
1

Error-correcting Codes
for Noisy Duplication Channels

Yuanyuan Tang and Farzad Farnoud (Hassanzadeh)
Electrical & Computer Engineering, University of Virginia, {yt5tz,farzad}@virginia.edu

Abstract

Because of its high data density and longevity, DNA is emerging as a promising candidate for satisfying increasing data
storage needs. Compared to conventional storage media, however, data stored in DNA is subject to wider range of errors resulting
from various processes involved in the data storage pipeline. In this paper, we consider correcting duplication errors for both exact
and noisy tandem duplications of a given length k. Specifically, we design codes that can correct any number of exact duplication
and one noisy duplication errors, where in the noisy duplication case the copy is at Hamming distance 1 from the original. Our
constructions rely upon recovering the duplication root of the stored codeword. We characterize the ways in which duplication
errors manifest in the root of affected sequences and design efficient codes for correcting these error patterns. We show that the
proposed construction is asymptotically optimal.

Index Terms

DNA storage, exact tandem duplication, noisy tandem duplication, error-correcting codes

I. INTRODUCTION

The rapidly increasing amount of data and the need for long-term data storage have led to new challenges. In recent
years, advances in DNA sequencing, synthesis, and editing technologies [15], [13] have made deoxyribonucleic acid (DNA)
a promising alternative to conventional storage media. Compared to traditional media, DNA has several advantages, including
high data density, longevity, and ease of copying information. For example, it may be possible to recover a DNA sequence
after 10, 000 years and a single human cell contains an amount of DNA that can ideally hold 6.4 Gb of information [15].
However, DNA storage technologies also encounter many challenges. One obvious challenge is that a diverse set of errors
are possible, including substitution, duplication, insertion, and deletion. This paper focuses on error-correcting codes for noisy
duplication channels. In such case, in addition to exact duplication, noisy duplication, where an approximate copy is inserted
into the sequence, may occur.

In duplication channels, (tandem) duplication errors generate copies of substrings of the sequence and insert each copy
after the original substring [4]. This type of channel was first studied in the context of recovering from timing errors in
communication systems that led to individual symbols being repeated [2]. The copying mechanism of DNA, however, allows
multiple symbols being repeated, for example, via slipped-strand mispairings, where the slippage of the molecule copying
DNA causes a substring to be repeated [4]. Properties of duplication in DNA have been studied from various vantage points,
including the theory of formal languages and the entropy of DNA sequences (see, e.g., [8] and references therein). Codes
for correcting duplication errors in the context of data storage in the DNA of living organisms, such as bacteria [10], were
studied by [4], where optimal constructions for correcting exact duplications of constant length were presented. This and
related problems were then further studied by a number of works including [5], [16], [6], [7], [1], [13]. Most related to this
paper is [13], which studies error correction in duplication and substitution channels, when substitutions are independent from
duplications and when they only occur in copies generated by duplications. The latter model, i.e., the noisy duplication model,
which is motivated by the abundance of inexact copies in tandem repeat stretches in genomes [9], is the model studied in this
work.

In the noisy duplication channel, two types of errors are possible: i) exact duplications, which insert an exact copy of
a substring in tandem, such as ACGTC ! ACGTCGTC; and ii) noisy duplications, which insert approximate copies, e.g.,
ACGTC ! ACGTCTTC. In both cases, the length of the duplication refers to the length of the duplicated substring (3 in our
preceding examples). In this paper, we limit our attention to exact and noisy tandem duplications of length k, referred to as
k-TDs and k-NDs, respectively. Furthermore, we only consider noisy duplications where the copy and the original substring
differ in one position. In other words, each noisy duplication can be viewed as an exact duplication followed by a substitution
in the inserted copy.

We will design codes that correct (infinitely) many k-TD and a single k-ND errors, as a step towards codes that can correct
t1 k-TDs and t2 k-NDs, for given t1 and t2. The proposed codes will rely on finding the duplication root of the stored
codeword. The duplication root of a sequence x is the sequence obtained from x by removing all repeats of length k. While

This work was supported in part by NSF grants under grant nos. 1816409 and 1755773. This paper was presented in part at the 57th Annual Allerton
Conference on Communication, Control, and Computing in 2019 [12]

2

k-TDs do not alter the duplication root, k-NDs do. Thus, we will first analyze the effect of noisy duplications on the root
of the sequence. We show that the root may change in a variety of ways, leading to several error patterns. We then design
efficient error-correcting codes that correct these errors via a number of transforms that simplify the different error patterns.

It was shown in [4] that the rate of the optimal code capable of correcting many k-TDs is

1�
(q � 1) logq e

qk+2
+ o(1), (1)

as the length n of the code grows, where q is the size of the alphabet. The question then arises as to whether it is possible
to correct an additional noisy duplication without a rate penalty. It is worth noting that the best known code for correcting an
additional unrestricted substitution, i.e., a substitution that can occur anywhere rather than in a copy generated by duplication,
has rate that is bounded from below by [13]

1� 2

k
logq

q

q � 1
+ o(1). (2)

which indicates a rate penalty. In contrast, we show that the proposed codes have the same asymptotic rate as (1), and are thus
asymptotically optimal.

This paper is organized as follows. The notation and preliminaries are given in Section II. In Section III, we analyze the
error patterns that manifest as the result of passing through the noisy duplication channel. Finally, the code construction and
the corresponding code size are presented in Section IV. Note this

II. NOTATION AND PRELIMINARIES

Throughout the paper, ⌃q represents a finite alphabet of size q, assumed without loss of generality to be {0, 1, . . . , q � 1}.
We use ⌃

+
q to denote the nonzero elements of ⌃q and ⌃

⇤
q to denote all strings of finite length over ⌃q . In particular, ⌃⇤

q

includes the empty string ⇤. Furthermore, ⌃n
q represents the strings of length n over ⌃q . The set {1, . . . , n} is represented by

[n].
We use bold symbols, such as x and yj , to denote strings over ⌃q . The entries of strings are shown with normal symbols, e.g.,

x = x1x2 · · ·xn and yj = yj1yj2 · · · yjm, where xi, yji 2 ⌃q . The indices of elements of words over ⌃⇤
q start from 1, unless

otherwise stated. For two words x,y 2 ⌃
⇤
q , their concatenation is denoted as xy, and xm represents the concatenation of m

copies of x. Given a word x 2 ⌃
⇤
q , the length of x is represented as |x|. In addition, for a word x 2 ⌃

⇤
q , the Hamming weight

wt(x) denotes the number of non-zero symbols in x. If a word x 2 ⌃
⇤
q can be expressed as x = uvw with u,v,w 2 ⌃

⇤
q ,

then v is a substring of x.
Given a word x 2 ⌃

⇤
q , an (exact) tandem duplication of length k (k-TD) generates a copy of a substring v of x of length

k and inserts the copy immediately after v. More specifically, a k-TD can be expressed as [4]

Ti,k(x) =

(
uvvw if x = uvw, |u| = i, |v| = k

x if |x| < i+ k
(3)

For example, given the alphabet ⌃3 = {0, 1, 2} and k = 3, a k-TD may result in

x = 1201210 ! x0
= T1,3(x) = 1201201210, (4)

where the underlined substring 201 is the copy. We refer to x0 as a k-TD descendant of x.
Given a word x 2 ⌃

n
q n � k, the k-discrete-derivative transform [4] is defined as �(x) = (�̂(x), �̄(x)), where

�̂(x) = x1 · · ·xk, �̄(x) = xk+1 · · ·xn � x1 · · ·xn�k. (5)

where the subtraction is performed entry-wise modulo q. Continuing the example given in (4),

x = 1201210 ! x0
= 1201201210,

�(x) = 120, 0012 ! �(x0
) = 120, 0000012.

(6)

As seen in the example, after the k-TD in x, �̄(x0
) can be obtained by inserting 0

k into �̄(x), immediately after the i-th
entry.

Copies generated by tandem duplications may not be always perfect. That is, the copy may not always be exact. Such a
duplication is referred to as a noisy duplication. In this paper, we limit our attention to noisy duplications in which the copy
is at Hamming distance 1 from the original. Continuing example (4), one symbol in the copy 201 may change,

x0
= 1201201210 ! x00

= 1201101210,

�(x0
) = 120, 0000012 ! �(x00

) = 120, 0200112.

3

As seen in the example, a noisy duplication of length k (k-ND) can be regarded as an exact k-TD followed by a substitution.
Given a word x 2 ⌃

⇤
q , the tandem duplication results in x0

= Ti,k(x) and the following substitution results in x00
=

Ti,k(x) + aej , where (i + k + 1)  j  (i + 2k), a 2 ⌃
+
q , and ej represents a unit vector with 1 in the j-th entry and 0

elsewhere. Note that the first k elements are not affected by exact or noisy duplications and �̂(x) = �̂(x0
) = �̂(x00

). Hence,
we focus on changes in �̄(·). The substitution changes at most two symbols of �̄(x0

) and can be expressed as

�̄(x00
) = �̄(x0

) + a✏j , (7)

where ✏j = ej�k � ej if (k + 1)  j  (|x0| � k) and ✏j = ej�k if (|x0| � k + 1)  j  |x0|. We refer to x00 as a k-ND
descendant of x.

Since noisy duplications may occur at any position, the word x can generate many descendants through noisy duplication
errors. Let Dt(p)

k (x) denote the descendant cone of x obtained after t duplications, p of which are noisy, where t � p.
Furthermore, the descendant cone with many exact k-TDs and at most P noisy duplications, i.e., at most P substitution errors,
can be expressed as

D⇤(P)
k (x) =

p=P[

p=0

1[

t=p

Dt(p)
k (x). (8)

In this paper, we limit our attention to P = 1.
We define a mapping operation µ : ⌃

⇤
q ! ⌃

⇤
q by removing all runs of 0k in z 2 ⌃

⇤
q . More specifically, consider a string z

as
z = 0

m0w10
m1 · · ·wt0

mt+1 ,

where t = wt(z), w1, . . . , wt 2 ⌃
+
q , and m0, . . . ,mt+1 are non-negative integers. The mapping µ(z) is defined as

µ(z) = 0
m0 mod kw10

m1 mod k · · ·wt0
mt+1 mod k.

Also, RLL(m) denotes the set of strings of length m containing no 0
k. In other words, RLL(m) = {z 2 ⌃

m
q |µ(z) = z}.

According to [4], given a word x 2 ⌃
⇤
q , after many (even infinite) k-TD errors, the string (�̂(x), µ(�̄(x))) stays the same.

To make use of this property, define the duplication root drt(x) as the string obtained from x after all copies of length k are
removed. Note that we then have

�(drt(x)) = (�̂(x), µ(�̄(x))). (9)

If drt(x) = x, we call the word x irreducible. The set of all irreducible words of length n can be written as Irr(n) = {x 2
⌃

n
q | drt(x) = x}. In other words, an irreducible word x 2 ⌃

n
q satisfies �̄(x) 2 RLL(n� k).

For a word z 2 ⌃
⇤
q , we define its indicator �(z) : ⌃⇤

q ! ⌃
⇤
2 as �(z) = �1(z) · · ·�|z|(z), where

�i(z) =

(
1, if zi 6= 0,

0, otherwise.
i = 1, . . . , |z|. (10)

Based on (7), the substitution in a noisy duplication alters two symbols in �̄(x0
) at distance k. For the purpose of error

correction, it will be helpful to rearrange the symbols into k strings such that the two symbols affected by the substitution
appear next to each other in one of the strings. More precisely, for j 2 [k], we define a splitting operation that extracts entries
whose position is equal to j modulo k. That is, for u 2 ⌃

n
q and j 2 [k], define uj = (µji)i = Spk(u, j) such that

µji = µj+(i�1)k, 1  i 
⇠
n� j

k

⇡
+ 1.

For u 2 ⌃
n
q , we then define the interleaving operation IL : ⌃

n
q ! ⌃

n
q as the concatenation of Spk(u, j), j 2 [k],

IL(u) = Spk(u, 1) · · · Spk(u, k).

Example 1. Given an alphabet ⌃3 = {0, 1, 2}, k = 3, and u0
= �̄(x0

) = 221200012, after splitting u0, we obtain

u0
1 =Sp3(u

0, 1) = 220,

u0
2 =Sp3(u

0, 2) = 201,

u0
3 =Sp3(u

0, 3) = 102,

IL(u0
) =u0

1u
0
2u

0
3 = 220201102.

Based on (7), after one substitution error, we may obtain u00
= �̄(x00

) = 221201011. We then find

u00
1 =Sp3(u

00, 2) = 201,

u00
2 =Sp3(u

00, 1) = 220,

4

u00
3 =Sp3(u

00, 3) = 111,

IL(u00
) =u00

1u
00
2u

00
3 = 220201111.

We observe that the error is restricted to u00
3 and that the two symbols changed by the substitution error are adjacent in

IL(u00
), while they are not so in u00.

Given a word z 2 ⌃
n
q , we define the cumulative-sum operation CS : ⌃

n
q ! ⌃

n
q , as r = CS(z), where

ri =
iX

t=1

zt mod q, i = 1, . . . , n. (11)

We further define the odd subsequence Od(z) and the even subsequence Ev(z) of a word z 2 ⌃
⇤
q as two sequences

containing symbols in the odd and even positions, respectively. More precisely, Od(z) = Sp2(z, 1) and Ev(z) = Sp2(z, 2).
Our results will rely on codes that can correct a single insertion or deletion. We thus recall the Varshamov-Tenengolts codes

[11], [14], which are binary codes capable of correcting a single insertion or deletion (indel).

Construction 1. Given integers m � 1 and 0  ↵  (m� 1), the binary Varshamov-Tenengolts (VT) code [11] CV T (↵,m)

is given as

CV T (↵,m) = {z 2 ⌃
⇤
2|

|z|X

i=1

izi = ↵ mod m}. (12)

Compared to the binary indel-correcting code, correcting indels in non-binary sequences is more challenging. We will use
Tenengolts’ q-ary single-indel-correcting code [14], which relies on the mapping ⇣ : ⌃

⇤
q ! ⌃

⇤
2, where the i-th position of ⇣(z)

is

⇣i(z) =

(
1, if zi � zi�1,

0, if zi < zi�1.
i = 2, 3, . . . , |z|. (13)

with ⇣1(z) = 1.

Construction 2. Based on Tenengolts’ q-ary code [14], given integers m � 1, 0  ↵  (q � 1) and 0  �  (m � 1), we
construct the code CTq(↵,�,m) over ⌃

⇤
q as

CTq(↵,�,m) =

⇢
z 2 ⌃

⇤
q

����
|z|X

j=1

zj = ↵ mod q,

|z|X

i=1

(i� 1)⇣i(z) = � mod m

�
.

(14)

III. NOISY DUPLICATION CHANNELS

To enable designing error-correcting codes, in this section, we study the relation between the input and output sequences in
noisy duplication channels. As before, we consider channels with many (possibly infinite) exact duplications and at most one
noisy duplication in which one of the copied symbols is altered.

If a code C 2 ⌃
n
q corrects many k-TD and one k-ND errors, then for any two distinct codewords c1, c2 2 C, we have

D⇤(1)
k (c1) \D⇤(1)

k (c2) = ?. (15)

This can be shown to be equivalent to

drt(c2) 6= drt(c1),

drt(D⇤(1)
k (c1)) \ drt(D⇤(1)

k (c2)) = ?.
(16)

Since k-TDs do not alter the root of the sequence, drt(c2) 6= drt(c1) ensures that k-TD errors can be corrected. Noisy
tandem duplications however alter the roots. In fact, they may produce sequences with roots whose lengths are different from
the roots of the stored sequences. Since the codewords have distinct roots, it suffices to recover the root of the retrieved word
to correct any errors. We will restrict our constructions to codes whose codewords are irreducible, and thus are their own roots.
While this is not necessary, it will simplify the code construction, as we will show, and does not incur a large penalty in terms
of the size of the code.

For noisy duplication channels, given a codeword x 2 ⌃
n
q , the generation of descendants x00 2 D⇤(1)

k (x) includes three
different cases: only k-TDs; k-TDs followed by one k-ND; and k-TDs, followed by a k-ND, followed by more k-TDs. Since

5

Table I
THE CHANGES IN µj AND sj , j 2 [k] AS A RESULT OF EXACT AND NOISY DUPLICATIONS, WHEN THE POSITION OF THE SUBSTITUTION IN x00 SATISFIES
k < p  (|x00|� k). HERE a, b, c 2 ⌃q , d 2 ⌃2 , ā = �a, AND a, b 6= 0. FURTHERMORE, ⇤ ! u AND u ! ⇤ REPRESENT INSERTION AND DELETION
OF THE STRING u, RESPECTIVELY. ROWS MARKED BY (⇤) INDICATE THAT THIS TYPE OF ERROR OCCURS FOR AT MOST ONE VALUE OF j 2 [k]. ROWS

MARKED BY ($), RELATED TO ERROR-CORRECTION CODE, ARE DISCUSSED IN THE NEXT SECTION

|µ00|� |µ| µ ! µ00 µj ! µ00
j sj ! s00j

+2k insert 0j�1a0k�j and
0t�1(0� a)0k�t

⇤ ! aā (⇤)
⇤ ! 00 ($)
c ! 0c0 ($)

⇤ ! 11
⇤ ! 00
d ! 0d0

+k
insert 0j�1a0k�j and sub-
stitute bi ! (bi � a)

c ! a(c� a), c 6= a (⇤)
a ! a0 (⇤ ! 0) ($)
⇤ ! 0 ($)

0 ! 11, 1 ! 11
1 ! 10 (⇤ ! 0)
⇤ ! 0

substitute 0 ! a and insert
0t�1(0� a)0k�t

0 ! aā (⇤)
⇤ ! 0 ($)

0 ! 11
⇤ ! 0

0 insert 0j�1a0k�j and
delete 0t�1a0k�t with a at
the same position

b0 ! 0b ($)
stay same

10 ! 01
stay same

substitute 0 ! a and bi !
(bi � a) with distance k

0c ! a(c� a) (⇤, $)
stay same

00 ! 11, 01 ! 11, 01 ! 10
stay same

�k substitute 0 ! a and delete
0t�1a0k�t

0 ! ⇤ ($) 0 ! ⇤

Table II
THE CHANGES IN µj AND sj , j 2 [k] AS A RESULT OF EXACT AND NOISY DUPLICATION, WHEN THE POSITION OF THE SUBSTITUTION IN x00 SATISFIES

(|x00|� k) < p  |x00|. HERE THE NOTATION IS THE SAME AS THAT OF TABLE I

|µ00|� |µ| µ ! µ00 µj ! µ00
j sj ! s00j

+k insert 0j�1a0k�j ⇤ ! a (⇤)
⇤ ! 0 ($)

⇤ ! 1
⇤ ! 0

0 substitute 0 ! a 0 ! a (⇤, $)
stay same

0 ! 1
stay same

the root is not affected by the k-TDs, to study drt(D⇤(1)
k (x)), we only need to consider the second case, i.e., we focus on

descendants x00 immediately after the noisy duplication.
Given an irreducible string x 2 ⌃

n
q with n > 2k, our goal is to characterize drt(D⇤(1)

k (x)). Based on (5), we have

�(x) = (�̂(x), �̄(x)) = (y, z), (17)

where y = �̂(x) 2 ⌃
k
q and z = �̄(x) 2 ⌃

n�k
q . Since x is an irreducible string, the string z contains no runs of 0

k, i.e.
z = µ(z).

After many k-TDs and one k-ND, we have a descendant x00 2 D⇤(1)
k (x). Since the substitution only occurs in the copy,

the first k symbols always stay the same. Thus x00 satisfies

�(x00
) = (�̂(x00

), �̄(x00
)) = (�̂(x), �̄(x00

)) = (y, z00
). (18)

Based on (9), it suffices to study the problem in the transform domain, i.e., we want to obtain all possible (y, µ(z00
)) derived

from (y, µ(z)). Our code constructions in the next section will also rely on certain sequences derived from µ(z). The next
theorem characterizes how these sequences can be altered by k-TDs and one k-ND.

Theorem 1. Let x 2 ⌃
n
q and let x00 2 D⇤(1)

k (x) be a descendent of x (produced by passing through the noisy duplication
channel). Furthermore, let

z = �̄(x), µ = µ(z),

µj = Spk(µ, j), sj = �(µj).

We define z00,µ00,µ00
j , s

00
j , similarly, based on x00. The differences between sequences defined based on x and x00 are given in

Table I and Table II.

The theorem is proved in the appendix.
Note that the length of µ can change by �k, 0, k, or 2k. This means that the noisy duplication may manifest as deletions,

insertions, or substitutions in µ. Furthermore, the complex error patterns in µ are simplified when we consider µj , j 2 [k].
The errors marked by (⇤) occur for at most one value of j. These correspond to positions affected by the substitution. (Rows
marked by ($) relate to our error-correction strategy and are discussed in the next section.)

6

x

z

�̄

drt(x)

drt

µ

µ

�̄

µj

Sp
k

sj

�

IL(µ)

Concat.

r
CS

Figure 1. The various mapping used in the paper. “Concat.” stands for concatenation. Solid edges indicate invertible mappings, where we have assumed
x1 · · ·xk is known, since these symbols are not affected by the channel. The mapping µ is generally non-invertible, but in our constructions, since we assume
x is irreducible, if we recover µ = µ(x), we can recover x.

Now that we have determined all changes from (y,µ) to (y,µ00
) resulting from passing through the noisy duplication

channel, we consider the code design to correct many exact k-TDs and at most one noisy duplication in the next section.

IV. ERROR-CORRECTING CODES
FOR NOISY DUPLICATION CHANNELS

Recall from Section III that we are interested in constructing a code C ✓ Irr(n) \ ⌃
n
q that can correct many exact k-TDs

and at most one noisy duplication. Based on (16), for any code that corrects k-TDs, two distinct codewords must have distinct
roots. Thus, for a stored codeword x and the retrieved word x00, if we can recover the duplication root drt(x) of x from x00,
we can recover the codeword x. But we have made a further simplifying assumption that C ✓ Irr(n) and thus x = drt(x).

As shown in Theorem 1, duplication errors manifest in various ways in drt(x00
) and its counterpart in the µ-transform

domain µ(�̄(x00
)). Hence, for error correction, we utilize several sequences derived from x, including µj and sj , j 2 [k], as

defined in Theorem 1. Furthermore, we define r = CS(IL(µ)) and r00 = CS(IL(µ00
)). We note that r (similarly r00) can be

directly found by rearranging the elements xk+1 · · ·xn.
The relationship between these mappings is illustrated in Figure 1. In the figure, solid edges represent invertible mappings.

Since x is irreducible, the stored codeword can be recovered if any of µ, (µj)j2[k], IL(µ) or r are recovered (note that
x1 · · ·xk are not affected by errors). We use these mappings to simplify and correct different error patterns described by
Theorem 1 in an efficient manner.

The motivation behind defining µj , j 2 [k], is to convert insertions and deletions of blocks of length k into simpler errors
involving one or two symbols. Some of the errors, marked by ($) in Tables I and II, involve 0s, which appear in the same
positions in sj and µj . Correcting these errors in sj is more efficient since it will rely on binary codes rather than q-ary codes.
We will first correct these errors in sj and then correct the corresponding µj . Finally, the cumulative-sum mapping CS turns
errors marked by (⇤), e.g., ⇤ ! aā into a single q-ary insertion or substitution. Importantly, in each case there is only one
such error. So if other errors are corrected, we can concatenate µj , j 2 [k], and then correct the single occurrence of this error.

We will construct an error-correcting code that will allow us to recover µ from µ00. As discussed, for certain errors occurring
in µj , specifically those marked by ($) in Tables I and II, we may do so by correcting errors in sj , via Construction 3 below.

The indicator vectors (s1, . . . , sk) are subject to several error patterns: insertion of 11; insertion of two 0s with distance at
most 2; indel of 1 or 0; swaps of two adjacent elements; and substitution of one or two 0s with one or two 1s. The following
code can correct a single occurrence of one of these errors, as shown in the next theorem. A slightly modified version of this
code is used for the noisy duplication channel.

Construction 3. Given integers 0  a  2(n+ 1), 0  b  4, and 0  c  2n, we construct the code C(a,b,c) as

C(a,b,c) = {u 2 ⌃
n
2 |u 2 CV T (a, 2n+ 3), (19)

nX

i=1

ui = b mod 5, (20)

nX

i=1

i

0

@
j=iX

j=1

uj

1

A = c mod (2n+ 1)}, (21)

where n = |u|.

Theorem 2. The code C(a,b,c) can correct all error patterns shown in the sj column of Tables I and II.

7

The theorem is proved in the appendix.
Since (s1, . . . , sk) are weight indicators of (µ1, . . . ,µk), the 0s in (s1, . . . , sk) and (µ1, . . . ,µk) coincide. However, if a

1 is deleted from a run of 1s in sj , we will not be able to identify which symbol is deleted from µj . This means that after
recovering sj from s00j we can recover µj only in certain cases, specifically, those marked by ($) in Table I and Table II.
Interestingly, the errors not corrected by recovering sj , j 2 [k] are marked by (⇤), indicating that they occur only for a single
value of j. Hence, to correct these errors, we apply the code constraints to the concatenation of µj , j 2 [k], rather than to
each µj separately.

Construction 4. Define Cnd ✓ ⌃
n
q as

Cnd = {x 2 Irr(n) \ ⌃
n
q |µ = µ(�̄(x)), (22)

µj = Spk(µ, j), sj = �(µj), (23)
sj 2 CV T (aj , 2|sj |+ 3), (24)
|sj |X

i=1

i

t=iX

t=1

sjt

!
= cj mod (2|sj |+ 1), (25)

kX

j=1

|sj |X

i=1

sji = b mod 5, (26)

Od(IL(µ)) 2 CTq(ā1, b̄1, d
n� k

2
e), (27)

Ev(IL(µ)) 2 CTq(ā2, b̄2, d
n� k

2
e), (28)

CS(IL(µ)) 2 CTq(ā3, b̄3, n� k)}, (29)
IL(µ) 2 CTq(ā4, b̄4, n� k), (30)

where j, aj , cj , b, āi, b̄i are integers satisfying j 2 [k], 0  aj  2(|sj |+1), 0  cj  2|sj |, 0  b  4, 0  ā1, ā2, ā3, ā4 < q,
0  b̄1, b̄2  bn�k

2 c, and 0  b̄3, b̄4 < n� k.

In Construction 4, the constraints (24), (25), and (26) play the same role as the code in Construction 3, and the constraints
(27), (28), and (29) can correct the error patterns of {µ1, . . . ,µk} not marked by ($) in Table I and Table II. The constraint
(24) corrects one insertion/deletion or two insertions of 0s or 1s in adjacent positions over ⌃2. The constraint (25) corrects
one transposition of {0, 1} in two adjacent positions. The constraint (26) is a weight-indicating equation for {s1, . . . , sk}. The
constraints (27), (28), (30), and (29) can correct one insertion/deletion in Od(IL(µ)), Ev(IL(µ)), IL(µ), and r = CS(IL(µ))
over ⌃q , respectively.

Theorem 3. The error-correcting code Cnd proposed in Construction 4 can correct infinitely many exact k-TD and up to one
k-ND errors. There exists one such code with size

| Irr(n)|
5q4dn�k

2 e2(4dn
k e2 � 1)k(n� k)2

 |Cnd|  | Irr(n)|. (31)

For a code C ✓ ⌃
n
q , define its rate Rn(C) as 1

n logq |C|. From (31),

1

n
logq | Irr(n)|�

(2k + 4)

n
logq n� 2k

n
logq 2�

4

n
� 1

n
logq 5  Rn(Cnd) 

1

n
logq | Irr(n)|.

It can then be shown that if q + k � 4, as n ! 1,

Rn(Cnd) =
1

n
logq | Irr(n)|+ o(1)

= 1�
(q � 1) logq e

qk+2
+ o(1).

(32)

Since this is asymptotically the same as the rate of the code correcting only k-TDs [4], the code proposed here is
asymptotically optimal. Furthermore, it outperforms the code proposed in [13] for correcting a single unrestricted substitution
in addition to correcting many k-TDs.

8

REFERENCES

[1] Y. M. Chee, J. Chrisnata, H. M. Kiah, and T. T. Nguyen, “Deciding the Confusability of Words under Tandem Repeats,” arXiv:1707.03956 [math], Jul.
2017.

[2] L. Dolecek and V. Anantharam, “Repetition error correcting sets: Explicit constructions and prefixing methods,” SIAM Journal on Discrete Mathematics,
vol. 23, no. 4, pp. 2120–2146, 2010.

[3] R. Gabrys, E. Yaakobi, and O. Milenkovic, “Codes in the Damerau distance for deletion and adjacent transposition correction,” IEEE Transactions on
Information Theory, vol. 64, no. 4, pp. 2550–2570, 2017.

[4] S. Jain, F. Farnoud, M. Schwartz, and J. Bruck, “Duplication-correcting codes for data storage in the DNA of living organisms,” IEEE Transactions on
Information Theory, vol. 63, no. 8, pp. 4996–5010, 2017.

[5] ——, “Noise and uncertainty in string-duplication systems,” in 2017 IEEE International Symposium on Information Theory (ISIT). IEEE, 2017, pp.
3120–3124.

[6] M. Kovacevic and V. Y. Tan, “Asymptotically optimal codes correcting fixed-length duplication errors in DNA storage systems,” IEEE Communications
Letters, vol. 22, no. 11, pp. 2194–2197, 2018.

[7] A. Lenz, A. Wachter-Zeh, and E. Yaakobi, “Duplication-Correcting Codes,” arXiv:1712.09345 [cs, math], Dec. 2017.
[8] H. Lou, M. Schwartz, and F. Farnoud, “Evolution of N-gram Frequencies under Duplication and Substitution Mutations,” in IEEE Int. Symp. Information

Theory (ISIT), Jun. 2018.
[9] D. Pumpernik, B. Oblak, and B. Borštnik, “Replication slippage versus point mutation rates in short tandem repeats of the human genome,” Molecular

Genetics and Genomics, vol. 279, no. 1, pp. 53–61, 2008.
[10] S. L. Shipman, J. Nivala, J. D. Macklis, and G. M. Church, “CRISPR–Cas encoding of a digital movie into the genomes of a population of living

bacteria,” Nature, vol. 547, no. 7663, pp. 345–349, Jul. 2017.
[11] N. J. Sloane, “On single-deletion-correcting codes,” Codes and designs, vol. 10, pp. 273–291, 2000.
[12] Y. Tang and F. Farzad (Hassanzadeh), “Error-correcting codes for noisy duplication channels,” in 57th Annual Allerton Conference on Communication,

Control, and Computing. IEEE, 2019, pp. 1–7.
[13] Y. Tang, Y. Yehezkeally, M. Schwartz, and F. Farnoud, “Single-error detection and correction for duplication and substitution channels,” in 2019 IEEE

International Symposium on Information Theory (ISIT). IEEE, 2019.
[14] G. Tenengolts, “Nonbinary codes, correcting single deletion or insertion,” IEEE Transactions on Information Theory, vol. 30, no. 5, pp. 766–769, 1984.
[15] S. H. T. Yazdi, H. M. Kiah, E. Garcia-Ruiz, J. Ma, H. Zhao, and O. Milenkovic, “DNA-based storage: Trends and methods,” IEEE Transactions on

Molecular, Biological and Multi-Scale Communications, vol. 1, no. 3, pp. 230–248, 2015.
[16] Y. Yehezkeally and M. Schwartz, “Reconstruction codes for DNA sequences with uniform tandem-duplication errors,” in 2018 IEEE International

Symposium on Information Theory (ISIT). IEEE, 2018, pp. 2535–2539.

APPENDIX A
PROOF OF THEOREM 1

Proof. In a noisy duplication channel with many exact k-TDs and at most one k-ND, given a string x 2 ⌃
⇤
q , let �(x) = (y, z)

with y = �̂(x) 2 ⌃
k
q and z = �̄(x) 2 ⌃

⇤
q . Since the k-TDs do not change the duplication root drt(x), we focus our attention

to the substitution that will change the duplication root. After many exact k-TDs, we obtain x0 2 D�1(0)
k (x), a descendant of

x. After the substitution error, we have x00 2 D�1(1)
k (x). Since the following k-TD errors do not change the duplication root

drt(x00
), we focus on the descendants x0 and x00.

Let �(x0
) = (y, z0

) and �(x00
) = (y, z00

). In the transform domain, the string z0 can be expressed as

z0
= ua1a2 · · · ai · · · akb1b2 · · · bi · · · bkv.

where u,v 2 ⌃
⇤
q and ai, bi 2 ⌃q, i 2 [k]. Let the length of the run of 0s on the left side of ai be m1 and on the right side

of ai be m2 (ending at bi and excluding ai, bi), i.e., the substring c0m1ai0m2d with a, b 2 ⌃
+
q . Similarly, we define m3 and

m4 as the length of the run of 0s on the left side and right side of bi, starting from ai and excluding ai, bi. Based on (7), if
the substitution position p satisfies k < p  (|x0| � k), the substitution changes two symbols; if (|x0| � k) < p  |x0|, the
substitution changes one symbol.

First, we consider the substitution position satisfying k < p  (|x0| � k) such that two symbols of z0 changes. The 2

symbols in z0 have a distance of k. After the substitution, we have

z00
= ua1a2 · · · (ai + a) · · · akb1b2 · · · (bi � a) · · · bkv,

where a 2 ⌃
+
q . Based on (6), since the substitution only occurs in the copy of a k-TD, we have ai = 0 and m1+m2+1 � k.

Since the length between ai and bi is k, we have two cases for m2 and m3:
• If m2 +m3 < k, then m2 < (k � 1) and m3 < (k � 1), which means that the substring between ai and bi must contain

at least one non-zero symbol.
• If m2 +m3 � k, then m2 = m3 = (k � 1), which means that the substring between ai and bi is 0

k�1.
A) Descendants with m2 +m3 < k: Since the substring between ai and bi must contain at least one non-zero symbol, the

changes in µ(z0
), as well as µ(z), caused by ai and bi, can be analyzed independently. If the non-zero symbol is d 2 ⌃

+
q ,

with ai and bi on the left and right side respectively, the changes in µ(z0
) can be separately studied on the two sides of d. In

the following, we use 0
j�1a0k�j or 0t�1a0k�t to denote a substring of length k with wt(0

j�1a0k�j
) = wt(0

t�1a0k�t
) = 1,

where j, t 2 [k] and a 2 ⌃
+
q .

1) The changes on the left side of d is caused by changing ai. Since ai = 0, then a = ai + a 6= 0.

9

Table III
THE CHANGES IN µ(z) WITH m2 +m3 < k.

ai and bi |µ00|� |µ| µ ! µ00

1a and 2(a)iA 0 insert 0j�1a0k�j and delete 0t�1a0k�t

1a and 2(a)iB +k insert 0j�1a0k�j and a ! 0
1a and 2(a)ii +k insert 0j�1a0k�j and bi ! (bi � a)
1a and 2(b)i +2k insert 0j�1a0k�j and 0t�1(q � a)0k�t

1a and 2(b)ii +k insert 0j�1a0k�j and 0 ! (0� a)
1b and 2(a)iA �k 0 ! a and delete 0t�1a0k�t

1b and 2(a)iB 0 two substitutions (0 ! a and a ! 0)
1b and 2(a)ii 0 two substitutions(0 ! a and bi ! (bi�a))
1b and 2(b)i +k 0 ! a and insert 0t�1(0� a)0k�t

1b and 2(b)ii 0 two substitutions(0 ! a and 0 ! (0� a))

a) If
jm1 +m2 + 1

k

k
>
jm1

k

k
, the length before d increases by k and the substring 0

j�1a0k�j is inserted in µ(z0
),

before the symbol d.
b) If

jm1 +m2 + 1

k

k
=

jm1

k

k
, the length before d stays the same and 0 is substituted by a at ai.

2) The changes on the right side of d is caused by changing bi.
a) If bi 6= 0,

i) if bi � a = 0,

A) if
jm3 +m4 + 1

k

k
>
jm4

k

k
, the length of µ(z0

) after d decreases by k and a substring 0
t�1a0k�t is deleted

from µ(z0
).

B) if
jm3 +m4 + 1

k

k
=

jm4

k

k
, the length after d stays the same and a is substituted by 0 at bi.

ii) if bi � a 6= 0, the length after d stays the same and bi is substituted by (bi � a).
b) If bi = 0, then bi � a 6= 0.

i) if
jm3 +m4 + 1

k

k
>
jm4

k

k
, the length of µ(z0

) after d increases by k and the substring 0
t�1

(0 � a)0k�t is
inserted in µ(z0

).
ii) if

jm3 +m4 + 1

k

k
=

jm4

k

k
, the length after d stays the same and 0 is substituted by (0� a) at bi.

Since µ = µ(z) and µ(z) = µ(z0
), the changes from µ = µ(z0

) to µ00
= µ(z00

) are shown in Table III classified based on
ai and bi.

B) Descendants with m2 +m3 > k: Based on the analysis above, when m2 +m3 > k, the substring between ai and bi is
0
k�1. Hence z0 can be rewritten as

z0
= u0m1ai0

k�1bi0
m4v,

where u,v 2 ⌃
⇤
q . After one substitution, z00 can be expressed as

z00
= u0m1(ai + a)0k�1

(bi � a)0m4v,

where ai = 0 and a 2 ⌃
+
q . Since the length of µ(z0

) is influenced by the underlined substring above, we focus on the changes
of this segment.

The length of the underlined substring satisfies
jm1 +m4 + k + 1

k

k
=

jm4

k

k
+

jm1

k

k
+ 1,

or jm1 +m4 + k + 1

k

k
=

jm4

k

k
+

jm1

k

k
+ 2.

The two cases are discussed below in detail.
If the length of the underlined substring satisfies

jm1 +m4 + k + 1

k

k
=

jm4

k

k
+

jm1

k

k
+ 1, then the changes in µ(z0

)

consist of two cases (based on the change from (ai, bi) to (ai + a, bi � a)):
1) if (ai, bi) = (0, qi) with qi 6= 0, then we again have two cases:

a) if ai + a, bi � a are non-zero, the length of µ(z0
) increases by k, and the substring 0

j�1a0k�j is inserted in µ(z0
)

and bi is substituted by bi � a.
b) if (ai + a, bi � a) = (qi, 0), we have µ(z00

) = µ(z0
).

10

2) if (ai, bi) = (0, 0), then ai + a, bi � a are non-zero, the length of µ(z0
) increases by k, and the substring 0

j�1a0k�j is
inserted in µ(z0

) and 0 is substituted by (0� a) at bi.

Similarly, if the length of the underlined substring satisfies
jm1 +m4 + k + 1

k

k
=

jm4

k

k
+

jm1

k

k
+ 2, the changes in

µ(z0
) also contain two cases:

1) if (ai, bi) = (0, qi), then there are two different cases:
a) if ai + a, bi � a are non-zero, the length of µ(z0

) increases by k, and the substring 0
j�1a0k�j is inserted in µ(z0

)

and bi is substituted by bi � a.
b) if (ai + a, bi � a) = (qi, 0), we have µ(z00

) = µ(z0
).

2) if (ai, bi) = (0, 0), then ai + a, bi � a are non-zero, the length of µ(z0
) increases by 2k, and the string 0

j�1a0k�j and
0
t�1

(0� a)0k�t are inserted in µ(z0
)

Since the k-TDs do not change the duplication root, we have drt(x) = drt(x0
) and µ(z) = µ(z0

). Based on the analysis
above, the changes in µ(z) caused by one substitution can be divided into four different cases:

• if |µ(z00
)| = |µ(z)| + 2k, then µ(z00

) is derived from µ(z) by inserting one 0
j�1a0k�j and one 0

t�1
(0 � a)0k�t.

Furthermore, a and (0� a) have distance k.
• if |µ(z00

)| = |µ(z)| + k, then µ(z00
) is derived from µ(z) by either inserting 0

j�1a0k�j and substituting bi ! (bi � a)
or inserting 0

t�1
(0� a)0k�t and substituting 0 ! a. In both cases, a and (bi � a) have a distance of k.

• if |µ(z00
)| = |µ(z)|, three different cases occur. First, µ(z00

) = µ(z), there are no changes. Second, µ(z00
) is derived

from µ(z) by two substitutions (0 ! a and bi ! (bi � a) with distance k). Third, the string 0
j�1a0k�j is inserted and

0
t�1a0k�t is deleted, where a stays in the same position. In the third case, µ(z00

) is derived from µ(z) by swapping 0
e

with a substring (the form of d or c⌃e�2
q d with e 6= 0 and c, d 2 ⌃

+
q) between ai = 0 and bi = a, where the distance of

the begining of the two substrings is k. Furthermore, the integer e satisfies 1  e  (k � 1).
• if |µ(z00

)| = |µ(z)|� k, µ(z00
) is derived from µ(z) by deleting 0

t�1a0k�t and substituting 0 ! a.
In conclusion, the changes from µ = µ(z) to µ00

= µ(z00
) caused by one substitution are described in the first and second

columns of Table I. We now discuss the changes in µj , i.e., the difference between µj and µ00
j for j 2 [k]. This is done by

considering four cases:
• If |µ(z00

)| = |µ(z)| + 2k, µ(z00
) is derived from µ(z) by inserting a 0

j�1a0k�j and a 0
t�1

(0 � a)0k�t. For j 2 [k],
the length of each µj increases by 2. For one value of j, a(0� a) is inserted in µj and two 0s are inserted in the other
(k � 1) strings with a distance at most 2.

• If |µ(z00
)| = |µ(z)| + k, µ(z00

) is derived from µ(z) by inserting 0
j�1a0k�j or 0

t�1
(0 � a)0k�t and substituting

(bi ! (bi � a)) or (0 ! a). For j 2 [k], the length of µj increases by 1. For one value of j, the insertion and substitution
bi ! a(bi � a) occur in µj and 0 is inserted into each of the other (k � 1) strings.

• If |µ(z00
)| = |µ(z)|, µ(z00

) is derived from µ(z) in three different cases. First, µ(z00
) = µ(z), there are no changes.

Second, µ(z00
) is derived from µ(z) by substituting two symbols (0 ! a, bi ! (bi � a)) with distance k. For one value

of j, the substitutions (0bi ! a(bi�a)) occur in µj and the other (k�1) strings stay the same. Third, µ(z00
) is obtained

from µ(z) by inserting 0
j�1a0k�j and deleting 0

t�1
(0 � a)0k�t. For j 2 [k], at least one µj swaps (b0) ! (0b) with

b 2 ⌃
+
q and the other strings stay the same.

• If |µ(z00
)| = |µ(z00

)|� k, µ(z00
) is derived from µ(z) by deleting 0

t�1a0k�t and substituting 0 ! a. For {µ1, . . . ,µk},
one 0 is deleted from each of the k strings.

The changes of {µ1, . . . ,µk} can be summarized in the third column of Table I. The forth column is obtained by noting
that sj = �(µj), j 2 [k]. This completes the proof of Table I.

Second, we consider the case in which the substitution position p satisfies (|x0| � k) < p  |x0|, which means that one
symbol in z changes. Since one substitution only changes one symbol in z0, we have

z00
= ua1a2 · · · (ai + a) · · · ak.

where a 2 ⌃
+
q . Since the substitution only occurs in a tandem duplication copy, we have ai = 0 and m1 +m2 + 1 � k. Note

that a = ai + a 6= 0. There are two cases to consider:

1) If
jm1 +m2 + 1

k

k
>
jm1

k

k
, then the length of µ(z0

) increases by k and the substring 0
j�1a0k�j is inserted into µ(z0

).

2) If
jm1 +m2 + 1

k

k
=

jm1

k

k
, then the length of µ(z0

) stays the same and 0 is substituted by a at ai.

We can then find the difference between µj and µ00
j , and sj and s00j , j 2 [k], which are listed in Table II. This completes

the proof of Theorem 1.

11

APPENDIX B
THE PROOF OF THEOREM 2

Proof. Given a codeword s 2 C(a,b,c), after many exact k-TDs and at most one substitution error, we obtain a descendant
s00 2 ⌃

⇤
2. Since the error-correcting code C(a,b,c) wants to recover s by s00, we consider four cases based on the differences

between s and s00.
1) If |s00| = |s|� 1, based on Theorem 1, one 0 is deleted from s. Since the VT code [11] can correct one binary insertion

or deletion, s can be recovered by inserting one 0 based on (19).
2) If |s00| = |s|, s contains three types of changes: one substitution 00 ! 11, one substitution 0 ! 1, or one adjacent

transposition between 0 and 1. Based on (20), we have
Pn

i=1 s
00
i = (b + b00) mod 5, where b00 is helpful to distinguish

the three cases. If b00 = 2, one substitution 00 ! 11 between s and s00 has occurred. We have
P

i is
00
i = a+2p+1 mod

(2n+3), where p is the position of the substitution. Hence, we can recover s by one substitution 11 ! 00 at the position
p of s00. If b00 = 1, once substitution 0 ! 1 has occurred. We have

P
i is

00
i = a + p mod (2n + 3). Hence, we can

recover s by one substitution 1 ! 0 at position p of s00. If b00 = 0, an adjacent transposition has occurred in s. If the
transposition occurs at p, for the constructed string {scs|scsi =

Pi
j=1 sj , i 2 [|s|]}, the string scs and scs

00
only differ at

position p with |scsp � scs
00

p | = 1 [3]. Then we have
P

i i
⇣Pi

j=1 s
00
j

⌘
= c± p mod (2n+ 1). Thus, we can recover s by

swapping the two symbols at positions p and (p+ 1) of s00.
3) If |s00| = |s|+ 1, based on Theorem 1, s00 is derived from s in three ways: inserting a 0, inserting a 1, or inserting a 1

and substituting 0 ! 1. Based on (19), we have
P

i is
00
i = (a + a00) mod (2n + 3). If a00  wt(s00), one 0 is inserted

in s, we can recover s by deleting one 0 [11]. If a00 > wt(s), one of the other two cases has occurred in s. Based onP
i s

00
i = (b + b00) mod 5, we can distinguish the two cases. If a00 > wt(s00) and b00 = 1, one 1 is inserted in s. Then

we can recover s by deleting a 1 from s00 [11]. If a00 > wt(s00) and b00 = 2, s00 is derived from s by inserting one 1

and substituting 0 ! 1. We have a00 = 2p + 1 + r1, where p denotes the position of the insertion and r1 represents
the number of 1s on the right side of the substituted symbol. During the recovery process, we assume the predicted
position and the number of 1s on the right side of the predicted position as p0 and r01, respectively. If r01 < r1, then
2p0 + 1 + r01 > 2p+ 1 + r1. If r01 > r1, then 2p0 + 1 + r01 < 2p+ 1 + r1. If r01 = r1, then 2p0 + 1 + r01 = 2p+ 1 + r1.
After obtaining p = p0, we can recover s by substituting 11 ! 0 at position p of s00.

4) If |s00| = |s|+ 2, based on Theorem 1, s00 is derived from s in three ways: inserting 11, inserting 00, or inserting two
0s separated by 1. Based on (19), we have

P
i is

00
i = (a + a00) mod (2n + 3). If a00 > 2wt(s00), 11 is inserted in s

and a00 = 2wt(s00) + 2l0 + 1, where l0 denotes the number of 0s at the left side of the inserting position. Then we can
recover s by deleting one 11 from s00 after l0 0s from the beginning. If a00  2wt(s00), two 0s are inserted in s. If
a00 = 0 mod 2, 00 is inserted in s and a00 = 2r1, where r1 denotes the number of 1s on the right side of the insertion
position. Then we can recover s by deleting 00 from s00 before r1 1s from the end of s00. If a00 = 1 mod 2, two 0s are
inserted in s separated by 1 and a00 = 2r1 + 1. Similarly, we can recover s by deleting two 0s before r1 and r1 + 1 1s
from the end of s00.

Based on the analysis, we have proved Theorem 2 that the error-correcting code C(a,b,c) can correct all the error patterns
in {s1, . . . , sk} caused by many exact k-TDs and at most one substitution error in the noisy duplication channel.

APPENDIX C
THE PROOF OF THEOREM 3

Proof. To prove Theorem 3, we have to show that the error-correcting code Cnd in Construction 4 can correct all error patterns
in {µ1, . . . ,µk}. Based on Theorem 2, the code C(a,b,c) over ⌃2 can correct all error patterns shown in the µj column of
Tables I and II in rows marked by ($). The constraints (27), (28), and (29) can correct the other error patterns.

Given a codeword x 2 Cnd ✓ Irr(n)\⌃
n
q , we have �(drt(x)) = (y,µ) with y = �̂(x) 2 ⌃

k
q and µ = µ(z) = z = �̄(x) 2

⌃
n�k
q . After many exact k-TDs and at most one substitution, we obtain a descendant x00 2 D⇤(1)

k (x) with �(x00
) = (y, z00

)

and z00
= �̄(x00

). In the following, we can recover the codeword (y,µ) by correcting four types of error patterns in (y,µ00
),

where µ00
= µ(z00

). Based on the recovered (y,µ), we can obtain the duplication root drt(x) and thus the codeword x. The
four cases are below:

• If |µ00| = |µ| � k, then a 0 is deleted from both {µ1, . . . ,µk} and {s1, . . . , sk}. By (24), we recover {s1, . . . , sk} by
inserting a 0 in each of them. Based on (10), the positions of 0s between {µ1, . . . ,µk} and {s1, . . . , sk} coincide. We
can recover {µ1, . . . ,µk} by inserting 0s at the same positions in {s1, . . . , sk}.

• If |µ00| = |µ|, {µj , j 2 [k]} contain two types of errors: transpositions of 0 and b in more than one µj , or the substitution
either 0c ! a(c� a) or 0 ! a in one µj . By (24), we have

|s00
j |X

i=1

is00ji = (aj + a00j) mod (2|sj |+ 3), j 2 [k].

12

If {a00j , j 2 [k]} contain more than one non-zero integer, both {µj , j 2 [k]} and {sj , j 2 [k]} with non-zero {a00j , j 2 [k]}
contain one adjacent transposition of (0, b) and (0, 1), respectively. By (21), the transposition positions {pj , j 2 [k]} can
be obtained. Since both {µj , j 2 [k]} and {sj , j 2 [k]} contain adjacent transpositions at the same positions, we can
recover {µj , j 2 [k]} by swapping two symbols starting at {pj , j 2 [k]}. If {a00j , j 2 [k]} only contain one non-zero
integer, say a001 , three types of errors may occur based on the weight change of {sj , j 2 [k]} by (26). Based on the proof
of Theorem 2, we can obtain the change position p1 in µ1 and s1. If p1 < |µ1|, according to Table I, µ1 contains one
substitution 0c ! a(c � a), we can recover µ1 by the substitution µ0

1p1
µ0
1(p1+1) ! 0(µ0

1p1
+ µ0

1(p1+1)). If p1 = |µ1|,
according to Table II, µ1 contains one substitution 0 ! a, we can recover µ1 by the substitution µ0

1p1
! 0.

• If |µ00| = |µ|+ k, then (k� 1) of {µ1, j 2 [k]} contain one insertion ⇤ ! 0, and one string, say µk, contains either one
insertion ⇤ ! a in Table II or one insertion and one substitution c ! a(c � a) in Table I. By (19), the (k � 1) strings
{µ1, j 2 [k � 1]} can be recovered. After that, we generate IL

0
(µ) = µ1 · · ·µ(k�1)µ

0
k by concatenating the k strings.

Compared to IL(µ), IL0
(µ) contains either one insertion ⇤ ! a or one insertion and one substitution c ! a(c�a). Based

on (27), (28) and Construction (2), we obtain the change (�ā1,�ā2). If �̄ā1 +�ā2 6= 0 mod q, then IL
0
(µ) contains

one insertion ⇤ ! a. Then we can recover the insertion ⇤ ! a by (30). If �ā1 +�ā2 = 0 mod q, IL
0
(µ) contains one

insertion and one substitution c ! a(c�a). By (11) and the fact that a+(c�a) = c, we construct r0 = CS(IL
0
(µ)) with

one insertion. Since (29) can correct one insertion in CS(IL
0
(µ)), we can recover CS(IL(µ)), IL(µ), and {µj , j 2 [k]}.

• If |µ00| = |µ| + 2k, then (k � 1) strings of {µj , j 2 [k]} insert two 0s with distances at most 2, and one string such
as µ1 contains one insertion a(0� a). Similar to the proof of Theorem 2, based on (24), we can recover {µ2, . . . ,µk}
by deleting two 0s. After that, we generate the string IL

0
(µ) = µ0

1µ2 · · ·µk. Obviously, the string IL
0
(µ) contains one

insertion a(0 � a). When IL(µ(z)) is divided into two strings Od(IL(µ(z))) and Ev(IL(µ(z))), one symbol is inserted
into each of Od(IL(µ(z))) and Ev(IL(µ(z))) to generate Od(IL

0
(µ(z))) and Ev(IL

0
(µ(z))). Since both (27) and (28) can

correct an insertion of one symbol in Od(IL(µ)) and Ev(IL(µ)), respectively, we can recover IL(µ) and {µj , j 2 [k]}.
Having recovered {µj , j 2 [k]}, we can reconstruct µ, the duplication root drt(x), and the codeword x 2 Cnd. Thus, the

error-correcting code Cnd can correct all the error patterns caused by many exact k-TD and at most one substitution.
Because the integers j, aj , cj , b, ā1, ā2, ā3, ā4, b̄1, b̄2, b̄3, b̄4 can be any value in their corresponding ranges, the number of

possible codes is 5q3dn�k
2 e2(2dn�k

k e+3)
k
(2dn�k

k e+1)
k
(n� k). These codes partition the set Irr(n), so there is at least one

code with size
|Cnd| �

| Irr(n)|
5q4dn�k

2 e2(2dn�k
k e+ 3)k(2dn�k

k e+ 1)k(n� k)2
.

Since dn�k
k e = dn

k e � 1, the code size of Cnd can be rewritten as

| Irr(n)| � |Cnd| �
| Irr(n)|

5q4dn�k
2 e2(4dn

k e2 � 1)k(n� k)2
.

