenient reference, the symbols and notations used in this

paper are summarized in Table I.

We formally state the security problem of interest depicted
in Fig. 3. In particular, an attacker keeps sending requests
at a constant frequency to a victim server, and a defender
periodically adjusts defense actions on the basis of feedbacks

A. Heartbleed-like Attacks to achieve damage upper bound. The uniform time interval
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The Transport Layer Security (TLS) protocol maintains
communication links between a client and a server by allowing
the client to send Heartbleed requests to the server. As shown
in Figure 2, each Heartbleed request message consists of
a “message type”’, a “payload’s length”, a “payload” and a
“padding”. When a server receives a Heartbleed request, it
stores the “payload” in a heap buffer, and then replies to the
client with the “payload”. Because of missing bound checking
in the handling of the Heartbleed request, the server replies
the message to the attacker based on the “payload’s length”
information in the Heartbleed request, regardless how long
the “payload” actually is. So the message returned by the
server may include not only the heap buffer storing “payload”,
but also whatever else in the subsequent memory chunk. The
buffer storing “payload” is referred to as the vulnerable buffer.
The attack keeps sending the victim server system with a large
amount of requests at a constant frequency to steal sensitive
information.

Authorized Iicensedpuse limited to: Penn State University.

between two defense adjustments is denoted as a defense
cycle. In what follows, we first introduce the models of the
attacker, server and defender. Afterwards, we introduce the
notion of utility to quantify the security damages of the server.
Then we formulate the security problem to upper bound the
aggregate damage over a defense horizon.

Guard pages

Segmentation faults

Heap &
Allocator
Over-read lengths
Heartbeat-like attacker

Fig. 3. The interactions among the attacker, heap and defender.
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1) Attack Model: In this paper, we focus on a class of
mutant Heartbleed attacks that are extended from the original
Heartbleed attack. This class of attacks are characterized by an
extended ability that the over-read lengths in each attack are
selected by an unknown (to the defender) but fixed probability
distribution. This extension describes some possible features of
unknown Heartbleed-like attacks and includes the Heartbleed
attack as a special case. To increase the probability of reading
sensitive information without being detected, the attacker
would like to change its attack actions. Using predetermined
probability distributions is a reasonable and implementation-
friendly choice for the attacker to adjust its actions in real
world. For example, the Heartbleed attack tools in [18] can
build Heartbeat requests with random payload’s lengths.

We study the security problem from defender’s point of
view. Each attack action a is a vector of over-read lengths
of the Heartbleed requests sent in a defense cycle. It induces
the action space A for the attacker. In addition, the space of
all probability distributions over A is denoted by © and each
attack is defined as a probability distribution Py € ©. Notice
that the original Heartbleed adopts fixed over-read lengths,
which is included in O.

2) Server: Heartbleed-like attacks impact the heap and
allocator in the server. Heap is the portion of memory where
dynamically allocated buffers reside [19]. The heap is parti-
tioned into pages; i.e., H £ {p;---,pam}. where p; is the
page with the lowest address. Based on our observation [20],
the sizes of all buffers on the heap are uniformly upper
bounded, where the upper bound is denoted by L. Also based
on our observation [20], the numbers of alive buffers during
different defense cycles are uniformly upper bounded, where
the upper bound is denoted by M. All the buffers are allocated
by a modified allocator at random addresses on the heap with a
uniform probability distribution Pg 4. Here uniform allocation
refers to that all the buffers are uniformly allocated over all the
possible permutations of M addresses drawn from the heap.
All the possible permutations of M addresses consist of the
space of the starting address {)g 4. For ease of presentation,
it is assumed that the numbers of buffers at different defense
cycles are constant M. If not, zeroed buffers are appended.
The starting addresses of the buffers are denoted by a random
vector SA taking values in Qg4.

The above uniform allocation is an extension of partial
random starting addresses; i.e., part of buffers are allocated
at random addresses, in existing allocators such as HeapAl-
loc [16]. We will show that the uniform allocation introduces
a mathematical property that is necessary to derive the damage
upper bound in Section III-B. And the modified allocator
can be achieved by the efficient sever modification shown in
Section III-C.

3) Defense Action: Some preliminary defenses can increase
the difficulty of reading valid data or block Heartbleed re-
quests without knowing the vulnerable buffers. In this paper,
the defender uses guard pages as preliminary defenses. The
defender is equipped with a set of defense actions denoted
by D, where each defense action d = [pg,, - ,Dgx] 1S tO
insert a certain number of guard pages at certain locations
on the heap. Guard pages do not belong to any buffers, and
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thus normal write or read operations do not touch these guard
pages. However, Heartbleed requests may read beyond buffer
boundaries and touch the guard pages. If so, segmentation
faults are triggered [21], [22]. Intuitively, if guard pages do
not incur any cost, then the best solution is placing guard
pages after all buffers. However, The study of Dynamic Buffer
Overflow Containment (DYBOC) [23] shows that the cost is
mainly induced by deploying guard pages. In fact, there are a
lot of small size buffers in a process. If we set a guard page
for every buffer, the overhead will be unacceptable.

4) Utility: When facing buffer over-read attacks, security
analysts usually prefer detections of the attacks. Here detec-
tions refer to processed information; e.g., what sensitive data
is read and how many read bytes are out of a buffer, that can
confirm the impacts of the attacks. However, in our security
problem, such information is unavailable during vulnerability
windows since we focus on zero-day over-read attacks. As
a result, we only require the defender to access feedbacks
such as raw alerts in intrusion detection systems [24] or
segmentation faults. Feedbacks can indicate the joint effect
of the defense and attack and can be directly observed by the
defender.

Given any pair of defense and attack actions, the server
returns the number of segmentation faults as feedbacks to
the defender. Formally, feedback is defined as utility in the
form of u(d,a,SA) = W,r(d,a, SA) — Wee(d), where
r(d,a, S_}l) is the number of segmentation faults to quantify
the effectiveness and c¢(d) is the number of guard pages to
quantify the cost. As mentioned, the overhead result from
DYBOC justifies that the number of guard pages can be
used to quantify the cost of defense action d. The cost can
be viewed as part of the availability damage of the server.
And the constant weights W,. and W, are chosen according
to the preference of the defender on security and efficiency.
The utility value u(t) = u(d(t),a(t), SA(t)) quantifies the
mitigated damage at a particular defense cycle ¢. The utility
values are uniformly bounded, and there are v~ and u™ such
that V¢, u(t) € [u™,u™]. Additionally, the defender knows the
bounds.

Recall that the attack action a and the starting addresses
of the buffers SA are two independent random vectors.
Hence for each d, r(d,a, S_A) is a discrete random vari-
able derived from a and S_A, which is formally described
as the following property. Property M-1: For each ran-
dom vector attack a with probability distribution Py and
the starting addresses SA with probability distribution Pg 4,
the induced utility for each defense d € D is a discrete
random variable with expected value Ep, ,  u(d,a, S4) 2

Y u(d,a,SA)Py(a)Psa(SA).
(a,SA)EAXQs4a

When the server load is heavy, the server might not be able
to generate the utility value at the end of the defense cycle. Be-
sides, the communication between the defender and the server
may be affected by transmission delays [25]. Therefore, at the
end of defense cycle ¢, the defender may receive utility values
of previous defense cycles instead of the current one u(t).
More formally, for any defense cycle ¢, the defender receives
several utility values from the server which are denoted by the
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vector i(t) = [u(t—Ti) u(t—Ts) u(t — Th)] s
where Tq,---, Ty are multiples of defense cycles, repre-
senting the delays, and h(t) is the nonnegative number of
the utility values received by the defender at t. The defender
only receives the utility value of each defense cycle once.
The utility delays are uniformly upper bounded by T; i.e.,
v, Vie {l,--- ,h(t)}, T: < T.

Since the segmentation faults could be triggered by op-
erations other than Heartbleed requests, the received utility
values could be corrupted by errors. We denote the utility
error for each defense cycle ¢ as €(t). The utility errors
are uniformly upper bounded by e; ie., Vi, |e(t)] < e
Then for defense cycle ¢, the defender receives several util-
ity values with errors from the server which are denoted
by vector @' (t) = [u/(t—Ti) u’(t—ﬁl(t))]T =
[u(t = T0) + e(t = T1) u(t — Tae) + €t — Thw)]

5) Problem Formulation: Given an attack Py € ©
and a defense algorithm ¢, the induced security dam-
age up to defense cycle N is defined as D, (Py,N) =

N h(t)

— > > E(u(t—T;)+¢€(t—7T;)). Here ¢ is a mapping

t=1j=1

from éefender’s information set 7(t) to its defense action;
ie, d(t) = o(n(t)), where n(t) = {@'(1),---,ud'(t —
1),d(1),---,d(t — 1)} denotes the information set of the
defender at the beginning of defense cycle ¢. In this paper,
we aim to design a defense algorithm ¢ so as to tightly upper
bound the temporal security damage D, (Ps, N) against all
possible attacks in ©.

III. DEFENSE DESIGN

In this section, we first propose a defense algorithm, namely
UCB-Z, to address the security problem formulated in Sec-
tion II-B5. Then we prove that the damage of the UCB-Z
algorithm has a temporal upper bound. At last, we provide the
design of server modification to meet the randomness property
of buffer allocation.

A. UCB-Z Algorithm

Our defense is deployed before details of zero-day buffer
over-read attacks; e.g., locations of vulnerable buffers and
attack actions, are revealed. The limited knowledge about
zero-day attacks prevents the defender from choosing effective
defenses. However, the long-running feature of the Heartbleed-
like attacks; i.e., the attacks probe the victim server with
a large amount of requests, provides opportunities for the
defender to evaluate the cost-effectiveness of previously taken
defense actions based on received utility values, identify
latent patterns of ongoing zero-day attacks, and adjust defense
actions to minimize security damages. This key observation
motivates us to extend UCB algorithms in stochastic Multi-
armed Bandit problems [26], [27] which are particularly well
suited to problems where the decision-maker interacts with
partially unknown and stationary random environments, but
can evaluate their actions via observed feedbacks, and grad-
ually identify optimal actions during the course of repeated
interactions with the environments.
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Next, we would like to extend UCB algorithms to the UCB-
Z algorithm which can solve the problem in Section II-BS.
Before that, let us introduce a set of notations which are
needed in the algorithm.

e 1 is an indicator function: 1y = 1 if II is true and
1;m = 0 otherwise.

t—1
o Ty(t) = z_:l 1(4(r)=dy is the number of times defense

action d has been chosen by defense cycle ¢ — 1.
t—1 h(T)
., 21 121 (' (7=Ti)la(r—7;)=d})
« VdeD, iyt) = =i

the empirical average utility of defense action d by the
end of defense cycle ¢ — 1.
21In(t)

e Vd € D, Iy(t) = (ﬁ;(t)+ (ut — )y /2
sents the upper confidence index of defense action d at
the beginning of defense cycle t.

represents

) repre-

Algorithm 1: The UCB-Z Algorithm

1 Initialization: for d € D do

2 Ty(1) =0;

3L Ag(h) =0

oop: for t = 1;t < N;t+ + do

-

4
5 for d € D do
6 if T;(t) == 0 then
7 | Ia(t) = +oo;
8 else
_ _ ]
9 L Ia(t) = @y (t) 4+ (ut —u™) QT;‘((:));
d(t) = I4(t);
10 (t) = argmax Iy(t)

11 Td(t) (t + 1) = Td(t)(t) +1;
12 for d € D\ {d(t)} do

13 L Td(t + 1) = Td(t)
14 Defender receives @’ (t);
15 for d € D do

t h(m)

. DY (W (r=T)Lla(r—7;)=d})
16 aLyt+1) == = ;
2, 2 Hae-m)=d

>

The main idea of the UCB-Z algorithm is described as
follows. By Property M-1, the true cost-effectiveness of a
defense action can be reflected by its expected utility value.
By the law of large number, it is known that the empirical
average utility value converges to the expected utility value
when the defense action is chosen infinite often. The UCB-Z
algorithm uses empirical average utility value (the first term
of I;(t)) to evaluate how well a defense action works. On the
other hand, a penalty term (the second term of I,;(t)) is added
to ensure that each defense action is chosen infinite often. In
particular, the penalty term for a particular defense action d
keeps increasing and dominates the I;(¢) if the action is not
chosen for a long time. As a result, defense action d is chosen
again when I;(t) becomes largest among all defense actions.

The pseudocode in Algorithm 1 formalizes the above idea.
In particular, at the beginning of defense cycle ¢, the defender
updates the upper confidence index I;(t) of each defense
action (Line 5 to 9): For the actions that have never been
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chosen, the algorithm sets their indices to be positive infinity'
(Line 6 to 7). For the actions that have been chosen, the de-
fender updates their indices based on their perturbed empirical
average utility values (Line 8 to 9). Then the defender executes
action d(t) with the largest index (Line 10) and updates the
number of times each defense action has been chosen (Line 11
to 13). At the end of defense cycle t, the defender receives the
utility values @’(t) (Line 14) and then updates the empirical
average utility values of all defense actions. (Line 15 to 16).

B. Mathematical Analysis

In this section, we will prove that the UCB-Z algorithm
can provide a temporal damage upper bound even when the
received utility values are subject to finite delays and errors if
the induced utility values follow Property M-1.

The following theorem states that the temporal security
damages caused by the UCB-Z algorithm are always below the
derived upper bound no matter which unknown distribution
the attacker follows. Before the theorem statement, let us
introduce several notations first. We define the best response
of the defender as BR(Py) = arg I(%E%EPPG,PSA u(d,a, SA).
Let fimin = ];nir(l) Ep,, PSAu(BR(]P’g), a, S_}l); i.e., the smallest

prs :
expected utilgity value when the defender adopts the best
response, and let fimax = max Ep,, .., wW(BR(Py),a, SA);
- :

i.e., the largest expected utielity value when the defender
adopts the best response. We also define A(Py,d) =
Ep,, , , u(BR(Py), a, SA) —Ep,_,_ uld, a, SA) > 0 which
quantifies the sub-optimality of defense action d € D against
attack Py, and BRo(Py) £ ar min APy, d

0 2 ( 9) gde{d'eD\A(Pe,d’)>2e} ( o )
is the 2e best response; i.e., the best defense action whose
expected utility value is at least 2¢ smaller than that of the

best response. Then A,,;, £ IP{ni% {A(Py, BR2c(Pg))} is the
€

smallest sub-optimality when tlele defender adopts the 2¢ best

response.

Theorem 1. Under the Property M-1, for any attack Py € O,
the aggregate expected damage of the UCB-Z algorithm after
N defense cycles is upper bounded in the following way:

Dycp-—z(Py,N)

< —Npimin + T pimax + 3|D|(N — T)e

(ut —u” +e)In(N —T +1)
(Apin — 2€)?

2
+ <1 + 3> ID|(u™ —u™ +e).

+ 8(ut —u")?|D|

The proof of Theorem 1 is given in Appendix A. Theorem 1
formally shows that the UCB-Z algorithm has a security
guarantee against any attack in ©. This guarantee does not
require the defender to know which attack distribution is
used in advance. More importantly, the theorem indicates
that, as the defense horizon increases, the security damage
of the UCB-Z algorithm gets closer to that of the optimal
policy which knows the attack distribution. We evaluate the

'In implementation, their indices are set to be a number much larger than
others’.
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asymptotic optimality in Section V-B and give the formal
justification of the asymptotic optimality in Appendix A-C.

C. Server Modification

The upper bound in Theorem 1 is valid when Property M-
1 is true. To satisfy this property, we will modify the server
such that all the buffers are allocated at random addresses
on the heap. This server modification does not incur much
performance efficiency loss. And the implementation details
will be elaborated in Section IV.

In particular, we would like to modify the server so that
the allocator in the server could allocate all buffers, including
vulnerable buffers, on the heap uniformly. To achieve this
requirement, we divide the heap into a fixed number of
chunks where each chunk occupies L pages of memory (L
is determined by the largest buffer). At the beginning of a
defense cycle, the allocator retrieves all the buffers from the
heap, randomly chooses M chunks, and then distributes old
and newly incoming buffers one by one into M chunks. If the
number of buffers in the defense cycle is less than M, zeroed
buffers are appended. The uniform distribution allocation is
used in many real-world allocators such as HeapAlloc [15],
[16]. If a buffer is freed during one defense cycle, its chunk
will not be assigned to other buffers in this cycle. In addition,
if a buffer is freed and reallocated during one defense cycle,
it will be treated as a newly incoming buffer and allocated to
a different chunk.

Recall that guard pages are inaccessible area on the heap
and can trigger segmentation faults. And segmentation faults
will lead to process crashes by default (no handle). So we
need to make guard pages difficult to be accessed by normal
operations and enable the server to continue work when
segmentation faults are triggered. In particular, an additional
page, which is referred as to guard page candidate, is appended
after each chunk. This extra page will not be used to store
any buffer content. Therefore segmentation faults are only
triggered when invalid access to guard page candidates takes
place. We also implement a signal handler which will skip the
specific load/store instruction to avoid process crashes when
segmentation faults are triggered. The implementation details
will be illustrated in Section IV.

IV. MEMORY ALLOCATOR MODIFICATION

To allocate all buffers, including vulnerable buffers, on the
heap by the aforementioned distribution, we define a specific
heap object structure and provide heap management, including
initialization, object allocation and object deallocation. In
addition, a signal handler is inserted to the target program
to guarantee that the system can adaptively defend against
the attack without interruption. Based on our evaluation (see
Section V), the memory allocator introduces low runtime
overhead and acceptable memory overhead.

A. Heap Object Structure

For each heap object, an additional 4KB page (guard page
candidate) is allocated immediately after the object. Note the
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4KB page can be accessed before it is set to guard page; e.g.,
mprotect in Linux. At the beginning of each defense cycle,
a defense action (some guard page candidates are set as guard
pages) will be selected by the UCB-Z algorithm. While at the
end of a defense cycle, guard pages will be set back to guard
page candidates.

B. Initialization

During the initialization phase, a large area of free memory
is obtained from the system using mmap, which will be treated
as the heap by our allocator. The heap is divided into a number
of chunks where each chunk occupies a fixed size memory,
including a 4KB guard page candidate. Instead of maintaining
metadata in each chunk, the allocator maintains a bitmap,
which indicates the status of each chunk: allocated (marked
as 1) and freed (marked as 0). In our current implementation,
the bitmap is a buffer allocated on the heap. To protect the
bitmap from being over-read or over-written by the attacker,
guard pages are set before and after the bitmap. To protect
the bitmap from being accessed by discrete reads or writes
by the attacker, the bitmap is allocated to another location on
the heap every defense cycle. As such, it is non-trivial for the
attacker to successfully locate the bitmap.

C. Object Allocation

When a memory allocation request arrives, the allo-
cator first checks whether the request is asking for a
large object (larger than 16KB). If so, a method named
allocateLargeObject will complete the task by using
mmap. The address is stored in a table for our allocator to
deallocate it. Otherwise, the allocator processes the request
with method allocateSmallObject. This method first
randomly selects a freed heap chunk (the one that has not
been occupied), then it returns the address of that chunk to
the request, and updates the bitmap by resetting the bit for
the allocated heap chunk to be 1. This method only consumes
constant time.

D. Object Deallocation

To deallocate an object, the allocator checks whether the
request is for a large object (larger than 16KB). If so,
freeLargeObject will complete the task. Otherwise, it
invokes a method named freeSmallObject, which simply
finds the corresponding bit of the heap chunk in the bitmap,
but does not set the bit to 0 until the end of a defense cycle.
This method also consumes constant time.

E. Segmentation Fault Handler

To guarantee that the system can adaptively defend against
the attack without interruption, a segmentation fault handler is
added in the target program; e.g., Apache-2.2.14. When a seg-
mentation fault signal is received, the signal handler will skip
the specific load/store instruction; i.e., F3 A5 rep movs
dword ptr [edi],dword ptr [esi] in memcpy, and
make the web server continuously run. It is worth mentioning
that reading uninitialized memory can be intentional (for
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example, entropy creation) or accidental (for example, the
result of a programming error). The former should not be
performed by benign users, as undefined behavior provides
no guarantees of introducing entropy and will quite possibly
have opposite effect. The latter can be exploited by attackers
to read the contents of memory to identify memory locations
that can subsequently be used to bypass defenses like address
space layout randomization or leak other secrets [28]. When
uninitialized reads happen, the handler will catch the exception
and trap into the handler function. The handler function will
find the position of the instruction following the copy function
and return to that instruction. For example, the attacker lever-
ages the memcpy function to do the uninitialized reads. The
instruction next to memcpy is print £, the segmentation fault
handler will skip the data copy operation and invoke printf
directly.

V. EVALUATION

There are two attractive features of our co-design defense
scheme. First, it can provide upper bound on security damage
against the Heartbleed-like attacks without knowing which
attack is launched. Second, the customized server has low run-
time overhead and acceptable memory overhead. We are going
to use real-world experiments to validate the two features in
this section.

A. Experiment Environment

The experiments are conducted on an Intel i7-4770 proces-
sor (8M Cache, up to 3.90 GHz) with 8GB physical RAM
running Fedora Core Release 8 with Linux kernel version
2.6.23.1. We use Apache (2.2.14) with OpenSSL (1.0.1c) as
the vulnerable web server. We customize a memory allocator
according to Section III-C and implement the UCB-Z algo-
rithm. In order to test the effectiveness of data protection under
Heartbleed-like attacks, we mimic benign users to access the
web server. Each benign user’s request contains the HTTP
headers, which contain valid data such as the login credentials
and a cookie. In the following experiments, the length of a
defense cycle is 5 seconds, and during one defense cycle, the
Heartbleed requests start from the vulnerable buffer p1 on the
heap. Based on our observation, the largest buffer allocation in
Apache is 3,672 bytes long, which spans less than 4 pages; i.e.,
L = 4, and the largest numbers of buffers existing in Apache
is less than 3,000; i.e., M = 3,000. On the attacker side, we
launch three long-running Heartbleed-like attack scripts based
on an open source attack [11]. Each attack script launches 10
Heartbleed requests per defense cycle and lasts for 4 hours.
The over-read lengths for each attack script are IID random
variables varying from 2 to 16 pages based on some pre-
determined distribution shown as follows.

e Attack i: The attacker sends all requests with 2-page

over-read length.

e Attack ii: The attacker sends all requests with 16-page

over-read length.

o Arttack iii: The over-read length of each request

is an IID random variable that takes value from
{2,4,6,8,10,12,14,16} pages with equal probability.
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This class of Heartbleed attack scripts include the original
Heartbleed attacks as a special cases where fixed over-read
lengths are chosen with probability one.

B. Effectiveness & Upper Bound

We first show that our co-design defense scheme is effective
against three real-world Heartbleed-like attacks by comparing
the temporal security damages with those of the peer tech-
niques after all the three attacks are launched. We choose
DieHard and HeapTherapy, which are the best Heartbleed
defenses we have found so far. Then we show that the security
damage upper bound is valid against the attacks.
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Fig. 4. (a) compares the temporal damages of DieHard under three attacks
with the mathematical upper bound and (b) compares the temporal damages
of the UCB-Z algorithm under the same attacks with the mathematical upper
bound.

Comparison with DieHard. It should be noticed that our
adaptive defense focuses on memory over-read but DieHard
does not. In particular, DieHard applies randomization and
replication to heap allocation and provides fault-tolerance.
DieHard increases the chances of turning malicious memory
errors into benign errors. DieHard allocates multiple miniheaps
for the buffers with one size. In addition, due to overprovision-
ing (by a factor of F'), the biggest distance between two buffers
are at most '« N * S, where N is the number of allocated
buffers with the same size, and S is the size of each buffer in
the miniheap. Large distances between buffers prevent out-of-
bounds reads from achieving valid data.
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8
45 x10*
4
3.5
3
S
225
E .
© 2 - — - Bound
[m] —w—Attack i
15 —e—Adtack i
: —a— Attack iii
1
0.5
0
500 1000 1500 2000 2500
Defense Cycles
(a)
45210
4 Vil
3.5
3
>
22.5 P
E -
© 2 - — - Bound
a —v—Attack i
15 —e—Attack ii
: —a— Attack iii
1
0.5
0
500 1000 1500 2000 2500
Defense Cycles
(b)
45210
4 o
3.5
3 L2
S 5.
22.5 .
£ -
o 2 - ~ = Bound
[m] P —o—Attack i
1.5 P —e—Attack i
: P —e— Attack iii
1.7
0.5
0
500 1000 1500 2000 2500
Defense Cycles
©
a5 x10°
4 Pt
3.5 -
3 v
S
g 25
© 2
[a]
1.5
i g
ack |
0.5 e Attacki
—v— Attack iii
0
500 1000 1500 2000 2500

Defense Cycles

(d)
Fig. 5. (a) - (c) compares the temporal damages of HeapTherapy under three
attacks with the mathematical upper bound when P,, = 0.1, P, = 0.13 and
P, = 0.15 respectively; (d) compares the temporal damages of the UCB-Z
algorithm under the same attacks with the mathematical upper bound.
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Since DieHard does not have guard pages, it will not trigger
segmentation faults. Then we slightly change the utility func-
tion so we can get measurements for DieHard. In particular,
we use the number of failed over-read requests; i.e., the
Heartbleed requests that cannot read any valid data, in each
defense cycle as the reward. And we use the overprovisioning
factor F' as the cost for DieHard since it introduces redundant
memory consumption. It is worth mentioning that although
the attacker cannot distinguish leaked data from random data,
they can use pattern match to find sensitive data/objects.
DieHard can fill the memory with some invalid data/objects,
which may mislead the attacker from getting some accurate
data/object. However, the attacker can still get suspicious
sensitive data/object and use them to try to attack.

The comparison results are shown in Fig. 4. The UCB-Z
works well for all three attacks and never violates the upper
bound in Theorem 1 while DieHard only works well for Artack
i. Under our testing environment, [V is 663 on average and the
default value of F'is 2. So the biggest distance between two
buffers is 2¥663*4=5,304 bytes. Once the attacker reads over
5,304 bytes, it will always read the valid data. For Attack ii
and Attack iii, there are high probabilities that the requests
read over 5,304 bytes. Therefore the performance of DieHard
can drop dramatically with slightly changed attacks. On the
other hand, Fig. 4 - (b) validates that the damages of UCB-Z
algorithm are always below the damage bound derived from
Theorem 1 under different attacks.

Comparison with HeapTherapy. HeapTherapy can handle
heap over-read attacks by placing inaccessible guard pages
randomly throughout the heap space. In particular, HeapTher-
apy randomly chooses a portion of buffers, which is denoted
by a tuning parameter P,,, to add guard pages. A larger P,
offers a higher chance to detect any single buffer over-reads,
but also incurs a higher overhead. And P, is determined
by the user before the program is run and kept fixed all the
time. Since HeapTherapy also deploys guard pages and could
trigger segmentation faults, we use the same utility function in
Section II-B4 and also compare the damages of HeapTherapy
with that of the UCB-Z algorithm. In this comparison, we
use the same three Heartbleed attacks; i.e., Attack i, Attack ii
and Artack iii. For HeapTherapy, we test different P, values
and compare their aggregate utility values with the upper
bound in Theorem 1. The results are shown in Fig. 5. Similar
to DieHard, HeapTherapy only works well for Affack ii. In
fact, the short over-read lengths in Aftack i and Attack iii
could reduce the chance of HeapTherapy to detect Heartbleed
requests.

TABLE 11
DEFENSE COMPARISON
Our Method | ASLR | Diehard CFG
Yes Yes No Yes Performance
Yes No No No Complete

Discussion. The state-of-art memory protection-based de-
fenses can be categorized into the following three classes: 1.
Memory randomization like ASLR; 2. Memory object protec-
tion like Diehard and HeapTherapy; 3. Control Flow Object
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Integrate Checking like CFI. We summarize the comparison
in Table II. Here performance means that the defense perfor-
mance overhead is larger than 5%; and complete means that
the defense can be circumvented. The comparisons between
our adaptive defense with other defenses do not mean that
they are less superior. From Figs 4 and 5, we can see that
both DieHard and HeapTherapy provide an effective defense
against their specific attack respectively. In fact, if the defender
knows which attack is launched by the attacker, it can choose
the defense technique that is effective; e.g., DieHard for Attack
i or HeapTherapy for Artack ii. The defender can expect
better performance by tailoring the parameters in their defense
technique; e.g., the overprovisioning factor F' in DieHard,
according to the launched attack. However, when facing the
attacker with a class of zero-day attacks, the defender does not
know which attack is launched. And the unknown attacks, even
slightly deviated attacks, can result in much worse security
damage than the defense techniques expect. The comparison
results in this paper are used to validate the correctness of the
upper bound in Theorem 1 and provide an insightful aspect to
assess the security brought by a defense system; i.e., the worst-
case security guarantee quantified by the temporal damage
upper bound.

Comparison with the Optimal Policy. We further discuss
how the upper bound can reflect the UCB-Z algorithm has
a good worst-case security guarantee. Recall that the best
response of the defender with respect to a given attack is
the defense action with the highest expected utility value
(defined in Section III-B). The optimal defense strategy is to
stick to the best response if the defender knows the utility
distributions. Here we want to compare the UCB-Z with the
optimal policy with respect to Attack iii if the defender knows
the utility distributions. Fig. 6 compares the temporal damage
of the optimal policy with the upper bound in Theorem 1
when the server is under Attack ii. The difference between the
temporal damage of the optimal policy and the upper bound
increases but the difference increases slow down as time goes
by. In addition, the difference is approximately 5% the size
of the damage of the optimal policy after 28,800 defense
cycles. As time goes by, the difference gets dominated by
the temporal damage. The result indicates that upper bound is
asymptotically tight in the sense that the asymptotic damage of
the UCB-Z algorithm gets closer to that of the optimal policy.

C. Performance Overhead

Runtime Overhead. Our allocator has three main jobs: select-
ing guard pages, allocating buffers and deallocating buffers.
The allocation and deallocation take constant time. There are
two most time-consuming parts: selecting the guard pages
based on the UCB-Z algorithm at the beginning of each
defense cycle and calculating the segmentation faults at the end
of each defense cycle. The runtime overhead heavily depends
on the length of a defense cycle. If the length is longer, the
runtime overhead will be lower; otherwise, the runtime over-
head will be higher. As such, we select three different defense
cycles, 5 seconds, 10 seconds and 60 seconds, respectively.
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Fig. 6. (a) compares the temporal damage of the optimal policy under Artack
iii with the mathematical upper bound, (b) shows the difference between the
temporal damage of the optimal policy and the mathematical upper bound
and (c) presents the proportion of the difference to the damage of the optimal

policy.

To evaluate the runtime overhead in a real-world environ-
ment, we mimic the benign users by using Apache benchmark
(ab) to simulate 50,000,000 HTTP GET requests. Meanwhile,
we also mimic the malicious users by launching the same
Heartbleed script for 2 hours.

We compile OpenSSL-1.0.1c and httpd-2.2.14 with our
allocator and GNU Libc [29] allocator, respectively. For the
compiled Apache web server, we mimic both the benign and
malicious users from two different physical machines. Then
we use Apache benchmark (ab) on the third physical machine

Authorized Iicensedpuse limited to: Penn State University.

10

to evaluate the runtime overhead of web server. The result is
shown in Table III. We can see when a defense cycle increases
from S5s to 60s, the runtime overhead decreases sharply from
27.4% to 5.0%. We further evaluate the overhead brought by
the segmentation fault handler. Each skip operation performed
by the segmentation fault handler takes near 160 us. One
attack request costs 1.5 s on average. In a 30-seconds-defense
cycle, the additional overhead brought by the segmentation
fault handler is about 3.2 ms (less than 0.02%).

TABLE III
RUNTIME OVERHEAD

GNU Libc Modified System
Allocator Defense Cycle Overhead
60s 3345.4 req/s (5.0%)
3521.0 req/s 10s 2889.8 req/s (17.9%)
5s 2554.7 reqf/s (27.4%)

Memory Overhead. For each buffer, the modified allocator
allocates 5 pages (including 1 guard page candidate). It
will inevitably introduce memory overhead. We compare the
memory used by Apache with GNU Libc Allocator and the one
with modified memory allocator. For each executed Apache,
we snapshot the used memory and read the VmRSS value
of /proc/[pid]/status 10 times. Since Apache is a
multi-process program, we write a script to summarize all the
VmRSS from all the Apache processes. In order to simulate
the real-world workload, we use command ab —-n 10000
-c 100 https://ip/index.html to simulate 10,000
requests with 100 requests at a time. Apache with GNU Libc
Allocator uses 258.540MB RAM on average. Apache with the
modified allocator uses 773.620MB RAM on average. Our
modified allocator introduces no overhead in kernel space, but
109.2% overhead in user space.

VI. CONCLUSION

This paper proposes a co-design adaptive defense scheme
against Heartbleed-like attacks. In particular, the UCB-Z algo-
rithm is proposed to guide the defender to allocate guard pages
on a heap. The security damages of the UCB-Z algorithm
are proven to be always below an upper bound without
knowing which attack is launched. In addition, a concrete
server modification is proposed in an Apache server to support
the random buffer allocation. The experiment results show that
the co-design adaptive defense scheme has an asymptotically
tight damage upper bound against real-world Heartbleed-like
attacks. The runtime overhead of the co-design scheme is as
low as 5%.
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APPENDIX A

This section gives the proof and implications of Theorem
1.To prove Theorem 1, we introduce the optimal defense
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strategy and prove that the gap between the UCB-Z algorithm
and the optimal strategy is upper bounded.

Since the random vector SA follows the specific uniform
distribution introduced in Section II-B2 all the time, for ease of
presentation, we will refer Ep, ,  u(d,a, SA) as to u(Py,d)
and Ep, . asto K in the rest of the paper.

Recall that the optimal defense action with respect to a
given attack is the one with the highest expected utility value.
The optimal defense strategy, denote ¢*, is to stick to the
optimal action if the defender knows the utility distributions.
However, the defender does not know the true expected utility
values for its defense actions a priori because it is facing
zero-day attacks. This prevents the defender from applying
the optimal strategy. Then for a particular attack Py, we
introduce Regret to quantify the gap between the defender’s
actual aggregate expected damage by following some strategy
o and the aggregate expected damage of the optimal strategy:

R¢(P97N) £ DLP(HDQaN) - D@*(HD95N)
N h(t)

= Nu(Po, BR(Py)) = > > E(u(t —T;) +e(t = T5)).
t=1j=1
)

If the defender chooses defense actions by following the
UCB-Z algorithm, the regret cannot be larger than the derived
upper bound no matter which set of distributions the utility
values follow. This is formalized in Lemma 1.

Lemma 1. Under the Property M-1, for any attack Py € ©,
the regret of the UCB-Z algorithm after N defense cycles is
upper bounded in the following way:

Ruycp-z(Pg,N)
< Tu(Pg, BR(Pg)) +

>

d:0<A(Pg,d)<2e

3(N —T)e

3 (A(Pg,d) + €)In(N — T +1)
d:A(Pg,d)>2¢ (A(Pg,d) — 2¢)?

> (AP, d) + o).

d:A(Pg,d)>2e

+8(ut —um)?

2

+(1+—
(1+5)
Before we prove Lemma 1, we first introduce Lemma 2 to

provide bounds on how a random variable deviates from its
expected value.

Lemma 2. (McDiarmid’s inequality [30]). Suppose
X1,Xo,---,X,, are independent random variables all
taking values in set X, and let f : X" — R be a function
of X1, X, , Xy, that satisfies for all z1,--- ,x,,x}; € X,
|f(xla s 71'71) - f(xla cee axi—lvi'ivxi+lv cee 7xn>| S Ci,
where 1 <1 < n and c; is any positive real number. Then for
any € > 0, PT{:I:f:FEfz{—:}Sexp( :

—2¢
it )

This lemma is proved as the Theorem 3.1 in [30].

A. Proof of Lemma 1

Proof. The proof extends that in the paper [14] to further
include the utility delays and errors. For any d € D, define
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is the empirical average
El i; La(r—7)=d}
error-free utility the defender receives by choosing defense
action d by the end of defense cycle ¢ — 1.
According to the definition of Regret, we can present the

Regret for UCB-Z after N defense cycles as follows:

Rycp-z
N N h(t)

= (Ps, BR(Pg)) = > > E(u(t —T;) + e(t — T;)).
t=1 t=1 j=1

There are at most 7 utility values that will be missed because
of the delays. And since the utility errors are uniformly
bounded by ¢, we have V¢, e(t) > —e. Then:

Rycp-z

N-T
< Nu(Po, BR(Pg)) = Y E (u(d(t),a(t), SA®)) + (1))

t=1
N-T

< Nyu(Po, BR(Py)) — > (]Eu(d(t),a(t),S_A(t)) —e)
N-T

= Nu(Po, BR(Pg)) — D (1(Py, d(t)) — €).

t=1
We define how many times defense action d was chosen during
the N —T defense cycles as a random variable Ty(N —7 +1).

N-T
Then we have > u(Py,d(t)) = > p(Py, d)Ta(N—T+1).
t=1 deD

So alternatively,_we can also represent Regret as follows:

Rycp-z <
N-T
Tu(Po BRES) + S (u(Bs, BR(PY)) — u(Bo,d(1)) + )

= Tu(Py, BR(Py))

+ > (A(Py,d) + ETy(N — T +1)
d:A(Pg,d)>2e

DY

d:0< A(Pg,d)<2e

(A(Bg, d) + ET4(N — T + 1). 2)

To prove this theorem, we need to identify an upper bound of
ETy(N — T +1). Note that in the inequality (2), we separate
the defense actions into two cases: Case 1, defense actions
d € D satisfy that A(Py,d) > 2¢; Case 2, defense actions
d € D satisfy that A(Py,d) < 2e.

Case 1, defense actions d € D satisfy A(Py,d) > 2e.

At defense cycle ¢, let by(t) = [(ut — u‘)Q(A(Pf’l%]
We consider two temporal phases with respect to action d at
defense cycle t. The first phase is when T;(t) < by(t). And
the second phase is when Ty (t) > ba(t).

If a non-optimal defense action d stays in the first phase for
the whole time; i.e., V1 <t < N—T +1, ETy(¢t) < by(t), the
regret brought by choosing this non-optimal defense action is
small. To upper bound the regret, we focus on when a non-
optimal defense action d achieves the second phase. We want
to prove that in the second phase, the defender selects action
d only a very few times in expectation. Therefore, the regret

ermitted, but republication/redistribution re
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brought by choosing a non-optimal defense action even more
than b4(t) times is small. Note for the second phase, we have

1(Pg, BR(Py)) — pu(Pg, d) > 2(ut —u™) 2%;((13) e

3)
This inequality holds because Ty(t) > bg(t) = [(ut —

) et and since A(Py,d) > 2e. Then 2(u* —
_ In - In

u /R + 20 < 20t — w4 2e =
2 [—3BL— + 2 = APy, d) — 2¢ + 2 = APy, d) =

By a)307
1(Po, BR(Pg)) — pu(Py, d).

And for any non-optimal defense actions d € D such that
A(PPy,d) > 2¢, ET4(N —T +1) is upper bounded as follows:

N-T

>

t=bg(N—T+1)

ETy(N =T +1) <bg(N—-T +1)+ El{a(t)=ay

N-T

>

t=bg(N—T+1)

=ba(N =T +1) + Pr{d(t) = d}.

Based on the UCB-Z algorithm, the defender may choose d
when there exists a pair of Ty(t), Ty (t) for any d’ € D such

— — In — — In
that fiy(t) + (u™ —u™ )/ 5EE > il (8)+ (uh —u”)y [3E.
Note that fig(t) — e < i, (t) < far(t) + € for all d’ € D.

Therefore we have for all d’ € D,

Prid(t) = d}

< > > P {ﬁd(t) —et (uh —uT)y 2;;(;)) >
Ta(t)=ba(t) Tj(t)=1
fia(t) + e+ (ut —u™)y 21/1((;)) } .

We consider the defense action induced by the best response
BR(Pp) and we have,

Pr{d(t) = d} <

> oy Pr{ud<t>—e+<u+—u> CLIOBS

Ta(t)=ba(t) Tr(pg)=1 Ta(t)

) B 21n(¥)
Apreey) () + e+ (uh —u )m} | ¥

To ensure jig(t) — e+ (ut —u™) 27}:(%) > Apree,)(t) +e+

_ 21n(t) . . ..
(ut —u™), /W’ one of the following two inequalities

must be true:

ipr(e,)(t) < 11(Pg, BR(Pg)) — (ut —u™) T;:;(t))“)

&)

a(t) 2 Po.d) 4 (0t )y, ©)
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If (5) and (6) are both false, then

} B 21n(t)
Epree,)t) + " —u )m

~ _ 21n(t)
> [ipR(py)(t) — €+ (uT —u”) Tonen @)
> w(Py, BR(Py)) — € = u(Py,d) + APy, d) —e  (7)
. [2In(?)
> (P, d) +2(ut —u™) 70 +2—e¢ (8)
_, . [2In(?)
> fg(t) 4+ (uh —u”)y o) ©)

The inequality (7) holds when (5) is false, and inequality (8)

holds because of inequality (3). When (6) is false, we can reach

inequality (9), which contradicts with 14(t) > Igr(p,)(t).
For any d € D which achieves second phase and satisfies

A(Py,d) > 2e, let X; be the error-free utility when d is chosen
Ta(t)

L ETy(t)) = Tl(t) ; (Xi).
Then we get f = [g4(t) and Ef = u(Py,d). Note that
X; € [um,u™] for all 1 < i < Ty(t). Then we have
|f((E1,...,£L’Td(t)) — f(xl,...,xi,l,ﬁi,xi+1,...,de(t))\ <

—le(t) (ut —u™).

And by Lemma 2, the probability that inequality (5) is true
is upper bounded as follows:

Pr{#} <
21n(t)

2
_ + ). [ 2@
2((u u”) TBR(%)(t)) TR(py)(t)

(wF —u)?

for the ¢ —th time and let f(x1,- -

=¢ 4

exp

(10)

Similarly, the probability that inequality (6) is true can also
be upper bounded:

Pr{3)} <t (11)

By inequality (4), for any d € D such that A(Py, d) > 2e,

ET,(N — T +1)
N-T

>

t=bg(N—T+1)

<by(N—T+1)+ Prid(t) = d}

<ba(N—-T+1)
N-T

Y > Y. (Pr{@}+Pr{G)).

t=bg(N—T+1) Ta(t)=ba(t) T r(r,) (1)=1
And by inequalities (10) and (11), we have,
ETy(N —-T+1)

e’} t t
> > >
t=ba(N—=T+1) Ta(t)=ba(t) Ter(e,)(t)=1

oo

>

t=bg(N—T+1)

<by(N—T+1)+

<by(N—-T+1)+ 2t—2
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SN TS
t=1

2
de(N—T-f—l)‘i‘?
_o8In(N-T+1) 72
+ -2 T
A TN A e PR

Case 2, defense actions d € D satisfy A(Pp,d) < 2e.
The number of times that this kind of actions are chosen
can be uniformly upper bounded as follows:

ETy N -T+1)<N-T. (12)

Inequality (12) holds because no actions can be chosen more
than the N — 7 times during N — T defense cycles.
Then the inequality (2) about the Regret becomes:

Rycp—z(Pg, N)
< Tu(Pg, BR(Py)) +

>

d:0<A(Py,d)<2e

3(N —T)e

Z (A(Py,d) +€)In(N —T +1)
d:A(Pg,d)>2¢ (A(Pg,d) — 2¢)?

N (1 N 7;2) M(Z (A(Py, d) + €.

Pe,d)>26

+8(ut —um)?

B. Proof of Theorem 1

Proof. With Lemma 1, we can easily show that the aggregate
expected damage of the UCB-Z algorithm is upper bounded
by the regret upper bound plus the aggregate expected damage
of the optimal policy against the worst attack in ©.

By the definition of regret in equation (1), we know
DUCB—Z(P«%N) = D~ (PQ,N) + RUCB—Z(P07N)- And
with bounded utility values and limited number of defense
actions, we can easily get > (A(Pg,d) +¢) <

d:A(Pg,d)>2¢
|D|(ut —u~ +e¢) for any attack. Combine this with Lemma 1,
we can achieve Theorem 1. O

C. Implications

The upper bound stated in Theorem 1 consists of five terms.
The first term is the least damage by applying the optimal
defense strategy against all attacks in ©. The second term
T tmax 1S the regret caused by the delays of utility reports, and
this term is a constant. The third item is the regret brought by
choosing the suboptimal defense actions whose expected util-
ity values are e-close to the optimal one’s. If € = 0, this term
is 0. The fourth term 8(ut — u~)2|D| =t FIINTED
increases logarithmically in N. The fifth term 1s the regret
brought by choosing the suboptimal defense actions after they
are chosen enough times, and this term is also a constant. It is
worthy to mention that the regret upper bound in Lemma 1 is
an extension of the regret upper bound in [14] by taking into
account utility delays and errors. When the utility delays and
errors are zero, the upper bound reduces to the one in [14].
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In [27], LAI AND ROBBINS proved that when the utility
distributions are Bernoulli, for any strategy ¢ with same
information set J denoted in Section II-BS5, its Regret
has a lower bound asymptotically: ngnoo R,(Py,N) >

A(Py,d) In(N)

where
KL(Pry,allPe,, BR(E,))’

d:p(Pg,d)<p(Pg,BR(Pg))
K L(Pp, q||Pp,, BR(P,)) £ > Pryaln Py

Ppy,a
Kullback-Leibler divergence 9[31] between the utility
distribution Pp, 4 of any suboptimal defense action and the
utility distribution Pp, p R(Py) Of the optimal defense action.
That is, if the utility distributions are Bernoulli, then the
regret is always larger than the lower bound no matter what
strategy ¢ the defender follows.

If the utility errors are very small; e.g., ¢ = 0, the regret part
in the upper bound (the second to fifth terms) in Theorem 1
is a logarithmic upper bound with respect to N and increases
as slow as the lower bound when the utility distributions are
Bernoulli. Therefore, the upper bound in Theorem 1 is the best
possible upper bound which holds for any attack in ©. From
Lemma 1, we know that Rycp—z(Pg, N) = o(N) when
e = 0. With equation (1), we know the damage of UCB-Z
is optimal in the sense of ]\}Enoo(l/N)DUCB,Z(IP’g,N) =
J\}gn (1/N)Dy-(Pg,N) = u(Ps, BR(Pp)). That is, the
asyriloptotic behavior of UCB-Z is as good as the optimal
defense policy.

Ppy,a
o BR(Pg)

is the
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