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Abstract
Growing demand in applications like portable electronics and electric vehicles calls for cost-effective, safe, and high-per-
formance energy storage systems. Development of solid-state electrolytes with Li+ ionic conductivities comparable to those 
of the current liquid chemistries is an important step towards meeting these needs. Unfortunately, one of the most promising 
solid electrolytes known to date, lithium lanthanum zirconium oxide (LLZO) garnets, exhibits far from ideal ionic conductiv-
ity. Thus, significant efforts, often through aliovalent substitution, have been devoted to increasing their ionic conductivity. 
Given the high-dimensional design space involved and the time required for synthesis, processing, and characterization of 
new materials, brute force approaches are not ideal to identify optimal compositions. We assess whether machine learning 
tools can be used to effectively explore the design space of LLZO garnets and potentially reduce the number of experiments 
involved in their development. We collected, curated, and filtered all the experimental results of Li+ ionic conductivity in 
LLZOs published in the scientific literature. Exploration of this data provides insights into the mechanisms that govern ionic 
transport in these oxides. Furthermore, we show that active learning with predictive models based on random forests can 
effectively be used with current data for the design of experiments. Our results indicate that the current highest Li+ ionic 
conductivity garnet LLZO could have been discovered with only 30% of the experimental studies conducted to date. All 
data and models are available online and can be used to drive future investigations.
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Introduction

The discovery, optimization, and deployment of new solid 
state electrolytes for energy storage with improved prop-
erties are key to future safe and high-performance batter-
ies for portable, wearable, and transportation applications. 
Substitution of current liquid materials with solids would 
unlock an enormous potential for higher energy density and 
dramatically improve battery safety [1]. Solid-state electro-
lytes offer additional benefits in terms of operating tempera-
ture ranges, as well as increased mechanical stability and 
resistance to dendrite growth [2]. Unfortunately, the ionic 
conductivity in solid electrolytes (the highest reported value 
is 10−3 S/cm) falls short when compared to their liquid coun-
terparts that typically exhibit values at the 10−2 S/cm level 

which are needed for commercial applications. Significant 
efforts are currently underway to address this gap. Current 
solid-state electrolyte materials can be categorized based 
on their chemistry; they include oxides, sulfides, hydrides, 
halides, and polymers. None of these materials excel in 
all the required properties for battery applications such as 
area-specific resistance, ion selectivity, chemical stability, 
mechanical properties, and processability [3].

Among oxides, a promising solid electrolyte is the gar-
net Li7La3Zr2O12 (LLZO); it shows good chemical stability 
against Li metal [4] and a wide electrochemical window 
of operation [5]. LLZO was first reported by Murugan 
et al. in 2007 to exhibit an ionic conductivity as high as 
3.0 × 10−4 S/cm [6] at 25 ◦ C. This garnet can crystallize 
in two structures, tetragonal and cubic, whose Li+ ionic 
conductivity differs by two orders of magnitude at room 
temperature. The ionic conductivity of the garnet tetrago-
nal phase was measured as 5.2 × 10−6 S/cm [7]. Stabili-
zation of the cubic polymorph at room temperature via 
the introduction of substitutional Al atoms in the lithium 
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sublattice was reported with an improved ionic conductiv-
ity at 4.0 × 10−4 S/cm [8]. Ceramic garnet oxides based on 
LLZO have since gained popularity as the addition of alio-
valent dopant elements such as Ga, Ta, Nb, and Bi results 
in significant improvements in the Li+ ionic conductivity 
yielding values from 10−5 to 10−3 S/cm [9–11].

Based on first principles calculations, researchers have 
proposed a variety of substitutional elements predicted to 
form stable structures when added to LLZO [12], resulting 
in a multi-dimensional design space which remains largely 
unexplored both across the periodic table and composi-
tions. Challenges in synthesis and characterization make 
brute force testing of a large fraction of the possible garnets 
impractical. Synthesis of well-consolidated garnet oxides 
with low porosity, critical to attaining high Li+ conductiv-
ity, is time consuming and expensive. In addition, sintering 
requires high temperatures (over 1100 ◦ C) and the garnet 
needs to be protected against oxidation and moisture [13]. A 
further hindrance in the selection of promising compositions 
is the lack of a complete understanding of the mechanisms 
underlying the effect of aliovalent dopants on Li+ ionic 
conductivity. Current hypothesis is based on the interplay 
between the occupancy of the lithium sublattice [14–16], 
the changes in the lattice parameters introduced by elemental 
substitution [17, 18] and changes in grain growth induced by 
the doping elements [19, 20].

Active learning, a subset of machine learning, refers to 
systems that can learn dynamically by analyzing data and 
developing queries in an interactive process. Starting with 
an initial set of data points, these algorithms develop pre-
dictive models and apply them to design future data queries 
(experiments in our case) to test various hypotheses such 
as overall reduction of uncertainty or the maximization/
minimization of an objective function [21]. Ling et al. [22] 
proposed a framework to use random forest with quantified 
uncertainties to guide experimental search. They found that 
even with relatively small datasets machine learning can be 
used to identify the optimal performance within in a closed 
pool in an optimal fashion, i.e., with the fewest experimental 
iterations. Our results indicate that a reduction in the number 
of plausible experiments by 30% is possible in efforts to 
synthesize garnets with high ionic conductivity. We note that 
this work focuses on a single figure of merit, lithium ionic 
conductivity, and that there are several other properties that 
need to be optimized on a material to have practical applica-
tions as a solid-state electrolyte.

The remainder of the paper is organized as follows. 
“Data Collection, Curation, Publishing, and Filtering” sec-
tion discusses our data collection and curation process after 
which, and in “Predictive Models” section, we model the 
data. “Active Learning” section introduces our work on 
active learning and in “Conclusions” section conclusions 
are drawn.

Data Collection, Curation, Publishing, 
and Filtering

Driven by the goal of faster and less costly discovery and 
deployment of materials [23], significant developments 
in cyber-infrastructure to make materials data findable 
and accessible have occurred, see, for example, Refs. [24, 
25]. These repositories are reliant on authors voluntarily 
sharing data with the community, although federal agen-
cies often mandate data to be publicly available. Prior to 
our work, the data of interest for our application were not 
available in a minable form. Therefore, we performed an 
extensive literature search for Li+ experimental conductiv-
ities in ceramic materials with the garnet structure similar 
to LLZO. This resulted in 40 peer-reviewed publications 
that satisfied the following conditions: i) reported mini-
mum values or the absence of impurity phases (in particu-
larly Al contamination), and ii) documented procedures 
and values of pellet sintering temperatures, including the 
addition of sintering aids for pellet manufacturing. Even 
after this initial filtering, many of the publications lacked 
details of processing, microstructure, and defects known 
to affect lithium-ion conductivity.

The collection process resulted in information on 188 
garnet oxide compositions as entries. This data collection 
process took approximately three months and resulted in 
100 unique garnet compositions published between 2005 
and 2020. Inspired by FAIR principles of making data 
findable, accessible, interoperable, and reusable [26], the 
resulting curated data were published in Citrination [27], 
an open platform to share datasets and models powered 
by Citrine Informatics. In addition, the models and tools 
presented here are available in nanoHUB [28], a platform 
for online simulations and modeling [29].

Given the high dimensionality of the data, we applied a 
series of additional filters to reduce the amount of experi-
mental detail gaps. A graphical representation of these 
filters can be seen in Fig. 1. We focused on ionic conduc-
tivities measured between 18 and 32 ◦ C. The density of 
the ceramic pellet can drastically affect ionic conductivity. 
Unfortunately, this parameter is often not reported in the 
publications collected. We used sintering temperature, a 
more commonly reported processing parameter, as a surro-
gate since high-temperature sintering often result in good 
compaction [30]. To account for the effect of pellet den-
sity on ionic conductivity, we included only materials pro-
cessed at sintering temperatures above 900 ◦ C. In addition, 
we only considered garnets stabilized into their high-ionic 
conductivity cubic phase and discarded those in the lower 
ionic conductivity tetragonal polymorph [31]. Finally, we 
removed duplicate data reported in different publications 
and replaced the ionic conductivity values with the median 
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of their measurements, an approach that has been reported 
to reduce the impact of data uncertainty [32]. In this work, 
we use the nominal compositions reported by the authors. 
We note that, due to the volatility of Li, the actual compo-
sition could deviate from these values.

The resulting data, after filtering, consists of 100 unique 
compositions. Each and every entry includes Li, La, and O 
and a combined 14 substituent elements are represented. The 
frequencies of the remaining elements are listed in Table 1. 
Similarly, Table 2 shows the frequency of the oxides of dif-
ferent numbers of components.

Before describing the application of data science tools 
for design of experiments, we explore the collected data. 
Li+ ions occupy a sublattice containing (24d) tetrahedral 
and (96h) distorted octahedral sites in the Ia3d space group 
cubic garnet and the various dopants affect the occupancy of 
these sites. Given that ionic transport is mediated by vacan-
cies, Fig. 2 shows the ionic conductivities of materials in our 
dataset as a function of Li+ per formula unit. The colors indi-
cate distinct main dopant, i.e., the element with the larger 
atomic ratio between the dopant and the element in the site 
occupied. It is clear from the plot that the chemical nature 
of the dopant is important. In addition, it is also evident 

that a rough maximum in conductivity exists around 6.3–6.5 
Li+ per formula unit, representing a sublattice occupancy 
of 50–52 out of the 72 possible sites. The number of avail-
able sites is given by 24+96/2 as octahedral sites occur in 
neighboring pairs that cannot be simultaneously occupied 
be two ions [14].

This maximum Li-site occupancy likely indicates an 
optimal balance between Li+ and vacancy concentrations 
and agrees with prior compilations of LLZO-based ceramic 
garnets [33]. We note that Thompson et al. [34] observed a 
maximum in conductivity in Ta-doped garnets near 6.5 Li+ 
per formula unit and attributed the decrease after the maxi-
mum to a transformation from the cubic to the tetragonal 
phase. In our case, all data points correspond to the cubic 
phase.

Predictive Models

Machine learning tools, specifically active learning, have 
been shown capable of reducing the number of experiments 
required to achieve a design goal, see, for example, Refs. 
[35, 36]. The predictive accuracy of the underlying models 
and, consequently, the efficacy of the approach, relies heav-
ily both on the amount of training data and on the choice 
of descriptors or features used to express each entry [37]. 
Good descriptors uniquely describe the materials involved, 
should be significantly less onerous than the model output 
property, and are expected to correlate with the quantity of 
interest. This presents an opportunity to incorporate domain 
knowledge and physical intuition into otherwise agnostic 
models [38].

We found that the Materials-Agnostic Platform for 
Informatics and Exploration (Magpie) descriptors from 
Matminer [39] provides an appropriate set of descriptors 
for our application. Magpie includes information that can 
be easily obtained from composition such as valence orbital 
information, elemental fractions, and ionic properties. All 
descriptors that showed no variability across our database 
were removed.

Groups of descriptors are listed in Table 3. Elemental 
properties consist of statistical values (mean, mode, and 
maximum) of properties of the elements involved. Elemen-
tal fractions represent the atomic fraction of each element 

Fig. 1   Filters applied to the compositions drawn from the literature. 
Numbers represent how many entries were left after applying the fil-
tering operation

Table 1   Frequency per substituent element

Element Frequency Element Frequency

Zr 70 Gd 10
Nb 40 Ca 7
Ta 29 Bi 6
Ga 16 Al 5
Y 15 Sc 3
Sr 11 Nd 3
Ba 10 Sb 2

Table 2   Frequency per number of components in garnet oxide

Num. components Frequency

4 Component Oxides 6
5 Component Oxides 62
6 Component Oxides 31
7 Component Oxides 1
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contained in the composition. Stoichiometric attributes rep-
resent the fraction of elements present in the composition 
and several L p norms of these fractions. These attributes are 
independent of the elements involved. Valence orbitals rep-
resent the average fraction of electrons in each of the valence 
shells between elements present. Finally, the temperature of 
the experimental measurement of the ionic conductivity was 
added as an additional descriptor, resulting in a total of 105.

As referenced above, lithium ionic conductivity in cubic 
LLZO-type garnets has been shown to have a maximum for 
lithium per formula unit near to 6.3–6.5 Li+ , a phenomenon 
discussed in “Data Collection, Curation, Publishing, and Fil-
tering” section. This quantity is fed to the model via descrip-
tors like the elemental fractions and stoichiometric attrib-
utes. For example, elemental fractions take values of the 
atomic fraction related to whether any element from the peri-
odic table is present in the composition. Thus, this descriptor 
effectively captures the distribution shown in Fig. 2.

After identifying the data and descriptors, we explore 
two widely used machine learning tools for regression, ran-
dom forests (RFs), and artificial neural networks (ANNs). 
RF models consist of an ensemble of decision trees, struc-
tures that perform tests to discriminate entries based on its 

attributes. For regression, the model returns an average pre-
diction from the outputs of each tree, to limit the drawbacks 
in performance from decision trees when working with non-
linear data. RF models were created to counter the tendency 
of individual decision trees to overfit. ANNs are biologi-
cally inspired, universal approximators of nonlinear convex 
functions. They have been successfully used in materials 
science, chemistry and many other physical sciences, see 
for example [40–42]. It is important to recognize that small 
datasets represent a challenge for machine learning models, 
in particular ANNs [43], and thus, the predictive results need 
to be developed and used with this in mind.

Significant progress has been made in uncertainty 
quantification for RFs, and this has been implemented in 
the random forests with Uncertainty Estimates for Learn-
ing Sequentially (FUELS) framework described by Ling 
et al. [22]. Here a sample-wise uncertainty estimate can 
be obtained by evaluating the average of the infinitesimal 
jackknife variance and the jackknife-after-bootstrap vari-
ance [44] estimates plus a Monte Carlo sampling correction 
term. Calibration of the uncertainty when compared to the 
error of the prediction can be gauged by the calculation of 
residuals, normalized by the sample uncertainty, as perfectly 
calculated uncertainties would be represented by a Gauss-
ian distribution with zero mean and unit standard deviation.

For our model RFs, the number of estimators (trees) was 
optimized up to a point in which no further improvement 
was observed and set at 500 estimators. Trees were allowed 
unrestricted depth to encourage them to grow until no more 
divisions are possible. Data were not normalized for the ran-
dom forest. The dataset was split into 90% training and 10% 
testing. No independent validation set is used, as RFs mod-
els with bootstrap aggregation take into account the error 
of trained trees on a subset of the training data unseen by 
these estimators, the basis for the out-of-bag error. Models 
and uncertainty estimates implemented in this study were 

Fig. 2   Distribution of ionic 
conductivity against Li+ per 
formula unit. Shaded areas 
group values for the different 
aliovalent dopants represented 
in the literature

Table 3   Descriptors used to characterize materials by their composi-
tions. Subsets of descriptors are obtained from the magpie platform 
and melting temperature is taken from the original publication of the 
data point

Attributes Number of 
attributes

Elemental properties 77
Elemental fractions 17
Stoichiometric attributes 6
Valance orbitals 4
Experimental temperature 1
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implemented using tools from the open source Lolo scala 
library [45].

In the case of ANNs, we created an architecture with 
three densely connected hidden layers in a feed-forward 
network. The optimizer used was Adam, an adaptive learn-
ing rate algorithm [46]. Loss observed was mean absolute 
error (MAE). We used RELU (REctified Linear Unit) activa-
tion functions. All bias terms were initialized to zero, and 
all weights were initialized from random values sampled 
from a normal distribution of mean zero and unit standard 
deviation. A 20% Dropout regularization was added between 
each of the layers. Models with other regularization tech-
niques and varying architectures result in similar, if slightly 
worse, accuracy; those results can be found in the online 
tool [28]. The data were split into 90% training and 10% 
testing sets. From the training subset, 10% was sequestered 
from the backpropagation and used as a stopping criterion. 
The optimization stops once the MAE on this sub-set fails to 
decrease by at least 1 × 10−10 for 1000 steps to limit overfit-
ting. Data were normalized using a standard score normali-
zation. The network was trained with an early stopping cri-
teria [47] to avoid overfitting by restoring the parameters to 
those of the best epoch in terms of the validation set MAE. 
Implementation of this network was through the Tensorflow/
Keras software package [48].

Figure 3 showcases the performance of these algorithms 
as a parity plot comparing experimental values of lithium 
ionic conductivity with model predictions. Green dots rep-
resent training data and red denotes testing. Repeating the 

training ten times with random selection of training and 
testing data results in an average MAE on the testing set of 
1.09 × 10−4 S/cm for the ANN and 0.92 × 10−4 S/cm for the 
RF. While neural networks often outperform random forests 
for regression predictions for different materials properties 
[49], we find comparable performance for our dataset in the 
average testing MAE. Having established similar accuracies 
and given the significant work on uncertainty quantification 
on RFs (important for active learning) we will continue this 
study with RFs and framework for uncertainty estimates pro-
posed by Ling et al. [22].

Visual inspection of Fig. 3 indicates that the RFs are 
able to assign larger uncertainties to cases where the pre-
dicted mean deviates the most from the experimental val-
ues. To assess the accuracy of the uncertainty estimates 
of the RFs, we computed the distribution of residuals of 
the mean prediction of the RFs normalized by their uncer-
tainty through a 10-fold cross-validation, see Fig. 4. Accu-
rate models and uncertainty estimates would result in a 
Gaussian distribution with mean of zero and unit standard 
deviation. We find a small left skew (residuals are defined 
as the model prediction minus the true experimental 
value), indicating a tendency of the model to slightly over-
predict the properties. We attribute this overestimation of 
ionic conductivities by the RFs to the high dimensionality 
of compositional space and sparse training data. As can be 
seen in Table 1, representation of dopants is uneven and 
the testing set might contain elements that are not repre-
sented in the training, like Sc, Nd, and Sb. Elements might 

Fig. 3   Parity plots for prediction of Li-ion conductivity in garnets using a random forest with uncertainty and b artificial neural network. The 
training set for the models is shown in green, while the testing set is shown in red. Uncertainty estimates are included for the random forest
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also be present in the available data only as part of co-
doped substitutions, an interplay that is only addressed in 
the generation of the descriptors. Also, we note the uncer-
tainty in the data itself affects the model performance, as 
the measured values for conductivity can be affected by 
the experimental setups for synthesis and the measure-
ment techniques. Something that is relatively unique to 
this problem deals with the density of the ceramic pellets, 
which is sometimes not reported in the literature but can 
drastically affect the ionic conductivity measurements for 
the same composition [30].

To better understand the performance of the models, we 
now analyze a selected test set in detail. Table 4 lists the 
compositions in the test set (that the model has not seen) 
in increasing order of experimental ionic conductivity 
and includes experimental values, mean RF predictions, 

discrepancies, and RF uncertainty estimate. This set cor-
responds to the set shown in Fig. 3a.

Importantly, this model can accurately rank these compo-
sitions, capturing the trends seen for different dopants. These 
predictions are in remarkable agreement with the experimen-
tal values considering the limited data obtained from the 
literature and the selection of descriptors based solely on the 
material composition. In this example, deviations of some of 
the predictions can be attributed to the materials containing 
one or more of the infrequent elements listed in Table 1: Ca, 
Sc, Bi, Al, and Sb. The model had only limited informa-
tion during training on how these specific dopants affect 
conductivity. Regarding uncertainties, it is also interesting 
to note that an increase in the predicted mean values results 
in larger uncertainties, which would indicate that the model 
understands that it needs to estimate greater uncertainties for 
these points. In order to address the challenge posed by the 

Fig. 4   Probability densities of 
normalized residuals computed 
via tenfold cross-validation for 
the random forest. Solid line 
represents perfectly calibrated 
uncertainties

Table 4   Compositions included 
in the testing set of our random 
forest model

Composition Experimental ionic con-
ductivity 10−4 S/cm

RF prediction 
10−4 S/cm

Residual RF uncertainty

Li
6
La

2
Nb

2
Ca

1
O
12

0.016 0.844 0.828 0.883
Li

6
La

2
Nb

2
Sr

1
O
12

0.042 0.545 0.503 0.712
Li

6.75
La

3
Zr

1.75
Bi

0.25
O
12

0.05 0.704 0.654 1.226
Li

6
La

2
Sb

2
Sr

1
O
12

0.066 0.703 0.637 0.896
Li

5
La

3
Nb

1.75
Y

0.25
O
11.95

0.968 1.545 0.577 2.016
Li

7
La

2.5
Zr

1.5
Nb

0.5
Ca

0.5
O
12

2.9 1.799 −1.101 0.946
Li

6.2
La

3
Zr

1.2
Ta

0.8
O
12

3.2 4.771 1.571 2.802
Li

6.4
La

3
Zr

2
Ga

0.1
Al

0.1
O
12

7.9 8.364 0.464 3.517
Li

6.4
La

3
Zr

2
Ga

0.15
Al

0.05
O
12

8.8 10.158 1.358 2.868
Li

6.35
La

3
Zr

2
Ga

0.25
Sr

0.1
O
12

13 11.443 −1.557 4.209



305Integrating Materials and Manufacturing Innovation (2021) 10:299–310	

1 3

three orders of magnitude variation in experimental ionic 
conductivities, we also trained a model on the logarithm 
of the ionic conductivity but found no improvements in the 
testing MAE. Details on the transformations of the target 
ionic conductivity data are detailed in Figure 1 of the Sup-
plementary Material.

To further explore the model, we characterized the 
predictions as a function of Ta content, since multiple 
data points exist. For this analysis, we will use the model 
described in “Predictive Models” section and used for 
Fig. 3a and Table 4, keeping the same training and testing 
data. We explore how the model would predict for one of the 
most common elements in the database, Ta. We explore the 
model’s interpolation between experimental values and its 
accuracy for Ta doping in Fig. 5. We plot the predicted ionic 
conductivities for Li7−xLa3Zr2−xTaxO12 garnets as a function 
of x and include the experimental results (individual experi-
mental are shown as open circles and the median values 
used for training or testing are shown as crosses). Since RFs 
are mathematically incapable of extrapolation, we select the 
range so that the predictions were not outside of the bounds 
of the training data. We find that the model is able to capture 
the overall trends of how the addition of Ta affects ionic 
conductivity. Differences in the literature reported values 
speaks to the significant effect of experimental conditions, 
in particular on sintering temperatures and densities, and can 
help explain some of the uncertainties and discrepancies in 
the model.

Having established the ability of the RF model to describe 
the experimental data, we illustrate its ability to generalize 
and explore the space spanned by a pair of dopants. To gen-
erate this test space, we use a grid of compositions with the 
selected pair of dopants and establish the overall composi-
tion following the nominal stoichiometric rules to ensure 
stable structures. For example, following Wagner et al. [50] 
we consider that a Bi (5+) replaces one Zr (4+) atom and 
one Li(+) atom to create compositions following Li7−xLa3
Zr2−xBixO12 . Figure 6 shows color-intensity plots of the pre-
dicted ionic conductivity, for three different pairs of dopants. 
Experimental compositions in our dataset are marked as dia-
monds, and compositions that were part of the testing set are 
marked with an extra cross. All mapped compositions have 
measured temperature input at 25 ◦ C. Figure 6 clearly shows 
constant value bands since the RFs models would output 
constant values outside of their training range.

These maps can help understand how and what the model 
learned from its training, even though most of the composi-
tions do not have experimental values to validate our predic-
tions. Figure 6a maps space including significant experimen-
tal data while Fig. 6b shows a case where the two dopants 
have been explored individually but not in combination. 
Finally, Fig. 6c explores the dopants of the best perform-
ers experimentally reported (Ga, Sc). The plots reveal how 
the RFs divide space and generalize from the training data. 
These models are tools for interpolation in a high dimen-
sional space, thus results that involve extrapolation should be 
used with extreme precaution. These models, both RFs and 
ANNs, are available for online, interactive, simulations in 
nanoHUB as a Jupyter notebook “Machine learning guided 
design of ceramic oxides for batteries”, accessible through 
a tool [28] in which users can access and run the models or 
retrain them changing hyperparameters within the online 
tool.

Active Learning

Following our general analysis on the performance of the 
models, we now focus on active learning. For this endeavor, 
we will posit an artificial problem where we start with 10 
data points out of the 100 total and try to find the highest 
conductivity garnet in the fewest number of experiments. 
At each step of the active learning workflow, we train a RF 
with the available data and use it to select one of the hidden 
experiments to be revealed next; in a real application this 
would involve running an actual experiment. The selection 
of the most promising new experiment is done using various 
information acquisition functions, discussed below. We fol-
low the framework proposed by Ling et al. [22].

We compare four information acquisition functions: 
maximum likelihood of improvement (MLI), upper 

Fig. 5   Ionic conductivity of Ta-doped LLZO as a function of compo-
sition. Experiments are marked with open circles. Median of dupli-
cate experiments are marked with crosses. RF predictions are marked 
with a red line with their corresponding uncertainties
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confidence bound (UCB), maximum expected improve-
ment (MEI), and maximum uncertainty (MU) against a 
random benchmark. To determine the next candidate to 
query, each of these functions will explore the composi-
tional space according to their respective equations.

•	 MLI tells us that we are expecting to query a region 
for which we see an improvement and sufficient uncer-
tainty to have a high likelihood of getting a larger 
value. 

•	 UCB queries the sample with the maximum value of its 
mean prediction plus its uncertainty. 

x∗ = arg max
E[M(xi)] − E[M(xbest)]

�[M(xi)]

x∗ = arg max[E[M(xi)] + �[M(xi)]]

•	 MEI takes the maximum value of the prediction of the 
model over the possible experiments to run. 

•	 MU queries the sample with the highest uncertainty, 
regardless of the expected mean value. 

In these equations, x∗ represents the next sample to query, xi 
are the possible experiments to run, xbest is the current best 
result in our training set, and E[M(x)] is the expected value 
of the prediction of the model at point x. The “arg max” 
(arguments of the maxima) operation returns the sample 
where the function is maximized.

Our exercise starts with 10 randomly selected entries out 
the 100 total and iteratively applies active learning until the 
highest ionic conductivity is found. At each step, we use 

x∗ = arg maxE[M(xi)]

x∗ = arg max�[M(xi)]

Fig. 6   Random forest model predictions for a grid of possible combinations in a dual-dopant space. Diamonds represent experimental data from 
the training
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the available data to develop a model and use the model 
in conjunction with the each of the information acquisi-
tion functions to select the next experiment from the list of 
hidden entries. If the chosen entry is not the maximum, it 
will be added to the set and the cycle starts again. Figure 7 
presents the results of the various acquisition functions and 
a benchmark of random selection. Black dots indicate the 
initial set that is common to all acquisition functions, gray 
points show the values that are unknown to the model but are 
available for querying, the colored points indicate values that 
were explored by each of the acquisition functions prior to 
reaching the maximum value from our closed pool, light to 
dark indicate selection order. The first panel shows a trend-
line that keeps track of the best conductivity for individual 
acquisition as a function of active learning step.

It is clear that all acquisition functions outperform ran-
dom sampling. MEI, UCB, and MLI can find the optimal 
candidate in about 30% of the attempts required by random 
sampling and far below the cost for a brute force approach to 
run the entire closed pool of simulations. These three infor-
mation acquisition functions take an exploitative approach 

to explore the space, as they use values that are similar to 
the maximum value that has already been found and trained 
on. UCB and MLI also make use of information about model 
prediction uncertainty. As a result, they explore composi-
tions that have relatively high predictions for conductivity 
while keeping low values unexplored. In contrast to these 
exploitative functions, MU is an approach for exploration, 
which compares well against random in this application, but 
does not guarantee maximizing a conductivity value as it 
depends primarily on the uncertainty regions.

To quantify the relative performance of each information 
acquisition function, we performed this experiment 30 times 
with a randomly chosen set of 10 points for the initial set. 
The results, Fig. 8a, show that active learning can reduce the 
number of experiments required to reach the best candidate 
to less than 50% of the runs when compared to randomly 
sampling out of the remaining points in our closed pool. We 
note that this is an estimate and the set of possible experi-
ments come from the literature and were chosen by experts.

To further evaluate the potential reduction of the design 
time, we conducted a test in which we started with an initial 

Fig. 7   Comparison of different information acquisition functions. 
Black dots indicate the starting initial set. Gray dots represent 
unknown but available points for queries. Colored dots indicate the 
points explored by the active learning approach. The first plot is a 

summary in which we track the highest value of ionic conductivity  
queried by the functions against the number of experiments. An ani-
mated version of the exploration is available on nanoHUB.org [28]
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set containing the 10 earliest experiments in our dataset. 
These compositions are listed in Table 1 of the Supplemen-
tary material and include LLZO, first reported in 2007 [6]. 
The results of this study are shown in Fig. 8b.

The convergence criterion for our demonstration is find-
ing the material with the highest ionic conductivity. In a 
real-world application this will be determined by achiev-
ing a desired value or spending an experimental budget. To 
drive this point, we speculate what the timeline of published 
results on LLZO-type garnets would have looked like if 
the experimental work had been informed by the random 
forest framework. In Fig. 9, we start from the 10 oldest 

experiments and we allow the acquisition function to select 
which material to synthesize next. Each subsequent point 
sits at a spot marked by the publication of a new material.

Conclusions

We used data collection, curation, filtering, and modeling to 
explore the applicability of materials informatics approaches 
in the context of Li+ ion conductivity in doped garnets. We 
generated a cost-efficient set of descriptors based on pub-
lished literature and domain knowledge of the problem at 

Fig. 8   Mean number of predictions per information acquisition func-
tions for the 30-trial runs of the active learning model. Dashed line 
represents half of the experiments. In a the model samples 10 experi-

ments at random. In b the model starts with the 10 oldest experi-
ments. Black lines represent the sample standard error E(x) = �

√

30
 . 

Colors are matched to Fig. 7 for visual comparisons

Fig. 9   Possible timeline of 
published experiments informed 
with the maximum likelihood 
of improvement acquisition 
function. Each point represents 
one material and when it was 
published. Black points repre-
sent when literature values were 
published. Red points indicate 
points explored by the function 
before finding the optimal 
candidate
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hand that allowed us train models for the high-dimensional 
compositional space starting with a limited dataset of 
records from the literature. We created and compared ANNs 
and RFs and evaluated their performance to predict ionic 
conductivity from composition. We took special interest in 
the various sources of error in this process of using machine 
learning for material science, including discrepancies in the 
reported literature data and differences in how much each 
particular element is represented.

Building on these models, we assessed the possible use 
of active learning on experiments selection. We compared 
different acquisition functions within the active learning 
framework to assess how many tries it would be needed 
starting from a small subset of the data to find our best per-
former. We found that the best performer can be found using 
only 50% of the experiments that a random sampling of our 
unknowns would require. In addition, we evaluated how 
many experiments would it take if we started with the old-
est points in the initial dataset to find the optimal candidate 
found to date, and found that we still show a 30% reduction 
in the number of experiments needed. Our results show that 
active learning approaches like the one described here can 
contribute to design of experiments.

In general, active learning approaches are restricted by the 
size and underlying dimensionality of the initial dataset for 
the application, the creation of an accurate surrogate model 
and the constraints of querying results from the informa-
tion sources. Our results mirror other successful studies that 
made use of active learning to guide experimental searches 
for materials discovery with limited datasets [51, 52].
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