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Abstract—Outage duration plays an important role in assessing
the impacts of distribution system outages. Moreover, whenever
an outage occurs, customers are most concerned about when
power will be restored, i.e. the duration of the outage. Hence,
this paper presents an analysis of the frequency and duration of
outages using outage data from a distribution system network.
In addition, this study performs a feature importance analysis
by using random forests and gradient boosting regressors to de-
termine which features in the outage dataset are most important
in predicting the duration of an outage. The results show that
climatic description, failed equipment and wind speed are the
most important predictors of outage duration in the dataset used
in this analysis.

Index Terms—gradient boosting, random forests, outage dura-
tion, outage frequency, outage management systems

I. INTRODUCTION

Outage frequency and duration impact system reliability

and customer satisfaction. With regards to outages, customers

are most concerned about the duration of outages [1]. A

major priority of utilities is to reduce the amount of time

that customers are left without power. The impact of outages

on customers can range from inconvenience and stress (for

residential customers) to loss of revenue and man-hours (for

commercial and industrial customers). The study in [2], which

was conducted in 2015, estimates that the average cost per

event for a momentary outage in the United States ranges from

around $3.9 for residential customers to as high as $12,952

for medium and large commercial and industrial customers.

Results from the same study show that the average cost per

event rises as the outage duration increases. Hence, there is a

need to study factors that significantly impact the duration of

an outage.

Much of the current literature pays attention to analyzing

outages based on their frequency and causes; typically these

studies focus on using machine learning techniques to predict

the cause of outages or to analyze outages based on a particular

outage cause (typically, trees and animals) [3]–[7].

Conversely, fewer studies have analyzed factors that impact

outage duration. Reliability indices can be improved by reduc-

ing not only outage frequency, but also outage duration. One
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of the most common distribution system reliability indices,

Customer Average Interruption Index (CAIDI), represents the

average time to restore service after an outage. Authors in [8]

investigate the impact of several variables on time of outage

restoration (TOR) in distribution systems using statistical

methods and measures such as the chi-square approximation to

Kruskal-Wallis test and the coefficient of determination (R2).

The variables considered in the analysis were categorized

under time (hour of day, day of week and month), consequence

(number of phases affected and protection device activated)

and external factors (weather condition and outage cause).

Similarly, [9] presents an analysis to assess the impacts of

different features on outage duration in a distribution network.

Some features considered in the study include outage cause,

action taken by repair crew, weather conditions, clearing

device, number of customers and calendar variables such as

year, month, and hour of day. On the other hand, [1] uses

recursive neural networks (RNN) to predict the duration of

distribution system outages in real-time. Data used in this

study include weather information, outage reports and repair

logs. Outage causes are identified by applying natural language

processing to utility outage reports.

This paper analyzes the impact of several features on outage

frequency and duration in a distribution network using random

forest and gradient boosting regression. The analysis uses the

frameworks presented in [8] and [9]; the features considered in

this analysis include: outage cause, interrupted phase, voltage

level of the affected circuit, climatic description, and calendar

variables. The impact of these features are ranked using

random forest and gradient boosting regression.

The rest of the paper is organized as follows: section II

discusses the data used in this study including the features and

data processing conducted; section III presents an exploratory

analysis on the frequency and duration of the outages based on

several features in the outage dataset; the feature importance

analysis is discussed in section IV, and section V concludes

the paper and provides some recommendation for future work.

II. DATA

This study uses outage data obtained from an electric

power utility in southeastern United States. The dataset, which
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TABLE I
SUMMARY OF FEATURES IN OUTAGE DATASET

Features Classes
Climatic Calm, Precipitation-Rain, Thunderstorm

Description Wind & Precipitation

Day of Week Mon, Tue, Wed, Thu, Fri, Sat, Sun

Interrupted Phase A, AB, ABC, AC, B, BC, C

Month Jan, Feb, Mar, Apr, May, Jun

Jul, Aug, Sep, Oct, Nov, Dec

Outage Cause Third Party, Animal, Equipment Failure

Event Response, Lightning, Other, Tree, Unknown

Season Fall, Spring, Summer, Winter

Voltage Level 4 kV, 12 kV, 46 kV, 161 kV

Year 2016, 2017, 2018

comprises over 20,000 entries, includes outage information

from 2016 to 2018 for an electric power distribution network.

Prior to analyzing the data, data cleansing is performed by

removing duplicates and missing entries from the dataset.

Features in the dataset include: climatic description during

the outage, voltage level of the circuit affected by the outage,

outage cause, outage duration, interrupted phase and failed

equipment. In addition to the features in the original dataset,

the date of the outage is decomposed into new features:

year, month, day of the week and season. Table I presents

a summary of the features from the outage dataset along

with their respective classes. The failed equipment feature

(not listed in Table I) comprises over 20 classes, some of

which include: transformer, switchgear, regulator, meter, and

conductor.

This study also uses weather information for the distribution

network location, sourced from OpenWeatherMap, an online

weather data service [10]. The weather variables considered

are: temperature (Fahrenheit), wind speed (miles/hour) and

humidity (%).

III. DATA ANALYSIS

This section presents results from exploratory analysis of

the outage data. The features listed in the previous section

are analyzed based on outage frequency and average outage

duration (in minutes).

A. Number of Outages

Fig. 1 shows a breakdown of the outage events by cause.

Outages due to trees are the most frequent and account for

38.5% of the outages, while outages caused by a third party

are the least frequent, and account for 3.4% of the outages.

Outages attributed to third party include outages caused by

vehicle accidents and contractor dig-ins. It is interesting to

note that the cause of nearly 7% of the outages is categorized

as Unknown. Outages categorized under Event response refer

to outages caused by opening a protection device for repair

purposes, whereas outages categorized as Other include out-

ages that do not fall into any of the other cause categories

shown.

Fig. 2 presents plots of outage frequency with respect to

each feature in the outage dataset.

Fig. 2a shows the number of outages categorized by the

climatic condition at the time of the outage. The climatic

description feature has four classes: calm, wind and precip-

itation, precipitation-rain, and thunderstorm. About 75% of

the outages occur in calm weather, while 18% of the outages

occur during thunderstorms. The precipitation-rain class has

the lowest number of outages.

Fig. 2b presents the number of outages categorized by each

day of the week. This is done to identify any seasonality that

might be present due to changing load profiles for different

days of the week. Monday has the highest number of outages,

followed by Saturday, while Friday and Sunday have the least

Fig. 1: Distribution of outage frequency by cause

(a) Climatic description (b) Day of week

(c) Month of the year (d) Interrupted phase

(e) Season (f) Outage Cause

(g) Circuit Voltage (kV) (h) Year

Fig. 2: Outage Frequency with respect to different features in outage data set
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(a) Outage Count (b) Average outage duration (mins)

Fig. 3: Monthly plots of outage count and average outage duration categorized
by climatic description

outages. Thursday, Tuesday and Wednesday have very similar

number of outages.

Similarly, Fig. 2c presents the number of outages catego-

rized by the months of the year. The month of June stands

out with the maximum number of outages, nearly 15% of the

total. It can be observed that in the initial months of year,

i.e. January, February and March, the outages are low. The

outages begin to rise in the months of April, May, peaking

in June. After June, the number of outages begin to decrease

until September, which has higher number of outages and then

the number of outages decrease till December.

Fig. 3a shows the distribution of outages by climatic de-

scription and by month of the year. The highest number of

outages during thunderstorm occurs in June. It is worth noting

that September is the only month that has all four climatic

description classes present. Further investigation revealed that

the highest frequency of outages during wind and precipitation

occurred in September 2017, and this coincides with the period

Hurricane Irma struck the US. On the other hand, June and

July account for the most outages during thunderstorms, while

August accounts for the most outages during calm weather.

Fig. 2d presents the number of outages by the interrupted

phase. 75% of the outages affect only a single phase (A, B, or

C) with phase C having the most outages. This is not surprising

as single-phase faults are most common faults in distribution

systems [11]. 18% of the outages affect all three phases (ABC)

simultaneously. On the other hand, less than 5% of the outages

affect only two phases (AB, AC or BC) at the same time.

Fig. 2e shows the number of outages by season. The months

of the year are categorized into four seasons as follows: Spring

(March to May), Summer (June to August), Fall (September

to November), and Winter (December to February). As was

observed from the monthly plot, the maximum outages are

in the summer months and the least in winter. The lower

number of outages during the winter could be attributed to

the location of the the distribution network location, which

typically experiences mild winters. However, this location

experiences a significant number of tornadoes, hurricanes and

thunderstorms, in the other three seasons. Hence, the number

of outages in each of these seasons are at least 1.5 times as

much as the number of outages in the winter.

Outage frequency by cause categories is presented in Fig.

2f. As previously stated, outages caused by trees are the most

frequent, while outages caused by a third party are the least

frequent. Fig. 2g shows the number of outages by voltage level

(kV) of the affected circuit. The most number of outages occur

in the 12 kV circuits. Most of the circuits in the distribution

network in this study operate at the 12 kV level.

Fig. 2h shows the number of outages per year. 2017 has the

highest number of outages.

B. Average Outage Duration

This section presents a visual analysis for the average outage

duration in minutes by each category. The histogram in Fig.

4 shows the distribution of outage duration (in minutes) of

Fig. 4: Histogram of outage duration (minutes)

(a) Climatic description (b) Day of week

(c) Month of the year (d) Interrupted phase

(e) Season (f) Cause

(g) Voltage (h) Year

Fig. 5: Average outage duration (minutes) with respect to features in outage
data set
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outages in this analysis. As seen in the histogram, most of the

outages last between 38 to 76 minutes. The shortest outages

lasted for only 1 second, while the longest outage lasted for

about 2 days. It is interesting to note that close to half of the

outages lasted at least 2 hours or more. The average duration

of all the outages in the dataset (indicated with a dashed line

in Fig. 4) is around 3.5 hours (213 minutes to be precise).

Fig. 5a shows the average outage duration by climatic

description. Although calm weather had maximum number

of outages, the average duration of the outages during calm

weather is the lowest. The maximum average outage duration

is during wind & precipitation and thunderstorm. This could

be due to the amount and severity of damage caused by

severe weather events, hence leading to longer repair times

and outage duration compared to outages that occur in calm

weather.

Fig. 5b shows the average outage duration per weekday.

Maximum average outage duration occurs on Saturday. Fig.

5c shows the average outage duration per month of the

year. March has the highest average outage duration whereas

October has the least average outage duration. It is interesting

to note that although the month of March ranked 6th in the fre-

quency of outages, it has the highest average outage duration.

Further investigation reveals that this is due to long duration

outages occuring during thunderstorms as well as wind and

precipitation in March as shown in Fig. 3b. September has the

highest average outage duration during wind and precipitation.

Fig. 5d categorizes the average outage duration by the

interrupted phase. Although outages affecting two phases si-

multaneously (AB, AC, BC) accounted for the lowest number

of outages, they result in higher average outage durations as

shown in the figure. On the other hand, outages affecting all

three phases (ABC) account for the lowest outage duration.

Fig. 5e shows the average outage duration for each season.

Spring and summer have higher average outage durations

than the fall and winter. Fig. 5f shows the average outage

duration per outage cause. Outages caused by trees have the

highest average outage duration, followed by outages caused

by lightning and equipment failure. Fig. 5g shows the average

outage duration by voltage level in kV. It can be observed that

the outage duration is higher for the 12 kV and 4 kV circuits

compared to the 46 kV and 161 kV circuits. Fig. 5h shows the

average outage duration by year. 2017 has the highest average

outage duration.

Table II presents a summary comparison of outage fre-

quency and average outage duration for the features considered

in this analysis. The results in the table show that the class with

the most number of outages does not automatically account

for the highest average outage duration. For example, with

respect to the month of the year, the highest number of outages

occurred in June, but March had the highest average outage

duration. On the other hand, with respect to interrupted phase,

outages affecting phases A and C simultaneously accounted

for the least number of outages, but had the longest average

outage duration.

TABLE II
OUTAGE FREQUENCY AND DURATION FOR OUTAGE FEATURES

Number of Outages Average Outage Duration
Features Highest Least Longest Shortest

Interrupted

Phase C AC AC ABC

Month June December March October

Outage Tree Third Party Tree Event

Cause Response

Season Summer Winter Spring Winter

Voltage Level 12 kV 161 kV 12 kV 161 kV

Climatic Calm Precipitation Wind and Calm

Description (Rain) Precipitation

Weekday Monday Friday Saturday Friday

IV. FEATURE IMPORTANCE

In addition to exploring outage frequency and average

outage duration, this study seeks to determine the features or

variables in the dataset that affect average outage duration. To

rank the importance of each variable, two machine learning-

based approaches are used: Random Forest Regressor and

Gradient Boosting. Both techniques are implemented using

Python’s Scikit-Learn library [12]. Feature importance is esti-

mated by calculating the ratio of the number of samples that

get through to a node to the total number of samples [13].

A. Random Forest Regressor
Random Forest is a tree-based supervised learning algorithm

introduced in [14]. The random forest algorithm is a bagging-

based algorithm that takes the ensemble of randomly sampled

trees [15]. A random Forest regressor-based model is used

to rank the various features based on their importance. The

random forecast model is trained using the entire outage

dataset and the importance of each feature is estimated. The

random forest model is modeled with 150 trees. The number

of trees was selected by performing a grid search, varying

the trees from 30 to 300 trees and comparing their prediction

score.

Fig. 6 shows the feature importance as estimated by the

random forest algorithm. It is observed that climatic de-

scription has the maximum importance followed by failed

equipment and wind speed. Interrupted phase, outage cause

and temperature are moderately important while humidity,

month, weekday, voltage level, year and season have very low

importance. In general, calendar variables like year, month,

season and weekday have very less importance, showing that

there is no significant seasonal pattern in the dataset used in

this study.

B. Gradient Boosting Regressor

Gradient boosting regressor is a supervised learning al-

gorithm introduced in [16]. As the name suggests, gradient

boosting is a boosting-based approach that uses decision trees

and selects the best trees using a gradient loss function [17].

The gradient boosting model is trained using the entire outage

dataset and the importance of each feature is estimated. The

gradient boosting model is modeled with 100 trees. The
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number of trees was selected by performing a grid search,

varying the trees from 30 to 300 trees and comparing their

prediction score.

Fig. 7 shows the feature importance according to the gra-

dient boosting algorithm. Consistent with results from the

random forest model, climatic description has the highest

importance, however the magnitude of importance is more,

followed by failed equipment and wind speed. Temperature

ranks higher than interrupted phase and outage cause; this is

different from the results of the random forest model. Season,

year, voltage level and weekday are the features with the least

importance.

0.00 0.05 0.10 0.15 0.20 0.25

Importance

Season

Year

Voltage Level (kV)

Weekday

Month

Humidity

Temperature

Outage Cause
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Wind Speed

Failed Equipment

Climatic Description

F
e
a
tu
re

Fig. 6: Feature Importance using Random Forest Regressor
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Fig. 7: Feature Importance using Gradient Boosting Regressor

V. CONCLUSION

This paper presented an analysis of the frequency and

average duration of outages in a distribution network using the

frameworks presented in [8] and [9]. Also, random forests and

gradient boosting regression are used to rank the importance

of several features in predicting outage duration. The results

from both regressors show that climatic description is the most

significant for explaining the variability of outage duration

for the distribution network considered in this study. Other

significant features include: failed equipment, wind speed

and interrupted phase. Future work will focus on data-driven

probabilistic outage prediction using weather data.
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