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Abstract

Growing demand in applications like portable electronics and electric vehicles calls for cost-effective, safe, and high-per-
formance energy storage systems. Development of solid-state electrolytes with Li* ionic conductivities comparable to those
of the current liquid chemistries is an important step towards meeting these needs. Unfortunately, one of the most promising
solid electrolytes known to date, lithium lanthanum zirconium oxide (LLZO) garnets, exhibits far from ideal ionic conductiv-
ity. Thus, significant efforts, often through aliovalent substitution, have been devoted to increasing their ionic conductivity.
Given the high-dimensional design space involved and the time required for synthesis, processing, and characterization of
new materials, brute force approaches are not ideal to identify optimal compositions. We assess whether machine learning
tools can be used to effectively explore the design space of LLZO garnets and potentially reduce the number of experiments
involved in their development. We collected, curated, and filtered all the experimental results of Li* ionic conductivity in
LLZOs published in the scientific literature. Exploration of this data provides insights into the mechanisms that govern ionic
transport in these oxides. Furthermore, we show that active learning with predictive models based on random forests can
effectively be used with current data for the design of experiments. Our results indicate that the current highest Li* ionic
conductivity garnet LLZO could have been discovered with only 30% of the experimental studies conducted to date. All

data and models are available online and can be used to drive future investigations.

Keywords Active learning - Solid electrolytes - Materials design - Materials data

Introduction

The discovery, optimization, and deployment of new solid
state electrolytes for energy storage with improved prop-
erties are key to future safe and high-performance batter-
ies for portable, wearable, and transportation applications.
Substitution of current liquid materials with solids would
unlock an enormous potential for higher energy density and
dramatically improve battery safety [1]. Solid-state electro-
lytes offer additional benefits in terms of operating tempera-
ture ranges, as well as increased mechanical stability and
resistance to dendrite growth [2]. Unfortunately, the ionic
conductivity in solid electrolytes (the highest reported value
is 1073 S/cm) falls short when compared to their liquid coun-
terparts that typically exhibit values at the 1072 S/cm level
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which are needed for commercial applications. Significant
efforts are currently underway to address this gap. Current
solid-state electrolyte materials can be categorized based
on their chemistry; they include oxides, sulfides, hydrides,
halides, and polymers. None of these materials excel in
all the required properties for battery applications such as
area-specific resistance, ion selectivity, chemical stability,
mechanical properties, and processability [3].

Among oxides, a promising solid electrolyte is the gar-
net Li;La;Zr,0,, (LLZO); it shows good chemical stability
against Li metal [4] and a wide electrochemical window
of operation [5]. LLZO was first reported by Murugan
et al. in 2007 to exhibit an ionic conductivity as high as
3.0 x 107* S/cm [6] at 25°C. This garnet can crystallize
in two structures, tetragonal and cubic, whose Li* ionic
conductivity differs by two orders of magnitude at room
temperature. The ionic conductivity of the garnet tetrago-
nal phase was measured as 5.2 X 107% S/cm [7]. Stabili-
zation of the cubic polymorph at room temperature via
the introduction of substitutional Al atoms in the lithium
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sublattice was reported with an improved ionic conductiv-
ity at 4.0 x 10~ S/cm [8]. Ceramic garnet oxides based on
LLZO have since gained popularity as the addition of alio-
valent dopant elements such as Ga, Ta, Nb, and Bi results
in significant improvements in the Li* ionic conductivity
yielding values from 107> to 1073 S/cm [9-11].

Based on first principles calculations, researchers have
proposed a variety of substitutional elements predicted to
form stable structures when added to LLZO [12], resulting
in a multi-dimensional design space which remains largely
unexplored both across the periodic table and composi-
tions. Challenges in synthesis and characterization make
brute force testing of a large fraction of the possible garnets
impractical. Synthesis of well-consolidated garnet oxides
with low porosity, critical to attaining high Li* conductiv-
ity, is time consuming and expensive. In addition, sintering
requires high temperatures (over 1100 °C) and the garnet
needs to be protected against oxidation and moisture [13]. A
further hindrance in the selection of promising compositions
is the lack of a complete understanding of the mechanisms
underlying the effect of aliovalent dopants on Li* ionic
conductivity. Current hypothesis is based on the interplay
between the occupancy of the lithium sublattice [14-16],
the changes in the lattice parameters introduced by elemental
substitution [17, 18] and changes in grain growth induced by
the doping elements [19, 20].

Active learning, a subset of machine learning, refers to
systems that can learn dynamically by analyzing data and
developing queries in an interactive process. Starting with
an initial set of data points, these algorithms develop pre-
dictive models and apply them to design future data queries
(experiments in our case) to test various hypotheses such
as overall reduction of uncertainty or the maximization/
minimization of an objective function [21]. Ling et al. [22]
proposed a framework to use random forest with quantified
uncertainties to guide experimental search. They found that
even with relatively small datasets machine learning can be
used to identify the optimal performance within in a closed
pool in an optimal fashion, i.e., with the fewest experimental
iterations. Our results indicate that a reduction in the number
of plausible experiments by 30% is possible in efforts to
synthesize garnets with high ionic conductivity. We note that
this work focuses on a single figure of merit, lithium ionic
conductivity, and that there are several other properties that
need to be optimized on a material to have practical applica-
tions as a solid-state electrolyte.

The remainder of the paper is organized as follows.
“Data Collection, Curation, Publishing, and Filtering” sec-
tion discusses our data collection and curation process after
which, and in “Predictive Models” section, we model the
data. “Active Learning” section introduces our work on
active learning and in “Conclusions” section conclusions
are drawn.
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Data Collection, Curation, Publishing,
and Filtering

Driven by the goal of faster and less costly discovery and
deployment of materials [23], significant developments
in cyber-infrastructure to make materials data findable
and accessible have occurred, see, for example, Refs. [24,
25]. These repositories are reliant on authors voluntarily
sharing data with the community, although federal agen-
cies often mandate data to be publicly available. Prior to
our work, the data of interest for our application were not
available in a minable form. Therefore, we performed an
extensive literature search for Li+ experimental conductiv-
ities in ceramic materials with the garnet structure similar
to LLZO. This resulted in 40 peer-reviewed publications
that satisfied the following conditions: i) reported mini-
mum values or the absence of impurity phases (in particu-
larly Al contamination), and ii) documented procedures
and values of pellet sintering temperatures, including the
addition of sintering aids for pellet manufacturing. Even
after this initial filtering, many of the publications lacked
details of processing, microstructure, and defects known
to affect lithium-ion conductivity.

The collection process resulted in information on 188
garnet oxide compositions as entries. This data collection
process took approximately three months and resulted in
100 unique garnet compositions published between 2005
and 2020. Inspired by FAIR principles of making data
findable, accessible, interoperable, and reusable [26], the
resulting curated data were published in Citrination [27],
an open platform to share datasets and models powered
by Citrine Informatics. In addition, the models and tools
presented here are available in nanoHUB [28], a platform
for online simulations and modeling [29].

Given the high dimensionality of the data, we applied a
series of additional filters to reduce the amount of experi-
mental detail gaps. A graphical representation of these
filters can be seen in Fig. 1. We focused on ionic conduc-
tivities measured between 18 and 32 °C. The density of
the ceramic pellet can drastically affect ionic conductivity.
Unfortunately, this parameter is often not reported in the
publications collected. We used sintering temperature, a
more commonly reported processing parameter, as a surro-
gate since high-temperature sintering often result in good
compaction [30]. To account for the effect of pellet den-
sity on ionic conductivity, we included only materials pro-
cessed at sintering temperatures above 900 °C. In addition,
we only considered garnets stabilized into their high-ionic
conductivity cubic phase and discarded those in the lower
ionic conductivity tetragonal polymorph [31]. Finally, we
removed duplicate data reported in different publications
and replaced the ionic conductivity values with the median
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Initial Set 188

Cubic structure 180

Sintered at > 900°C 174

Measured at < 32°C

134

100

Fig. 1 Filters applied to the compositions drawn from the literature.
Numbers represent how many entries were left after applying the fil-
tering operation

of their measurements, an approach that has been reported
to reduce the impact of data uncertainty [32]. In this work,
we use the nominal compositions reported by the authors.
We note that, due to the volatility of Li, the actual compo-
sition could deviate from these values.

The resulting data, after filtering, consists of 100 unique
compositions. Each and every entry includes Li, La, and O
and a combined 14 substituent elements are represented. The
frequencies of the remaining elements are listed in Table 1.
Similarly, Table 2 shows the frequency of the oxides of dif-
ferent numbers of components.

Before describing the application of data science tools
for design of experiments, we explore the collected data.
Li* ions occupy a sublattice containing (24d) tetrahedral
and (96h) distorted octahedral sites in the Ia3d space group
cubic garnet and the various dopants affect the occupancy of
these sites. Given that ionic transport is mediated by vacan-
cies, Fig. 2 shows the ionic conductivities of materials in our
dataset as a function of Li* per formula unit. The colors indi-
cate distinct main dopant, i.e., the element with the larger
atomic ratio between the dopant and the element in the site
occupied. It is clear from the plot that the chemical nature
of the dopant is important. In addition, it is also evident

Table 1 Frequency per substituent element

Element Frequency Element Frequency
Zr 70 Gd 10
Nb 40 Ca 7
Ta 29 Bi 6
Ga 16 Al 5
Y 15 Sc 3
Sr 11 Nd 3
Ba 10 Sb 2

that a rough maximum in conductivity exists around 6.3-6.5
Li* per formula unit, representing a sublattice occupancy
of 50-52 out of the 72 possible sites. The number of avail-
able sites is given by 24+96/2 as octahedral sites occur in
neighboring pairs that cannot be simultaneously occupied
be two ions [14].

This maximum Li-site occupancy likely indicates an
optimal balance between Li* and vacancy concentrations
and agrees with prior compilations of LLZO-based ceramic
garnets [33]. We note that Thompson et al. [34] observed a
maximum in conductivity in Ta-doped garnets near 6.5 Li*
per formula unit and attributed the decrease after the maxi-
mum to a transformation from the cubic to the tetragonal
phase. In our case, all data points correspond to the cubic
phase.

Predictive Models

Machine learning tools, specifically active learning, have
been shown capable of reducing the number of experiments
required to achieve a design goal, see, for example, Refs.
[35, 36]. The predictive accuracy of the underlying models
and, consequently, the efficacy of the approach, relies heav-
ily both on the amount of training data and on the choice
of descriptors or features used to express each entry [37].
Good descriptors uniquely describe the materials involved,
should be significantly less onerous than the model output
property, and are expected to correlate with the quantity of
interest. This presents an opportunity to incorporate domain
knowledge and physical intuition into otherwise agnostic
models [38].

We found that the Materials-Agnostic Platform for
Informatics and Exploration (Magpie) descriptors from
Matminer [39] provides an appropriate set of descriptors
for our application. Magpie includes information that can
be easily obtained from composition such as valence orbital
information, elemental fractions, and ionic properties. All
descriptors that showed no variability across our database
were removed.

Groups of descriptors are listed in Table 3. Elemental
properties consist of statistical values (mean, mode, and
maximum) of properties of the elements involved. Elemen-
tal fractions represent the atomic fraction of each element

Table 2 Frequency per number of components in garnet oxide

Num. components Frequency
4 Component Oxides 6
5 Component Oxides 62
6 Component Oxides 31
7 Component Oxides 1
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Table 3 Descriptors used to characterize materials by their composi-
tions. Subsets of descriptors are obtained from the magpie platform
and melting temperature is taken from the original publication of the
data point

Attributes Number of
attributes
Elemental properties 77
Elemental fractions 17
Stoichiometric attributes 6

Valance orbitals

Experimental temperature

contained in the composition. Stoichiometric attributes rep-
resent the fraction of elements present in the composition
and several L” norms of these fractions. These attributes are
independent of the elements involved. Valence orbitals rep-
resent the average fraction of electrons in each of the valence
shells between elements present. Finally, the temperature of
the experimental measurement of the ionic conductivity was
added as an additional descriptor, resulting in a total of 105.

As referenced above, lithium ionic conductivity in cubic
LLZO-type garnets has been shown to have a maximum for
lithium per formula unit near to 6.3-6.5 Li*, a phenomenon
discussed in “Data Collection, Curation, Publishing, and Fil-
tering” section. This quantity is fed to the model via descrip-
tors like the elemental fractions and stoichiometric attrib-
utes. For example, elemental fractions take values of the
atomic fraction related to whether any element from the peri-
odic table is present in the composition. Thus, this descriptor
effectively captures the distribution shown in Fig. 2.

After identifying the data and descriptors, we explore
two widely used machine learning tools for regression, ran-
dom forests (RFs), and artificial neural networks (ANNs).
RF models consist of an ensemble of decision trees, struc-
tures that perform tests to discriminate entries based on its
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attributes. For regression, the model returns an average pre-
diction from the outputs of each tree, to limit the drawbacks
in performance from decision trees when working with non-
linear data. RF models were created to counter the tendency
of individual decision trees to overfit. ANNs are biologi-
cally inspired, universal approximators of nonlinear convex
functions. They have been successfully used in materials
science, chemistry and many other physical sciences, see
for example [40—42]. It is important to recognize that small
datasets represent a challenge for machine learning models,
in particular ANNs [43], and thus, the predictive results need
to be developed and used with this in mind.

Significant progress has been made in uncertainty
quantification for RFs, and this has been implemented in
the random forests with Uncertainty Estimates for Learn-
ing Sequentially (FUELS) framework described by Ling
et al. [22]. Here a sample-wise uncertainty estimate can
be obtained by evaluating the average of the infinitesimal
jackknife variance and the jackknife-after-bootstrap vari-
ance [44] estimates plus a Monte Carlo sampling correction
term. Calibration of the uncertainty when compared to the
error of the prediction can be gauged by the calculation of
residuals, normalized by the sample uncertainty, as perfectly
calculated uncertainties would be represented by a Gauss-
ian distribution with zero mean and unit standard deviation.

For our model RFs, the number of estimators (trees) was
optimized up to a point in which no further improvement
was observed and set at 500 estimators. Trees were allowed
unrestricted depth to encourage them to grow until no more
divisions are possible. Data were not normalized for the ran-
dom forest. The dataset was split into 90% training and 10%
testing. No independent validation set is used, as RFs mod-
els with bootstrap aggregation take into account the error
of trained trees on a subset of the training data unseen by
these estimators, the basis for the out-of-bag error. Models
and uncertainty estimates implemented in this study were
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implemented using tools from the open source Lolo scala
library [45].

In the case of ANNSs, we created an architecture with
three densely connected hidden layers in a feed-forward
network. The optimizer used was Adam, an adaptive learn-
ing rate algorithm [46]. Loss observed was mean absolute
error (MAE). We used RELU (REctified Linear Unit) activa-
tion functions. All bias terms were initialized to zero, and
all weights were initialized from random values sampled
from a normal distribution of mean zero and unit standard
deviation. A 20% Dropout regularization was added between
each of the layers. Models with other regularization tech-
niques and varying architectures result in similar, if slightly
worse, accuracy; those results can be found in the online
tool [28]. The data were split into 90% training and 10%
testing sets. From the training subset, 10% was sequestered
from the backpropagation and used as a stopping criterion.
The optimization stops once the MAE on this sub-set fails to
decrease by at least 1 x 107!° for 1000 steps to limit overfit-
ting. Data were normalized using a standard score normali-
zation. The network was trained with an early stopping cri-
teria [47] to avoid overfitting by restoring the parameters to
those of the best epoch in terms of the validation set MAE.
Implementation of this network was through the Tensorflow/
Keras software package [48].

Figure 3 showcases the performance of these algorithms
as a parity plot comparing experimental values of lithium
ionic conductivity with model predictions. Green dots rep-
resent training data and red denotes testing. Repeating the
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training ten times with random selection of training and
testing data results in an average MAE on the testing set of
1.09 x 10~* S/cm for the ANN and 0.92 x 10~ S/cm for the
RF. While neural networks often outperform random forests
for regression predictions for different materials properties
[49], we find comparable performance for our dataset in the
average testing MAE. Having established similar accuracies
and given the significant work on uncertainty quantification
on RFs (important for active learning) we will continue this
study with RFs and framework for uncertainty estimates pro-
posed by Ling et al. [22].

Visual inspection of Fig. 3 indicates that the RFs are
able to assign larger uncertainties to cases where the pre-
dicted mean deviates the most from the experimental val-
ues. To assess the accuracy of the uncertainty estimates
of the RFs, we computed the distribution of residuals of
the mean prediction of the RFs normalized by their uncer-
tainty through a 10-fold cross-validation, see Fig. 4. Accu-
rate models and uncertainty estimates would result in a
Gaussian distribution with mean of zero and unit standard
deviation. We find a small left skew (residuals are defined
as the model prediction minus the true experimental
value), indicating a tendency of the model to slightly over-
predict the properties. We attribute this overestimation of
ionic conductivities by the RFs to the high dimensionality
of compositional space and sparse training data. As can be
seen in Table 1, representation of dopants is uneven and
the testing set might contain elements that are not repre-
sented in the training, like Sc, Nd, and Sb. Elements might
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Fig. 3 Parity plots for prediction of Li-ion conductivity in garnets using a random forest with uncertainty and b artificial neural network. The
training set for the models is shown in green, while the testing set is shown in red. Uncertainty estimates are included for the random forest
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Fig.4 Probability densities of
normalized residuals computed
via tenfold cross-validation for
the random forest. Solid line
represents perfectly calibrated
uncertainties

also be present in the available data only as part of co-
doped substitutions, an interplay that is only addressed in
the generation of the descriptors. Also, we note the uncer-
tainty in the data itself affects the model performance, as
the measured values for conductivity can be affected by
the experimental setups for synthesis and the measure-
ment techniques. Something that is relatively unique to
this problem deals with the density of the ceramic pellets,
which is sometimes not reported in the literature but can
drastically affect the ionic conductivity measurements for
the same composition [30].

To better understand the performance of the models, we
now analyze a selected test set in detail. Table 4 lists the
compositions in the test set (that the model has not seen)
in increasing order of experimental ionic conductivity
and includes experimental values, mean RF predictions,
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discrepancies, and RF uncertainty estimate. This set cor-
responds to the set shown in Fig. 3a.

Importantly, this model can accurately rank these compo-
sitions, capturing the trends seen for different dopants. These
predictions are in remarkable agreement with the experimen-
tal values considering the limited data obtained from the
literature and the selection of descriptors based solely on the
material composition. In this example, deviations of some of
the predictions can be attributed to the materials containing
one or more of the infrequent elements listed in Table 1: Ca,
Sc, Bi, Al, and Sb. The model had only limited informa-
tion during training on how these specific dopants affect
conductivity. Regarding uncertainties, it is also interesting
to note that an increase in the predicted mean values results
in larger uncertainties, which would indicate that the model
understands that it needs to estimate greater uncertainties for
these points. In order to address the challenge posed by the

Table 4 Compositions included
in the testing set of our random
forest model
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Composition Experimental ionic con-  RF prediction ~ Residual RF uncertainty
ductivity 107* S/cm 107* S/cm
LisLa,Nb,Ca,0,, 0.016 0.844 0.828 0.883
LisLa,Nb,Sr,0,, 0.042 0.545 0.503 0.712
Lig 7sLasZr; 75Bi 250, 0.05 0.704 0.654 1.226
LisLa,Sb,Sr,0;, 0.066 0.703 0.637 0.896
LisLa;Nb; 75Y( 2501 o5 0.968 1.545 0.577 2.016
Li,La, sZr, sNb, sCa, 50, 29 1.799 —1.101 0.946
Lig ,LasZr; ,Ta, ;0,5 32 4771 1.571 2.802
Lig JLa;Zr,Ga, Al ;0,5 7.9 8.364 0.464 3.517
Lig JLa3Zr,Gay 15Al) 0502 8.8 10.158 1.358 2.868
Lig 3sLa3Zr,Gay 551, 10y 13 11.443 —1.557 4.209
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three orders of magnitude variation in experimental ionic
conductivities, we also trained a model on the logarithm
of the ionic conductivity but found no improvements in the
testing MAE. Details on the transformations of the target
ionic conductivity data are detailed in Figure 1 of the Sup-
plementary Material.

To further explore the model, we characterized the
predictions as a function of Ta content, since multiple
data points exist. For this analysis, we will use the model
described in “Predictive Models” section and used for
Fig. 3a and Table 4, keeping the same training and testing
data. We explore how the model would predict for one of the
most common elements in the database, Ta. We explore the
model’s interpolation between experimental values and its
accuracy for Ta doping in Fig. 5. We plot the predicted ionic
conductivities for Li,_ La;Zr,  Ta O,, garnets as a function
of x and include the experimental results (individual experi-
mental are shown as open circles and the median values
used for training or testing are shown as crosses). Since RFs
are mathematically incapable of extrapolation, we select the
range so that the predictions were not outside of the bounds
of the training data. We find that the model is able to capture
the overall trends of how the addition of Ta affects ionic
conductivity. Differences in the literature reported values
speaks to the significant effect of experimental conditions,
in particular on sintering temperatures and densities, and can
help explain some of the uncertainties and discrepancies in
the model.

10 © O Experiment
o X Median
o x —— Prediction
8

lonic Conductivity x10~* (S/cm)

N
OO0
(€24

0.0 0.2 0.4 0.6 0.8 1.0
Ta Content

Fig. 5 Ionic conductivity of Ta-doped LLZO as a function of compo-
sition. Experiments are marked with open circles. Median of dupli-
cate experiments are marked with crosses. RF predictions are marked
with a red line with their corresponding uncertainties

Having established the ability of the RF model to describe
the experimental data, we illustrate its ability to generalize
and explore the space spanned by a pair of dopants. To gen-
erate this test space, we use a grid of compositions with the
selected pair of dopants and establish the overall composi-
tion following the nominal stoichiometric rules to ensure
stable structures. For example, following Wagner et al. [50]
we consider that a Bi (5+) replaces one Zr (4+) atom and
one Li(+) atom to create compositions following Li,;_ La;
Zr,_,Bi O,. Figure 6 shows color-intensity plots of the pre-
dicted ionic conductivity, for three different pairs of dopants.
Experimental compositions in our dataset are marked as dia-
monds, and compositions that were part of the testing set are
marked with an extra cross. All mapped compositions have
measured temperature input at 25 °C. Figure 6 clearly shows
constant value bands since the RFs models would output
constant values outside of their training range.

These maps can help understand how and what the model
learned from its training, even though most of the composi-
tions do not have experimental values to validate our predic-
tions. Figure 6a maps space including significant experimen-
tal data while Fig. 6b shows a case where the two dopants
have been explored individually but not in combination.
Finally, Fig. 6¢ explores the dopants of the best perform-
ers experimentally reported (Ga, Sc). The plots reveal how
the RFs divide space and generalize from the training data.
These models are tools for interpolation in a high dimen-
sional space, thus results that involve extrapolation should be
used with extreme precaution. These models, both RFs and
ANNSs, are available for online, interactive, simulations in
nanoHUB as a Jupyter notebook “Machine learning guided
design of ceramic oxides for batteries”, accessible through
a tool [28] in which users can access and run the models or
retrain them changing hyperparameters within the online
tool.

Active Learning

Following our general analysis on the performance of the
models, we now focus on active learning. For this endeavor,
we will posit an artificial problem where we start with 10
data points out of the 100 total and try to find the highest
conductivity garnet in the fewest number of experiments.
At each step of the active learning workflow, we train a RF
with the available data and use it to select one of the hidden
experiments to be revealed next; in a real application this
would involve running an actual experiment. The selection
of the most promising new experiment is done using various
information acquisition functions, discussed below. We fol-
low the framework proposed by Ling et al. [22].

We compare four information acquisition functions:
maximum likelihood of improvement (MLI), upper

@ Springer
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Fig.6 Random forest model predictions for a grid of possible combinations in a dual-dopant space. Diamonds represent experimental data from

the training

confidence bound (UCB), maximum expected improve-
ment (MEI), and maximum uncertainty (MU) against a
random benchmark. To determine the next candidate to
query, each of these functions will explore the composi-
tional space according to their respective equations.

e MLI tells us that we are expecting to query a region
for which we see an improvement and sufficient uncer-
tainty to have a high likelihood of getting a larger
value.

E[M(x,)] - E[M(xbest)]
oM (x,')]

*

X" = arg max

e UCB queries the sample with the maximum value of its
mean prediction plus its uncertainty.

x* = arg max[E[M(x;)] + o[M(x;)]]

@ Springer

e MEI takes the maximum value of the prediction of the
model over the possible experiments to run.

x* = arg maxE[M(x,)]

e MU queries the sample with the highest uncertainty,
regardless of the expected mean value.

x* = arg maxo[M(x;)]

In these equations, x* represents the next sample to query, x;
are the possible experiments to run, x,. is the current best
result in our training set, and E[M(x)] is the expected value
of the prediction of the model at point x. The “arg max”
(arguments of the maxima) operation returns the sample
where the function is maximized.

Our exercise starts with 10 randomly selected entries out
the 100 total and iteratively applies active learning until the
highest ionic conductivity is found. At each step, we use
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Fig.7 Comparison of different information acquisition functions.
Black dots indicate the starting initial set. Gray dots represent
unknown but available points for queries. Colored dots indicate the
points explored by the active learning approach. The first plot is a

the available data to develop a model and use the model
in conjunction with the each of the information acquisi-
tion functions to select the next experiment from the list of
hidden entries. If the chosen entry is not the maximum, it
will be added to the set and the cycle starts again. Figure 7
presents the results of the various acquisition functions and
a benchmark of random selection. Black dots indicate the
initial set that is common to all acquisition functions, gray
points show the values that are unknown to the model but are
available for querying, the colored points indicate values that
were explored by each of the acquisition functions prior to
reaching the maximum value from our closed pool, light to
dark indicate selection order. The first panel shows a trend-
line that keeps track of the best conductivity for individual
acquisition as a function of active learning step.

It is clear that all acquisition functions outperform ran-
dom sampling. MEI, UCB, and MLI can find the optimal
candidate in about 30% of the attempts required by random
sampling and far below the cost for a brute force approach to
run the entire closed pool of simulations. These three infor-
mation acquisition functions take an exploitative approach

- Lecka e
Test Candidates

Test Candidates

summary in which we track the highest value of ionic conductivity
queried by the functions against the number of experiments. An ani-
mated version of the exploration is available on nanoHUB.org [28]

to explore the space, as they use values that are similar to
the maximum value that has already been found and trained
on. UCB and MLI also make use of information about model
prediction uncertainty. As a result, they explore composi-
tions that have relatively high predictions for conductivity
while keeping low values unexplored. In contrast to these
exploitative functions, MU is an approach for exploration,
which compares well against random in this application, but
does not guarantee maximizing a conductivity value as it
depends primarily on the uncertainty regions.

To quantify the relative performance of each information
acquisition function, we performed this experiment 30 times
with a randomly chosen set of 10 points for the initial set.
The results, Fig. 8a, show that active learning can reduce the
number of experiments required to reach the best candidate
to less than 50% of the runs when compared to randomly
sampling out of the remaining points in our closed pool. We
note that this is an estimate and the set of possible experi-
ments come from the literature and were chosen by experts.

To further evaluate the potential reduction of the design
time, we conducted a test in which we started with an initial
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Fig.8 Mean number of predictions per information acquisition func-
tions for the 30-trial runs of the active learning model. Dashed line
represents half of the experiments. In a the model samples 10 experi-

set containing the 10 earliest experiments in our dataset.
These compositions are listed in Table 1 of the Supplemen-
tary material and include LLZO, first reported in 2007 [6].
The results of this study are shown in Fig. 8b.

The convergence criterion for our demonstration is find-
ing the material with the highest ionic conductivity. In a
real-world application this will be determined by achiev-
ing a desired value or spending an experimental budget. To
drive this point, we speculate what the timeline of published
results on LLZO-type garnets would have looked like if
the experimental work had been informed by the random
forest framework. In Fig. 9, we start from the 10 oldest

Fig.9 Possible timeline of 104

b
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Number of Experiments
w
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MLI
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ments at random. In b the model starts with the 10 oldest experi-

ments. Black lines represent the sample standard error E(x) = —=.

V30

Colors are matched to Fig. 7 for visual comparisons

experiments and we allow the acquisition function to select
which material to synthesize next. Each subsequent point
sits at a spot marked by the publication of a new material.

Conclusions

We used data collection, curation, filtering, and modeling to
explore the applicability of materials informatics approaches
in the context of Li+ ion conductivity in doped garnets. We
generated a cost-efficient set of descriptors based on pub-
lished literature and domain knowledge of the problem at

published experiments informed
with the maximum likelihood
of improvement acquisition
function. Each point represents
one material and when it was
published. Black points repre-
sent when literature values were
published. Red points indicate
points explored by the function
before finding the optimal
candidate
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hand that allowed us train models for the high-dimensional
compositional space starting with a limited dataset of
records from the literature. We created and compared ANNs
and RFs and evaluated their performance to predict ionic
conductivity from composition. We took special interest in
the various sources of error in this process of using machine
learning for material science, including discrepancies in the
reported literature data and differences in how much each
particular element is represented.

Building on these models, we assessed the possible use
of active learning on experiments selection. We compared
different acquisition functions within the active learning
framework to assess how many tries it would be needed
starting from a small subset of the data to find our best per-
former. We found that the best performer can be found using
only 50% of the experiments that a random sampling of our
unknowns would require. In addition, we evaluated how
many experiments would it take if we started with the old-
est points in the initial dataset to find the optimal candidate
found to date, and found that we still show a 30% reduction
in the number of experiments needed. Our results show that
active learning approaches like the one described here can
contribute to design of experiments.

In general, active learning approaches are restricted by the
size and underlying dimensionality of the initial dataset for
the application, the creation of an accurate surrogate model
and the constraints of querying results from the informa-
tion sources. Our results mirror other successful studies that
made use of active learning to guide experimental searches
for materials discovery with limited datasets [51, 52].

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s40192-021-00214-7.
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