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Abstract: Curvatures in mode shapes and operating deflection shapes have been extensively studied
for vibration-based structural damage identification in recent decades. Curvatures of mode shapes
and operating deflection shapes have proved capable of localizing and manifesting local effects
of damage on mode shapes and operating deflection shapes in forms of local anomalies. The
damage can be inversely identified in the neighborhoods of the anomalies that exist in the curvatures.
Meanwhile, propagating flexural waves have also been extensively studied for structural damage
identification and proved to be effective, thanks to their high damage-sensitivity and long range of
propagation. In this work, a baseline-free structural damage identification method is developed for
beam-like structures using curvature waveforms of propagating flexural waves. A multi-resolution
local-regression temporal-spatial curvature damage index (TSCDI) is defined in a pointwise manner.
A two-dimensional auxiliary TSCDI and a one-dimensional auxiliary damage index are developed to
further assist the identification. Two major advantages of the proposed method are: (1) curvature
waveforms of propagating flexural waves have relatively high signal-to-noise ratios due to the use
of a multi-resolution central finite difference scheme, so that the local effects of the damage can be
manifested, and (2) the proposed method does not require quantitative knowledge of a pristine
structure associated with a structure to be examined, such as its material properties, waveforms of
propagating flexural waves and boundary conditions. Numerical and experimental investigations of
the proposed method are conducted on damaged beam-like structures, and the effectiveness of the
proposed method is verified by the results of the investigations.

Keywords: baseline-free structural damage identification; beam-like structure; curvature waveform;
non-destructive evaluation; damage index

1. Introduction

Vibration-based damage identification has been a major research topic of structural
dynamics applications in recent decades. When local damage occurs to a structure, its
local stiffness and/or mass will be quantitatively changed [1–4]. As a result, vibration
characteristics of the structure, such as natural frequencies, mode shapes and operating
deflection shapes, will be quantitatively changed. The changes in natural frequencies are
considered global, as they can be estimated with a few measurements of frequency response
functions of the structure, which can correspond to excitation and response points away
from the damage [5,6]. The changes in mode shape and operating deflection shapes are
considered local. The reason for this is that effects of the damage on the mode shapes and
operating deflection shapes can be reflected when the locality of the damage falls within a
measurement grid of the mode shapes and operating deflection shapes. Otherwise, the
damage cannot be identified and such identification results are considered false-positives.
Hence, wide and dense measurement grids are usually assigned onto the structure.
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However, damage identification based on changes in mode shapes and operating
deflection shapes is considered more robust than that based on changes in natural fre-
quencies, for two reasons: (1) the latter often requires an accurate model of a structure,
but constructing such a model can be challenging for complex structures [7] and (2) the
former can be applied without a model of a structure and quantitative knowledge of the
structure, such as its material properties and boundary conditions. It has been shown that
curvatures in mode shapes and operating deflection shapes are more damage-sensitive
than mode shapes and operating deflection shapes, as prominent local anomalies can be
clearly observed in neighborhoods of damage in the the curvatures [8–11]. The use of
curvatures in mode shapes for damage identification was first proposed in [8], and it was
extended to curvatures of operating deflection shapes in [9]. Efforts have been made to
manifest local anomalies in the curvatures and to isolate the anomalies to identify the
locality and extent of damage. The use of continuous wavelet transforms was proposed
and investigated in [12–16] to calculate the curvatures of mode shapes with high signal-
to-noise ratios. The adverse effects of measurement noise and errors can be minimized
by increasing the value of the scale parameter, and local anomalies corresponding to the
damage can be prominently isolated. Multi-resolution operators to calculate the curvatures
with high signal-to-noise ratios were proposed, where the adverse effects of measurement
noise and errors can be minimized by increasing the value of a resolution parameter [17,18],
and the use of polynomial fits was proposed to isolate the local anomalies when orders
of the polynomial fits were properly determined [17,18]. Besides vibration characteristics,
the occurrence of changes in local mass and/or stiffness, which is caused by that of dam-
age, can lead to changes in propagating elastic waves [19–22]. Similar to mode shapes
and operating deflection shapes, propagating elastic waves can undergo local intrinsic
changes that occur in the neighborhood of the damage. Besides the propagation, the
changes due to the damage can be captured and visualized in wavefields that are formed
by wave propagation data on a predefined measurement gird. A wavefield is defined
in the time and space domains, and Lamb wave features including wavenumbers and
frequencies can be obtained for damage identification purposes using multidimensional
Fourier transforms [22–26]. Zero-lag cross-correlation algorithms have been developed to
process measured wavefields to identify damage in composite structures [27–29]. To date,
there are two categories of damage identification methods: one is based on curvatures in
mode shapes and operating deflection shapes and the other is based on propagating elastic
waves. They have been independently studied, but their similarity and applications have
not been identified and investigated.

In this work, a baseline-free structural damage identification method is developed
for beam-like structures, and the method identifies locality of damage based on a new
concept of curvature waveforms of propagating flexural waves. To alleviate adverse effects
of measurement noise/errors in measured waveforms, a multi-resolution local-regression
temporal-spatial curvature damage index (TSCDI) is defined in a pointwise manner. In the
TSCDI, a multi-resolution finite difference scheme is used to calculate curvature waveforms
and the use of local-regression polynomials is proposed to estimate the waveforms and
associated curvature waveforms of a pseudo-pristine structure. High TSCDI values can
be observed in the neighborhood of damage, and they can be inversely used to identify
locality of the damage. A two-dimensional auxiliary TSCDI and a one-dimensional auxiliary
damage index are proposed to further assist the identification. Numerical investigations are
conducted to study the effectiveness and robustness of the developed method for different
resolution parameters in the multi-resolution finite difference scheme, width parameters
in the local-regression polynomials, and levels of measurement noise in waveforms. An
experimental investigation was conducted on a damaged cantilever beam to validate
the effectiveness of the developed method. The developed method is more damage-
sensitive than the existing curvature-based methods, as it uses propagating flexural waves.
Meanwhile, it is more noise-robust than the existing flexural wave-based methods, as the
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effects of damage are accumulatively quantified by the proposed TSCDIs bases that are
calculated using each waveform.

The rest of the paper is arranged as follows. In Section 2, the developed damage
identification method is described. In Section 3, the numerical investigations are presented.
In Section 4, the experimental investigation is presented. Conclusions of this work are
presented in Section 5.

2. Methodology
2.1. TSCDI Based on Curvature Waveforms of Propagating Flexural Waves

A propagating flexural wave of a beam-like structure can be described by w(x, t),
which is a function of two variables, including the spatial position x and time t. A waveform
of the propagating flexural wave at t is defined as the instantaneous shape of the wave
at t, and it is a function of x. The curvature of a waveform, referred to as the curvature
waveform, of a beam-like structure is related to its instantaneous bending moment and
flexural stiffness at t. By assuming that the dimensions, material properties and boundary
conditions of the structure are time-invariant and the slope of w along the length of the
structure is sufficiently small, the relation among the curvature waveform, bending moment
and flexural stiffness of the structure can be expressed by [30]

w′′(x, t) =
∂2w(x, t)

∂x2 =
M(x, t)
EI(x)

(1)

where a prime denotes the first-order partial differentiation with respect to x, M(x, t)
denotes the bending moment at x at t and EI(x) denotes the flexural stiffness at x. When
local damage occurs to the structure at x̂, EI can be reduced at x̂ or in the neighborhood of
x̂. As a result, the magnitude of w′′ at x̂ or in the neighborhood of x̂ will be increased if
M remains unchanged. The reduction in EI and increase of the magnitude of w′′ are local
in nature, and EI and the magnitude of w′′ in intact areas away from the damage remain
unchanged for the same M.

A damage index based on comparison between curvatures of mode shapes of damaged
and pristine beam-like structures was proposed in [17] to identify the locality and extent
of damage. Based on Equation (2), a TSCDI is proposed based on a comparison between
curvature waveforms of damaged and pristine beam-like structures, and it is expressed by

δ(x, t) =
∣∣∣w′′dmg(x, t)− w′′prst(x, t)

∣∣∣ (2)

where |·| denotes an absolute value, and wdmg and wprst denote a waveform of the damaged
structure and that of the pristine structure, respectively. Relatively high δ values can be
expected in neighborhoods of the damage, and the locality and extent of the neighborhoods
be inversely used to identify those of the damage.

2.2. Local-Regression Waveforms of Pseudo-Pristine Structure, Local-Regression TSCDI and
Auxiliary TSCDI

As proposed in Section 2.1, damage can be identified based on δ in Equation (2) if wdmg
and wprst are available. However, wprst is not always available in practice for a structure to
be examined. By assuming that a pristine beam-like structure is geometrically smooth and
made of materials with no stiffness and mass discontinuities, waveforms of its propagating
flexural waves and associated curvature waveforms are spatially smooth at all sampled
instants, and any anomalies existing in the curvature waveforms can be considered caused
by damage. In [17], it was proposed that a mode shape and its curvature of a pristine beam-
like structure be approximated by the use of a polynomial that fits a corresponding mode
shape of a damaged beam-like structure. However, since a waveform of a propagating
flexural wave of a beam-like structure can have a high order, the formulation of a solution
for coefficients of a polynomial that fits the waveform spanning the length of the structure
can be numerically ill-conditioned. To avoid the potential numerical ill-conditioning
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problem, it is proposed that a waveform of a pristine beam-like structure be approximated
by the use of polynomials in a local-regression manner. A waveform of a pristine beam-like
structure and its associated curvature waveform at x at t are estimated using a local-
regression polynomial that fits a waveform of damaged beam-like structure in an interval.
The interval is centered at x with a width parameter denoted by ξ that ranges between 0%
and 100%, and it is described by

[
x− ξ∆xm

2 , x + ξ∆xm
2 ∆x

]
, with ∆x and m being the distance

between two neighboring measurement points and the number of measurement points on
a measurement grid, respectively. The local-regression polynomial is expressed by

wpoly(x, t) =
n(x,t)

∑
k=0

bk(x, t)xk (3)

where n(x, t) and bk(x, t) denote the order and coefficients of the polynomial, respectively,
for the interval centered at x at t. The coefficients bk(x, t) can be estimated by solving a
linear equation

A(x)b(x, t) = w(x, t) (4)

where

A(x) =


1 x1 x2

1 . . . xn
1

1 x2 x2
2 . . . xn

2
...

...
...

. . .
...

1 xm x2
m . . . xn

m

 (5)

is an m × (n + 1) Vandermonde matrix, in which xj =
2xj−2x
ξ∆xm is the j-th normalized x-

coordinate corresponding to the j-th discrete x-coordinate in the interval,

b(x, t) =
{

b0(x, t), b1(x, t), . . . , bn(x, t)
}T (6)

is an (n + 1)-dimensional vector, in which the superscript T denotes the transpose of a
matrix, and

w(x, t) =
{

w
(

x− ξ∆xm
2 , t

)
, w

(
x− ξ∆xm

2 + ∆x, t
)

, . . . , w
(

x + ξ∆xm
2 , t

) }T
(7)

is an m-dimensional vector. The normalization for xj is performed using the “center and
scale” technique [31] such that xj in Equation (5) has the following properties: xj ∈ [−1, 1],
xj = −1 if x = x− ξ∆xm

2 , and xj = 1 if x = x + ξ∆xm
2 . Note that m is usually sufficiently

larger than n, i.e., m� n, and the linear equation in Equation (4) becomes over-determined.
A solution to the linear equation in Equation (4) can be calculated by

b(x, t) = A†(x)w(x, t) (8)

where the superscript † denotes the Moore–Penrose inverse of a matrix. With a calculated
b(x, t) from Equation (8), the value of wpoly at xj in the interval can be estimated by

wpoly
(
xj, t

)
= Ajb(x, t) (9)

where
Aj =

{
1, xj, x2

j , . . . , xn
j

}
(10)

is the j-th row of A in Equation (5).
The level of approximation of a waveform from the polynomial in Equation (3) to wdmg

for the interval
[

x− ξ∆xm
2 , xr +

ξ∆xm
2

]
can be quantified by a modal assurance criterion

value, which is expressed by
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MAC
(

wpoly(x, t), wdmg(x, t)
)
=

∥∥∥wH
poly(x, t)wdmg(x, t)

∥∥∥2

∥∥∥wpoly(x, t)
∥∥∥2∥∥∥wdmg(x, t)

∥∥∥2 × 100% (11)

where

wpoly(x, t) =
{

wpoly

(
x− ξ∆xm

2
, t
)

, wpoly

(
x− ξ∆xm

2
+ ∆x, t

)
, . . . , wpoly

(
x +

ξ∆xm
2

, t
)}T

(12)

and

wdmg(x, t) =
{

wdmg

(
x− ξ∆xm

2
, t
)

, wdmg

(
x− ξ∆xm

2
+ ∆x, t

)
, . . . , wdmg

(
x +

ξ∆xm
2

, t
)}T

(13)

are m-dimensional vectors, the superscript H denotes the conjugate transpose of a matrix
and ‖·‖ denotes the L2-norm of a complex scalar or vector. It is shown in [17] that the level
of approximation between a mode shape and that from a polynomial that fits the mode
shape is related to the order of the polynomial; the higher the order, the higher the level of
approximation. Similarly, the approximation of wpoly to wdmg is related to n in Equation (3).
An appropriate value of n is determined to be two plus the smallest order with which the
value of MAC is larger than 90%, and an extra two is included in the determination to
preserve the degree of a curvature waveform, since its calculation incurs a second-order
partial differentiation with respect to x.

By combing the TSCDI δ in Equation (2) and local-regression waveform wpoly in
Equation (3), a local-regression TSCDI is proposed for damage identification solely based
on wdmg, and it is expressed by

δl−r(x, t) =
∣∣∣w′′dmg(x, t)− w′′poly(x, t)

∣∣∣ (14)

The local-regression TSCDI δl−r can serve as an indicator of the locality and extent
of structural damage and δl−r is advantageous over δ in Equation (2) as δl−r does not
require any knowledge of wprst. Based on δl−r, an auxiliary TSCDI is proposed to offer an
indication of the locality and extent of the damage, and it is expressed by

δ̃(x) =

´ t1
t0

δl−r(x, t)dt

max
x
L∈[0,1]

(´ t1
t0

δl−r(x, t)dt
) (15)

where max
x
L∈[0,1]

(´ t1
t0

δl−r(x, t)dt
)

denotes the maximum value of
´ t1

t0
δl−r(x, t)dt for x ∈ [0, L],

in which t0 and t1 denote the beginning and ending instants of measured w, respectively,
and L is the length of measured w. Note that δ̃ ranges between 0 and 1. The locality and
extent of the damage can be identified in neighborhoods with high δ̃ values.

2.3. Multi-Resolution Local-Regressioon TSCDIs, Multi-Resolution Auxiliary TSCDIs and
Auxiliary CDIs

There are various numerical schemes to calculate w′′ with different orders of accu-
racy [32]. One of the most commonly used schemes is the central finite difference scheme,
which has the first-order accuracy, and it can be expressed by

w′′(x, t) =
w(x + ∆x, t)− 2w(x, t) + w(x− ∆x, t)

∆x2 (16)

The value of ∆x is determined by the spatial density of the discrete x and it is uni-
form for all discrete x if they are equally spaced. When a waveform is contaminated by
measurement noise and errors, it can be expressed by
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w̃(x, t) = w(x, t) + ε(x, t) (17)

where ε(x, t) denotes the measurement noise and error. Applying the finite difference
scheme in Equation (16) for w̃ by replacing w with w̃ yields

w̃′′(x, t) = w̃(x+∆x,t)−2w̃(x,t)+w̃(x−∆x,t)
∆x2

= w(x+∆x,t)+ε(x+∆x,t)−2w(x,t)−2ε(x,t)+w(x−∆x,t)+ε(x−∆x,t)
∆x2

= w′′(x, t) + ε′′(x, t)

(18)

where

ε′′(x, t) =
ε(x + ∆x, t)− 2ε(x, t) + ε(x− ∆x, t)

∆x2 (19)

numerically calculates the second-order differentiation of ε with respect to x using the
finite difference scheme in Equation (16). By assuming that ε is zero-mean with a standard
deviation σ and the value of σ is independent of x, the numerator of Equation (19), i.e.,
ε(x + ∆x, t)− 2ε(x, t) + ε(x− ∆x, t) is zero-mean, with a standard deviation that can be
expressed by

σ∂2ε = 2σ (20)

and the value of σ∂2ε is also independent of x. Hence ε′′ in Equation (19) is zero-mean, with
a standard deviation that can be expressed by

σε′′ =
2σ

∆x2 (21)

The smaller the value of ∆x, the larger the value of σε′′ . When applying the finite
difference scheme in Equation (16) with noise-free w and a sufficiently small ∆x, resulted
w′′ can converge to exact values of w′′, but when w is contaminated by ε, its curvature, i.e.,
w̃′′, can be dominated by ε′′ with adversely amplified amplitudes due to the sufficiently
small ∆x, according to Equation (16).

To alleviate the adverse amplitude amplification of ε′′ when calculating w′′, a multi-
resolution finite difference scheme is proposed in Ref. [17], and the scheme is expressed by

w′′r (x, t) =
w(x + r∆x, t)− 2w(x, t) + w(x− r∆x, t)

(r∆x)2 (22)

where r denotes an integer resolution parameter. Applying the scheme in Equation (22) to
w̃ yields

w̃′′r (x, t) = w̃(x+r∆x,t)−2w̃(x,t)+w̃(x−r∆x,t)
(r∆x)2

= w(x+r∆x,t)+ε(x+r∆x,t)−2w(x,t)−2ε(x,t)+w(x−r∆x,t)+ε(x−r∆x,t)
(r∆x)2

= w′′r (x, t) + ε′′r (x, t)

(23)

where

w′′r (x, t) =
w(x + r∆x, t)− 2w(x, t) + w(x− r∆x, t)

(r∆x)2 (24)

and

ε′′r (x, t) =
ε(x + r∆x, t)− 2ε(x, t) + ε(x− r∆x, t)

(r∆x)2 (25)

The standard deviation of ε′′r in Equation (25) can be expressed by

σε′′r =
2σ

(r∆x)2 (26)
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Similar to σε′′ in Equation (21), σε′′r is independent of x; more importnatly, σε′′r is
inversely related to r2. Hence, the larger the value of r, the smaller the amplitude magnifi-
cation of ε′′r in w̃′′r , and amplitude amplification of ε′′ can be reduced by increasing r in the
multi-resolution finite difference scheme in Equation (23).

Based on the multi-resolution finite difference scheme in Equation (23), a multi-
resolution local-regression TSCDI is proposed, and it is expressed by

δl−r,r(x, t) =
∣∣∣w′′dmg,r(x, t)− w′′poly,r(x, t)

∣∣∣ (27)

where w′′dmg,r and w′′poly,r denote a curvature waveform of a damaged structure and that
from a polynomial, respectively, at x at t, and they are calculated using the multi-resolution
finite difference scheme in Equation (22). An auxiliary CDI is proposed to further assist
with the damage identification based on δl−r,r with multiple r, and it is expressed by

χ(x) =
R

∑
r=1

∣∣δ̃r(x)
∣∣2 (28)

where R denotes the maximum resolution value in the multi-resolution finite difference
scheme in δl−r,r and

δ̃r =

´ t1
t0

δl−r,r(x, t)dt

max
x
L∈[0,1]

(´ t1
t0

δl−r,r(x, t)dt
) (29)

denotes a multi-resolution auxiliary TSCDI with r, and δ̃r ∈ [0, 1]. Damage can be identified
in neighborhoods with consistently high δ̃r values with multiple r and those with high
χ values.

A step-by-step description of the proposed damage identification method is de-
scribed below:

Step 1. Waveforms of a propagating flexural wave wdmg is measured at equally spaced
discrete measurement points assigned along the length of a damaged beam-like
structure;

Step 2. The multi-resolution local-regression TSCDI δl−r,r is calculated for the waveform at
each discrete t with multiple r measured in Step 1;

2.1 The value of ξ is determined and wpoly is calculated for each discrete x based
on Equations (3) through (9);

2.2 Curvature waveforms w′′dmg,r and w′′poly,r are calculated using the multi-
resolution finite difference scheme in Equation (23) with multiple r;

2.3 TSCDIs δl−r,r in Equation (27) are calculated using w′′dmg,r and w′′poly,r ob-
tained in Step 2.2;

Step 3. The multi-resolution auxiliary TSCDI δ̃r in Equation (29) and auxiliary CDI χ in
Equation (28) are calculated using δl−r,r obtained in Step 2;

Step 4. Identify damage in neighborhoods with consistently high δ̃r values with different r
and those with high χ values obtained in Step 3.

3. Numerical Investigation
3.1. Finite Element Models of Damaged and Pristine Beams

A finite element model of a damaged cantilever beam and that of a pristine cantilever
beam are constructed using linear eight-node brick (C3D8R) elements to numerically
investigate the proposed damage identification method. The dimensions and boundary
conditions of the damaged beam are described in Figure 1a and the damage is in the form
of a one-sided thickness reduction area. The damaged beam is made of aluminum with a
mass density of 2700 kg/m3, an elastic modulus of 69 GPa and Poisson’s ratio of 0.33. The
pristine beam has the same dimensions, boundary conditions and material properties as
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those of the damaged beam. The damaged and pristine beams are both under zero initial
conditions and subject to the same excitation force applied to their free ends. The force can
be analytically expressed by an Nc-count wave packet

g(t) = A
(

H(t)− H
(

t− Nc

fc

))(
1− cos

(
2π fct

Nc

))
sin(2π fct) (30)

where A is a parameter that determines the amplitude of g, H is Heaviside function, which
can be expressed by

H(t) =
{

1 , t ≥ 0
0 , t < 0

(31)

and fc denotes the central frequency of the force. In this investigation, A = 0.5 N, Nc = 5
and fc = 90 kHz, which makes the excitation force a 5-count wave packet with a central
frequency of 90 kHz, as shown in Figure 1b.

(a)

0 2 4 6

10
-5

-1

-0.5

0

0.5

1

(b)

Figure 1. (a) Dimensions of a damaged cantilever beam with damage in the form of a one-sided
thickness reduction area and (b) an excitation force in the form of a 5-count wave packet.

3.2. Waveforms of Damaged, Pristine and Pseudo-Pristine Beams and Curvature Waveforms

Waveforms of propagating flexural waves of the damaged and pristine beams, which
are caused by the excitation, are obtained at 1001 measurement points that are evenly
distributed along the lengths of the beams with a sampling frequency of 250 kHz for the
first 2.4× 10−4 s. To simulate measurement noise, white Gaussian noise is added to the
response of each measurement point of the two beams so that it has a signal-to-noise ratio
of 20 dB. The signal-to-noise ratio is defined as the ratio between powers of the response
of a measurement point and the added noise. Noise-contaminated waveforms of the
propagating flexural waves of the damaged and pristine beams are shown in Figure 2a,b,
respectively, and their difference is shown in Figure 2c. Although the waveforms are
contaminated by the simulated measurement noise, they compare well with each other
until the wave of the damaged beam reaches the damage, where a reflection of the wave
occurs, and the amplitude of their difference increases after the wave passes the damage of
the damaged beam. Waveforms of the propagating flexural wave of the pseudo-pristine
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beam, which correspond to the noise-contaminated waveforms of the damaged beam, are
shown in Figure 2d, and their difference with the contaminated waveforms of the damaged
beam are shown in Figure 2e. It can be seen that the waveforms of the damaged and
pseudo-pristine beams compare well through the propagation, since no wave reflection
occurs and the amplitude of the difference between the two waves does not increase after
the wave passes the damage in the damaged beam.

(a) (b)

(c) (d)

(e)

Figure 2. Noise-contaminated waveforms of the propagating flexural waves of the (a) damaged
and (b) pristine beams from the finite element models, (c) the difference between the waveforms
in (a,b), (d) waveforms of the propagating flexural wave of the pseudo-pristine beam and (e) the
difference between the waveforms in (a,d). The locality and extent of the damage are indicated by
two dashed lines.

Curvature waveforms associated with the noise-contaminated waveforms of the
damaged beam, which are calculated using the multi-resolution finite difference scheme
with r = 1, 2, 4 and 8, are shown in Figure 3a–d, respectively. It can be seen that noise
levels of the curvature waveforms associated with the noise-contaminated waveforms are
lowered by increasing r value. Curvature waveforms of the noise-free waveforms of the
damaged beam, which are calculated with the multi-resolution finite difference scheme
with r = 8, are shown in Figure 3e. By comparing Figure 3d,e, the curvature waveforms
associated with the noise-contaminated waveforms well approximate those associated
with the noise-free waveforms. It is verified that the adverse effects of measurement noise
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on calculation of curvature waveforms can be alleviated by the multi-resolution scheme,
while the accuracy of calculated curvature waveforms can be retained.

(a) (b)

(c) (d)

(e)

Figure 3. Curvature waveforms of the noise-contaminated wave of the damaged beam, which are
calculated using the multi-resolution finite difference scheme with (a) r = 1, (b) r = 2, (c) r = 4 and
(d) r = 8, and (e) curvature waveforms of the noise-free wave of the damaged, which are calculated
using the multi-resolution finite difference scheme with r = 8. Locality and extent of the damage are
indicated by two dashed lines.

3.3. Damage Identification Results

To study the effects of ξ on the damage identification method, δl−r,r associated with the
noise-contaminated waveforms of the damaged beam is calculated with r = 8 and different
ξ values. Resulting δl−r,8 with ξ = 5%, ξ = 10% and ξ = 15% are shown in Figure 4a–c,
respectively. Relatively high δl−r,8 values can be observed in the neighborhood of the
damage and they correspond to changes in curvature waveforms caused by the damage.
Multi-solution auxiliary TSCDI δ̃r with r = 8, i.e., δ̃8, associated with δl−r,8 with ξ = 5%,
ξ = 10% and ξ = 15% are shown in Figure 4d–f, respectively, and the locality and extent of
the damage can be identified based on the three δ̃8. Further, it can be seen that increasing ξ
from 5% to 10% can improve identification results by lowering the noise floor of δ̃r, but the
improvement becomes insignificant when ξ is increased from 10% to 15%, which indicates
that δ̃r can converge when ξ is large enough. In practice, one can determine an appropriate
ξ value by increasing ξ until convergent δ̃r is obtained. Multi-resolution auxiliary TSCDI
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δ̃r associated with δl−r,r with r = 1, 2, . . . , 8 and ξ = 10% is shown in Figure 5a. When
r < 6, relatively high noise floors can be observed in δl−r,r, and when r ≥ 6, the noise floor
of δl−r,r becomes lower. Auxiliary CDI χ associated with δl−r,r in Figure 5a is shown in
Figure 5b, where the locality and extent of the damage can be clearly identified.

(a) (b)

(c) (d)

(e) (f)

Figure 4. Multi-resolution local-regression TSCDI δl−r,r associated with the noise-contaminated wave
of the damaged beam with r = 8 and (a) ξ = 5%, (b) ξ = 10% and (c) ξ = 15%, and multi-resolution
auxiliary TSCDI δ̃r with associated with the noise-contaminated wave of the damaged beam with
r = 8 and (d) ξ = 5%, (e) ξ = 10% and (f) ξ = 15%. Locality and extent of the damage are indicated
by two dashed lines.

To study the effects of measurement noise on the damage identification method,
different levels of measurement noise are added to the noise-free responses of the beam
so that they have signal-to-noise ratios of 30 db, 40 db and 50 db, and noise-contaminated
waveforms with the different signal-to-noise ratios are obtained. Multi-resolution auxiliary
TSCDI δ̃r and associated auxiliary CDI χ, which correspond to the noise-contaminated
waveforms, are calculated with r = 1, 2, . . . , 8 and ξ = 10% and shown in Figure 6. By
comparing the resulting δ̃r corresponding to the waveforms with the different signal-to-
noise ratios, it can be seen that a higher r value corresponds to a lower noise floor of δ̃r,
which further verifies the capability of the multi-resolution finite difference scheme for
lowering the measurement noise amplification of curvature waveforms. By comparing the
resulting χ corresponding to the waveforms with the different signal-to-noise ratios, it can
be seen that the noise floor of χ is lower for waveforms with a higher signal-to-noise ratio.
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(a) (b)

Figure 5. (a) Multi-resolution auxiliary TSCDI δ̃r associated with δl−r,r with r = 1, 2, . . . , 8 and
ξ = 10% and (b) auxiliary CDI χ associated with δ̃r in (a). Locality and extent of the damage are
indicated by two dashed lines.

(a) (b)

(c) (d)

(e) (f)

Figure 6. (a) Multi-resolution auxiliary TSCDI δ̃r associated with the noise-contaminated waves with
signal-to-noise ratios of (a) 30 db, (b) 40 db and (c) 50 db, which are calculated with r = 1, 2, . . . , 8
and ξ = 10%, and auxiliary CDI χ associated with (d) δ̃r in (a), (e) δ̃r in (a), and (f) δ̃r in (c). Locality
and extent of the damage are indicated by two dashed lines.

4. Experimental Investigation
4.1. Experimental Setup

An aluminum damaged cantilever beam was prepared and tested to experimentally
investigate the proposed damage identification method. The beam had damage in the form
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of a one-sided thickness reduction area. The dimensions of the beam are shown in Figure 7a
and a schematic of the experimental setup is shown in Figure 7b: a lead-zirconate-titanate
(PZT) actuator was glued to the damaged surface of the beam to generate excitation in the
form of a 5-count wave packet with a central frequency of 90 kHz. The excitation signal to
the actuator was generated by a function generator, Tektronix AFG3022C; the peak-to-peak
amplitude of the excitation signal was amplified to 50 V by a voltage amplifier, Krohn-Hite
7500, and an oscilloscope; Tektronix TBS2104 was used to monitor the amplified signal.
A scanning laser Doppler vibrometer, Polytec PSV-500-HV, was used to measure flexural
responses of 3585 measurement points that were evenly distributed along a scan line
assigned to the beam. For each measurement point, flexural response was measured and
averaged ten times to improve its signal-to-noise ratio, and the measured responses were
aligned to form a measured propagating flexural wave. A numerical denoising technique,
which uses weighted quadratic least squares and a second-order polynomial model, was
applied to improve the signal-to-noise ratios of the waveforms of the measured wave at
each sampled instant. In the denoising technique, the weighted quadratic least square is
calculated at the measurement point within an interval that consists of a certain number of
its neighboring measurement points, which was 0.5% in this investigation. The denoised
propagating flexural wave is denoted by wmeas and shown in Figure 7c.

(a) (b)

(c)

Figure 7. (a) Dimensions of a tested damaged cantilever beam with damage in the form of a one-
sided thickness reduction area, (b) a schematic of the experimental setup for exciting and measuring
a propagating flexural wave of the damaged beam, and (c) the denoised measured propagating
flexural wave of the damaged beam, where the locality and extent of the damage are indicated by
two dashed lines.

4.2. Damage Identification Results

Figure 8a–d shows curvature waveforms of wmeas, i.e., w′′meas, which are calculated
using the multi-resolution finite difference scheme with r = 1, 8, 16 and 32, respectively.
Similar to the observation in the numerical investigation, anomalies that are related to
the damage cannot be directly seen in w′′meas, and the signal-to-noise ratio of w′′meas can be
increased by increasing r. Multi-resolution local-regression TSCDI δl−r,r associated with
w′′meas is shown in Figure 9, where r = 1, 8, 16 and 32 and ξ = 5%, and those associated with
ξ = 10% and ξ = 15% are shown in Figures 10 and 11, respectively. In Figures 9a, 10a and
11a, the damage cannot be identified since w′′meas is dominated by amplified measurement
noise with r = 1 in the multi-resolution finite difference scheme. In Figures 9b–d and 10b–d,
where ξ = 5% and ξ = 10%, the damage still cannot be identified, even with increased r
values in the multi-resolution finite difference scheme. When ξ is increased to 15%, the
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damage can be clearly and consistently identified in neighborhoods of high δl−r,r values
with r = 8, 16 and 32, as shown in Figure 9b,c, respectively.

(a) (b)

(c) (d)

Figure 8. Multi-resolution curvature waveforms associated with the measured wave of the damaged
beam with (a) r = 1, (b) r = 8, (c) r = 16 and (d) r = 32. Locality and extent of the damage are
indicated by two dashed lines.

(a) (b)

(c) (d)

Figure 9. Multi-resolution local-regression TSCDI δl−r,r associated with the measured wave of the
damaged beam with (a) r = 1, (b) r = 8, (c) r = 16 and (d) r = 32 and ξ = 5%. Locality and extent of
the damage are indicated by two dashed lines.
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(a) (b)

(c) (d)

Figure 10. Multi-resolution local-regression TSCDI δl−r,r associated with the measured wave of the
damaged beam with (a) r = 1, (b) r = 8, (c) r = 16 and (d) r = 32 and ξ = 10%. Locality and extent
of the damage are indicated by two dashed lines.

(a) (b)

(c) (d)

Figure 11. Multi-resolution local-regression TSCDI δl−r,r associated with the measured wave of the
damaged beam with (a) r = 1, (b) r = 8, (c) r = 16 and (d) r = 32 and ξ = 15%. Locality and extent
of the damage are indicated by two dashed lines.

Multi-resolution auxiliary TSCDI δ̃r associated with δl−r,r is calculated with ξ = 5%,
ξ = 10% and ξ = 15% are shown in Figures 12a, 13a and 14a, respectively, where
r = 1, 2, . . . 32. When r ≤ 5, relatively high noise floors can be observed in the three
δ̃r and the effects of the damage on the curvature waveforms are masked by the amplified
measurement noise in w′′meas. When r ≥ 6, the noise floors of δ̃r become lower, and the
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effects of the damage on the curvature waveforms can be consistently and clearly identified
in neighborhoods of high δ̃r values. Auxiliary CDI χ associated with δl−r,r in Figures 12a,
13a and 14a are shown in Figures 12b, 13b and 14b, respectively. It can be seen that the
damage can be identified in the neighborhood of high χ values and the noise floors of χ
are slightly lowered by increasing ξ. More importantly, the edges of the damage can be
clearly identified in the neighborhood of high χ values with ξ = 5% and ξ = 10%, though
the damage cannot be clearly identified in associated δl−r,r.

(a) (b)

Figure 12. (a) Multi-resolution auxiliary TSCDI δ̃r associated with δl−r,r with r = 1, 2, . . . , 32 and
ξ = 5% and (b) the auxiliary CDI χ associated with δ̃r in (a). Locality and extent of the damage are
indicated by two dashed lines.

(a) (b)

Figure 13. (a) Multi-resolution auxiliary TSCDI δ̃r associated with δl−r,r with r = 1, 2, . . . , 32 and
ξ = 10% and (b) the auxiliary CDI χ associated with δ̃r in (a). Locality and extent of the damage are
indicated by two dashed lines.

(a) (b)

Figure 14. (a) Multi-resolution auxiliary TSCDI δ̃r associated with δl−r,r with r = 1, 2, . . . , 32 and
ξ = 15% and (b) the auxiliary CDI χ associated with δ̃r in (a). Locality and extent of the damage are
indicated by two dashed lines.
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5. Conclusions

A baseline-free structural damage identification method is developed for beam-like
structures using curvature waveforms of propagating flexural waves. The identification
does not require use of quantitative information of the structures to be examined, such as
material properties and boundary conditions, if the structures are geometrically smooth and
made of materials that have no mass and stiffness discontinuities. Curvature waveforms are
calculated using a multi-resolution finite difference scheme, and it is shown that the scheme
can accurately estimate curvature waveforms and alleviate the adverse effects of amplified
measurement noise. Waveforms of propagating flexural wave and associated curvature
waveforms of a pseudo-pristine beam-like structure can be estimated using polynomials
that fit waveforms of the beam-like structure to be examined. A multi-resolution local-
regression temporal-spatial curvature damage index is defined by comparing curvature
waveforms of a damaged structure and those of a pseudo-pristine structure. High temporal-
spatial curvature damage index values are expected in the neighborhood of damage and
they can be inversely used to identify locality and extent of the damage. To further assist
with the identification, a two-dimensional auxiliary temporal-spatial curvature damage
index and a one-dimensional auxiliary curvature damage index are developed. A numerical
investigation is conducted to study the proposed identification method. It is found that
damage identification results depend on the size of an interval for fitting polynomials
and there is an appropriately sized interval. Besides, the identification method is robust
against measurement noise and errors and capable of indicating the locality and extent of
damage in neighborhoods of high damage index values. The effectiveness of the proposed
identification is validated in an experimental investigation. Future work could include
a comparative study between the developed damage identification method and other
existing methods with respect to their noise-robustness and damage-sensitivity.
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