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Abstract—OQOutage duration plays an important role in assessing
the impacts of distribution system outages. Moreover, whenever
an outage occurs, customers are most concerned about when
power will be restored, i.e. the duration of the outage. Hence,
this paper presents an analysis of the frequency and duration of
outages using outage data from a distribution system network.
In addition, this study performs a feature importance analysis
by using random forests and gradient boosting regressors to de-
termine which features in the outage dataset are most important
in predicting the duration of an outage. The results show that
climatic description, failed equipment and wind speed are the
most important predictors of outage duration in the dataset used
in this analysis.

Index Terms—gradient boosting, random forests, outage dura-
tion, outage frequency, outage management systems

I. INTRODUCTION

Outage frequency and duration impact system reliability
and customer satisfaction. With regards to outages, customers
are most concerned about the duration of outages [1]. A
major priority of utilities is to reduce the amount of time
that customers are left without power. The impact of outages
on customers can range from inconvenience and stress (for
residential customers) to loss of revenue and man-hours (for
commercial and industrial customers). The study in [2], which
was conducted in 2015, estimates that the average cost per
event for a momentary outage in the United States ranges from
around $3.9 for residential customers to as high as $12,952
for medium and large commercial and industrial customers.
Results from the same study show that the average cost per
event rises as the outage duration increases. Hence, there is a
need to study factors that significantly impact the duration of
an outage.

Much of the current literature pays attention to analyzing
outages based on their frequency and causes; typically these
studies focus on using machine learning techniques to predict
the cause of outages or to analyze outages based on a particular
outage cause (typically, trees and animals) [3]-[7].

Conversely, fewer studies have analyzed factors that impact
outage duration. Reliability indices can be improved by reduc-
ing not only outage frequency, but also outage duration. One
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of the most common distribution system reliability indices,
Customer Average Interruption Index (CAIDI), represents the
average time to restore service after an outage. Authors in [§]
investigate the impact of several variables on time of outage
restoration (TOR) in distribution systems using statistical
methods and measures such as the chi-square approximation to
Kruskal-Wallis test and the coefficient of determination (R?).
The variables considered in the analysis were categorized
under time (hour of day, day of week and month), consequence
(number of phases affected and protection device activated)
and external factors (weather condition and outage cause).
Similarly, [9] presents an analysis to assess the impacts of
different features on outage duration in a distribution network.
Some features considered in the study include outage cause,
action taken by repair crew, weather conditions, clearing
device, number of customers and calendar variables such as
year, month, and hour of day. On the other hand, [1] uses
recursive neural networks (RNN) to predict the duration of
distribution system outages in real-time. Data used in this
study include weather information, outage reports and repair
logs. Outage causes are identified by applying natural language
processing to utility outage reports.

This paper analyzes the impact of several features on outage
frequency and duration in a distribution network using random
forest and gradient boosting regression. The analysis uses the
frameworks presented in [8] and [9]; the features considered in
this analysis include: outage cause, interrupted phase, voltage
level of the affected circuit, climatic description, and calendar
variables. The impact of these features are ranked using
random forest and gradient boosting regression.

The rest of the paper is organized as follows: section II
discusses the data used in this study including the features and
data processing conducted; section III presents an exploratory
analysis on the frequency and duration of the outages based on
several features in the outage dataset; the feature importance
analysis is discussed in section IV, and section V concludes
the paper and provides some recommendation for future work.

II. DATA

This study uses outage data obtained from an electric
power utility in southeastern United States. The dataset, which
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TABLE I

SUMMARY OF FEATURES IN OUTAGE DATASET Fig. 2a shows the number of outages categorized by the
climatic condition at the time of the outage. The climatic
Features Classes description feature has four classes: calm, wind and precip-
Climatic Calm, Precipitation-Rain, Thunderstorm itation, precipitation-rain, and thunderstorm. About 75% of
Description Wind & Precipitation the outages occur in calm weather, while 18% of the outages
Day of Week Mon, Tue, Wed, Thu, Fri, Sat, Sun . e .
Tnterrupted Phase | A, AB, ABC, AC, B, BC, C occur during thunderstorms. The precipitation-rain class has
Month Jan, Feb, Mar, Apr, May, Jun the lowest number of outages.
Jul, Aug, Sep, Oct, Nov, Dec Fig. 2b presents the number of outages categorized by each
Outage Cause Third Party, Animal, Equipment Failure day of the week. This is done to identify any seasonality that
Event Response, Lightning, Other, Tree, Unknown A K K
Season Fall, Spring, Summer, Winter might be present due to changing load profiles for different
Voltage Level 4kV, 12 kV, 46 kV, 161 kV days of the week. Monday has the highest number of outages,
Year 2016, 2017, 2018 followed by Saturday, while Friday and Sunday have the least

comprises over 20,000 entries, includes outage information
from 2016 to 2018 for an electric power distribution network.

Prior to analyzing the data, data cleansing is performed by Lightning '

Event response

Equipment failure

removing duplicates and missing entries from the dataset.
Features in the dataset include: climatic description during

the outage, voltage level of the circuit affected by the outage,

outage cause, outage duration, interrupted phase and failed

equipment. In addition to the features in the original dataset, Third party ' . Unknown

the date of the outage is decomposed into new features:

year, month, day of the week and season. Table I presents

a summary of the features from the outage dataset along
with their respective classes. The failed equipment feature Tree

(not listed in Table I) comprises over 20 classes, some of Fig. 1: Distribution of outage frequency by cause
which include: transformer, switchgear, regulator, meter, and
weather data service [10]. The weather variables considered
are: temperature (Fahrenheit), wind speed (miles/hour) and
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conductor.
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Fig. 1 shows a breakdown of the outage events by cause.
Outages due to trees are the most frequent and account for
38.5% of the outages, while outages caused by a third party
are the least frequent, and account for 3.4% of the outages.
Outages attributed to third party include outages caused by
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each feature in the outage dataset. Fig. 2: Outage Frequency with respect to different features in outage data set
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Fig. 3: Monthly plots of outage count and average outage duration categorized
by climatic description

outages. Thursday, Tuesday and Wednesday have very similar
number of outages.

Similarly, Fig. 2c presents the number of outages catego-
rized by the months of the year. The month of June stands
out with the maximum number of outages, nearly 15% of the
total. It can be observed that in the initial months of year,
i.e. January, February and March, the outages are low. The
outages begin to rise in the months of April, May, peaking
in June. After June, the number of outages begin to decrease
until September, which has higher number of outages and then
the number of outages decrease till December.

Fig. 3a shows the distribution of outages by climatic de-
scription and by month of the year. The highest number of
outages during thunderstorm occurs in June. It is worth noting
that September is the only month that has all four climatic
description classes present. Further investigation revealed that
the highest frequency of outages during wind and precipitation
occurred in September 2017, and this coincides with the period
Hurricane Irma struck the US. On the other hand, June and
July account for the most outages during thunderstorms, while
August accounts for the most outages during calm weather.

Fig. 2d presents the number of outages by the interrupted
phase. 75% of the outages affect only a single phase (A, B, or
C) with phase C having the most outages. This is not surprising
as single-phase faults are most common faults in distribution
systems [11]. 18% of the outages affect all three phases (ABC)
simultaneously. On the other hand, less than 5% of the outages
affect only two phases (AB, AC or BC) at the same time.

Fig. 2e shows the number of outages by season. The months
of the year are categorized into four seasons as follows: Spring
(March to May), Summer (June to August), Fall (September
to November), and Winter (December to February). As was
observed from the monthly plot, the maximum outages are
in the summer months and the least in winter. The lower
number of outages during the winter could be attributed to
the location of the the distribution network location, which
typically experiences mild winters. However, this location
experiences a significant number of tornadoes, hurricanes and
thunderstorms, in the other three seasons. Hence, the number
of outages in each of these seasons are at least 1.5 times as
much as the number of outages in the winter.

Outage frequency by cause categories is presented in Fig.
2f. As previously stated, outages caused by trees are the most
frequent, while outages caused by a third party are the least
frequent. Fig. 2g shows the number of outages by voltage level

(kV) of the affected circuit. The most number of outages occur
in the 12 kV circuits. Most of the circuits in the distribution
network in this study operate at the 12 kV level.

Fig. 2h shows the number of outages per year. 2017 has the
highest number of outages.

B. Average Outage Duration

This section presents a visual analysis for the average outage
duration in minutes by each category. The histogram in Fig.
4 shows the distribution of outage duration (in minutes) of
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Fig. 5: Average outage duration (minutes) with respect to features in outage
data set
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outages in this analysis. As seen in the histogram, most of the
outages last between 38 to 76 minutes. The shortest outages
lasted for only 1 second, while the longest outage lasted for
about 2 days. It is interesting to note that close to half of the
outages lasted at least 2 hours or more. The average duration
of all the outages in the dataset (indicated with a dashed line
in Fig. 4) is around 3.5 hours (213 minutes to be precise).

Fig. 5a shows the average outage duration by climatic
description. Although calm weather had maximum number
of outages, the average duration of the outages during calm
weather is the lowest. The maximum average outage duration
is during wind & precipitation and thunderstorm. This could
be due to the amount and severity of damage caused by
severe weather events, hence leading to longer repair times
and outage duration compared to outages that occur in calm
weather.

Fig. 5b shows the average outage duration per weekday.
Maximum average outage duration occurs on Saturday. Fig.
5c shows the average outage duration per month of the
year. March has the highest average outage duration whereas
October has the least average outage duration. It is interesting
to note that although the month of March ranked 6th in the fre-
quency of outages, it has the highest average outage duration.
Further investigation reveals that this is due to long duration
outages occuring during thunderstorms as well as wind and
precipitation in March as shown in Fig. 3b. September has the
highest average outage duration during wind and precipitation.

Fig. 5d categorizes the average outage duration by the
interrupted phase. Although outages affecting two phases si-
multaneously (AB, AC, BC) accounted for the lowest number
of outages, they result in higher average outage durations as
shown in the figure. On the other hand, outages affecting all
three phases (ABC) account for the lowest outage duration.

Fig. 5e shows the average outage duration for each season.
Spring and summer have higher average outage durations
than the fall and winter. Fig. 5f shows the average outage
duration per outage cause. Outages caused by trees have the
highest average outage duration, followed by outages caused
by lightning and equipment failure. Fig. 5g shows the average
outage duration by voltage level in kV. It can be observed that
the outage duration is higher for the 12 kV and 4 kV circuits
compared to the 46 kV and 161 kV circuits. Fig. 5h shows the
average outage duration by year. 2017 has the highest average
outage duration.

Table II presents a summary comparison of outage fre-
quency and average outage duration for the features considered
in this analysis. The results in the table show that the class with
the most number of outages does not automatically account
for the highest average outage duration. For example, with
respect to the month of the year, the highest number of outages
occurred in June, but March had the highest average outage
duration. On the other hand, with respect to interrupted phase,
outages affecting phases A and C simultaneously accounted
for the least number of outages, but had the longest average
outage duration.

TABLE I
OUTAGE FREQUENCY AND DURATION FOR OUTAGE FEATURES

Number of Outages Average Outage Duration

Features Highest Least Longest Shortest
Interrupted
Phase C AC AC ABC
Month June December March October
Outage Tree Third Party Tree Event
Cause Response
Season Summer Winter Spring Winter
Voltage Level 12 kV 161 kV 12 kV 161 kV
Climatic Calm Precipitation Wind and Calm
Description (Rain) Precipitation
Weekday Monday Friday Saturday Friday

IV. FEATURE IMPORTANCE

In addition to exploring outage frequency and average
outage duration, this study seeks to determine the features or
variables in the dataset that affect average outage duration. To
rank the importance of each variable, two machine learning-
based approaches are used: Random Forest Regressor and
Gradient Boosting. Both techniques are implemented using
Python’s Scikit-Learn library [12]. Feature importance is esti-
mated by calculating the ratio of the number of samples that
get through to a node to the total number of samples [13].

A. Random Forest Regressor

Random Forest is a tree-based supervised learning algorithm
introduced in [14]. The random forest algorithm is a bagging-
based algorithm that takes the ensemble of randomly sampled
trees [15]. A random Forest regressor-based model is used
to rank the various features based on their importance. The
random forecast model is trained using the entire outage
dataset and the importance of each feature is estimated. The
random forest model is modeled with 150 trees. The number
of trees was selected by performing a grid search, varying
the trees from 30 to 300 trees and comparing their prediction
score.

Fig. 6 shows the feature importance as estimated by the
random forest algorithm. It is observed that climatic de-
scription has the maximum importance followed by failed
equipment and wind speed. Interrupted phase, outage cause
and temperature are moderately important while humidity,
month, weekday, voltage level, year and season have very low
importance. In general, calendar variables like year, month,
season and weekday have very less importance, showing that
there is no significant seasonal pattern in the dataset used in
this study.

B. Gradient Boosting Regressor

Gradient boosting regressor is a supervised learning al-
gorithm introduced in [16]. As the name suggests, gradient
boosting is a boosting-based approach that uses decision trees
and selects the best trees using a gradient loss function [17].
The gradient boosting model is trained using the entire outage
dataset and the importance of each feature is estimated. The
gradient boosting model is modeled with 100 trees. The
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number of trees was selected by performing a grid search,
varying the trees from 30 to 300 trees and comparing their
prediction score.

Fig. 7 shows the feature importance according to the gra-
dient boosting algorithm. Consistent with results from the
random forest model, climatic description has the highest
importance, however the magnitude of importance is more,
followed by failed equipment and wind speed. Temperature
ranks higher than interrupted phase and outage cause; this is
different from the results of the random forest model. Season,
year, voltage level and weekday are the features with the least
importance.

season |
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Interrupted Phase
Wind Speed
Failed Equipment
Climatic Description
0.00

Feature

0.05 0.10 0.15

Importance

0.20 0.25

Fig. 6: Feature Importance using Random Forest Regressor
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Fig. 7: Feature Importance using Gradient Boosting Regressor

V. CONCLUSION

This paper presented an analysis of the frequency and
average duration of outages in a distribution network using the
frameworks presented in [8] and [9]. Also, random forests and
gradient boosting regression are used to rank the importance
of several features in predicting outage duration. The results
from both regressors show that climatic description is the most
significant for explaining the variability of outage duration
for the distribution network considered in this study. Other
significant features include: failed equipment, wind speed
and interrupted phase. Future work will focus on data-driven
probabilistic outage prediction using weather data.
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