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Abstract—Distribution system losses account for a large per-
centage of energy losses from generation to customer; however,
utilities still have limited possibilities to determine or analyze
losses in their networks. There is little or no awareness of
current loss conditions in the system, and traditional loss studies
typically focus on peak load scenarios. This lack of awareness
is disadvantageous as losses convey information about system
efficiencies and could indicate existing or impending outages. The
approach proposed in this paper relies on already deployed AMI
and recloser infrastructure and is used to evaluate distribution
system losses over time and divided by load areas. The results
are displayed in multiple ways in order to allow operators to
assess the system state and to examine anomalies attributable
to distribution losses. The paper presents the application of the
developed algorithm to a real-world circuit.

Index Terms—advanced metering infrastructure (AMI), big
data, data visualization, distribution system losses, loss estima-
tion, situational awareness, visual analytics

I. INTRODUCTION

The advent of advanced metering infrastructure (AMI) and
sensors throughout the distribution system has led to increased
situational awareness for utilities, including in areas such as
billing, outage management, and asset management. Tradition-
ally, these functions were carried out manually by utilities,
and were thus inefficient as utilities were unable to capture
the actual state of the distribution system at a particular point
in time. More recently, AMI, SCADA and higher number of
sensors in the distribution system have provided opportunities
to monitor system parameters such as voltage, current, power
consumption, and losses, in real-time due to the large amount
of data available from these sources.

Typically, utilities estimate distribution system losses by
comparing wholesale power purchase bills with manual meter
reading from customer sites. This approach is laborious and
error-prone; with increasing AMI penetration, automated pro-
cedures are being explored. With increased AMI penetration
at the distribution level, real-time and spatially resolved esti-
mations of distribution losses, which have long been a promise
of the smart grid, can now become accessible to utilities [1],
[2]. This is demonstrated for example in a method proposed
by Triplett et al. to evaluate losses for an entire distribution
circuit using AMI and GIS data [3].

Losses are of paramount importance to utilities, as they
indicate inefficiencies in their networks, which in turn translate
into lost revenues. Detailed information would allow utilities to
monitor the impact of replacing old and inefficient equipment,
and to identify where increased losses with an associated rise
in temperature could lead to accelerated ageing of devices
in the distribution network [4], [5]. Thus, losses may convey
information about impending equipment failure in addition to
current network conditions.

Several studies have been conducted on the value of big
data analytics in distribution systems for load forecasting, state
estimation, and outage management and prediction [6]–[8] yet
most research concerning outages was focused on outages
due to weather, animals and vegetation [9]–[13]. Hence, this
paper describes a novel technique for loss estimation and
visualization in distribution systems using data collected from
various sources in the circuit. These sources include advanced
metering infrastructure (AMI), recloser power measurements,
geographic information systems (GIS) and electrical circuit
models.

Automated data analytics is one way to cope with the sharp
increase in available data, but it is also essential that a human
be placed in the loop at the right place and time. Visual
analytics leverages human perceptive and pattern recognition
skills such that the right visual interface leads to effective
and situationally aware users who can discover relevant items
and turn them into decisions [14], [15]. This paper presents
results from the developed loss estimation technique and its
application to a real-world distribution circuit together with
the resulting loss visualizations.

The rest of the paper is structured as follows. Section II
describes the available data sources and the process devel-
oped to evaluate losses in the distribution system. Section III
presents the application of the described techniques to a real-
world distribution circuit. Section IV presents possible ways
to visualize the generated loss data. Section V summarizes the
work presented and its role in the vision for increased situa-
tional awareness of distribution systems via visual analytics.
It also gives an overview of future research opportunities.

978-1-7281-4547-1/20/$31.00 ©2020 IEEE
Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 28,2021 at 19:38:27 UTC from IEEE Xplore.  Restrictions apply. 



II. LOSS ESTIMATION USING AMI AND RECLOSER DATA

This paper leverages the comprehensive measurements now
available in the distribution system due to widespread adoption
of AMI. This study also incorporates data from reclosers with
measurement capabilities installed in the circuits under study.
Combining these two data sources allows for loss estimations
in circuit sections confined by the reclosers. The resulting loss
data vary in time and space and can be visualized in various
ways, such that the user can then identify spatial, temporal
and categorical patterns in the losses.

A. Data Sources and Data Cleansing

The AMI dataset contains real and reactive power mea-
surements for distribution transformers in the investigated
circuits. The meter readings are aggregated per transformer in
order to obfuscate load patterns of individual households, thus
mitigating data privacy concerns. The recloser dataset includes
recloser measurements of line voltages, currents, phase angles
and harmonic distortions. These measurements along the main
feeder facilitate the partition of the distribution network into
distinct load areas with computable power inflows. In this
study, a load area refers to a part of the distribution network
bounded by two reclosers. In a case where a recloser has no
downstream recloser, the load area refers to the part of the
network downstream of that recloser. Fig. 1 shows the load
areas for the distribution system used for this study.

Location information about all equipment under considera-
tion is listed in the GIS dataset, where latitude and longitude
coordinates are assigned to every network device. The circuit
topology data specify all network elements along with their
mutual electrical interconnections and represent the informa-
tion basis from which the load areas can be extracted.

The provided data is preprocessed before integrating the
heterogeneous information sources. At the most fundamental
level, access to the raw data is not given due to specific pro-
prietary file formats used by vendors of distribution network
equipment. It was therefore necessary to convert those files to
an open and standardized file format. For this work, the IEEE
COMTRADE format [16], commonly used for transient power
system analysis, was chosen.

Fig. 1. Distribution system under study, depicting location of reclosers (PCRs)
and load areas

Another challenge typical to distribution systems is ensuring
time synchronous measurements from different monitoring
devices. This time-synchronization includes establishing a
common time zone for AMI and recloser data, and integrating
data sources with measurements at different points in time. To
resolve this, one time series is resampled during preprocessing
employing linear interpolation in order to match the sample
times of the other time series.

B. Loss Estimation

At the core of the presented loss estimation technique lies
the partitioning of the distribution circuit into distinct load
areas, each confined by reclosers capable of measuring power
flow at their respective locations. Since a manual allocation of
distribution transformers to those load areas would be cumber-
some for initial investigations and would prohibit analysis of
more extensive circuits, an algorithm was developed for this
task.

Starting from the circuit head, this algorithm performs a
depth-first search, during which each discovered node can be
either a load contained in the current load area or an intelligent
recloser, which marks the boundary to the next area. The
resulting circuit structure containing a list of all encountered
areas can then be exported for further loss analysis. The power
flow within a given load area is calculated using (1) below:

Pin = PREC, in −
∑

j ∈ O

PREC, j (1)

where Pin is the power inflow to a load area, PREC, in is the
power measured at the entry to the load area, PREC, j is the
power measured at the exit recloser(s), and O represents the
set of outbound reclosers.

With all the loads for a specific load area given by the circuit
partitioning, the transformer power data is to determine the
overall power consumption within that area given in (2):

PConsumption =
∑
i ∈ T

PAMI, i (2)

where PConsumption is the power consumption calculated by
the transformers, T, and PAMI, i is the sum of real power
measurements from all AMI meters, within the load area under
consideration. Equation (2) is based on the assumption (true
for our test case) that all customers are connected to the circuit
using smart meter devices.

Subtracting power consumed by customers located inside
the load area from the power flow into that area, as measured
by the confining reclosers, results in the section loss estimate
given in (3) below:

PLoss = Pin − PConsumption (3)

The losses within each load area consist of the primary and
secondary line losses as well as load and no-load distribution
transformer losses and should therefore follow a regular pat-
tern. Spikes in losses or other deviations indicate abnormal
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conditions, which can hint at problematic system states or
events.

Since the circuit partitioning is based on reclosers with
measurement capabilities as load area boundaries, an increased
number of such reclosers naturally leads to finer spatial reso-
lution for the loss estimate. This in turn could prove beneficial
for analysis purposes and for localizing error sources in case
of noticeable increases in losses within a load area.

The loss estimation method is based on the assumption that
all the loads within the examined load area are connected using
smart meters. Missing AMI data pertaining to a transformer
listed in a load area would therefore be interpreted as an
additional loss of significant magnitude. Even though the loss
estimation algorithm could provide an educated guess for this
absent record based on data related in space or time, the
missing data could then go unnoticed. Lack of such data points
is of interest for the utility as they could indicate similar
problems during the billing process.

The loss estimation algorithm assumes constant boundary
conditions for the distribution network. This assumption could
be erroneous in case of protection events; for this reason,
measurements following such disturbances must be filtered out
or adjusted to be comparable to nominal state values.

III. CASE STUDY

The loss estimation algorithm described in the previous
section is applied to a real-world distribution system which
comprises AMI, recloser, GIS, SCADA and OMS/DMS data
spanning over one month. The two circuits considered for
the loss estimation and visualization consist of single-phase
and three-phase overhead lines and underground cables. The
network characteristics are listed in Table I.

TABLE I
CASE STUDY NETWORK DETAILS

Circuit A Circuit B

Total Area 56.2 sq mi

Conductor Length 49.5 mi 99.6 mi

Number of Transformers 423 728

Total Transformer Capacity 15.2 MVA 18.4 MVA

Number of Reclosers 6 10

Loading Conditions
Minimum 637 kW 1055 kW
Maximum 3275 kW 7655 kW
Average 1616 kW 2453 kW

As the distribution system losses vary in space and time,
they are best visualized using an interactive plot. In this paper,
time series with a fixed location and network representations
at a specific point in time are presented. Since the distribution
losses consist of both load-dependent and independent com-
ponents, some variation over time is to be expected. This time
dependency is depicted in Fig. 2, which shows the plots of
power inflow, power consumption and losses for load area 4
over a 7-day period. The loss peaks coincide with respective
peaks of power demand and supply; the same is true for

points of minimal loss. In spite of this obvious relation, not all
characteristics of the loss curve are proportional to the power
inflow and consumption in the load area, possibly indicating
other loss mechanisms.

Some loss variations not explained by the change of load are
depicted in Fig. 3, which shows power inflow, consumption
and losses in load area 6 over a 24-hour period. Around 1
AM, losses rise significantly, even though power inflow and
consumption in the area decrease at the same time. Conversely,
at 10 AM the same day, losses drop with no discernible
correlation to the load, prompting further investigation into
possible explanations. It is also interesting to note a periodical
pattern in both power inflow and consumption during the
depicted timeframe, possibly indicating behavior of specific
circuit elements.

Table II shows the loss distribution across the different
load areas for circuit A, at 5pm on a summer weekday. Also
included in this table is the percentage of total consumption
for each load area. It is worth noting that load area 5 accounts
for more than half of the losses in the circuit. This can be
attributed to the number and length of lines within that load
area (see Fig. 1).

The results show a strong correlation between losses and
consumption in each load area (expressed as percentages of
the total). Again, this dependency is explained by the load-
dependent components such as copper losses in conductors and
distribution transformers. No-load transformer losses are also
captured in the percentage of total power consumption metric,
as the amount of transformers increases with the relative share
of electricity demand. Loss components independent of the
local power consumption can consist of longer conductors to
more remote costumers, or higher core losses of distribution
transformers of larger, but untapped capacity.

TABLE II
LOSSES IN LOAD AREAS OF CIRCUIT A

Load Losses Losses Power Consumption
Area (kW) (% of Total) (% of Total)

1 9.87 7.4 5.5

2 6.75 5.0 2.9

3 1.36 1.0 3.6

4 20.79 15.6 19.1

5 76.23 57.0 53.5

6 18.75 14.0 15.4

Simulation-based verification of the system losses was con-
ducted using the available AMI data to generate representa-
tive load models at specific times. Examining the loading
conditions using CYMDIST [17] showed similar results for
light loading conditions, but considerable differences with
increasing load. Some part of this divergence can be attributed
to missing transformers in the AMI dataset, but the main cause
of the difference in losses is that the CYMDIST circuit model
does not include detailed information about the customers
connected to the distribution transformers. In the circuit model,
distribution transformers have their aggregated loads directly
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Fig. 2. Power inflow, consumption and losses over time for load area 4

connected, which prohibits any meaningful statements about
secondary losses.

The reclosers deployed in the example circuits are equipped
with Rogowski coils for three-phase current measurements.
Together with their voltage sensors, the reclosers are able to
capture the present power flow with an accuracy of 1% of
reading or less. The AMI devices are certified as revenue-grade
equipment and should therefore not be of concern regarding
accuracy, even though recent studies have shown possible
misreadings in case of highly distorted currents [18]. Together,
this measurement accuracy is sufficient to provide significant
loss numbers. Nonetheless, upstream feeder section results
could prove less reliable as a result of higher recloser power
throughput, and thus higher per reading deviations.

Fig. 3. Detailed view of losses (kW) in load area 6

IV. VISUALIZATION OF DISTRIBUTION SYSTEM LOSSES

The loss data generated by the estimation algorithm varies
both in space and time and is therefore hard to analyze by
a human operator if presented in a tabular format. To better
perceive the current state of the distribution system losses, the
data needs to be visualized in an interactive manner.

Several options exist to visualize the generated loss data.
The most concise overview can be obtained by constructing
a graph representation of the load areas and their interfacing
reclosers. Relevant information can then be expressed using
color-coded graph edges and by displaying the metrics next
to each associated graph node as shown in Fig. 4. The graph
visualizes the percentage of loss to power consumption within

Fig. 4. Graph visualization of circuit A
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Fig. 5. Sankey diagram for load area 5

the five load areas in circuit A over a 3-hour period. If the
geographic distribution of the network losses is of interest,
the actual circuit topology can be used as background with
the time-dependent losses as heat map overlay as demonstrated
in a previous work in [15]. This way, network operators can
also identify the physical location of loss anomalies, which
might help to ascertain root causes of the losses. Another
visualization alternative consists of highlighting the power
flow and the allocation of real power consumption using a
Sankey flow diagram as displayed in Fig. 5. The Sankey flow
diagram shows a comprehensible breakdown of power flows
into downstream demand, customer demand and losses for
load area 5.

In each case, the extent of the available datasets provides
multiple possible quantities to display. The most evident to
show are the losses per load area, but as these depend on the
number of connected customers, it can also be helpful to relate
the losses to load area or downstream demand. Considering
that line losses and transformer load losses both depend on the
loading conditions of the network, it can also be practical to
show the power flow in each load area. Especially in situations
with unexpected loss behavior, additional measurements such
as temperature and harmonic distortion can help to determine
and narrow down possible explanations.

V. CONCLUSION

Loss information is essential for assessing distribution
equipment efficiencies, visually evaluating the state of the
distribution system and could be an important indicator for
imminent device failures. In this paper, an approach for
estimating distribution system losses by load area over time is
presented. Already deployed infrastructure is utilized to obtain
the necessary data and resulting loss information is presented
in multiple visual representations.

Future work will focus on applying the estimation algorithm
to bigger datasets and integrating existing outage information
in order to evaluate possible equipment failure prediction
schemes. Pattern recognition approaches can be used to discern
between possible causes for loss such as vegetation, energy
theft or eventual equipment failure. Although outage prediction
based on losses is not covered in this paper, the data generated
using the presented load estimation approach will be used for
that purpose as part of an ongoing project.
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