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Materials with higher operating temperatures than today’s state of the art can
improve system performance in several applications and enable new tech-
nologies. Under most scenarios, a protective oxide scale with high melting
temperatures and thermodynamic stability as well as low ionic diffusivity is
required. Thus, the design of high-temperature systems would benefit from
knowledge of these properties and related ones for a large number of oxides.
While some properties of interest are available for many oxides (e.g., elastic
constants exist for > 1000 oxides), the melting temperature is known for a
relatively small subset. The determination of melting temperatures is time
consuming and costly, both experimentally and computationally; thus, we use
data science tools to develop predictive models from the existing data. Since
the relatively small number of available melting temperature values precludes
the use of standard tools, we use a multi-step approach based on transfer
learning where surrogate data from first principles calculations are leveraged
to develop models using small datasets. We use these models to predict the
desired properties for nearly 11,000 oxides and quantify uncertainties in the

space.

INTRODUCTION

Materials capable of operating at high tempera-
tures are critical for applications ranging from
aerospace to energy, and increasing their operating
envelope over the current state of the art is highly
desirable. For example, increasing the operating
temperature of land-based turbines by 30°C would
result in an approximately 1% efficiency increase
and can translate into sector-wide fuel savings of
$66 billion with significant environmental impact
over a 15-year period.? In addition, high tempera-
ture metallic alloys can enable rotation detonation
engines for hypersonic vehicles.®> In all of these
applications, high-temperature mechanical integ-
rity or high strength is required, and so is oxidation
resistance. The latter can be achieved either by the
formation of a protective oxide scale during opera-
tion* or by the incorporation of a protective oxide
(often sacrificial) during fabrication.>® This article
combines existing experimental, first principles

(Received February 20, 2020; accepted September 4, 2020;
published online November 10, 2020)

data and physics-based models with data science
tools, including uncertainty quantification, to create
a comprehensive dataset of potential oxides and the
physical properties relevant for materials selection.

In recent years, complex concentrated alloys
(CCAs, multi-principal component alloys that lack
a single dominant component) and the closely
related high-entropy alloys (HEAs)”® have
attracted significant attention as they have been
shown to exhibit properties not possible with tradi-
tional metallic alloys.” Particularly interesting for
high-temperature applications are refractory CCAs
(RCCAs),"® which have emerged as an attractive
alternative to current superalloys. While RCCAs
exhibit high-temperature strength surpassing the
state of the art, their oxidation resistance is far from
ideal. For example, the mass gain at T = 1000°C for
TiZrNbHfTa during 1 h in air is 65 mg/cm?, almost
an order of magnitude higher than the CryOs-
forming wrought Ni-based superalloys.!"'? Thus,
efforts are underway to design RCCAs capable of
growing effective oxide scales at temperatures >
1000°C.'%13 Beyond RCCAs, high-temperature

103


http://orcid.org/0000-0001-8330-0217
http://crossmark.crossref.org/dialog/?doi=10.1007/s11837-020-04411-1&amp;domain=pdf

104

protective oxides are required in a range of appli-
cations. Carefully engineered oxide scales can be
used to prevent further oxidation and embrittle-
ment of alloys in high temperature applications,'!2
corrosion resistance in adverse environments,'? or
as a protective coating during aerospace re-entry
applications.®

Desirable properties in these oxides include high-
melting temperatures, good thermodynamic and
mechanical stability to facilitate their formation
over competing oxides, and low oxygen ion and
cation mobility to slow down oxidation kinetics.
Other properties are also desirable: a coefficient of

thermal expansion (CTE) matching that of the

substrate, a Pilling-Bedworth ratio (defined as —%,’thdl

with V the molar volume) near one, and good
adhesion to the substrate.!* Designing RCCAs with
desirable oxide scales presents additional chal-
lenges since the large number of metallic elements
results in various possible competing oxides and
complex multi-layer scales.'’ The design of RCCAs
with appropriate high-temperature oxidation resis-
tance and the selection of oxide coatings that can be
added to structures would benefit enormously from
an extensive database of all possible high-temper-
ature oxides and their properties of interest.

Unfortunately, the required information is not
available for the majority of the tens of thousands of
stable oxides known. To date, < 60,000
metastable oxides have been studied by the Mate-
rials Project (MP) via first principles calculations.'®
Of these, about 11,000 are either the ground state or
low-energy metastable structures at zero tempera-
ture. Elastic constants are known for a small sub-
set, totaling roughly 1000 oxides in the MP
database.'® However, melting temperatures are
known for an even smaller subset. In this article
we use data science tools including machine learn-
ing to generate materials property information that
can be used for materials selection for the majority
of known oxides. We build on the fact that some of
these properties are correlated to each other
because of the similar underlying physics and can
be used to create physics-based surrogate models of
the quantities of interest to address the challenge of
small datasets.

Cyber-infrastructure for materials data
Motivated by the need for faster and less expensive
materials discovery and deployment cycles,'® great
strides have been made in the development of
cyberinfrastructure for materials science and engi-
neering over the last decade. Examples of this
infrastructure include open and queryable reposito-
ries with first principles data, such as MP or the
Open Quantum Materials Database (OQMD),'*!7
open repositories of materials properties such as
Citrination,’® and even published interatomic
potential models for atomistic simulations.’® In
addition to data and models, platforms for online
simulations and data analysis such as nanoHUB?°
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and Google Colab®! lower the barrier of access to
simulation and data science tools for research and
education.?? These repositories are making strides
towards making data findable, accessible, interop-
erable, and reproducible (FAIR).?®> Data can be
queried through online user interfaces or via appli-
cation programming interfaces (APIs) for rapid
querying and analysis of data.

Transfer learning for materials selection
Materials selection requires access to data and
often involves a multi-objective optimization.?*?°
This was traditionally done with existing experi-
mental data, sometimes combined with simple
models.?® More recently, ab initio electronic struc-
ture calculations have been incorporated to such
efforts,?” and progress in multiscale modeling is
providing additional tools to materials design and
optimization.?® In addition to such data, machine
learning tools are being used to assess the current
state of knowledge and make decisions. In our
application, it would be tempting to use machine
learning to develop models to predict our quantities
of interest (Qol), such as melting temperature, from
compositions using the available data; these models
could then be used to explore the properties of a
wide range of oxides. Unfortunately, the limited set
of known melting temperatures precludes such an
approach as standard ML methods require vast
amounts of data, on the order of 103-10° datapoints.
The lack of data is common in materials applica-
tions, and several approaches have been developed
to address it.

Many of the most relevant studies have success-
fully been able to use traditional machine learning
approaches, albeit on minimal datasets ranging
from 10!-102, through the use of careful descriptors
and transfer learning approaches. This has been
used, for example, to screen billions of compositions
for Li-ion conductivity,?® using preliminary ab initio
data to extend 101 compounds into a space of
54,779°° and showing that by distinguishing
between descriptors such as energy difference
between phases accurate predictions can be made
on datasets of as few as 82 samples.®! These
methods compensate the lack of large amounts of
data with domain expertise, physics, and chemistry.
These approaches are not unique to the field of
materials. In fact, they have been extensively used
in chemistry for polymer selection®? and design of
chemical compounds®® for decades.

One such method is to enhance the information
fed to the model by adding surrogate properties as
inputs. These surrogate properties should be both
easy to obtain and expected to correlate to the
quantity of interest. In this article, we use the oxide
stiffness (easily computable via ab initio simula-
tions) and melting temperature estimates using
Lindemann’s law®* as additional inputs to the model
to predict melting temperatures. Lindemann’s esti-
mates can be easily obtained from available
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properties and can be expected to serve as good
surrogates based on prior studies in oxides®® and
minerals.®® We note that stiffness and melting
temperature are both governed by the strength of
the inter-atomic interactions; there is a correlation
between these properties, and adding stiffness as an
input to the models results better accuracy.

CURRENTLY AVAILABLE DATA

The design or selection of protective oxide scales
would benefit from access to materials properties for
all possible oxides that are either stable or
metastable at the operating temperatures. As dis-
cussed above, a large number of oxides structures
are known, but high-temperature data, including
melting temperatures, are known for a small subset.
Thus, we start from all known oxides and combine
existing data with machine learning to provide
information about structures for which we lack
experimental data. This section explores the rele-
vant data available in online repositories, and
“Extending Oxide Data Via Data-Driven Transfer
Learning” section discusses the use, combination,
and extension of the data.

As discussed above, several materials data repos-
itories focusing on various types of data and mate-
rials classes are available today. We leveraged the
MP database, Citrination, and WolframAlpha.?”
The MP is a database with density functional theory
(DFT) results including crystal structure data,
relative stability to the ground state, elastic con-
stants for select materials, calculated x-ray diffrac-
tion (XRD) and x-ray photoelectron spectoscopy
(XPS) spectra, and even T = 0 K phase diagrams
for compounds. MP has information about a major-
ity of known oxides, and we start our search within
this list. The properties in the MP can be accurately
calculated from first principles calculations; how-
ever, properties such as melting temperature are
computationally too intensive for high-throughput
DFT calculations. Therefore we turn to repositories
with extended datasets for additional information
such as melting temperature and oxygen vacancy
formation energy (VFE).

The Citrination database'® is an open repository
where researchers can upload their own data and
share it with the community at large. At the time of
writing, citrination contains 454 public databases
curated by public users and Citrine staff. Databases
previously curated through research efforts have
been published in their database and are freely
available for download and use. For our efforts we
turned to Citrination for databases of oxygen VFE.

We were unable to find an electronic database
with melting temperatures for oxides. Most
reported melting points exist within individual
papers, collected handbooks, or commercial data-
bases. However, we were able to find some of these
properties in WolframAlpha, a general purpose,
queryable, compute engine. Using WolframAlpha,

we generated a list of melting temperatures for a
subset of the oxides queried from MP with elasticity
data.

The Materials Project: Basic Oxide Data

We accessed the MP database using the Pymat-
gen API®® and analyzed every oxide available. MP
contains information about 60,000 distinct oxides
(differing either by composition or crystal struc-
ture). All these structures were obtained by energy
minimization using DFT within the generalized
gradient approximation, and additional details of
the calculations can be found in work by Jain et al.>°
Confirming the metastability of these structures
would require positive phonon frequencies and
elastic constants to discard local energy maxima;
these quantities are not available for all these
oxides. To address this challenge we first filtered
the data to retain only structures that are 1 meV
above the convex hull (i.e., the predicted ground
state for that composition). We note that the
energies resulting from energy minimization corre-
spond to a temperature of T = 0 K (minus zero point
energy), and phases with free energy higher that
the ground state at 0 K can be stabilized at higher
temperatures because of entropic contributions to
the free energy. Furthermore, many
metastable structures are long-lived and used in
applications. After this stability constraint, we are
left with ~ 11,000 possible oxides. However, elastic
constants are documented in MP (from DFT calcu-
lations) for a subset of 855 oxides. To illustrate the
available data, Fig. 1 compares two properties of the
available oxides after filtering by energy stability
and elastic constants. We plot the ionic packing
fraction (defined as the total atomic volume assum-
ing hard spheres with the corresponding ionic
radius in the unit cell divided by the cell volume)
vs. density obtained from the crystal structure data.
Red points indicate oxides with at least one element
that is found in RCCAs: we select Ti, V, Cr, Zr, Nb,
Mo, Ru, Hf, Ta, W, and Re as well as Al, Cr, and Si
since they are useful additives. Of the 855 oxides
with elasticity data, 235 contain an element per-
taining to an RCCA or additive compound. The
figure also highlights common protective oxides
Al;O3 and CrqOg; as expected, these oxides have
high packing fractions (which correlate in low ionic
diffusivity). Interestingly, there are a number of
potential compounds with comparable properties to
both these common oxides.

With this basic information at hand, we now focus
on the remaining properties: melting temperature
and ionic mobility. While these properties can be
obtained, in theory, from first principles, they are
computationally very intensive and are not included
in the MP. Therefore we turn to other repositories
for additional DFT and experimental data.
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Fig. 1. Calculated ionic packing fraction of oxides and their queried densities. (a) Database curated post-energy stability filtering. (b) Database

curated post-elasticity filtering.

WolframAlpha: Melting Temperatures

At the time of writing, melting temperatures of
the oxides of interest were not available in materi-
als-specific online repositories. A single curated
inorganic melting point database on Citrination
exists, but many of the values are not oxides and do
not overlap where we have existing elasticity data.
Fortunately, WolframAlpha provides an API for
data exploration. Through a series of string queries
we obtained and curated melting points of 158
oxides into our database. Since these data are
significantly less abundant than the elasticity data
from Materials Project, we will consider the melting
point to be our harder to acquire, or more expensive,
set of data. Improvements to this dataset can be
made through literature searches, or analyzing
phase diagram textbooks, but our goal is to illus-
trate a rapid acquisition of data rather than the
traditional task of searching through physical
copies of information. Figure 2 shows the results
of the melting point query with respect to density
and IPF properties. RCCAs contaning oxides are
highlighted to guide the eye, and as expected a
number of them have comparable properties to
common oxides such as AlsO3 and CryOs.

Citrination: Vacancy Formation Energies
and Thermal Expansion

Tonic mobility is another critical material prop-
erty in the design of protective oxides; unfortu-
nately, ionic mobility (oxygen or cation) is not
widely available. However, since oxygen mobility
is mediated by vacancies, the vacancy formation

energy is a good surrogate for ionic transport: the
higher the vacancy formation, the lower the vacancy
concentration and oxygen ion mobility. Citrination
includes a database of nearly 2000 charge-neutral
vacancy formation energies of oxides based on first
princ'éples approaches originally published by Deml
et al.** Of this dataset, 1200 were unique oxide
compounds.

Another database of importance is available based
on work by Shick et al.*! containing 69 average
coefficient of thermal expansion (CTE) values
obtained from anharmonic phonon calculations.
We will consider the use of this database in future
work, but at this time the limited dataset provides a
great challenge to accurate predictions outside the
selected compounds via machine learning methods.
A transfer learning approach could be used, but our
focus here will be the melting temperature.

EXTENDING OXIDE DATA VIA
DATA-DRIVEN TRANSFER LEARNING

In summary, from online accessible databases we
were able to extract 11,000 stable and metastable ox-
ides from an initial 60,000 queries on MP. Of these
11,000 possible oxides roughly 1000 have existing
elasticity data. From the list of 1000 oxides with
elasticity information, only 162 melting points were
obtained through queries. In addition, we have VFE
values for 1200 cases and CTE for 69. Ultimately,
our goal is be to build models with each of these
properties and use the information leveraged from
each to extend a materials search into the original
11,000 stable and metastable oxides.
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Fig. 2. Queried melting points from WolframAlpha with bulk modulus (a) and IPF (b) properties.

Since filling in the gaps in data discussed in
“Currently Available Data” section via first princi-
ples calculations or experiments would be pro-
hibitive in terms of time and cost, we will explore
using data-driven machine learning tools like neu-
ral networks**** and random forests.** One could
attempt to train models that relate composition to
the final Qol (e.g., melting temperatures) from the
existing data. However, standard ML approaches
are not applicable directly because of the scarcity of
the data. This is a common challenge in the field of
materials. Feature engineering, which involves
feeding additional data to the model that can be
easily obtained from the raw input data, can be used
to address this challenge. For example, we could
include electronegativity and ionic radii of the
elements as inputs to the model; thus, we include
information about bonding and packing. In addition
to such periodic table data, one can further increase
the information fed into the model by adding
physics-based modeling results or material proper-
ties that are easy to obtain and that are expected to
correlate with it. It has been shown that even with
limited training data physics-based descriptors
have had a significantly higher impact than models
that only rely on raw volumes of data.?**> Here we
will build on two surrogate pieces of information.
First since melting temperature and stiffness are
both governed by similar physics, stiffness (avail-
able from first principles calculations for 1000+
oxides) is added as an input parameter. Second, we
can use Lindemann’s melting temperature model to
estimate values of the Qol from basic properties and
add that estimate as an input. Lindemann’s melting
law is based on the approximation that melting

occurs when atomic oscillations reach a critical
value relative to the materials lattice parameter.
The amplitude of atomic oscillations can be easily
obtained using statistical mechanics, and the result-
ing expression for the melting temperature is:
T = a(4n’k/9R2N3)FAMV2/3 03, (1)
where T;n is the Lindemann melting temperature; o
is a structural factor generally taken as 1; h, k, and
N are the Boltzmann, Planck and Avogadro con-
stants, respectively; M is the mean atomic mass, V
the molar volume, and ®p the Debye temperature.
The Debye temperature is taken from the approx-
imation proposed by Blackman®® using the
expression:

Op = (h/k)(3N /4n)' BV -1/3y,, (2)

with v, as the average acoustic velocity given by:
3/v3 =1/ + 23 (3)

with v, and v; the P and S wave velocities calculated
from the root of the bulk and shear modulii with
their densities (p):

K +4/3G
Vo = 4 /%/3 (4)
Vs = g (5)
0
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Descriptors

As mentioned above, a common way of building
physics into ML models is to use periodic table data
of the elements involved as inputs. We primarily use
the composition featurizer from Matminer®’ to
generate a variety of properties with composition
as the only input. As shown in previous work by
Ward et al.,*® statistical descriptors based on the
chemical formula are useful for machine learning
features.

The descriptors we use are described as follows:

1. A stoichiometric calculation of fractions of
elements without considering the actual com-
position. This calculation includes the number
of elements in the compound and normaliza-
tions of the respective fractions.

2. Periodic table-type descriptors including
mean, mean absolute deviation, range, mini-
mum, maximum, and mode of elemental prop-
erties. These values include maximum row on
the periodic table, average atomic number, and
the difference in atomic radii in all elements
present.

3. As previously shown by Meredig et al.,*® elec-
tronic structure attributes with averages of s,
p, d, and f valence shell electron concentra-
tions are useful as descriptor inputs.

4. Assuming that the ionic species in the oxide
can form a single oxidation state, an adaption
of the fractional ionic character of a compound
can be used based on an electronegativity-
based measure.®®

5. The fraction of the transition metal elements.

6. The cohesive energy per atom using elemental
cohesive energies.

7. An estimation of the band gap center based on
electronegativity.

8. Number of available oxidation states in the
compound.

9. For mechanical properties models, we also
extend descriptors to include properties quer-
ied from the MP database such as density,
space group number, and calculated ionic
packing fractions.

10. Importantly, we added two descriptors for the
meting temperature models: predicted stiff-
ness properties and estimate of the melting
temperature according to Lindemann’s law
discussed above.

These descriptors are able to characterize the
output properties for VFE sufficiently, and we do
not see evidence of over parameterization of the
models. For stiffness we add additional descriptors
queried from MP, and for the melting point we use
the full knowledge of composition descriptors,
queried MP properties, predicted stiffness, and
Lindemann law melting predictions.
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Predictive Models for Melting Temperature
Using Random Forests

Random forests (RF's) approach regression meth-
ods through a series of decision trees®'*> whose
outputs are averaged. This averaging is done to
overcome the limitation of individual tree predic-
tions, which may have difficulty assessing noise or
non-linearities in the data. Importantly, progress
has been made in the quantification of uncertainties
in RFs by Efron®® and Wager et al.,’* and more
recently by Ling et al.** with the addition of an
explicit bias term to the uncertainty. Neural net-
works, often outperforming random forest predic-
tions, were considered for this study, but
quantification of uncertaintsy in their outputs is still
an active field of research.”® Due to the accessibility
of uncertainty quantification, we choose to imple-
ment random forest models with the state of the art
uncertainty calibration proposed by Ling et al.** It
involves sample-wise variance defined as the aver-
age of the jackknife-after-bootstrap and infinitesi-
mal jackknife variance estimates with a Monte
Carlo sampling correction. The RF models imple-
mented in this study are available in the Lolo scala
library.5¢

We set the maximum number of trees to match
the number of samples collected in each model for
our RFs while allowing for unrestricted maximum
depth. While saturation of averaged prediction can
occur beyond 200 or more trees,’’ the uncertainties
in Lolo will not be well calibrated. The maximum
depth parameter cutoff is defined by the nodes
increasing until the leaves become pure or until the
all leaves contain less than two samples. This is the
default parameter for Lolopy.

As is common practice, each descriptor is normal-
ized by standard normalization, and data were split
into 80% training and 20% testing to evaluate
performance. Assessment of the model was per-
formed for each material property by reshuffling the
dataset ten different times and taking an aggre-
gated MAE.

When assessing uncertainty estimates for an
individual output x, the residuals, r(x), of the
prediction when normalized by the uncertainty

a(x) (N = %}, should have a Gaussian distribution

with zero mean and unit standard deviation. This
metric can help quantify whether the random forest
uncertainty predictions are well calibrated with
respect to the inherent error predicted.

Using the set of descriptors and architecture
detailed in “Descriptors”, we implement random
forest models to predict the set of desired properties
using databases from MP, WolframAlpha, and
Citrination. All reported MAE values are taken as
an aggregate mean after shuffling the training and
testing sets ten times.

Random forest performance for VFE

Using the curated Citrination dataset, we devel-
oped a RF model for VFE. Composition-based
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descriptors obtained via Matminer were used for
model predictions. For ten shuffling samples we
report an aggregated MAE of 0.17 eV/atom (Fig. 3).

Random forest performance for stiffness

In addition to the Matiminer featurizers
described above, we added additional descriptors
such as IPF and space group number since these
were easily queried. Figure 4 shows a parity plots
and normalized residuals for bulk and shear moduli.
An aggregated testing MAE score of 18 and 10 GPa
for bulk and shear modulus, respectively, was
obtained after ten shufflings of samples.

Random forest performance for melting
temperature

Our dataset of 162 melting points with corre-
sponding elasticity data was used to create a
predictive model for varied oxides. Figure 5 shows
the performance of both the training and testing
data before and after adding stiffness Lindemann
properties into the model. As we can see adding
stiffness and Lindemann’s law as descriptors
improves the accuracy of the model to a significant
degree with a reduction of the MAE from 368 to
303°C. While uncertainties are not negligible, these
models are promising for an initial sweep of poten-
tial oxides. A noticeable reduction in uncertainty
can be seen between Fig. 5a and b, and after adding
stiffness and Lindemann’s law, fewer points lie
outside the linear fit in the parity plot. After
training the model, we use identical descriptors for
the remaining compounds that we were unable to
easily obtain melting points for and extend our
predictions using the information gained from stiff-
ness and melting point models. In “Uncertainty
Propagation on the Melting Temperature
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Calculation” section, we will assess some the sensi-
tivity of this prediction with varied UQ methods. In
the outlook section of this paper, we will discuss the
implications and results of extrapolating our pre-
dictions to other oxide melting points outside of our
initial query with WolframAlpha.

MATERIALS SELECTION FOR PROTECTIVE
OXIDE SCALES

Using the models above, we begin to extend our
search space of potential oxides from our initial
query of 162 melting points and 855 points with
elasticity data and move into the space of the
remaining 11,000 stable oxides from MP. First, we
predict the elasticity data of the remaining 11,000
oxides that did not have this data to begin with.
Then we use those descriptors to expand our
melting point database from 158 queried data points
to nearly 11,000 data points: a two order of magni-
tude increase.

Figure 6a shows the 11,000 oxides and their
respective properties. We show the melting temper-
ature and the oxygen VFE; bulk modulus is shown
as the color of the symbol, and the IPF is repre-
sented by size. Figure 6b filters radioactive ele-
ments and lanthanides out and also removes bulk
and shear modulus values < 125 and 25 GPa,
respectively. The plot highlights common and effec-
tive protective oxides. As expected, CreO3, AlyOg3,
and SiOg are among the top performers. However,
our study reveals other oxides predicted to perform
equally well or outperform them. Figure 6¢ shows
the final filtering of outlier properties such as low
VFE, low melting point, and IPF values < 0.4, and
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Fig. 6d shows these final points including the
uncertainties in the RF model. Data points with a
cross represent materials with existing melting
temperatures from WolframAlpha, and empty sym-
bols are predictions. Values without error bars in
either direction indicate database collected values.
The top oxides identified and their properties are
summarized on Table I. In the case of the design of
refractory CCAs, HfOy (T,,.;; = 2812°C, VFE = 5.9
eV/atom) is an attractive candidate since Hf is a
common element. Our results indicate that the
addition of Y as a dopant to RCCAs could result in

the formation of Yo Hf;07, YTaOy4, Y3Al5019, or
YgWO;12. While many of these have lower predicted
melting points (in the 1900—2000° range), they may
stabilize as complex oxides between the outer scale
and substrate. Each of these oxides coupled with the
RCCA substrate could be engineered to form a
stabilized complex oxide of one or more of these
structures. Quite interestingly, even though the Y-
containing compounds in Table I were not present
in our initial database of melting points, they have
been investigated as promising candidates for ther-
mal barrier coatings®® and scales in high-
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Fig. 5. (a) Parity plot diagram for predicted and real values of oxide melting temperature. Values directly on the line are a perfect match. (b)
Adding stiffness properties to the model causes a decrease of 65°C with respect to MAE and a noticeable decrease in uncertainty. (c) and (d)
Normalized residuals for models trained without and with additional descriptors.

temperature applications. Synthesis routes have
been discussed in the literature. Reported melting
temperatures include 2300°C for YTaOy, °° the well-
studied yttrium aluminum garnet (YAG) compound
melting at roughly 1940°C,®° stability of the single
phase under ablation temperatures > 2000° for
Y,Hf507,%! and finally Y¢WO15 melting at 2360°C.52
Our predicted values of the melting point through
random forests with predicted uncertainties fall
very close to experimental results, which is encour-
aging for potential extrapolation of other materials
for RCCA protective scales.

Two of the oxides predicted to be of interest for
high-temperature applications lack experimental
melting temperatures. Also containing Y in their
structure, Y3Al3CroO19 and Y3ReOg at this time do
not have reported melting points. Each of them has
predicted melting points > 1900°C, and each has
elements that could be used as base components in
RCCA applications. Already proven to be an excel-
lent candidate for scale formation and physical
properties is Cr, but more interesting is the pres-
ence of Re in YsReOg. In the second generation of
Ni-based superalloys, Re was proven to be an
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Fig. 6. Comparison of melting point and vacancy formation energy of oxide compounds. Coloring corresponds to stiffness of the material, and
marker size indicates IPF where larger markers are a higher IPF. Points with an ’x’ are melting points collected from queryable sources where
open circles are predicted values. (a) Predicted results for original 11,000 query. (b) Results filtered to remove radioactive and lanthanide
compounds and bulk and shear modulus values < 125 and 25 GPa, respectively. (c) Additional filtering of properties with remaining values
including IPF > 0.4, Tper 1750°C, and VFE > 4.5 eV/atom. (d) Selected compounds for final application consideration. These compounds are
listed in Table | as potential complex or native scale formers. Values that have database values do not show error in respective direction. Note the

slightly different scales in the filtered figures (Color figure online).

excellent dopant for extending the creep lifetime in
alloys.®®> While expensive, the addition of such an
element to RCCA-type materials could have poten-
tial for oxide scale formation as well as modifying
the overall mechanical properties of the material.
Other notable oxides that we found with excellent
properties include: MgO (T,,.;; = 2852°C, VFE = 6.0
eV/atom), MgAl,Oy4 (T,,.;; = 2130°C, VFE = 6.05 eV/

atom), ZrOg (T,,.;; = 2700°C, VFE = 5.79 eV/atom),
BaZrO3 (T,..;; = 2450°C, VFE = 5.63 eV/atom),
ZrSiOy4 (T,.; = 2550°C, VFE = 5.70 eV/atom), and
SrZrOsz (T,..; = 2305°C, VFE = 5.6 eV/atom). Of
these other promising candidates, we note the
experimental melting point for SrZrOs to be
recorded as 2610°C,°* well within the predicted
value with random forest uncertainties. We would
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Table I. Final compounds with uncertainties

RF T,, (°C)
Aleg -
CI‘203 -
HfO, -
MgO -
MgAl,O4 -
ZI‘02 —
ZI‘SiO4 —
BaZr03 —
SrZrOg 2326 + 327
YoHf207 2226 £ 579
YsWO1, 2214 £+ 576
YTaO4 2217 + 603
Y3Al;019 2048 + 561
Y3AI3CI‘2012 2101 + 459
Y3R608 2211 + 594

Exp. T,, °C) Oxygen VFE [eV/atom]
2040' 6.6+0
2435" 4.91 £+ 0.48
28121 5.99 + 0.89
28521 6.0 &+ 0.43
2130f 6.05 + 0.38
2700" 5.79 + 0.52
25507 5.71 + 0.39
25401 5.63 + 0.48
2610%4 5.62 + 0.49
2000+5* 5.66 + 0.77
2360°2 5.66 + 0.45
2300°%° 5.59 + 0.55
1940%° 6.04 + 0.39

? 4.39 + 0.42
? 6.89 £ 0.44

If zero uncertainty is reported, the value was obtained from database results. Experimental validation of results for predicted values is
shown in the middle column. Entries with ’?’ indicate an unknown melting point at this time in the literature' Experimental value from

queried dataset * Ablation study.

like to stress that additional variables need to
considered in the design of oxide scales, such as
processability and kinetics; these are not considered
in this first study.

UNCERTAINTY PROPAGATION
ON THE MELTING TEMPERATURE
CALCULATION

As in any decision-making exercise, uncertainties
are critical in materials selection and optimization.
Several sources of uncertainties must be accounted
for in workflows such as the one used here. These
include uncertainties in the ML models and in the
input and output data fed to them. An additional
challenge in our approach is the combination of
experimental (e.g., melting temperatures) and first
principles data (e.g., elastic constants). One could
expect for systematic errors in surrogate data, like
our DFT stiffness values, to be of relatively low
importance as they are only used to help the ML
models. For example, if gradient corrected exchange
and correlation functionals used in DFT tend to
underestimate binding, the ML models should be
able to easily compensate for such discrepancies.
The effects of non-systematic errors in input data
such as Lindemann’s melting law predictions are
harder to estimate. Here, we focus on a specific kind
of uncertainty that originates in transfer learning,
i.e., how uncertainties are propagated across models
in the transport process.

When using RF-predicted values for bulk and
shear modulus as input descriptors to the melting
point model, it is critical to assess how the uncer-
tainties in elastic constants affect the predicted T,,.
We note that the majority of the compounds in the

final list of oxides selected in “Materials Selection
for Protective Oxide Scales” section had first prin-
ciples elastic constant data. One exception is
BaTiyO5 so we use this material to study uncer-
tainty propagation. The predicted mean melting
point for this specific compound was 2144 + 435°C;
this was obtained with mean bulk and shear moduli.
Since the elasticity models yield mean and the
associated deviations, we can assess how sensitive
the predicted melting point is to uncertainties in the
moduli parameters. Our trained random forest
models predict mean values of 142 + 27 GPa and
75 + 16 GPa for the bulk and shear modulus,
respectively.

To propagate uncertainties in elastic constants
through the melting temperature model, we use a
brute force random sampling of the Gaussian dis-
tribution for each stiffness property. The resulting
distribution from 10,000 samples is shown in black
in Fig. 7a. The predicted distribution shows a sharp
peak at 2150°C, very close to the mean prediction,
and extends towards lower values with a second
peak at 1950°C, and a third smaller distribution
centered at 1700°C. The predicted RF distribution of
melting temperatures with mean stiffness values is
shown in red. Importantly, the uncertainties orig-
inating from the propagation of uncertainties in the
stiffness are small compared with the intrinsic
uncertainties in the prediction of melting tempera-
ture. This is, perhaps, not surprising since the
melting temperature model has larger uncertainties
that that for stiffness. The multi-peak nature of the
distributions indicates large non-linearities in the
T,, model. To assess this, we plot the melting
temperature as a function of shear and bulk mod-
ulus in Fig. 7b with all other paramters fixed to
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those of BaTizO5. We find that the melting temper-
ature drops quite significantly for low values of
shear and bulk moduli. This is not surprising given
the positive correlation between stiffness and melt-
ing temperature, but such extrapolations using
machine learning models should be done with care.

SUMMARY AND OUTLOOK

We showed that by leveraging queryable open
repositories and the use of machine learning tools
with infused physics, one can greatly expand the
information available for materials design or selec-
tion. Our specific goal was to find oxides for high-
temperature applications with high melting tem-
perature, high oxygen vacancy formation energy (to
minimize O transport) with the coefficient of ther-
mal expansion and stiffness as secondary design
variables. Machine learning models with physics
insight built in via feature engineering and surro-
gate properties enables us to take sparse existing
data and fill in gaps in knowledge. Specifically, we
found that by adding elastic constants (known for a
relatively large number of oxides) as an input
descriptor and easily calculated Lindemann melting
laws, we could develop accurate models for melting
temperature, which are harder to obtain and exist
for relatively few materials.

Through transfer learning we were able to expand
an initial query of 162 melting points to > 10,000
compounds. The effort resulted in several candidate
oxides with properties comparable to those of the
protective scales of high-temperature metals such
as AlyO3 and CryO3 with respect to melting point,
VFE, IPF, and stiffness. Candidate materials
include: Hf02, Ysz207, YTaO4, Y3Al5012,
YsWOi2, Y3Al3Cry012, YsReOg, MgO, MgAly,Oy,
ZrQOs, BaZrOs, ZrSiO4, and SrZrOs.

Quantifying uncertainties in such efforts is crit-
ical in materials selection and optimization efforts.
In this article we focus on the uncertainties prop-
agated through predicted stiffness parameters and

the uncertainties in the random forest. Additional
work on uncertainties originating from combining
information from different sources (e.g., DFT and
experiments) would be very valuable.

Gathering the initial information from materials
informatics platforms is a key step in our workflow
and many similar efforts. This is enabled by recent
progress on materials cyberinfrastructure, and com-
munity contributions to these repositories remains
key. In the case of oxides, additional elastic constant
calculations and melting temperatures would be
beneficial. The models developed in this article can
be accessed online through the US National Science
Foundation’s nanoHUB.?® The tool High Tempera-
ture Oxide Property Explorer®® includes live Jupy-
ter notebooks with all models and data. The final
curated data and models can be downloaded but
they can also be modified and executed online.
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