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Abstract 

In this study, a layer-wise framework is proposed to monitor quality of 3D printing parts based 

on top-view images. The proposed statistical process monitoring method starts with self-start 

control charts that require only two successful initial prints. Answering the challenges of image 

processing due to lighting, a Machine Learning (ML) method is adopted to separate each layer 

from the printing bed. A sample image is compared to the standard image from a good part at 

each layer. The number of pixels in the difference images is fed into the proposed control charts 

to monitor printing process at each layer. An EWMA chart based on the number of pixels is used 

for process monitoring at each layer. Once enough parts have been printed, homogeneous layers 

are clustered to reduce the number of control charts needed for process monitoring. Experimental 

results based on a 3-inch diameter basket part show that the proposed framework is able of 

detecting various defected layer consistently.   
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1. Introduction 

 

The ability of Additive manufacturing (AM) generating parts with complex geometry makes it a 

viable manufacturing option. In recent years, many mainstream manufacturing industries such as 

aerospace, automotive, biotechnical/medical, and consumer products have adopted AM a part of 

their manufacturing strategy. ISO/ASTM 52900 defined AM as “a process of joining materials to 

make parts from 3D model data, usually layer upon layer, as opposed to subtractive 

manufacturing and formative manufacturing methodologies, ranks high on the transformative 

scale” (ISO and ASTM, 2015). In order to reach the full potential of AM, quality monitoring 

during a printing process is crucial to ensure production efficiency and customer satisfaction. 

However, most 3D printers are not equipped with an automatic quality monitor feature. The lack 

of supervision may result in wasted prints especially if the printing problems occurred in early 

layers (Farhad Imani , Bing Yao , Ruimin Chen , Prahalad Rao , Hui Yang, 2019). Machine 



 

vision provides a mean for an automatic process monitoring operation. Automatic process 

monitoring is very important for large scale 3D printing operations in which hundreds of 3D 

printing machines are used in mass production of the same part. Even for small-batch 3D 

printing jobs, automatic process monitoring is also important in that there is not many printed 

parts for implementing traditional statistical process monitoring methods. A phase I control 

charting may not be established when the batch size is less than 20 parts. 

SASAM drafted additive manufacturing roadmap and standards for quality and performance is 

one of the five high priority areas (SASAM, 2015; Chee Kai Chua, Chee How Wong and Wai Yee 

Yeong, 2017). Figure 1 shows 10 frequent cause for poor quality in 3D printing products. Some 

of those causes such as not initial setup issues could be done by analyzing images from printer bed 

with computer without involving human operators.  

 

 

Figure 1. Fishbone diagram of the poor quality of a 3D-printed product (Hsin-Chieh Wu, Tin-Chih Toly Chen, 2018) 

 

Due to the rich process information that can be captured, images and videos are increasingly 

deployed to monitor an AM process. Machine vision system (MVS) can be used to inspect 

quality characteristics in many different industries such as liquid crystal display, ceramic tiles, 

textile, and food products (Fadel M. Megahed, William H. Woodall & Jaime A. Camelio, 2011). 

Typically a MVS usually include a device to capture images (e.g. a vision sensor or cameras) and 

a computer to analyses and process the images captured by devices (Elias NMalamas, Euripides 



 

G.M Petrakis, Michalis Zervakis, Laurent Petit, Jean-Didier Legat, 2003). MVSs have been 

increasingly used in industrial process monitoring due to the efficiency increasing and cost 

reduction (Zhen He, Ling Zuo, Min Zhanga, Fadel M. Megahed, 2016). However, high-

dimensionality, correlation structure and complex data characteristics present many challenges 

for existing process monitoring methods to fully utilize the information of color images (Hao 

Yan, Kamran Paynabar, and Jianjun Shi, 2015). By integrating MVS and SPC in manufacturing 

process monitoring, not only product quality can be monitored, but also information gleaned 

from product images can be used for diagnostic analysis (Zhen He, Ling Zuo, Min Zhanga, Fadel 

M. Megahed, 2016; Xiaoxiao Guo, 2019).  

In this study, an image-based quality monitoring framework is applied to 3D printing layer by 

layer. The proposed framework can be implemented to any 3D printed part. The proposed 

framework is illustrated by a 243-layer basket part with 3-inch diameter and 1.5-inch tall shown 

in Figure 2. An overhead camera takes image after a printer finishes each layer. The traditional 

SPC phase I process requires at least 20 to 25 parts to establish control limits and each layer 

requires one set of control charts. Since the material and resources using in 3D printing is usually 

expensive, the challenge is how to monitor the process from the very beginning when there is not 

enough samples to establish these control charts. Thus the proposed framework first relies on one 

self-start control chart on each layers after two successful prints are established. Then the 

homogeneous layers are clustered for families of control charts as more successful parts are 

acquired.   

The rest of this paper is organized as follow. Section two provides some research background of 

imaged base quality monitoring with focus on additive manufacturing. The practical problem and 

experimental set up to collect data is presented in sections three and four, respectively. Section 

five are devoted to two subsections of image preprocessing and proposed process monitoring 

framework. Then an experimental example is presented to highlight how the proposed 

methodology can be applied to a real-world problem. Finally, conclusion and future research can 

be found in section seven. 

 

 

 

 



 

2.  Research background 

 

A wide variety of quality characteristics such as product geometry, surface analysis, dimensional 

data, and defect patterns can be monitored using imaged based monitoring  (Fadel M. Megahed, 

William H. Woodall & Jaime A. Camelio, 2011). Image-based quality monitoring includes the 

following steps: image acquisition, image pre-processing, feature extraction, and process 

monitoring, and control charts (Hao Yan, Kamran Paynabar, and Jianjun Shi, 2015). Previous 

research in this area mostly focused on two approaches (Zhen He, Ling Zuo, Min Zhanga, Fadel 

M. Megahed, 2016). The first approach uses spatial control chart to detect the location of and 

size of a defect (B. C. Jiang, C.-C. Wang, H.-C. Liu, 2005; Bernard C. Jiang, S.J. Jiang, 1998; 

Lu, C. J., and D. M. Tsai, 2005; Lin, H. D., and S. Chiu, 2006; Tunák, M., and A. Linka, 2008) 

while the second approach aims to detect defects through a well-defined statistical method 

(Armingol, J. M., J. Otamendi, A. de la Escalera, J. M. Pastor, and F. J. Rodriguez, 2003; Wang, 

K., and F. Tsung, 2005). These two approaches may be implemented simultaneously (Megahed, 

F. M., L. J. Wells, J. A. Camelio, and W. H. Woodall, 2012). 

The idea of using control charts to monitor image data was first proposed by Hosrt and Negin 

(R.L. Horst, M. Negin, 1992)  for dimensional control of web production processes. They 

showed that the use of control charts with image data improved productivity and profitability 

significantly. Koosha et al. (Mehdi Koosha, Rassoul Noorossana, Fadel Megahed, 2017) applied 

imaged-based SPC for nonparametric profile monitoring. They monitored coefficient of 

extracted features with a generalized likelihood ratio (GLR) control chart. Their results under 

different fault test showed that their model was able to detect shifts quickly. 

Delli and Chang (Ugandhar Delli, ShingChang, 2018) proposed a SVM method to distinguish 

good parts from bad parts based on segments on printed images at critical checkpoints. Each 

image was first segmented into an 8 x 8 lattice forming 64 stamps. RGB statistics of these stamps 

were fed into the proposed SVM for a go/no-go determination.  A major drawback of this 

method was that a large number of training images including both good and bad parts were 

required. Often time the bad parts were hard to collect and might take a long time before this 

proposed process monitoring method could be implemented.  

Imani et al. (Farhad Imani, Aniruddha Gaikwad, Mohammad Montazeri, Prahalada Rao, Hui 

Yang, Edward Reutzel, 2018) used a layer-by-layer image analysis to detect the onset process 



 

conditions that led to a lack of fusion-related porosity from in-process sensor data in laser 

powder bed fusion additive manufacturing. Their goal was not only to quantify size, number and 

location of pores but to identify process conditions that were liable to cause porosity through 

analysis of in-process, layer-by-layer images. They successfully examined and showed that 

several machine learning technics could be used to detect pores in laser additive manufacturing. 

Imani et al. (Farhad Imani, Ruimin Chen, Evan Diewald, Edward Reutzel, Hui Yang, 2019) 

implemented a deep learning neural network in layer-wise imaging profile for additive 

manufacturing quality control. In reality, there might be several layers of printing and quality 

features in 3D printing parts which could generate a large amount of data which was hard to 

track and monitor. Zou et al. proposed an EWMA and region growing based control chart to 

monitor images of production lines where the quality characteristic had either a specific pattern 

or uniformity character (Ling Zuo, Zhen He,Min Zhang, 2019).   

The above-mentioned literature all requires sufficient amount of data for proper training. Most 

machine learning algorithms require a large amount of training data in each data category for 

satisfactory results. The number of sample images should be at least 20 to 25 for the Phase I 

process of traditional SPC charts (Montgomery, 2013). In addition, most of the previous research 

in imaged based quality monitoring assumes the statistic gleaned from the images are i.i.d. (i.e. 

independent and identically distributed), which may not be accurate. The main challenges are 

how to automate monitoring of in-process parts layer-by-layer using a limited amount initial 

image data.  

Addressing these challenging issues using images for process monitoring, this study proposes a 

self-start and cluster-charting framework to monitor the print quality layer by layer from the third 

printing part using layer images. The process monitoring will start with a self-start control chart 

over layer-wise images in the beginning and switch to a cluster-charting approach after enough 

good parts are printed. The cluster-charting approach include an ARIMA filter to alleviate the 

autocorrelation of statistics from adjacent layers and then use one EWMA control chart for each 

homogenous layer family. 

 

 

 

 



 

3. Problem Description Illustrated by a Case Study 

 

In 3D printing industry, quality of 3D printed parts is checked when a part is printed. This 

practice means that if there is a mistake even in the first layer of printing, not only it can cause a 

significant waste in material and time but also the part should be printed again. Figure 3 (a) and 

(b) show two defect samples that can happen in a 3D printing process toward the end of a 

printing process. Figure 3 (c) shows another defect when operator discovered the problem at an 

early stage and stopped the printing process. This study attempts an automatic inspection 

framework to monitor quality of parts after each layer of printing by taking pictures and compare 

them with a standard print image. To do this, RGB values for each pixel in the image is 

compared to the same pixel location in the corresponding standard image. A gray-scale image 

can be represented as a function f(x, y) where x and y can take non-negative integer values. For 

an 8-bit unsigned integer, this value is between 0 (black) and 255 (white) and the same color for 

a 16-bit unsigned integer is between 0 and 65535. However, printed layers are a small proportion 

of the printing bed as shown in Figure 2 and a small change in lightening may cause a large 

difference in RGB values. 

 

 

 

To avoid this problem, the proposed method first classifies each pixel into two classes: a part of 

the print or not a part of the print. This way, the part image is isolated from the machine bed and 

its environment so just the parts would be compared and not the environment. Then the filtered 

image containing only the part can be compared to a standard image. Two quality monitoring 

techniques in the proposed framework are then applied on the difference of sample and standard 

images to determine whether the process is in control or not. 

Figure 2. Experimental setup 



 

 

 

 

 

 

 

 

4. Proposed Method 

 

The proposed method contains two major steps. The first step is image classification where 

images will be cleaned, prepared and processed. The second is the process monitoring based on 

the processed images. Figure 4 shows the proposed imaged-based quality monitoring framework. 

This framework starts with self-start control chart approach. In this approach in order to find 

inverse normal distribution (Unj) at least two printed sample is needed. After printing two 

standard parts, the proposed framework will start by feeding image of first layer to monitor 

quality of the process. The basic assumption is that the quality of the two printed part is 

satisfactory. This process will be implemented for each layer of printing separately. Each step is 

explained in more details.   
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Figure 4. Layer-by-Layer Image-Based Quality Monitoring Framework for in-process 3D Printing Parts 

 

4.1. Image Processing 

Image processing is the first core stage in the proposed quality monitoring framework. Three 

major steps in this stage include image capturing, image filtering, and finally image extraction. 
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4.1.1. Experimental Setup and Image Capturing 

 

The 3D printer used in this study was Ultimaker 3. Ultimaker Cura was used to design the part 

and to handle the G code, remote access to the camera feed, and mage webcam snapshots. 

Octoprint software served as the operation platform was used to print a part and collect part 

images layer by layer. Figure 5 shows that the part design on Ultimaker Cura. Octoprint can be 

implemented in either on a PC or Raspberry Pi. To ensure consistent lighting, an enclosure was 

built to cover the Ultimaker printer.  A strip lighting and a photography umbrella are mounted on 

the top of the enclosure.  After printing of each layer, the G code instructed the printing head to 

its default location at the upper left-hand corner shown in the top view picture in Figure 2. Then 

the overhead webcam takes a picture.  The material used for this research was PLA.  The same 

3D printer configuration was used throughout this study. Finally, Python 3.7 has been used for 

image processing and extraction.  

 

 

Figure 5. The part designed using Ultimaker Cura 

 

Images were taken by two cameras – from the top (Figure 2 (a)) and from the front (Figure 2(b)) 

of the Ultimaker printer. In this paper we focus on the data only from top view camera. Side 

view images can be processed and analyzed using the same methods.  In addition, we are 

working on using several cameras from the corners so that the printer head does not have to 

travel to the default location after each print. Figure 5 presents a possible angle for this 

implementation. 

 



 

4.1.2. Image Pre-processing and Filtering 

 

To make sure suitable images are generated with pixels containing part only, it is essential to 

clean the data. First, the portion containing the part in Figure 2(a) was cropped to contain only 

the printed layer and its surrounding bed area. Then the all pixels in the cropped image need to 

be classified into two classes: part only and printer bed. Finally, each pixel containing the RGB 

values is transformed from colored images into binary images with “part” and “not part” label. In 

other words, the proposed approach first converts the RGB values in each pixel into a gray scale 

value. Then a gray scale cut-off threshold value can be used for the binary classification task 

(Andres Patrignania, Tyson E. Ochsner, 2015).  However, lighting is a significant issue as shown 

in Figure 6 where the reflection of the part on the printer bed causes some of the printer-bed 

pixels to be classified as a part of the part. A single threshold value cannot be implemented for 

the classification task. 

 

 

Figure 6. RGB to gray scale using skimage package on python 

 

To overcome this issue, three different machine learning algorithms of Neural Network (NN), 

Gradient Boosting Classifier (GBC) and Support Vector Machine (SVM) from sklearn package 

in python were used to achieve the classification task. These methods were chosen because of 

their performance in binary classifications. NN and SVM are two well-known machine learning 

algorithm in binary classification and GBC is a newer and improved method based on random 

forest. Among three machine learning methods studied, SVM which had the worst performance 

while NN and GBC performed more than 90 percent accuracy. NN had slightly better 

performance than GBC in terms of (True Positive Rate (TPR) and False Positive Rate (FPR)), 

but GBC had lower FPR which is more critical to eliminate the part reflection on the printer bed 



 

mistaken as the part in Figure 6. So in this research, GBC is chosen for further analysis. Figure 7 

shows the AUC curves of the different ML methods studied. Comparing various ML methods we 

prefer AUC curves trending toward upper left-hand corner. The preliminary data shows that NN 

and GBC are capable of detecting part with 95 and 93 percent accuracy while SVM can only 

achieve 60 percent accuracy for pixel classification.  

 

 

 

The GBC method was used for pixels classification. This process has to be done for all the layers 

in every single part. The sample part in this study has 243 layers. Figure 8 depicts the outcome 

for layer 200 of the first part. Figure 8(b) is the color image while 8(a) is binary image where the 

light color (i.e. yellow) represents “part” and the dark color (i.e. purple) is the printer bed. Due to 

the classification errors, the filtered image contains noise and loses resolution. As shown in the 

outer rim in the original image almost disappears in the filtered image. This sacrifice is necessary 

in that each pixel contains three values in Red, Green, and Blue, which cannot be directly used in 

the next stage of the proposed method, which is the image difference operation. 

 

 

 

 

 

 

 

Figure 7. ML Performance Sensitivity vs 

Figure 8.  (a) GBC binary prediction on the left and (b) the actual part (Layer 200) on the right 



 

4.1.3 Image Extraction 

 

The outcome in the previous section is a gray-scale filtered image free of noise from lighting and 

background as shown in Figure 8(a). The proposed imaged-based process monitoring framework 

involves a layer-by-layer monitoring scheme. Specifically, any future sample layer would be 

compared to a good layer, which can be established when the first two good print is obtained. 

Each grayscale image from a given layer is represented in a two-dimensional matrix and 

resolution of each image is 128 x 128 in this case. To compare images, the 2D grayscale matrix 

of the sample layer should be subtracted from that of the first good layer. The pixels not 

containing any part (i.e. the printer bed) are already assigned the value zero by the proposed 

GBC algorithm in the last section while pixels containing the part are assigned the value 255.   

Consider the case of n parts each with m layers. Let Mij be the image matrix, i=1,2,…, n and 

j=1,2, …, m and its resolution is 128x128. The element in the M matrix can be presented as M 

(h, v) where horizontal index  h=1,2,…, 128 and vertical index of v=1,2, …, 128.  For example, 

M1j is the image of the first part at jth layer. Define Dij as the total number of different pixels for 

the jth layer between ith part and the first standard or good part.  

Thus:  

 Dij= ∑ ∑
|𝑀𝑖𝑗(ℎ,𝑣) − 𝑀1𝑗(ℎ,𝑣)| 

255

128
𝑣=1

128
ℎ=1         where i=2, 3, …, n and j=1, 2, …, m, h=v= 1, 2, …, 128.                  (1) 

 

Remember that Mij is a matrix containing elements with zeros representing “no part” and 255 

representing “part.” Thus the expression “𝑀𝑖𝑗(ℎ, 𝑣)  −  𝑀1𝑗(ℎ, 𝑣)” is a value of either 0 or a 

multiple of 255. When an element in Dij is 255, it means that there is a difference in the sample 

image pixel and that of the first part at layer j.  To find total different pixels we need to divide it 

by 255 and tally all elements in the matrix Mij.  

 

4.2 Process Monitoring  

 

Dij generated in equation (1) can be used for the process monitoring purposes. The goal of 

process monitoring is to ensure print quality at each layer as oppose to at the end of an entire 

part. Two complementary approaches are explored to monitor the production process depending 

on the amount of information available for Phase I of control charting. Traditional Phase I 



 

control charting guideline demands at least 20 to 25 observations to establish a control chart. 

However, Hawkins [30] suggests the use of a self-start control charting procedure when this 

number can be reached. The first method applies one self-start control chart to each layer. The 

proposed approach can start from the third part after two parts are successfully printed and the 

layer-by-layer images are stored. Equation (1) is implemented to generate the statistic for control 

charting. Since the part in this study contains 243 layers, we use 243 control charts each for a 

layer.  The second approach can be implemented when enough homogeneous sample statistics 

are available. The core idea is to use as fewer control charts as much as possible by grouping 

adjacent layers. Instead of using one control chart for each layer, statistics from “similar” layers 

can be plotted on the same control chart. This requirement can be met after multiple parts are 

successfully printed and similar adjacent layers can be clustered according to the distribution of 

the standardized Dij. The one control chart is applied to each homogeneous cluster.   

 

4.2.1 Method I: Self-start Charting 

 

A self-start control chart can be used for process monitoring on the number of different pixels in 

the matrix Dij, j=1,2,…, m. Hawkins (HAWKINS, 1987) proposed self-start Cumulative Sum 

Control Chart (CUSUM). In their proposed method, any other control charts can be applied when 

standardized values for observation is calculated. CUSUM is an approach to catch small shifts. 

However in image-based quality monitoring we are mostly interested to catch medium to large 

size shifts. Thus EWMA would be a better approach than CUSUM. 

In this research we propose an EWMA self-start control chart to start monitoring of each layer 

from the third part.  One control chart is applied for each layer of printing in this method and 

each point in the chart represents the quality at end of each layer. If the difference statistic Dij 

plots within the control limits, it means that the process is in control. We could have chosen 

Individual X control chart in this case since the processing monitoring task is mainly for various 

mis-printing situations such as those in Figure 3(a)-(c). However, an IX chart requires the 

underly statistics are normally distributed which is not true in this case.  

Equations for this method are summarized as follow where 𝐷̅𝑛𝑗 is the average of the first n 

observations of Dij and ꙍnj the sum of squared deviations from 𝐷̅𝑛𝑗 for each layer j: 

ꙍnj = ∑ (𝐷𝑖𝑗 −  𝐷̅𝑛𝑗)𝑛
𝑖=1

2                                                  (2) 



 

𝐷̅𝑛𝑗 = 𝐷̅(𝑛−1)𝑗 + 
𝐷𝑖𝑗−𝐷̅(𝑛−1)𝑗

𝑛
                                              (3) 

Thus, we can have: 

ꙍnj = ꙍ(n-1)j +  
(𝑛−1)(𝐷𝑖𝑗−𝐷̅(𝑛−1)𝑗)2

𝑛
                                       (4) 

The sample variance of first n observation (s2
nj), standardized observation (Tnj), cumulative t 

distribution of standardized observation (F(n-2)j(anjTnj)), and the transformation of inverse normal 

distribution (Unj) formula for n≥3 are given as follow: 

s2
nj = 

ꙍ𝑛𝑗

𝑛−1
                                                                                                                                       5) 

Tnj = 
𝐷𝑖𝑗−𝐷̅(𝑛−1)𝑗

𝑠(𝑛−1)𝑗
                                                                                                                            (6) 

Let anj = √
𝑛−1

𝑛
                                                                                                                             (7) 

P(Tnj ≤ tj) = F(n-2)j(anjTnj) = F(n-2)j (tj√
𝑛−1

𝑛
)                                                                                  (8) 

Unj = Ф-1[F(n-2)j(anjTnj)]                                                                                                               (9) 

 

Note that we assumed Tnj is normally distributed. A large value of Dij means that huge difference 

between the printing part and first standard sample at layer j and a small number means the 

process is in control. So one can use values of Unj in a CUSUM chart because in self-start we 

want to be careful about small and medium size changes. However, because of the lightening and 

environmental changes issues, and philosophy of CUSUM in catching very small changes, 

CUSUM for images-based quality monitoring might cause many false alarms. Thus we 

recommend the use of EWMA control charts for each layer j which is a better approach to catch 

medium to large size shifts by adjusting the EWMA parameter   toward 1. Table 1 shows a self-

start procedure calculation for layer 122 of our printed parts and Figure 9 demonstrate self-start 

EWMA control chart for layer 122 of first 16 parts. 

 

 

 

 



 

Table 1. Self-Start control chart calculation for layer 122 of the first 16 parts 

Part 

number(n) 

Dn122 𝑫̅𝒏𝟏𝟐𝟐 ꙍn122 Sn122 Tn122 an122Tn122 F(n-2)122(an122Tn122) Un122 

1 347 347 0 - - - - - 

2 272 309.5 2812.5 53.03301 - - - - 

3 266 295 4074 45.13314 -0.82024 -0.66973 0.312159661 -0.48974 

4 246 282.75 5874.75 44.25212 -1.08568 -0.94022 0.223177095 -0.76151 

5 242 274.6 7203.2 42.43583 -0.92086 -0.82364 0.235258149 -0.72164 

6 311 280.6667 8307.333 40.76109 0.857766 0.783029 0.761313095 0.710533 

7 228 273.1429 10684.86 42.19964 -1.29208 -1.19624 0.142615765 -1.06864 

8 319 278.875 12524.88 42.29974 1.086671 1.016488 0.82569006 0.93727 

9 275 278.4444 12538.22 39.58886 -0.09161 -0.08637 0.466795854 -0.08333 

10 404 291 26726 54.49363 3.171487 3.008737 0.991577035 2.390053 

11 446 305.0909 48566.91 69.68996 2.844369 2.712 0.988040471 2.258427 

12 418 314.5 60253 74.01044 1.620163 1.551188 0.924048633 1.432843 

13 398 326.6154 82735.54 83.0339 2.128078 2.044591 0.967208136 1.841258 

14 403 303.2857 179319.1 117.4469 -3.93352 -3.79043 0.001287113 -3.01448 

15 400 283.0667 263557.7 137.2062 -2.58232 -2.49476 0.013426394 -2.21365 

16 472 290.25 274343.3 135.2389 0.837668 0.811069 0.784550315 0.787654 

 

 

Figure 9. Self-start EWMA control chart for layer 122 of first 16 parts 

 

4.2.2 Method II: Cluster Charting: Standardizing, Autocorrelation Filtering, Change Point 

Clustering 

 

This cluster-charting method aims to reduce the number of control charts required in the self-

start-charting method. Chang et. al. (Shing I.Chang, BehnamTavakkol, Shih-HsiungChou, 

Tzong-RuTsai, 2014) proposed a real-time detection of condensation-water-temperature wave 



 

profile monitoring. The core idea is to monitor product quality during the curing process rather 

than at the end of the process. The same idea can be used in this application as well since 3D 

printing is accomplished layer by layer. Each layer represents a critical stage in the production 

process of interest. The print quality monitoring should take place at the end of each layer rather 

than at the end of the entire print. This method contains two major steps of standardization and 

ARIMA filtering and then change point clustering. Unlike the self-start control charting in 

section 5.1, we use much few charts for process monitoring. 

 

5.2.2.1 Standardization and ARIMA filtering 

 

The statistics in self-start control charts are independent because each point in a control chart 

comes from a different part. However, in the effort to plot statistics from different layers of the 

same part on the same control chart, the independent assumption may be violated. To test the 

i.i.d. assumption, we need to first standardize statistics Dij. 

eij = 
𝐷𝑖𝑗 − µ𝑗 

𝜎𝑗
            (10)  

 

Note that in the self-start charting, control chart points are from different parts, i.e. i=1,2, … The 

plot statistics are independent since they from different parts.  In the cluster charting method, we 

want to use the same chart family to plot eij, j=1,2, … The eij statistics, j=1,2,…,m, on the other 

hand, might be autocorrelated. Autocorrelation function plot (ACF) and Partial Autocorrelation 

function plot (PACF) can be used to test this autocorrelation. In order to remove the 

autocorrelation from eij we needed to apply a filter as in Figure 4. ARIMA can be used to remove 

autocorrelation from eij. If ACF dies out gradually and PACF cuts off sharply after a few lags 

then an AR filter is recommended and if PACF dies out gradually and ACF cuts off sharply then 

MA filter is recommended. After the filtering operation, the uncorrelated is named e′ij. 

 

4.2.2.2 Change Point Clustering 

 

From the previous section, we have removed autocorrelation from the statistics and generated 

statistics e’ij which come from different layers of the different sample part. The next step is to 



 

cluster homogeneous streams of e’ij for control chart families.  Sullivan’s change-point detection 

approach (Sullivan, 2002) is proposed for this task. This clustering algorithm for each part i find 

distance (dik) with m -1 boundaries (kj) which separating the layers into clusters: 

𝑥̅𝑖𝑘= 
∑ 𝑒́𝑖𝑗

𝑘
𝑗=1

𝑘
            (11) 

dik = 
|𝑥̅𝑖𝑘− 𝑥̅𝑖(𝑘+1)|

𝑠𝑖√
𝑚𝑖𝑘+𝑚𝑖(𝑘+1)

𝑚𝑖𝑘𝑚𝑖(𝑘+1)

  𝑖 = 1,2, … 𝑛, 𝑘 = 1,2, … , 𝐾           (12)       

                                     

Where mik and number of layers in the adjacent clusters, si is an estimation of standard deviation 

of all clusters. Since the ranking of dik does not depend on the standard deviation so we can set it 

to one without loss of generality and 𝑥̅𝑖𝑘is the layers mean. Different parts might have different 

change points. In a typical 3D printing part, the difference from layer to layer may be very small. 

The implementation in the proposed self-start approach may be relaxed to allow adjacent layers 

to be combined. However, small incremental changes may accumulate to a large change. 

Therefore, it is necessary to cluster similar layers in term of the statistic e’ij together. This 

procedure can simply done by finding high density of change point around a specific layer. For 

example if most of the parts exhibit their first change point between layer 57 to 62 then probably 

layer 60 can be a general change point for all the parts. Note that the number of change points 

might be different from part to part. Therefore, we pick the maximum number of change points 

among all parts to this procedure.  This practice might require more control charts but the 

number of charts is far less than the number of layers. 

 

4.3 Control Charting 

By having values of Unj in the first method (self-start charting) and e’ij in the second method, we 

propose to use method I to start process monitoring after two acceptable prints are accomplished. 

After more successful parts have been printed, we will switch to method II. Since each printing 

part has different characteristics, the timing and criteria for switching depends on how fast the 

estimates of 𝜇𝑖and 𝜎𝑖 in equation (10) is stabilized.  

In our problem we are mainly interested in catching medium to large shifts. EWMA control 

charts can be adjusted to meet these needs. Thus, in this case of self-start charting, EWMA 

control charts is used to plot Unj.  Each layer will be monitored with a control chart so 243 



 

control charts will monitor the process. Self-start statistics are updated after every new printed 

layer. Same as the self-start charting, EWMA control charts can be used for each cluster. Note 

that estimation for standard deviation can be find by using 
𝑀𝑅̅̅ ̅̅ ̅

𝑑2
 where the 𝑀𝑅̅̅̅̅̅ is the average of 

moving range from part to part for a layer and d2 is a function of sample size. Since adjacent 

layers are used, eij of adjacent layer are used to estimate the standard deviation, d2=1.128. 

 

5. Numerical Results and Discussion 

 

The proposed framework adopts various methods such as machine learning techniques, ARIMA 

filtering, self-start control charting, and change-points-detection for clustering for image-based 

monitoring of 3D printing parts. It aims to automatically detect bad prints in every layer using 

the proposed self-start control chart which only requires the first two successful prints. In this 

study, we printed 15 non-defect part plus a few defect parts to demonstrate the proposed 

methods.  

 

5.1 Self-Start EWMA Control Charts 

 

Self-start EWMA control charts have been designed to monitor the production process after 

printing two parts. In addition to the 15 non-defect parts that we already used to design the 

traditional EWMA control chart and to see performance of the method, a 16th defect part has 

been added to the data set. Figure 10(a) and (b) shows layer 122 and 123 of part 16 respectively. 

With a naked eye it looks there is no difference between two images. If an operator checked the 

process after each layer, he might not be able to understand if one extra layer is printed or not. 

However, layer 123 is the start point of making a defect part. It is might not be clear from these 

images but after layer 122, the part had a small shift on the bed and that small displacement 

cause the huge mess which can be seen in Figure 10 (c) as the last layer of this part.  



 

 

Figure 10. (a) Layer 122 of the 16th part (b) Layer 123 of the 16th part (c)  Layer 243 of the 16th part 

 

We already have seen self-start procedure for layer 122 of first 16 parts. To see how the 

proposed method catch this problem, we only need to run self-start EWMA control chart for 

layers 123. Table 2 shows self-start procedure calculation for layer 123 

 

Table 2. Self-Start control chart calculation for layer 122 of the first 16 parts 

Part 

number(n) 

Dn123 𝑫̅𝒏𝟏𝟐𝟑 ꙍn123 Sn123 Tn123 an123Tn123 F(n-2)123(an123Tn123) Un123 

1 322 322 0 - - - - - 

2 275 298.5 1104.5 33.23402 - - - - 

3 293 296.6667 1124.667 23.71357 -0.16549 -0.13512 0.457247472 -0.10737 

4 257 286.75 2304.75 27.71732 -1.67274 -1.44864 0.142221342 -1.07039 

5 228 275 5066 35.58792 -2.11961 -1.89584 0.077131518 -1.42463 

6 337 285.3333 8269.333 40.66776 1.742164 1.590371 0.906520918 1.319631 

7 288 285.7143 8275.429 37.13809 0.065572 0.060708 0.523028147 0.057755 

8 314 289.25 8975.5 35.80802 0.761636 0.712445 0.748530168 0.669872 

9 283 288.5556 9010.222 33.56006 -0.17454 -0.16456 0.436970827 -0.15865 

10 411 300.8 22503.6 50.004 3.648517 3.461287 0.995724206 2.629479 

11 416 311.2727 34568.18 58.79471 2.303816 2.196602 0.972175973 1.913782 

12 407 319.25 42968.25 62.49964 1.628161 1.558846 0.924954116 1.439207 

13 390 324.6923 47581.52 62.96925 1.132007 1.087597 0.849985287 1.03637 

14 419 331.4286 52574.35 63.59387 1.497678 1.443199 0.912721246 1.357704 

15 411 336.7333 55816.25 63.14171 1.251244 1.208816 0.875869425 1.154583 

16 1074 382.8125 532129.7 188.3489 11.67638 11.30561 0.99999999 5.611786 

 

Even before plotting a control chart we can see a huge difference in the value of U16, 123, but the 

EWMA control charts which has been presented in Figure 11 shows this issue even better. Note 



 

that the standard deviation for the EWMA chart has been calculated with
𝑀𝑅̅̅ ̅̅ ̅

𝑑2
 where the moving 

range is within a part among layers.  

 

 

Figure 11. Self-start EWMA control chart for layer 123 of first 16 parts 

 

Lightening issues and production environment changes makes some differences between same 

layers of different parts. Thus trends might not have a meaning of being out of control. Also, in 

this method we are not looking for catching small changes in the images. So, methods like 

CUSUM which is basically designed to catch small shifts might not be the best method to use 

due to the concern of false alarms. 

 

5.2 Standardizing, ARIMA Filtering, Change Point Clustering 

 

The case study of printed parts showed sufficient performance of self-start control charts in 

catching shifts from images data. However, monitoring the process using this approach carries a 

high overhead cost since there is one control chart for each layer or in this case 243 charts). 

Thus, Method II can be used to monitor each part based on printed layers of same part when we 

printed enough parts to estimate mean and variance.  

Different approaches have been explored to find optimal number of observation to design control 

chart. However, traditionally it is recommended at least 20-25 observation is needed to do that 

(Montgomery, 2013). In Imaged base quality monitoring definition of observation might be 

different because there is one observation for each layer and layers from one part can be divided 

into different clusters. Finding sufficient number of observations to start this approach is 



 

explained better in section 6.2.2. When there is enough samples to normalizing the data from Dij 

to eij, we need to check the independent assumption. Figure 12 shows autocorrelation (ACF) and 

partial autocorrelation (PACF) on eij of part 11 as an example which shows images (especially in 

first layers) are highly autocorrelated. They suggest that the underlying autocorrelated structure 

may be modeled by an autoregressive model. 

 

 

Figure 12. ACF and PCF of part 11 

 

5.2.1 ARIMA Filter 

 

According to the PACF and ACF in Figure 12 we can see there are two spikes in the PACF so 

we can conclude the best type of filter to remove autocorrelation would be AR(2). After applying 

AR(2) over eij, the uncorrelated variable is named e’ij. Figure 13 shows uncorrelated ACF after 

applying AR(2). 

 

 

Figure 13. Autocorrelation (ACF) of part 11 after applying AR(2) 



 

5.2.2 Change point segmentation 

 

Next step is finding change points. To do this we can plot change point detection method 

proposed by Sullivan (Sullivan, 2002) for each part separately. However, in phase I of quality 

monitoring, we need to design our process and control limits and having different change point 

for different part could be a problem and is not efficient. Figure 14 shows time series plot of part 

11and Figure 15 shows time series plot of location and distance for the same part. By comparing 

change point of all 15 parts we conclude that for most of parts, one change happens between 

layer 59-63 and another between layers 185-195. Thus the best segmentation looks to be (1, 60), 

(61, 180), (181, 243). Part 11 was chosen to demonstrate process monitoring with this method 

because of three clusters of layers. As we mentioned before, usually 20-25 observation is needed 

to design Shewhart control chart. In this case, since three charts are used and each chart has more 

than 60 observation (layers), thus 10 parts should be enough to estimate mean and variance.  

Thus, we can switch from the Method I self-start charting to Method II cluster-charting starting 

from part 11. 

 

 

Figure 14. Time series plot of e’ij  of part 11 

 



 

 

Figure 15. Time series plot of location, and distance for part 11 

 

In the next (and final) step of this method, a EWMA control chart is plotted for each cluster of 

layers. Figure 16 (a), (b), and (c) shows the control chart for layers 1-60, 61-180, and 180-243 

respectively. 

 

 

Figure 16. (a) EWMA control chart for layers 1-60 part 11 

 

 

Figure 16 (b) EWMA control chart for layers 61-180 part 11 



 

 

 

Figure 16 (c) EWMA control chart for layers 181-243 part 11 

 

6. Conclusions and Future Research 

 

This paper presents the modeling and monitoring framework on layer-wise images in 3D printing 

parts. An example of 16 basket samples shows the proposed methods are implemented to 

demonstrate the proposed framework can indeed be implemented for process monitoring based 

on a very limited number of parts printed. Two complimentary methods can successfully detect 

printing problems layer by layer. Some important findings of this study are as follows: 

 EWMA control chart can be used for imaged based quality monitoring in addition to 

general purpose quality monitoring.  

 A self-start charting method can be used after producing only two parts. In other words, 

process monitoring can start from the third part. The proposed method alleviates the need 

of the traditional control charting phase I requirement where at least 20 to 25 parts were 

recommended to establish control limits. 

 Images quality and lightening issue was addressed by three machine learning techniques: 

Neural Network (NN), Gradient Boosting Classifier (GBC) and Support Vector Machine 

(SVM). GBC has the best performance in terms of accuracy and false identification rates.   

 After printing enough part to have an accurate estimation of mean and standard deviation 

of the production, Method II using the cluster charting approach may be useful to reduce 

the charting overhead of the self-start charting approach from 243 charts to only three 

charts. 



 

In the current study, we only need to know whether the printer is producing bad part or not and 

there is no need to find location of the issue. For future study, this method can be extended for a 

problem that needs to determine location of a problem. We will explore an approach to segment 

each image to smaller tiles and analyze those tiles. The problematic tile shows location of the 

issue as well. Also, if enough images are available, to determine whether a picture represent a 

good part or not, a deep learning algorithm may be used. 
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