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Abstract This paper considers nonlinear interactions
between vibration modes with a focus on recent stud-
ies relevant to micro- and nanoscale mechanical res-
onators. Due to their inherently small damping and
high susceptibility to nonlinearity, these devices have
brought to light new phenomena and offer the potential
for novel applications. Nonlinear interactions between
vibration modes are well known to have the potential
for generating a “zoo” of complicated bifurcation pat-
terns and a wide variety of dynamic behaviors, includ-
ing chaos. Here, we focus on more regular, robust, and
predictable aspects of their dynamics, since these are
most relevant to applications. The investigation is based
on relatively simple two-mode models that are able
to capture and predict a wide range of transient and
sustained dynamical behaviors. The paper emphasizes
modeling and analysis that has been done in support of
recent experimental investigations and describes in full
detail the analysis and attendant insights obtained from
themodels that are brieflydescribed in the experimental
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papers. Standard analytical tools are employed, but the
questions posed and the conclusions drawn are novel,
as motivated by observations from experiments. The
paper considers transient dynamics, response to har-
monic forcing, and self-excited systems and describes
phenomena such as extended coherence time during
transient decay, zero dispersion response, and nonlin-
ear frequency veering. The paper closes with some sug-
gested directions for future studies in this area.
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1 Introduction

Vibratory mechanical structures of microscale dimen-
sions are ubiquitous in modern sensing and time-
keeping technologies and are used in virtually every
smart phone, tablet, automobile, and more [1,2]. Fab-
rication and transduction technologies are now push-
ing resonant devices to even smaller dimensions, for
example, using carbon nanotubes and two-dimensional
structures (thickness of a few nanometers or less) made
from graphene and other materials. These nanoscale
devices, which can have dimensions down to a single
atomic layer, hold promise for enhanced sensing [3–
6], but are yet to see widespread application. Collec-
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tively, in this work we refer to this group of systems as
micro/nano-resonators, or MNRs. In addition to their
practical utility, these tiny resonators have proven to
be a rich source of nonlinear dynamic behaviors. Some
of the nonlinear phenomena observed in MNRs, espe-
cially related to modal interactions, had not been previ-
ously seen in vibrations of macroscale structures, pri-
marily becauseMNRshave significantly smaller damp-
ing. In fact, such extremely light damping, with damp-
ing ratios as small as 10−8 at room temperature [7], is
desirable for many sensing and time-keeping applica-
tions,where devices operate near resonance and require
high frequency selectivity, that is, a very sharp res-
onance peak. Another attractive feature of MNRs is
that their linear and nonlinear characteristics can be
designed a priori and are also easily tunable, for exam-
ple, using electrostatic bias. These characteristics allow
access to parametric studies not easily accessible to
macroscale resonators, thus opening doors to new and
potentially useful phenomena.

MNRs have a wide range of geometries, materials,
and means of transduction. Fortunately, under most sit-
uations, including all current applications in the mar-
ketplace, the behavior ofMNRs is well described using
the laws of classical physics, specifically, classical
mechanics and classical electrodynamics. Thus, a vari-
ety of approaches are available for determining mod-
els and parameter values for describing and predicting
the dynamics of MNRs. Commercial devices, which
require precise and repeatable device characteristics,
are designed using sophisticated computational tools
that require comparison against experimental charac-
terization [8,9]. For more academic studies of devices
with simple geometries, one can start with a distributed
parameter model (a partial differential equation) and
project it onto the vibration modes of interest to obtain
the desired model [10]. To account for nonlineari-
ties in such a process necessitates knowledge about
the nonlinear field equations, which for MNRs typi-
cally involve multiple physical sources [11,12]. This
approach is challenging, in terms of a priori prediction
of device parameters, even for the simplest geometries,
since features like boundary conditions and electro-
static fields are always necessarily idealized. Such an
approach is useful for determining the effects of param-
eter changes, e.g., how a beam thickness or electrode
gap affects model coefficients, but is rarely able to pre-
cisely predict parameter values that are measured in
the lab. Another approach is more phenomenological,

in which one postulates a form of the model based on
knowledge of device physics. In this approach, which
requires some experience, if one is trying to compare
model results to experimental measurements, coeffi-
cients are obtained by fitting with experimental data.
This is straightforward for linear resonators operating
in a single mode since one needs to know only the nat-
ural frequency, damping, and a parameter that captures
the susceptibility of the device to applied forces, that is,
an effective modal mass or stiffness. This approach is
very fruitful for determining linear frequency response
characteristics.

Until recently, interest in the nonlinear behavior
of MNRs was focused on single-mode dynamics, for
example, Duffing and other stiffness (conservative)
nonlinearities and nonlinear damping, cf. [13–16]. In
terms of modeling nonlinear behavior near resonance,
one is guided by generic models. For single-mode
operation, one can use standard models from nonlin-
ear vibration, such as the Duffing equation, to capture
nonlinear stiffness, or van der Pol terms for nonlinear
damping. This approach is quite straightforward and
has been widely and successfully employed. Here, the
characterization is relatively straightforward, by first
determining the linear resonance characteristics and
then comparing results with the anticipated generic
model to obtain values for nonlinear model coefficients
[14,15]. With such a nonlinear resonator model, one
can predict the system response to different inputs, such
as shocks, harmonic forcing, and closed-loop opera-
tion.

More recently, as described in a recent survey [17]
and many other papers noted below, nonlinear inter-
actions between modes in MNRs have been receiving
significant attention. Some of these studies explore pre-
viously known dynamics in a new settingwith unprece-
dented fidelity, but others describe previously unknown
phenomena and new applications.Whenmore than one
mode is needed to describe the dynamics, the situation
requires a more sophisticated view of modeling, since
a brute force approach can lead to an unwieldy number
of model coefficients. Here, one is guided by the the-
ory of normal forms from dynamical systems, which
dictates which are the essential coupling terms for the
model. Once the form of the essential coupling terms
is known, the problem of device characterization for
coupled-mode behavior becomes tractable, cf. [18]. It
should be noted thatwedonot rigorously follownormal
form theory but use it to help select resonant terms for
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our models. We also use additional knowledge about
the effects of various terms in the normal form in order
to distill the minimum number of coefficients required
to describe experimental observations.

We noted that due to the extremely small size
of NMRs and their coupling with electronics, these
devices are highly susceptible to thermal fluctuations
and other sources of noise. Consideration of these
effects is important fromboth fundamental and applica-
tionpoints of view.Fromanapplications view, noise is a
limiting factor in the precision of sensors and frequency
sources. From a fundamental view, the devices provide
platforms for studying noise sources and device limi-
tations imposed by noise [19–22]. These effects, while
important, are outside the scope of this paper, but will
be pointed to when relevant to the discussion.

Our development will focus on systems with lightly
damped modes, that is, high-Q modes or, equivalently,
modes for which the decay rate is much slower than
the eigenfrequency. This is a primary feature required
for many applications and is also the realm in which
dynamically rich behavior can occur. Also, our ref-
erences to the literature will focus on MNRs papers,
even when there are relevant classical papers, in order
to maintain focus on the applications of interest. And,
while nonlinear-mode interactions can involve cou-
pling between any number of modes, two-mode inter-
actionswill be our focus since they offer plenty of inter-
esting and useful dynamics. For a broader discussion
of modal interactions and examples from macroscale
systems, the reader is referred to [23].

We consider systemswith twomodes and an approx-
imately rational frequency ratio of n : m, a condi-
tion known as internal resonance (IR). Such conditions
on eigenfrequencies can, in lightly damped systems,
allow for dynamic energy exchange between eigen-
modes. Several such internal resonances have been
studied in MNRs, including 1:3 IR, as featured in this
paper and in Refs. [18,24–31]. This particular IR has
received attention in the nonlinear dynamics literature
for many years (see [23] and references cited therein)
and remains of interest in macroscale structures, cf.
[32]. Other works on IR inMNRs include studies of 1:2
IR [33–46] and 1:1 IR [47–53]. Also, some MNRs can
exhibit multiple IRs, depending on how they are tuned
[54–59], or involve interactions among more than two
modes [46,60,61]. Applications of IR in MNRs have
also been considered, including rate gyros [38,51,62–
65], mass sensing [66,67], AFM operation [68,69],

frequency conversion [46], frequency stabilization for
time-keeping [40,41,44,70,71], and frequency comb
generation [31,35,72–76]. Any one of these IRs or
applications could be the basis for an in-depth review.

This paper considers only 1:3 IR in MNRs and is
organized as follows: The model to be used through-
out the paper is developed in Sect. 2. We then con-
sider free vibrations in Sect. 3. Response to an exter-
nally imposed harmonic drive is considered in Sect. 4,
which is the standard way of thinking about frequency
response. Section 5 considers closed-loop operation
that generates self-sustained vibrations, which is the
most commonly used form of excitation for sensing
and time-keeping applications. For each type of opera-
tion, we demonstrate and analyze new and useful types
of responses and point to relevant experimental papers.
Section 6 provides some closing thoughts and ideas
about where the field of coupled-mode MNRs may be
headed in the coming years.

2 Coupled-mode model for IR

Generally, when driving a MNRs near its eigenfre-
quency, at sufficiently small amplitudes only the corre-
sponding eigenmode responds with appreciable ampli-
tude. This is true even when that mode is driven into
its nonlinear range. However, nonlinearities necessar-
ily couple the eigenmodes. Inmany cases, this coupling
does not affect operation of the MNRs. However, there
are two situations in which the single-mode assump-
tion breaks down. The first is when the energy of the
MNRs increases and the modal amplitudes become
large together with the overtones of the fundamental
harmonic, i.e., deep in the strongly nonlinear range
[77]. The second situation, of interest here, which does
not require large amplitudes, is that of internal reso-
nance (IR), for which eigenfrequencies are (exactly or
nearly) rationally related, that is, ω1/ω2 ≈ n/m where
n andm are integers, a so-called n-to-m IR [23]. These
IRs promote energy exchange between modes, even at
small (weakly nonlinear) amplitudes, and these effects
are most prominent in systems with small dissipation,
such as MNRs.

The behaviors of interest involve two lightly damped
modes operating near their eigenfrequencies, either
decaying or sustained by aweak drive. The dynamics of
such systems are conveniently described by a weakly
nonlinear two-mode model expressed in terms of the
eigenmode coordinates xn(t), n = 1, 2, as follows,
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ẍ1 + ω2
1x1 = εF1(x1, x2, ẋ1, ẋ2, t), (1)

ẍ2 + ω2
2x2 = εF2(x1, x2, ẋ1, ẋ2, t) (2)

where ωn are the mode eigenfrequencies, the Fn
include the effects of dissipation, nonlinearities, and
drive, and ε(� 1) is a scaling parameter used to keep
track of small effects, which generally include damp-
ing, external forcing, and nonlinearities. AsEqs. (1)-(2)
are close to those of a pair of linear uncoupled oscilla-
tors, we expect that their solutions have nearly har-
monic form with generally time-varying amplitudes
and phases. Hence, we seek solutions in the form of
xn(t) = An(t)eiωn t+c.c., n = 1, 2,where c.c.denotes
the complex conjugate of the preceding term. The com-
plex amplitude (also known as a phasor) An(t) conve-
niently describes the amplitude and relative phase of
mode n in a frame of reference that rotates with ωn rel-
ative to the (xn, ẋn) coordinates. Note that we make
no restriction on x1,2(t) here, as both the observed
amplitudes |An| and frequencies ωn + d(arg An)/dt
may deviate from the constant amplitudes and frequen-
cies ωn of the linear uncoupled, undamped oscillators.
Furthermore, since we represent each unknown real
solution xn(t) with a complex function An(t), we must
impose an additional condition—aconstraint—inorder
to close the problem. A convenient form for the con-
straint is to represent the time derivatives of xn(t) as
ẋn = iωn Aneiωn t + c.c., n = 1, 2. With this, the con-
version from (xn, ẋn) to An amounts to a change to a
complex vector in a reference frame that rotates with
frequency ωn . This transformation is standard in the
method of averaging. Applying it to Eqs. (1)-(2), one
obtains the following equations that govern the evolu-
tion of the complex amplitudes

Ȧ1 = ε
e−iω1t

2iω1
F1(A1e

iω1t , A2e
iω2t , t), (3)

Ȧ2 = ε
e−iω2t

2iω2
F2(A1e

iω1t , A2e
iω2t , t). (4)

Up to this point, the transformations are exact and no
approximations have been made.We now use the small
parameter ε (essentially, the previously described phys-
ical characteristics of the system) to obtain approxi-
mate equations that govern the slow evolution of A1,2.
As the right-hand sides (RHSs) of the pair of equa-
tions in Eqs. (3)-(4) are small (of order ε), the vari-
ations of A1 and A2 can be either slow (if they are

large) or small (if they are fast, e.g., with the frequen-
cies ω1 andω2). We restrict ourselves to large and slow
variations, i.e., terms containing the fast oscillations
(einω1t , eimω2t , n,m = ±1,±2, ...) on the RHS of
Eqs. (3)-(4) are neglected, which is equivalent to aver-
agingover theperiodof theoscillationsT1,2 = 2π/ω1,2

[78].
The resulting averaged model is convenient since it

is autonomous, thus significantly simplifying the anal-
ysis of the response. For example, one can use it to solve
for periodic responses of the original system, which are
fixed points of the averaged system. In addition, the sta-
bility and most bifurcations of these steady responses
are captured by the averagedmodel [78]. Other types of
responses are also captured by the averaged system; for
example, limit cycles of the averaged equations corre-
spond to amplitude-modulated responses of the original
model. Moreover, transient decay of the unforced sys-
tem is also conveniently modeled with these equations.
The approach does have limitations, however, espe-
cially when dealing responses with long timescales,
such as some of the bifurcations that result in chaotic
motions [78]. 1

To illustrate the predictive capabilities of the aver-
aged model and the types of responses of interest, we
consider in detail the case of 1:3 IR. Schematics of two
systems exhibiting this IRare depicted inFig. 1, the sec-
ond of which is for device that is referred to throughout
the paper. As noted above, this choice is motivated by
a number of recent experimental and analytical stud-
ies, which have demonstrated a variety of interesting
dynamics. Note that whilewe consider the specific case
of 1:3 IR, the same general approach can be, and has
been, implemented in a systematic manner for other
low-order IRs.

In the sequel, we consider the case with no external
forcing (free vibration), as well as the case in which
one mode is driven near resonance with an imposed
external harmonic excitation or using a feedback loop.
For forced vibration, we examine the system in which
the lower-frequency mode (mode 1) is driven and is
coupled to a nonlinear high-frequency mode (mode 2)
with a frequency ratio ω2 ≈ 3ω1. A generic model
capable of describing the dynamics of this system is

1 There are, of course, other methods for analyzing such sys-
tems, including themethod ofmultiple scales [23],which provide
equivalent results.
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Fig. 1 Schematics of systemswith 1:3 IR. In both cases, the cou-
pling parameter is denoted as α. Upper panel: A taut nano/micro-
wire in which the first and third flexural modes can interact res-
onantly via the geometric nonlinearity of the wire or by elec-
trostatic and other effects. Lower panel: A computational model
of the MNRs from [18,30,31,70] in which the primary in-plane
flexural and primary torsional modes interact

motivated by the theory of normal forms [78] and is
given by

ẍ1+ω2
1x1 =F cos(ΦF (t)) − 2Γ1 ẋ1−γ1x

3
1 − 3αx2x

2
1 ,

(5)

ẍ2 + ω2
2x2 = − 2Γ2 ẋ2 − γ2x

3
2 − αx31 . (6)

It should be noted that this model may appear to be spe-
cial but is, in fact, quite generic. If one develops amodel
for a system with 1:3 IR from first principles, it may
have a different form. For example, if the degree of free-
dom (DOF) coordinates employed for the model are
linearly coupled, the first step is to decouple the system
at linear order by converting to the eigenmode coordi-
nates. This transformation generally introduces several
additional nonlinear terms, even if only a Duffing term
is present in one mode, and possibly coupled damp-
ing terms, but most of these are not important for the
dynamics. Specifically, if the damping terms are small,
they can be lumped into equivalent modal decay rates
Γ1 and Γ2; this is most easily formulated for systems
with Caughey damping [79], in which case the modes
are standing waves, but it can also be done in the more
general case of non-Caughey damping, which corre-
sponds to complex modes and traveling waves [80].
In terms of the conservative coupling terms, most of
them are non-resonant and will not survive the aver-
aging process, since they are composed of fast oscil-
lating terms after the transformation. The terms that
survive provide the normal form for the resonance at
hand, a type of minimal nonlinear model [78]. In this

way, the above model captures the two most essential
features: (i) the nonlinear amplitude–frequency depen-
dence of the individual modes, i.e., they are Duffing
oscillators with nonlinear coefficients, γ1,2x31,2 arising

frompotentials VDuff1,2 = γ1,2x41,2/4, and (ii) a channel
for the exchange of energy betweenmodes, captured by
the essential coupling term arising from a single-term
potential Vcpl = αx31 x2. Another nonlinear coupling
term, the so-called dispersive coupling, will survive
the averaging process and is described below in a more
general context. In terms of the external drive, the form
presented above allows one to choose open- or closed-
loop operation. Also, if the external drive is dominated
by a frequency close to ω1, it will not directly affect
the second mode, a fact borne out by the averaging
process. The most important fact about the presented
model is that virtually all of the dynamics that have
been observed in experiments involving the 1:3 IR in
MNRs are captured by this deceptively simple dynami-
cal system. The equations governing the slowdynamics
of the averaged complex amplitudes for this 1:3 IR are
given by

Ȧ1=−(Γ1 + iΔω1)A1+ 3iγ1
2ωF

|A1|2A1+ 3iα

2ωF
A2A

∗2
1

− i F

4ωF

(
c1 + c2

A1

|A1|e
iΔ

)
, (7)

Ȧ2 = −(Γ2 + iΔω2)A2 + iγ2
2ωF

A3
2 + iα

6ωF
A3
1, (8)

where for the free response we remove the drive by set-
ting c1 = 0 , c2 = 0 and take ωF = ω1. For open-loop
forced operation, we set c1 = 1 , c2 = 0, where F and
ωF are the imposed drive amplitude and frequency, that
is, F cos(ωF t), andΔω1 = ωF−ω1, Δω2 = 3ωF−ω2

are the frequency detunings ofmodes 1 and 2 relative to
the drive, respectively. Themodel for closed-loop oper-
ation is obtained by setting c1 = 0, c2 = 1, in which
case F is the closed-loop amplifier output amplitude,
ωF = ω1 since there is no imposed forcing frequency,
and Δ is the phase shift imposed in the feedback loop.
One can view the open-loop case as having an imposed
frequency from which the system dynamics selects a
response phase relative to the input, whereas in the
closed-loop case the relative phase is imposed and the
system selects a frequency.

Note that the coupling potential can contain more
than a single term, e.g., Vcpl = αx31 x2 + βx21 x

2
2 ,

123



O. Shoshani, S. W. Shaw

the latter of which is dispersive coupling that can be
used to tune device characteristics [62,81–84]. How-
ever, the inclusion of dispersive and other low-order
terms of the form xn1 x

m
2 , m + n < 4 do not pro-

mote modal energy exchange via amplitude modula-
tions, and they only shift the modal frequencies and
the locations of the bifurcation conditions in param-
eter space. In fact, for both 1:2 and 1:3 IRs, only a
single term in the coupling potential Vcpl is respon-
sible for nonlinear resonant interactions. (This can be
seen by considering the dominant harmonics of the cou-
pling terms in the two modes and whether or not they
generate resonances.) The ultimate justification for the
model employed herein for analyzing 1:3 internal reso-
nance, specifically one that does not include dispersive
coupling, is found in its ability to accurately describe
a wide range of experimental results in both qualita-
tive and quantitative terms. For 1:1 IR, there are more
than one essential coupling terms, including dispersive
coupling, which promotes energy exchange in that IR,
making the analysis significantly more involved. How-
ever, the symmetry of the 1:1 IR can be used in order to
simplify the analysis [85,86]. We now turn to analysis
of free vibrations with 1:3 IR.

3 Free response

The free vibration, or ringdown, of a linear system
with lightly damped modes is necessarily composed
of components at the system’s damped eigenfrequen-
cies that decay at the modal decay rates, a fact that fol-
lows from the fundamental principles of superposition
and the invariance of eigenmodes. While the response
of system coordinates associated with the DOF (typ-
ically physical coordinates) can appear to be compli-
cated, e.g., involving beats, this is merely an artifact
of the coordinates being used to measure the system
response [87]. Fundamentally, the system response,
when decomposed into the individual eigenmode com-
ponents, is a set of simple decaying oscillations.

It is well known how typical nonlinearities affect
the free response of a single-mode response; namely
the stiffness nonlinearities result in a relationship
between the instantaneous frequency and amplitude of
vibration, and damping nonlinearities result in non-
exponential decay of the amplitude, cf. [15]. The
amplitude–frequency curve of the undamped system,
i.e., the backbone curve, provides the underlying struc-

ture of how the frequency changes as the system rings
down with a small decay rate. The canonical single-
modemodel of this type is theDuffing oscillator, which
in its simplest formwith a cubic stiffness term provides
a monotonic dependence of the frequency on ampli-
tude. However, mixed nonlinearities are quite com-
mon in MNRs and result in non-monotonic backbone
curves [15,88,89]. The backbone also forms the under-
lying structure of the frequency response under weak
excitation near resonance [90]. When the backbone is
non-monotonic, it generally results in interesting fre-
quency responses with multiple jumps and desirable
operating conditions for reducing frequency fluctua-
tions [89,91,92].

Under IR conditions, the eigenmodes can strongly
interact during free vibration, resulting in phenomena
that cannot be captured by linear models, nor by sim-
ple single-mode backbone analyses. A simple test to
see whether an IR exists is to drive the system into a
given mode (assuming it is possible to maintain the
driven response in a single mode) and turn off the
drive to observe the free vibration, and do so for a
range of initial energies. An IRwill be characterized by
energy exchange between the mode of interest and one
or more other modes, typically resulting in a beating
response (although, as we describe subsequently, other
non-intuitive transient responses can also occur).2

The experimental studies in Refs. [29,30] reported
such observations of the free response of very lightly
damped MNRs with 1:3 IR. The results in Ref. [29]
demonstrate that within the 1:3 IR, the second mode
can act as an energy sink for the first mode and, hence,
increase the effective dissipation rate of the first mode
during the first part of a ringdown, similar to the behav-
ior used for nonlinear vibration sinks [93]. This phe-
nomenon was also observed in a driven MNRs with a
1:2 IR [36]. In direct contrast, the experimental results
in Ref. [30] demonstrate that within the 1:3 IR, the sec-
ond mode can also act as a type of mechanical battery
for the first mode and compensate for energy losses
in the first mode during ringdown, thus supporting, or
even amplifying, its oscillation amplitude for a certain

2 It is this beating response that can confuse the distinction
between linear and nonlinear free response, since beating ofDOF
coordinates can occur in linear response but beating of eigenmode
coordinates requires nonlinearity. One means of distinguishing
these cases is that the beat period for linear vibration is fixed,
while nonlinear-mode coupling generally results in amplitude-
dependent beat periods.
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period of time (until the second mode is exhausted),
called the coherence time, tcoherent.

In an analytical study, which was carried out in par-
allel with these experimental studies, we showed that
these seemingly contradicting behaviors are both feasi-
ble at the 1:3 IR conditions and can be understood from
the undriven counterpart of Eqs. (7)-(8) [94]. The key
to understanding this situation is to examine the man-
ner in which the modes exchange energy in the tran-
sient response, during which the total system energy
must be decreasing. If energy flows from one mode
to another and does so on a timescale that does not
allow the energy to flow back, then the source mode
will decay faster than its linear rate and the sink mode
will decay slower than its linear rate. So, the appar-
ently contradictory phenomena described in [30] and
[29] are simply a matter of considering which mode is
being measured, the source mode or the sink mode.

The details of this process can be captured by the
free vibration version of the present model, that is,

Ȧ1 = −Γ1A1 + 3iγ1
2ω1

|A1|2A1 + 3iα

2ω1
A2A

∗2
1 , (9)

Ȧ2 = −(Γ2 + iΔω2)A2 + iγ2
2ω1

A3
2 + iα

6ω1
A3
1. (10)

Before examining the general case, we consider a spe-
cial case, where the modal interaction is non-trivial but
can be captured by a reduced, single-mode model.

3.1 The adiabatic approximation

A simple scenario in which the dissipation of the first
mode is nonlinearly, and non-uniformly, enhanced due
to the 1:3 IR, can be readily obtained from the model in
Eqs. (9)-(10), if the second mode is linear (γ2 = 0) and
decays much faster than the first mode Γ1 � Γ2 (with
both � ω1,2), which is common in MNRs [95–98].
In such a case, the second mode adiabatically follows
the first mode; that is, it quasi-statically tracks the first
mode.Under these assumptions, in themodelwe set the
time derivative of the second mode to zero ( Ȧ2 ≈ 0),
while the first mode decays to zero. Thus, we find from
Eq. (10) that A2 = iαA3

1/[6ω1(Γ2+iΔω2)], which can
be substituted into Eq. (9) to yield a dynamic model for
the first mode,

Ȧ1 = −
[
Γ1 +

(
α

2ω1

)2
(

Γ2

Γ 2
2 + Δω2

2

)
|A1|4

]
A1

+ i

[
3γ1 + α2

2ω1

(
Δω2

Γ 2
2 + Δω2

2

)
|A1|2

]
|A1|2A1

2ω1
.

(11)

From Eq. (11), we deduce that under the adiabatic
approximation, the resonant interaction of the modes
modifies the nonlinearities of mode 1. Specifically, we
see that the 1:3 IR leads to the addition of a quintic
nonlinear damping term −α2Γ2|A1|4A1/[4ω2

1(Γ
2
2 +

Δω2
2)] and an effective “conservative” restoring force

iα2Δω2|A1|4A1 /[4ω2
1(Γ

2
2 + Δω2

2)]. Hence, Eq. (11)
is consistent with the complex amplitude equation that
one gets from the averaging method for the following
phenomenological model,

ẍ1 + ω2
1x1 = −

(
γ1 + α2Δω2

20ω1(Γ
2
2 + Δω2

2)
x21

)
x31

−
(
2Γ1 + α2Γ2

4ω2
1(Γ

2
2 + Δω2

2)
x41

)
ẋ1.

(12)

We note that the additional conservative restoring
force changes sign as the frequency mismatch Δω2 is
swept through zero during decay, which means that on
one side of the IR condition, where Δω2 > 0, it acts
as a stiffening nonlinearity, while on the other side,
where Δω2 < 0, it acts as a softening nonlinearity.
This effect leads to a mixed type of nonlinearity, even
though the only stiffness nonlinearity is the Duffing
effect in the first mode. This is associatedwith a nonlin-
ear frequency anti-crossing/veering,which is discussed
in more detail in the following sections, since it has a
dramatic effect on the frequency response in both open-
and closed-loop operation.

The presence of the Lorentzian-like term Γ2/(Γ
2
2 +

Δω2
2) in the additional dissipation force means that the

force is enhanced near the IR condition and is in fact
maximal at Δω2 = 0. The effective IR-induced decay
rate can be understood in terms of the Fermi golden
rule from quantum mechanics [99], where α/(2ω1) is
the “matrix element” of the interaction and Γ2/[Γ2 +
(3ω1 − ω2)

2] is the “density of states” of the effective
reservoir provided by mode 2 at triple the eigenfre-
quency of mode 1.
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Using a polar representation for the complex ampli-
tude A1 = a1eiφ1/2, we find that the model for the real
amplitude for this adiabatic decay is given by

ȧ1 = − a1

[
Γ1 +

(
α

8ω1

)2
(

Γ2

Γ 2
2 + Δω2

2

)
a41

]
, (13)

and therefore, the relaxation of mode 1 as its amplitude
goes to zero is given by

a1(t) = a1(0) exp(−Γ1t)

×
[
1 −

(
α

8ω1

)2
(

Γ2/Γ1

Γ 2
2 + Δω2

2

)
a41(0) exp(−4Γ1t)

]−1/4

.

(14)

Note that the decay of a1(t) is initially faster than expo-
nential (Fig. 2, lower panel). This is due to the fact that
the secondmode is “dragged” along with the first mode
and also dissipates energy, thereby increasing the effec-
tive damping of the first mode. The decay eventually
becomes exponential, after the amplitudes become suf-
ficiently small that the coupling is no longer important,
specifically when
(

α

8ω1

)2
(

Γ2/Γ1

Γ 2
2 + Δω2

2

)
a41(0) exp(−4Γ1t) � 1.

3.2 Validity of the adiabatic approximation

To understand the conditions under which the adia-
batic approximation holds, it is helpful to express Eqs.
(9)-(10) in dimensionless form. Therefore, we take
Γ −1
1 to be the timescale of the dynamics of interest,

�1 = √
2ω1Γ1/(3γ1) as the typical amplitude scale of

the first mode, �2 =
√
2ω1Γ

2
1 /(27γ1Γ2) as the typi-

cal amplitude scale of the second mode, and obtain the
following non-dimensional equations

A′
1n = −A1n + i |A1n|2A1n + iκ

3
A2nA

∗2
1n, (15)

μA′
2n = −(1 + iΔω2n)A2n + iκ

3
A3
1n, (16)

where the prime symbol denotes derivativewith respect
to the dimensionless time τ = Γ1t , and �1,2A1n,2n =
A1,2, μ = Γ1/Γ2, Δω2n = Δω2/Γ2, κ = (α/γ1)√

Γ1/Γ2. Consequently, for small damping ratio μ �

Fig. 2 Ringdown response of mode 1 with resonantly induced
nonlinear damping. Upper panel: The envelope of the ringdown
response (red curve) is the analytical solution of Eq. (14), and
the fast oscillating response (black) is obtained from numerical
integration of Eqs. (5)-(6) in the absence of drive. Lower panel:
The variation of the amplitude decay as a function of the coupling
parameter α: (α = 100) magenta, (α = 87.5) blue, (α = 75) red,
(α = 0) dashed black. The system parameters are ω1 = ω2/3 =
1000, Γ1 = 0.01, Γ2 = 10, α = 20, γ1 = 50, γ2 = 0, which
satisfy the conditions for the adiabatic approximation

1, and Δω2n and κ are of O(1), the LHS of Eq. (16) is
approximately zero and our adiabatic approximation is
valid.

We note that in the foregoing dimensionless equa-
tions, Eqs. (15)-(16), we have implicitly assumed that
the amplitude of the second mode is smaller than the
amplitude of the firstmode by the introduction of differ-
ent length scales �2/�1 = √

μ/3, and that the timescale
of interest is the relaxation of the uncoupled first mode
Γ −1
1 . However, for shorter timescales t � Γ −1

1 our
analysis is invalid even if α ≈ O(γ1

√
Γ2/Γ1) and

Δω2 ≈ O(Γ1). This failure at very short times can
be understood, since Eqs. (15)-(16) give rise to a sin-
gular boundary layer problem. That is, for the time
interval 0 < t � Γ −1

1 , the adiabatic approximation
is unable to satisfy the initial conditions of the second
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Fig. 3 The rapid time evolution of mode 2. In the narrow time
interval 0 < t � Γ −1

1 , mode 2 experiences rapid transient
dynamics (red curve) due to its initial condition A2(0) = 1 and
its inability to initially followmode 1 adiabatically (black curve).
The system parameters areμ = 0.001, Δω2n = 0, κ = 0.0211,
which satisfy the conditions for the adiabatic approximation for
t >∼ Γ −1

1

mode A2(0) due to the elimination of its time deriva-
tive. Hence, in this narrow time interval, 0 < t � Γ −1

1
(i.e., the boundary layer), the adiabatic approximation
breaks down, namely A2n �= iκA3

1n/[3(1 + iΔω2n)],
and we have a slow–fast dynamical system in which
A′
1n ≈ O(1) and A′

2n ≈ O(1/ε) 	 1. Therefore,
the second mode experiences a rapid transition from
its initial state A2(0) to adiabatically following the first
mode, that is, with A2n(τ ) = iκA3

1n(τ )/[3(1+iΔω2n)]
(see Fig. 3).

Another phenomenon associated with adiabatic
decay of this resonance involves the system passing
through an IR, which interrupts its usual decay along
the backbone. The analysis needed to describe this
behavior is more involved and essentially accounts for
the fact that the termΔω2 = 3ω1−ω2 actually depends
on the amplitude ofmode 1 due to itsDuffingnonlinear-
ity and can be replaced by a term of the form Δω2eff =
3ω1eff − ω2, where ω1eff = ω1 + 3γ1|A1|2/(2ω1)

3.
In this case, the effective damping of the first mode
is unaffected except where the Lorentzian term comes
into play, corresponding to a frequencywindowof scale
Δω2eff ∼ Γ2, during which the effective damping of
mode 1 is significantly increased [94]. This has been
experimentally observed, where the effective quality
factor of a high-Q Lamé mode resonator has a tem-

3 The actual substitution is more complicated but has the same
qualitative effect [94].

porary and repeatable dip from its expected behavior
during ringdown [100].

3.3 The quasi-conservative approximation

We next consider a more general case, where the relax-
ation rates of the two modes are not necessarily dras-
tically different; however, they are still significantly
smaller than the vibration frequencies ω1,2. MNRs are
usually lightly damped systems, and hence,we can con-
sider Eqs. (9)-(10) as a nearly conservative systemwith
small perturbations from dissipation.

The modal dynamics in the absence of decay is
interesting on its own, and understanding it provides
a framework for describing the response of the weakly
damped system.To this end,we setΓ1,2 = 0, normalize
the complex amplitude equations by �1,2A1,2n = A1,2,
where �1 = �2/

√
3 = 31/4ω1

√
2/γ1, the time by

τ = ω1t , and obtain the following dimensionless con-
servative system

A′
1n = 3

√
3i |A1n|2A1n + 3iκA2nA

∗2
1n = −i

∂H
∂A∗

1n
, (17)

A′
2n = i

γ21√
3
|A2n|2A2n − iΔω2nA2n + iκA31n = −i

∂H
∂A∗

2n
,

(18)

where Δω2n = Δω2/ω1, γ21 = γ2/γ1, κ =
α/γ1, and H = Δω2n|A2n|2 − γ21|A2n|4/(2

√
3) −

3
√
3|A1n|4/2 − κ(A2nA∗3

1n + A∗
2nA

3
1n) is the averaged

Hamiltonian of the system which, by construction, is a
conserved quantity (sinceH is Hermitian). To see this,
consider

dH
dτ

= ∂H
∂A1n

A′
1n+

∂H
∂A∗

1n
A∗′
1n+

∂H
∂A2n

A′
2n+

∂H
∂A∗

2n
A∗′
2n

= − i

(
∂H

∂A1n

∂H
∂A∗

1n
− ∂H

∂A∗
1n

∂H
∂A1n

)

− i

(
∂H

∂A2n

∂H
∂A∗

2n
− ∂H

∂A∗
2n

∂H
∂A2n

)
≡ 0.

There is a second conserved quantity for Eqs. (17)-
(18), which is an analog of the Manley–Rowe invariant
used in nonlinear optics [101] and has the form ofM =
I + 3|A2n|2, where I = |A1n|2 is the action of the first
mode. Thus, with these two conserved quantities, the
system is integrable and its dynamics are conveniently
described by two canonically conjugate variables I and
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ψ , where ψ = 3 arg(A1n) − arg(A2n) is the modal
phase difference, a quantity that arises naturally in the
study of this IR and will be encountered again in the
analysis of the closed-loop system. Consequently, the
Hamiltonian of the system can be rewritten as

H =Δω2n

3
(M − I ) − γ21

18
√
3
(M − I )2 − 3

√
3

2
I 2

− 2κ√
3
(M − I )1/2 I 3/2 cosψ, (19)

and the Hamiltonian equations for these variables read

I ′ =∂H
∂ψ

= 2κ√
3
(M − I )1/2 I 3/2 sinψ, (20)

ψ ′ = − ∂H
∂ I

= Δω2n

3
− γ21

9
√
3
(M − I )

+ 3
√
3I + κ√

3

√
I

M − I
(3M − 4I ) cosψ.

(21)

We note that these two canonically conjugate vari-
ables, I and ψ , are singular when I → 0 and I → M
(i.e., when either of the mode amplitudes goes to zero)
since the phase difference ψ is ill-defined in such
cases; therefore, transformation to Cartesian coordi-
nates (q = I cosψ, p = I sinψ) is required near the
singularities. Nevertheless, the use of I and ψ helps
to gain insight into the dynamics of the amplitude of
mode 1 (I ∝ a21), obtained by considering their phase
portraits (Fig. 4) for varying M. Once the dynamics
of I (|A1n|2) and ψ are determined, those of mode 2
follow from |A2n|2 = (M − I )/3.

Shown in Fig. 4 are the contours of constant H,
which are, essentially, parametric plots of the trajecto-
ries I (τ ) andψ(τ). Clearly, the fixed points correspond
to special vibrations where both modes have constant
amplitude. The closed loops, known as librations, cor-
respond to oscillations of I and ψ about the stationary
states, whereH(I, ψ;M) is maximal or minimal (see
the red crosses in Fig. 4). These oscillations correspond
to an back and forth exchange of energy between the
modes with oscillating relative phase ψ . In contrast,
the open trajectories, known as rotations, correspond
to the accumulation of phase ψ in time, which is also
accompanied by oscillations of the mode amplitudes.
The librations around different extrema ofH are sepa-
rated from each other and from the rotations by sepa-

Fig. 4 Phase trajectories of the resonating modes in the absence
of decay. Motion along the trajectories (thin black curves) cor-
responds to oscillations in time of the squared amplitudes I and
(M− I )/3 ofmodes 1 and 2, respectively, and of themode phase
difference ψ . The pattern is 2π -periodic in ψ . The Hamiltonian
H is constant on a given trajectory. The scaled system parame-
ters are Δω2n = −91, γ21 = −1, κ = 1. The extrema of the
Hamiltonian and the separatrices that go in to or out of the saddle
point are indicated in red. The blue trajectories correspond to the
energy levels shown in Fig. 5 for the attendant effective poten-
tials. The different panels show how the phase portrait evolves as
M decreases: upper panel M = 10, middle panel M = 8, and
lower panelM = 5.When dissipation is present, the system fol-
lows trajectories that are close to those shown and continuously
evolve through such phase portraits, with both M and the total
energy both decreasing
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ratrices (see the red curves in Fig. 4). We note that, in
the absence of resonant-mode coupling, the phase tra-
jectories are just straight horizontal lines, since in this
case the amplitudes of the modes are both constant.

The dynamics of Eqs. (20)-(21) can be mapped onto
the motion of a particle in a potential well. This can
be readily seen by squaring and adding Eqs. (19)-(20),
which yields an analogous equation to the conservation
of energy of a unit mass “particle” with a coordinate I
that oscillates in a potential wellUeff(I )with zero total
energy

1

2
I ′2 +Ueff (I ) = 0,

Ueff (I ) = −2κ2

3
(M − I )I 3

+ 1

2

[
H − Δω21

3
(M − I ) + γ21

18
√
3
(M − I )2 + 3

√
3

2
I 2

]2

.

(22)

The potential Ueff is a quartic polynomial in I param-
eterized byM andH. It can have a single well or two
wells separated by a local maximum (Fig. 5).

In the latter scenario, if the local maximum of the
double well potential lies below zero (Fig. 5, upper
panel), then the equation Ueff(I ) = 0, which yields
the turning points I ′ = 0, has a pair of real solutions
I1 > I2, and a pair of complex conjugate solutions
I4 = I ∗

3 . Therefore, the motion I (τ ) is qualitatively
the same as the motion of a particle in a single well
potential (Fig. 5, lower panel), where I (τ ) oscillates
non-uniformly between I1 and I2, and can be described
in terms of Jacobi elliptic functions

I (u) = I1z(2) + I2z(1) − (I1z(2) − I2z(1)) cn(u|m)

z(1) + z(2) + (z(1) − z(2)) cn(u|m)
,

u = τ − τ0

18

√
1296κ2 + (81 + γ21)2

3
z(1)z(2),

m = 1

4

(I1 − I2)2 − (z(1) − z(2))2

z(1)z(2)
,

z( j) =
√

(I3 − I j )(I4 − I j ), j = 1, 2. (23)

where z(1,2) are the zeros of the elliptic function. On
the other hand, if the local maximum of the double
well potential is above zero (Fig. 5, middle panel),
then the equation Ueff(I ) = 0 has four real solutions
I1 > I2 > I3 > I4. Therefore, depending on the ini-
tial condition I (0), the “particle” I (τ ) oscillates non-

Fig. 5 Effective potential Ueff and time evolution of I and ψ .
The upper, middle, and lower panels are the effective potentials
for the cases corresponding to the blue trajectories in the upper,
middle, and lower panels of Fig. 4. The insets show the time
evolution of I and ψ , where in the upper panel the motion is
associated with librations; in the middle panel, the motion could
be associated with either librations (around the smaller well with
larger amplitudes) or rotations (around the larger well with lower
amplitudes), and in the lower panel, themotion is associatedwith
rotations

uniformly either between I1 and I2, or between I3 and
I4. (And these motions can also be described in terms
of Jacobi elliptic functions.) We note that the period of
the oscillations is given by,
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T = 72K (m)/

√
1296κ2 + (81 + γ21)2

3
z(1)z(2),

where K (m) is the elliptic integral of the first kind,
which is invariant under the replacement of I1 with I3
and I2 with I4. Therefore, the period of the oscillations
in both wells (i.e., the motions I1 � I (τ ) � I2 and
I3 � I (τ ) � I4) is the same. However, the oscillations
I1 � I (τ ) � I2 are librations with a bounded phase ψ

occurring in the interior of the separatrix loop, while
the oscillations I3 � I (τ ) � I4 are rotations with free-
running phase ψ occurring exterior to the separatrix
loop (see Fig. 4, middle panel).

In the presence of dissipation, H and M are no
longer conserved quantities. If the modes are lightly
damped, these two quantities are slowly varying in time
and their evolution equations are given by

H′ = − (3Γ1n + Γ2n)H − 2

3
(3Γ1n − Γ2n)Δω2n(M − I )

−
√
3

18
(Γ2n − Γ1n)[27I 2 − γ21(M − I )2], (24)

M′ = − 2Γ1n I − 2Γ2n(M − I ), (25)

where Γ1n,2n = Γ1,2/ω1. We note that Eqs. (23)-
(25) give a complete description of the system dynam-
ics under the quasi-conservative approximation. Also,
note that since M > I , M′ < 0 for any posi-
tive damping, so that M decays. Furthermore, as the
RHSs of Eqs. (24)-(25) are small (of order Γ1n,2n

in magnitude), the variations of M and H can be
either slow, if they are large, or small, if they are fast,
e.g., oscillating with the frequency ω = (π/36K (m))

×
√

1296κ2+(81+γ21)2

3 z(1)z(2). By restricting the analysis
to large and slow variations, i.e., we can remove all the
fast terms on the RHS of Eqs. (24)-(25) by averaging
over the period of the oscillations 4K (m) with respect
to the argument u, we obtain a slowly varying dynam-
ical system for the averages of H and M. The result-
ing averaged equations, not presented here but given
in [94], cannot be solved in closed form. Moreover,
as the parameter m of the elliptic function approaches
unity (m → 1), the period becomes infinitely long and
the averaging process becomes invalid. However, for
finite period of oscillations, these averaged equations
only depend on the slow dynamics of the roots I j (with
j = 1, 2, 3, 4) of the equationUeff(I ) = 0. Of particu-
lar interest are the bifurcation points in which a pair of
turning points coincide with a fixed point, correspond-

Fig. 6 Time evolution of I/M0, the normalized first-mode
action, and [M − I ]/(3M0), the normalized second-mode
action, in the presence of light damping, along with samples of
the corresponding slowly varying effective potential Ueff . Here,
M0 ≡ M(t = 0) and Γ1n = Γ2n = 0.01. Resonance capture
is exhibited in region (i) of the upper and middle panels, where
mode 1 oscillates without much (if any) decay, while draining
energy from mode 2 as the energy flows between them in the
oscillations. A sample of the effective potential associated with
resonance capture is shown in the left inset of the lower panel, and
the time duration of the resonance capture is denoted by tcoherent .
The transition region (ii) of the upper and middle panels is asso-
ciatedwith the bifurcation condition dUeff/d I |I=I2,3 = 0, where
the local maximum of the double-well potential approaches zero,
as shown in the center inset of the lower panel. Region (iii) of the
upper panel is associated with the motion after escape from the
resonance capture, where the modes are effectively decoupled,
and thus decay exponentially; a sample effective potential for
this situation is shown in the right inset of the lower panel

ing to dUeff/d I |I=I2,3 = 0. Transition through such
points results in dramatic qualitative changes in the sys-
tem dynamics (Fig.6). This bifurcation point marks the
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very rapid transition from a resonance capture [102] in
a neighborhood of the 1:3 IR manifold [Fig. 6, upper
panel, region (i)] to the decoupled exponentially decay-
ing modes [Fig. 6, upper panel, region (iii)].

The coherent time of the resonance capture, i.e., the
time spent inside the separatrix, explains the exper-
imental results of Ref. [30]. Namely, the first-mode
amplitude remains nearly constant, possibly with oscil-
lationswhose period increases until escape, as observed
in the experiments of Ref. [30]. Note that at the reso-
nance capture, the second mode [Fig. 6, middle panel,
region (i)] provides the energy to sustain the ampli-
tude dwell of the first mode, and hence, it experiences
enhanced nonlinear damping, thus describing the phe-
nomenon observed by Ref. [29]. Therefore, as noted
above, this model is able to describe both enhanced
damping and coherence time that have been observed
in experiments.

4 Open loop operation—response to harmonic
drive

Here, we consider the usual external harmonic drive
applied to a MNRs near a resonance frequency, for
which one imposes a force of amplitude F and fre-
quency ωF . In this situation, the system steady-state
response of interest is at the same frequency with a
constant amplitude and a shifted phase. We refer to
this as open-loop operation, which is commonly used
for system characterization.

The open-loop analysis of systems with a 1:3 IR
is by no means new or unknown, cf., [32,103–106].
However, its implications forMNRs have only recently
become of interest. These include experimental obser-
vations of various phenomena, such as frequency-
veering/anti-crossing [57], a region of drive parameter
space where the desired steady-state oscillations are
not possible [18], and generation of frequency combs
due to a saddle node on an invariant circle (SNIC) and
Hopf bifurcations [31,35,72–76].

To explore the dynamics of open-loop operation,
we take a similar approach to the analysis of Sect.
3, where we consider the adiabatic and the diabatic
(non-adiabatic) cases of the externally driven counter-
part of Eqs. (7)-(8) with a linear secondary mode, that
is, γ2 = 0,

Ȧ1 = − (Γ1 + iΔω1)A1 + 3iγ1
2ωF

|A1|2A1

+ 3iα

2ωF
A2A

∗2
1 − i F

4ωF
, (26)

Ȧ2 = − (Γ2 + iΔω2)A2 + iα

6ωF
A3
1. (27)

Generally speaking, as is always the casewith such per-
turbation methods, the results from the approximate
analysis are expected to be less accurate as the drive
level is increased and/or as the frequencies move away
from the resonance conditions, both external and inter-
nal. To that end, as is standard in such analyses, we
replaceωF withω1 when its correctionwill be at higher
order.

In the adiabatic case, the steady-state analysis can
be reduced to that of an effective single mode by elim-
ination of mode 2. Taking Ȧ2 = 0, we find from Eq.
(27) that A2 = iαA3

1/[6ω1(Γ2 + iΔω2)], which can
then be substituted into Eq. (26) with Ȧ2 = 0 to yield
an equation for the steady-state conditions for the first
mode (where Ȧ1 = 0 as well), A1ss , which can be any
solution of the algebraic equation

A1ssI = F

4ωF
, (28)

where

I = −
[
Δω1− 3γ1

2ωF
|A1ss |2−

(
α

2ω1

)2
(

Δω2

Γ 2
2 +Δω2

2

)
|A1ss |4

]

+ i

[
Γ1 +

(
α

2ω1

)2
(

Γ2

Γ 2
2 + Δω2

2

)
|A1ss |4

]
(29)

is the impedance of mode 1 modified by its coupling
to mode 2. Consequently, the amplitude a1ss and phase
φ1ss of the steady-state response expressed as A1ss =
a1sseiφ1ss/2 are given implicitly by

a1ss = F

2ω1|I|

= F

2ω1

⎧⎨
⎩

[
Δω1− 3γ1

8ω1
a21ss−

(
α

8ω1

)2
(

Δω2

Γ 2
2 +Δω2

2

)
a41ss

]2

+
[
Γ1 +

(
α

8ω1

)2
(

Γ2

Γ 2
2 + Δω2

2

)
a41ss

]2
⎫⎬
⎭

−1/2

,

(30)
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tan φ1ss = 
{I}
�{I}

=
Δω1− 3γ1

8ω1
a21ss−

(
α

8ω1

)2(
Δω2

Γ 2
2+Δω2

2

)
a41ss

Γ1 +
(

α
8ω1

)2 (
Γ2

Γ 2
2 +Δω2

2

)
a41ss

. (31)

Note that we replaced the drive frequency ωF with the
eigenfrequency of the first mode ω1 in Eqs. (30)-(31),
since it leads to higher-order corrections that can be
ignored in the first-order approximation.

The above steady-state conditions take advantage
of the linearity of the second mode, γ2 = 0, and do
not require adiabaticity. Thus, the structure of the fre-
quency response curves will be identical in the adia-
batic and diabatic cases, but the stabilities and bifur-
cations will generally differ, with the diabatic case
being dynamically more complicated, as expected and
described below.

To show the main effect of the IR, sample fre-
quency response curves of a1ss are shown in Fig. 7,
with coupling (α �= 0, black curves) and without cou-
pling (α = 0, blue curves). The coupled and uncou-
pled response curves overlap outside of the IR zone
but diverge near it in a form of nonlinear frequency
repulsion (or veering, or anti-crossing). Note that due
to the very light damping there are pairs of response
curves that are very close to one another.

In the absence of mode coupling, α = 0, we obtain
the amplitude response curve of a standard Duffing res-
onator (with a positive Duffing nonlinearity), which is
shown by the dark blue curves in Fig. 7. These follow
the usual backbone curve, which is computed from the
conservative forces of the first mode and can be calcu-
lated by setting the real part of the impedance to zero
(
{I} = 0), resulting in ωp = ω1 + 3γ a21p/(8ω1).
The backbone curve is shown by the light blue dashed
line in the Figure. The frequency response follows the
backbone and monotonically increases with increasing
frequency until the peak amplitude a1p is reached at the
corresponding drive frequencyωp. The peak amplitude
is given by a1p = F/(2ω1Γ1) and is dictated by a bal-
ance of the non-conservative forces (specifically, the
ratio between the external drive magnitude and the dis-
sipation), and it can be calculated from Eq. (30) by set-
ting the drive frequency in the impedance to the peak
frequency I(ωp). This peak condition, which occurs
off scale in Fig. 7, occurs on the backbone curve.

Fig. 7 The steady-state mode 1 amplitude versus the normal-
ized excitation frequency. The dark blue and black curves are the
amplitude response with solid representing stable response and
dashed representing unstable response. The backbone curve of
the isolated mode 1 (α = 0) response is shown in the light blue
dashed line. The black lines show the coupled-mode amplitude
response with α = 0.5, where the insets are provided to show
details about stability. The dashed gray curves are the corre-
sponding backbone curves. The IR condition is shown by the red
vertical line. Due to its non-monotonic behavior in the vicinity
of the IR, the backbone curve of the coupled-mode case contains
a zero-dispersion point, where dωp/da1p = 0. Note that due to
the hardening to softening transition below the IR, for this level
of damping the response has three SN bifurcations near the IR
and a corresponding frequency window of bistability. The sys-
tem parameters are: Γ1 = 9.5× 10−6, Γ2 = 2.5× 10−5, ω1 =
1, ω2 = 3.1, γ1 = 0.5, F = 1.1 × 10−4

For nonzero coupling, α �= 0, the response becomes
more intricate due to the presence of effective quintic
nonlinearities in the reduced first-mode model. These
are shown as black curves in Fig. 7. In particular, the
coupled-mode backbone curve (
{I} = 0), shown as
the gray dashed line in Fig. 7, yields the following bi-
quadratic equation in a1p

ωp − ω1 − 3γ1
8ω1

a21p −
(

α

8ω1

)2

3ωp − ω2

Γ 2
2 + (3ωp − ω2)2

a41p = 0. (32)

Therefore, in contrast to the standard Duffing res-
onator, in this case it is possible that two different
peak amplitudes can occur at the same peak frequency.
When this occurs, it implies that the slope of the
coupled-mode backbone curve changes sign. Further-
more, when 3ωp ≈ ω2 (i.e., in the vicinity of the IR),
the highest-order nonlinear term (the coupling term)
in the backbone curve equation [Eq. (32)] vanishes.
Hence, there is a singular behavior in the vicinity of the
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IR condition that results in a frequency gap in which no
peak frequency can be found. The effect of this gap is
that the response curves terminate on either side of the
IR in saddle node (SN) bifurcations (where the solid
curves merge and terminate at the backbone). For any
level of damping, resonant response (that is, on the
upper branch of theDuffing response curve) at the drive
frequency is not possible in the gap; more about this
follows.

Inspection of the highest-order nonlinear frequency
shift α2a41p(3ωp − ω2)/{64ω2

1[Γ 2
2 + (3ωp − ω2)

2]}
reveals that at one side of the IR, for which 3ωp−ω2 <

0, the system has an effective softening nonlinearity,
while on the other side of the IR, 3ωp − ω2 > 0, the
effective nonlinearity is hardening. This phenomenon
is intimately related to the free response dynamics,
which we described in subsection 3.1 where, due to the
coupling, the system cannot sustain periodic vibrations
in which the frequencies are close to a 1:3 ratio. Hence,
the backbone curve of the coupled system admits a non-
linear version of anti-crossing of the frequencies, a clas-
sical analog to the quantum nonlinear Landau–Zener
formula [107] that has been observed in mechanical
systems [57,108,109].

Note that the frequency anti-crossing leads to a zero-
dispersion (ZD) point in the frequency–amplitude rela-
tion, i.e., a vertical tangency on the backbone curve
described by dωp/dap = 0 for a nonzero amplitude
(Fig. 7). Such a point is highly beneficial for phase
noise reduction in closed-loop oscillators, as consid-
ered in Sect. 5.

In the adiabatic case, Γ1 � Γ2, the second mode
tracks the first mode and the dynamics are described
by the reduced single-mode model

Ȧ1 = − (Γ1 + iΔω1)A1 + 3iγ1
2ωF

|A1|2A1

− α2

6ω2
F

(Γ2 + iΔω2)
−1|A1|4A1 − i F

4ωF
. (33)

Here, the stability of the response curves is relatively
straightforward, involving pairs of stable and unsta-
ble branches that merge at SN bifurcations on or near
the backbone curves. Specifically, due to the relatively
fast decay of the second mode, no dynamic energy
exchange between the modes is possible, the result of
which is that no Hopf bifurcations occur in this case.

The stability of the response in the diabatic case is con-
sidered next.

4.1 Bifurcation analysis of the diabatic system

When the relaxation rates of the modes are not vastly
different, we need to consider the dynamics of the sec-
ond mode. This leads to new dynamical outcomes that
are impossible in the adiabatic approximation, in par-
ticular, Hopf and SNIC bifurcations and the result-
ing dynamic energy transfer between the modes that
result in amplitude modulations [23,24,31,35,45,72–
76,86,103]. The steady-state amplitudes and phases
are identical to those of the adiabatic approximation,
where A1ss is determined from Eq. (28) and A2ss =
iαA3

1ss /[6ω1(Γ2+iΔω2)]. Therefore,we canuse these
steady-state solutions with the fully coupled dynamic
model to study the stability and local bifurcations of
the steady-state responses of the diabatic system.

The stability analysis follows the standard approach
inwhich one considers the linearized dynamics of small
perturbations to the steady-state response. In the dia-
batic case, the system is four dimensional (in contrast
to two dimensional in the adiabatic case), and this leads
to the solution of the eigenvalues of a four-by-four
matrix, described by a quartic equation, as described in
more detail in Ref. [18]. As the device and/or excitation
parameters are varied, it is found that both SN andHopf
bifurcations occur near the IR. Bifurcation conditions
are determined by numerical solution of the steady-
state amplitudes and phases and using these to evaluate
SN and Hopf conditions on the eigenvalues. From this
analysis, one can generate diagrams of the steady-state
responses and their stability, as well as bifurcation dia-
grams.

To make a clear connection between a bifurcation
diagram and the response curves, we show in Fig. 8
a bifurcation diagram and mode 1 frequency response
plots for a sample set of parameters. The parameters
are selected so that the system response is qualita-
tively the same as the device of Ref. [18]. However, for
Fig. 8, we select significantly higher damping values,
Γ1 = 2Γ2 = 0.001, in order to obtain better visibil-
ity of the different branches of the response curve. The
upper panel of Fig. 8 shows the SN and Hopf bifur-
cation conditions in a normalized space of the driv-
ing amplitude versus the frequency detuning from res-
onance. The two green curves represent, outside of
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Fig. 8 Bifurcation conditions and first-mode frequency
responses derived from the model. System parameters are: Γ1 =
2Γ2 = 0.001, γ1 = 0.001, α = 0.0009, ω1 = 1, ω2 =
3.09. Upper panel: Local bifurcation conditions in a normal-
ized parameter space for the drive amplitude versus the drive
frequency. Green curves are SN conditions, and red curves are
Hopf bifurcation conditions. The light green segment SN3 is a SN
condition for an already unstable steady-state response. Lower
panel: Frequency response curves and bifurcation conditions for
different levels of the drive amplitude. Solid (dashed) curves rep-
resent stable (unstable) responses. The inset shows details near
the IR

the IR region, the usual SN bifurcations associated
with the Duffing model. Specifically, the upper green
curve labeled as SN2 represents the SN on the lower
part of the Duffing response curve since it occurs at
a lower drive frequency. Similarly, curve SN1 repre-
sents the SN on the upper part of the Duffing response
curve. In the vicinity of the IR, the bifurcation structure
becomes quite complicated and involves Hopf bifurca-
tions, shown as red curves. Note that the light green
curve labeled as SN3 (it is really just a part of SN1)
between Hopf branches is a bifurcation involving an
already unstable steady state, therefore it will not be
experimentally observable. Also, note that where Hopf
branches meet SN branches, a double zero (DZ) con-
dition exists, which corresponds to co-dimension two
bifurcations that necessarily involve additional, non-

local bifurcations not captured by the eigenvalue anal-
ysis [78].

We now consider frequency sweeps at different lev-
els of drive amplitude F . To link the bifurcation dia-
gram of Fig. 8(upper panel) to the system frequency
response, we show in the lower panel of Fig. 8 samples
of the frequency response for the first-mode steady-
state amplitude for different levels of drive amplitude,
along with SN (green) and Hopf (red) bifurcation con-
ditions. In the frequency response curves of Fig. 8, solid
(dashed) lines represent stable (unstable) steady-state
responses. For very small values of F , below the cusp
point C in Fig. 8(upper panel), the frequency response
is essentially linear, without any bistability. This is
verified by the lowest level frequency response curve
depicted in Fig. 8(lower panel). For the next larger
range of F values, the system behaves like the usual
Duffing system, exhibiting bistability, also verified by
the frequency response curves depicted in Fig. 8(lower
panel). For the next larger range of F values, the SN1
curve inFig. 8(upper panel), corresponding to the larger
amplitude Duffing response branch, is encountered at
a drive frequency much lower than anticipated by the
Duffing response, due to the “bump” in the SN curves
near the IR. The SN1 and SN3 branches merge at
a DZ eigenvalue point labeled DZ1 in Fig. 8(upper
panel), above which a Hopf branch emerges, labeled
H2. For values of F above DZ1, the response encoun-
ters H2. For these ranges of F , after crossing SN1 or
H2, a complicated sequence of bifurcations are encoun-
tered, including those that lead to amplitude modu-
lated motions and even chaos. Generally, in this range
of F , sweeping up in frequency leads to the SN1 or
H2 bifurcation that does not allow the system to con-
tinue in the usual Duffingmanner. As one sweeps down
in frequency for this range of F values, the system
encounters the H1 Hopf bifurcation. It is worth not-
ing the that drive frequency corresponding to the SN1
andH2 bifurcations essentially saturates just before the
IR, well below the expected Duffing SN1 condition. In
fact, it was the experimental observation that the fre-
quency response was interrupted at a nearly constant
drive frequency, independent of the drive level, that
first signaled the IR in the MNRs device described in
Refs. [18,30,31,70]. The dynamics in the IR gap can
be very complicated, as partially explored below. At
very large levels of F , even the SN2 branch can have
Hopf segments, labeled as H3 and shown in both the
upper and lower panels of Fig. 8.
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Some general comments about this complicated pic-
ture of the response are in order. First, the reader is
reminded that these bifurcations are for the slow flow
equations so, for example, Hopf bifurcations lead to
amplitude modulated equations in the original sys-
tem. Also, there are several parameters that influence
the bifurcation diagram and quite different bifurcation
structures are possible. For example, as one varies the
coupling parameter α, the bifurcation diagram evolves
from the simple Duffing picture to the one shown in the
upper panel of Fig. 8 and can become even more com-
plicated as α is increased further. Finally, as described
next, the model and its complicated bifurcation struc-
ture are clearly observed in experiments.

To illustrate that this intricate bifurcation structure
and its non-trivial dynamical consequence occur in a
physicalMNRsdevice,we reproduce inFig. 9 the bifur-
cation diagram of Ref. [18], from the device shown in
the lower panel of Fig. 1. The bifurcation diagram uses
the same color scheme as Fig. 8(upper panel), but has a
slightly different structure due to the differing damping
levels and coupling coefficients.

The colors of the solid squares indicate different
types of transitions, as follows. Black squares indi-
cate the SN bifurcation encountered as the frequency
is swept upward, showing both the usual Duffing sit-
uation and the IR. Some details of the IR transition
beyond the SN are described below. The light blue
squares indicate Hopf bifurcations encountered as the
frequency is swept down from above the IR. The dark
blue squares indicate Hopf bifurcations seen as the fre-
quency is swept up. Of course, a “zoo” of bifurcations,
including global bifurcations, occur in the IR zone, one
ofwhich is described below.Also, note that the range of
drive amplitudes is limited by the experimental appa-
ratus to the values shown, so that the upper parts of the
bifurcation diagram cannot be explored.

We note that while the considered model is per-
haps the most simplified for 1:3 IR [Eqs. (26)-(27)],
it captures the intricate experimental bifurcation struc-
ture near the IR remarkably well. For example, the
bifurcation conditions describe the regions of parame-
ter space where the Duffing response is observed and
where it breaks down and the manner in which it does
so. Note that the IR causes a saturation of the SN bifur-
cations at a frequency close to one-third of the sec-
ond mode, the low frequency boundary of the Duffing
breakdown, which has implications for the closed-loop
operation considered in Sect. 5. Additionally, note that

Fig. 9 Theoretical and measured bifurcation diagrams with
experimental parameters and data taken from Ref. [18] for the
device depicted in the lower panel of Fig. 1. The upper panel
shows an extended bifurcation diagram depicting the remark-
able agreement between the model predictions from Eqs. (26)-
(27) and the experimental results. The green solid curves are the
predicted location of SN bifurcations; the dashed red curve is the
predicted location of Hopf bifurcations; and the solid squares of
various colors indicate the experimental data. The upper panel
shows two green curves that correspond to the SN bifurcations
of the usual Duffing resonator, the lower/upper of which corre-
sponds to the SN at large/small amplitudes. The lower curve is
interrupted by the IR, and the region in the vicinity of the IR is
shown in detail in the lower panel, where the thin black vertical
line indicates the location of the IR condition. For discussion
in subsection 4.2, the left inset schematically depicts the phase
space with stable/unstable (solid/open circles) constant ampli-
tude responses to the left of the IR. The right inset schematically
depicts the phase space with a limit cycle and no fixed ampli-
tudes, beyond the SN, which corresponds to amplitude modula-
tions that occur to the right of the IR; note that this is not a simple
limit cycle as it exists in four dimensions and arises as part of a
saddle-connection bifurcation in that space

the model describes bifurcations that are not experi-
mentally accessible, e.g., curve SN3 in Fig. 8.

One interesting result of this IR is the creation of a
gap in the excitation frequency near the IR, where sta-
ble oscillations cannot be sustained. For drive voltages
above 15 mV and below 260 mV, as the driving fre-
quency is increased through SN1, the amplitude of the
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resonator will decay to very small amplitudes (essen-
tially, to the noise floor since the system is sufficiently
far from resonance) and remain there as the frequency
increases. Due to hysteresis, once this occurs, if the
frequency is decreased, it will not recover oscillations
until reaching SN2. This gap in the operating parame-
ter space is created by the presence of mode coupling
in the resonator, i.e., mode 2 drains mechanical energy
frommode 1, reducing its amplitude to the point where
oscillations at that frequency are unstable, thus causing
the amplitude to drop to the lower branch of the res-
onant curve. If the excitation amplitude is above 260
mV and the frequency is increased through SN1, sus-
tained motions with interesting amplitude modulations
are observed, a behavior considered in detail in subsec-
tion 4.2.

It is important to note that in order to characterize
a physical device with 1:3 (or 1:2) IR, one needs only
to characterize the two modes in their uncoupled oper-
ation, including their Duffing nonlinearities, and then
determine the single essential coupling coefficient, α.
In the device reported in [18,31], this parameter was
determined by a fit of the SN bifurcation curves. If one
can a priori measure it in another way, say from ring-
down measurements, this would allow one to predict
the full driven response with good confidence.

4.2 Bifurcation generated frequency comb

Here, we describe an interesting dynamic response that
results from global features of the dynamical system
that arise just beyond the SN1 transitions correspond-
ing to the black squares. For sufficiently large driving
amplitude (above the threshold of 260 mV) in the gap
near the IR, the response does not transition to the lower
branch beyond the SN, but exhibits complex periodic
amplitude modulations, as shown in the upper panel of
Fig. 10.

The timescale of thesemodulations is approximately
5(!) orders of magnitude larger than the drive period
2π/ωF , and their period is observed to vary in a sys-
tematic manner as the excitation period is varied away
from the SN1 point.4. From the upper panel of Fig. 10,

4 The model allows for infinite period modulations, since this
bifurcation involves a saddle connection, but noise always limits
how close one can get to the saddle and maintain periodicity;
thus, this timescale is quite impressive for a device that is quite
susceptible to noise.

Fig. 10 Experimental amplitudemodulation and its correspond-
ing frequency comb. (Data are taken from Ref. [31].) Upper
panel: Temporal amplitude response ofmode 1 (blue) andmode 2
(red); the responses showing the fast–slow dynamics on the limit
cycle (associated with the time scales T f and Ts , respectively),
which correspond to periodic but non-harmonic modulations.
Lower panel: Frequency spectrum of the temporal responsemea-
sured in the upper panel showing the generation of a frequency
comb

we see that the amplitudes ofmodes 1 and2 exhibit fluc-
tuations with distinct transitions from quiescent spells
of constant amplitude to periods of large modulations.
In the frequency domain, this response results in a fre-
quency comb with equidistant spacing of the spectral
lines, as shown in lower panel of Fig. 10 and derived
below. This transition from constant amplitude to peri-
odic, harmonically rich, amplitudemodulations is asso-
ciatedwith a form of a SNIC bifurcation, also known as
a saddle-node-loop, or SNL, bifurcation [110]. In the
present system, as the drive frequency crosses the SN1
frequency, the stable and unstable fixed amplitude solu-

123



Resonant Modal Interactions

tions annihilate one another and the amplitude starts to
oscillate due to the generation of a periodic cycle near
the bifurcation SN point [31]. The remnant, or ghost,
of the SN1 bifurcation leads to slow passage through a
bottleneck near its location in phase space (see insets
of the lower panel in Fig. 9). Consequently, the period
of the amplitude modulations T is composed from two
timescales: T f , the duration of the fast burst around the
loop, and Ts ∝ (ωF −ωSN )−1/2, the slow passage near
the remnant of the SN, where ωF − ωSN is the detun-
ing of the frequency from the SN1/SNIC bifurcation
[31]. The scaling of Ts with the bifurcation parameter
(ωF − ωSN ) is generic for a saddle node bifurcation
[111] and provides a convenient parameter for tuning
the modulation period.

The transition from a usual SN to the SNIC bifurca-
tion as the driving voltage is increased is due to a global
bifurcation involving the saddle point involved in bifur-
cation SN1. Specifically, at a drive level near 260 mV,
its one-dimensional unstable manifold becomes con-
nected to the nearby stable node that is also involved
in the SN1 bifurcation; see the insets in Fig. 9. This
is part of a complicated set of bifurcations in the four-
dimensional phase space that results in the periodic
response shown in Fig. 10. While the SNIC bifurcation
occurs at the SN1 condition, it requires a condition on
the global system dynamics that is not captured by a
simple, local, SN analysis.

To understand how the periodic fast–slow dynamics
of the amplitude leads to a frequency comb, we briefly
present the spectral analysis of the amplitude modula-
tions.Wederive an expression for the Fourier transform
(FT) of a signal xT (t) consisting of train of identical
bursts of general shape and duration T f that are sepa-
rated by time segments of length Ts of nearly constant
response, resulting in a total period T = Ts +T f . Note
that as the SNIC bifurcation point is approached from
above (in frequency), both the period T and duration
Ts approach infinity, while T f remains nearly constant.
Here, the goal is to express the FT of this periodic sig-
nal in terms of the FT of an isolated burst and T . Such a
relationship allows one to predict how the spectrum of
the periodic response changes as parameters, and thus,
T varies under the assumption that the burst shape does
not change. We start by considering a single-burst sig-
nal xT f (t) that is zero except in the interval 0 < t < T f

and has a general shape in that interval. The FT of
xT f (t) is continuous and is expressed as

XTf (Ω) =
∫ ∞

−∞
e−iΩt xT f (t)dt

=
∫ T f

0
e−iΩt xT f (t)dt, (34)

which has a scale of 2π/T f in the frequency domain.
Next, we consider the T -periodic extension of xT f (t),
which can be expressed as xT (t) = ∑∞

k=−∞ xT f (t −
kT ), and also as a Fourier series xT (t) = ∑∞

n=−∞
cneinω0t , where ω0 = 2π/T is the base frequency and
the Fourier coefficients (FC) are given by

cn = 1

T

∫ T

0
e−inω0t xT (t)dt

= 1

T

∫ T f

0
e−inω0t xT f (t)dt. (35)

Comparing Eq. (34) with Eq. (35) yields

cn = T−1XTf (nω0). (36)

Equation (36) shows that the FC of xT (t) are simply a
discretized version of the FT of the single burst evalu-
ated at the frequencies nω0 and divided by T .

To make the relationship between the FTs of the
isolated individual burst and the sequence of bursts
explicit, we consider the inverse FT of xT (t) and com-
pare it to its Fourier series

xT (t) = 1

2π

∫ ∞

−∞
e−Ωt XT (Ω)dΩ =

∞∑
n=−∞

cne
inω0t .

(37)

Therefore, we find that

XT (Ω) = 2π
∞∑

n=−∞
cnδ(Ω − nω0). (38)

Substituting Eq. (36) into Eq. (38), we find the follow-
ing explicit connection between the FTs,

XT (Ω) = ω0

∞∑
n=−∞

XTf (nω0)δ(Ω − nω0). (39)

This is a discrete spectrum with spectral lines at nω0

whose amplitudes are set by the continuous FT of the
single burst XTf (Ω) evaluated at those frequencies. In
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fact, as T → ∞ (ω0 → 0), the lines become closer
together and XT (Ω) → XTf (Ω). In terms of the spec-
trum shown in the lower panel of Fig. 10, this analysis
shows that the envelope of the spectral peaks is deter-
mined by the shape of an individual burst, and that as
the period of the signal is increased, this envelope is
filled with more closely spaced peaks, approaching a
continuous spectrum of the shape of the envelope in the
limit T → ∞.

This analysis demonstrates how one can tune the
combspacingby changing the systemparameters, since
the signal frequency ω0 varies continuously with the
bifurcation parameter (ωF −ωSN ). The range of tuning
is, as noted above, limited by the noise level. Another
important feature of this frequency comb is that it does
not exhibit hysteresis; that is, it can be continuously
varied over its tuning range without losing the signal,
which requires resetting of the limit cycle. This highly
desirable robustness stems from the inherent nature of
the SNIC bifurcation. This is in contrast to other stud-
ies of frequency combs in MNRs, which are associated
with amplitude modulated motions arising from Hopf
bifurcations, which are generally hysteretic and there-
fore less robust to noise [35,72–76].

5 Closed-loop operation—self-sustained response

Here, we consider a situation where a MNRs is used
in a feedback loop in which its output is amplified (or
attenuated, as appropriate) to a desired amplitude and
phase shifted by a set amount, and this signal is fed
back and used to drive the MNRs. The conditions of
interest here are those that result in self-sustained oscil-
lations of constant amplitude and frequency.We refer to
this as closed-loop operation, which is commonly used
to maintain resonant vibrations in sensors and time-
keeping oscillators. It is important to note that in this
case, the system has no externally imposed frequency.
In fact, the parameters of the MNRs and the feedback
loop elements determine the steady-state amplitude and
frequency of the MNRs output, which is maintained
near resonance.

In applications of MNRs-based self-sustained oscil-
lators, frequency resolution is a key metric for preci-
sion and the level of frequency fluctuations is a key
limitation on their performance [112]. Generally, to
improve frequency stability, one operates the system
such that the frequency-selective element, that is, the

MNRs, vibrates at a large amplitude in order to attenu-
ate the effects of thermal noise, thereby improving the
signal-to-noise ratio.However, this amplitude is limited
by the onset of nonlinear effects, where amplitude-to-
frequency (A − f ) noise conversion comes into play
[113]. It has been known that noise spectra can be nar-
rowed at certain amplitudes by reducing this effect,
specifically by operating at a ZD point at which, local
to the operating point, A − f effects are eliminated,
even though the operating point is well into the nonlin-
ear regime. This has been suggested and analyzed as
a means of reducing noise in self-sustained oscillators
[92], and quite recently, this effect has been experi-
mentally demonstrated [89]. These works utilize a ZD
point associated with single-mode operation, in which
the mode nonlinearity goes from hardening to soften-
ing, for example, as nonlinear effects transition from
mechanical to electrostatic dominant sources [15,88].
Here, we show how the ZD effects described above
for open-loop operation of a coupled-mode IR system
can also be realized in closed-loop operation, and how
one can broaden the range of ZD effects by varying the
strength of the intermodal coupling.

Frequency stabilization in a MNRs-based oscilla-
tor operating near an 1:3 IR was first experimentally
demonstrated in Ref. [70]. As the amplifier output level
was varied, the system exhibited hysteresis between
single and dualmode operation,with both possible over
a range of feedback conditions. A remarkable differ-
ence of ∼ 3 orders of magnitude in the level of fre-
quency fluctuations between the two operating condi-
tions was measured [70]. The mechanism for this fre-
quency stabilization is that the coupled-mode dynamics
exhibit a saturation phenomenon inwhich the operation
frequency is nearly constant over a range of oscillator
amplitudes. This effect, which is linked to the nature
of the SN1 curve depicted in the upper panel of Fig. 9,
results in a ZD condition. This provides a mechanism
for reducing A − f noise conversion in a system with
anMNRs that has a purely hardening or softening non-
linearity. Clearly, this behavior is intimately related to
the frequency anti-crossing associated with the IR. As
shown in the following, there is another feature of IR
that suppresses frequency noise: the inter-modal phase
locking constraint that is inherent in IRs. This provides
a separate mechanism for reducing frequency noise,
similar to the case of coupled oscillators [114]. These
two effects combine to achieve the reduction in fre-
quency fluctuations.
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To explicitly calculate the frequency noise reduction
from the model, one needs to include noise effects and
use stochastic methods, such as the method of stochas-
tic averaging [115], which are outside the scope of this
paper. However, a deterministic analysis enables one
to uncover and understand the underlying mechanisms
of the observed frequency stabilization. To this end, we
consider the closed-loop version (c1 = 0, c2 = 1) of
Eqs. (7)-(8) with a linear secondary mode, γ2 = 0,

Ȧ1 = − Γ1A1 + 3iγ1
2ωF

|A1|2A1 + 3iα

2ωF
A2A

∗2
1

− i F

4ωF

A1

|A1|e
iΔ, (40)

Ȧ2 = − (Γ2 + iΔω2)A2 + iα

6ωF
A3
1. (41)

Again, we employ A j (t) = a j (t)eiφ j (t)/2 to express
the equations in terms of the amplitudes and phases,

ȧ1 = −Γ1a1 + F

2ω1
sinΔ + 3α

8ω1
a2a

2
1 sinψ, (42)

φ̇1 = 1

2ω1

(
3γ1
4

a21 + 3α

4
a2a1 cosψ − F cosΔ

a1

)
,

(43)

ȧ2 = −Γ2a2 − α

24ω1
a31 sinψ, (44)

φ̇2 = −Δω2 + α

24ω1

a31
a2

cosψ. (45)

Note that in closed-loop operation, only the phase dif-
ferenceψ = 3φ1−φ2 appears in the RHS of Eqs. (42)-
(45), since there is no external drive to independently
fix the individual phases. This free running nature of
the phase of each mode is what leads to the inherent
susceptibility of the system tofluctuations in frequency.
For the analysis, it is convenient to replace Eqs. (43)
and (45) with a single equation for the phase difference

ψ̇ = 9γ1
4ω1

a21 + 9α

4ω1
a2a1

(
1 − a21

27a22

)
cosψ

− 3F cosΔ

2ω1a1
+ Δω2. (46)

The desired steady-state operation has constant
amplitudes for both modes and constant phase differ-
enceψ . Corresponding to this operating state, we intro-
duce φ̇1ss = ν so that Ω = ω1 + ν is the steady-state

frequency of the first mode, and thus of the closed-loop
oscillator. The second-mode phase is therefore given by
φ̇2ss = 3ν so that ψ̇ = 0, as required for steady-state
operation. We then set ȧ1 = ȧ2 = ψ̇ = 0 in Eqs. (42),
(44), (46) and seek a solution u = (a1ss, a2ss, ψss)

T

to the corresponding algebraic equations. Again, the
analysis is simplified since mode 2 is linear. By setting
Eq. (44) to zero and Eq. (45) equal to 3ν and using
sinψ2 + cos2 ψ = 1, we find that

a2ss = αa31ss/(24ω1

√
Γ 2
2 + (3ν + Δω2)2)

and

tanψss = −Γ2/(3ν + Δω2).

Numerical solutions are required for a detailed analysis
of a1ss , and thus the full response, but we can gain some
insights by considering the oscillator frequency, which
is given by the first-mode resonant frequencyΩ . Using
a2 = a2ss and ψ = ψss above in Eq. (43), Ω can be
expressed implicitly in terms of a1ss and the system
parameters, as follows,

Ω =ω1 + 3γ1
8ω1

a21ss +
(

α

8ω1

)2 3Ω − ω2

Γ 2
2 + (3Ω − ω2)2

a41ss

− F cosΔ

2ω1a1ss
. (47)

Note that the peak amplitude is achieved in the closed-
loop operation when the phase shift in the feedback
is Δ = π/2 [i.e., all the energy from the feedback is
directed toward amplitude enhancement; see Eq. (42)].
Therefore, the backbone condition, expressed in terms
of the peak amplitude a1p at frequencyΩp, is identical
to that of open-loop operation [Eq. (32)], namely

Ωp − ω1 − 3γ1
8ω1

a21p

−
(

α

8ω1

)2 3Ωp − ω2

Γ 2
2 + (3Ωp − ω2)2

a41p = 0. (48)

Hence, the closed-loop response also admits a ZDpoint
at which dΩp/da1p = 0 (see Fig. 7), and by operating
at that point, we can effectively eliminate the A − f
noise conversion. We next show that there can exist a
range of very small dispersion near the ZD point, offer-
ing a more robust range of desirable operating condi-
tions.
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An explicit condition for the backbone curve is eas-
ily obtained by solving Eq. (48), the bi-quadratic equa-
tion for a1p in terms of Ωp. The result is a pair of pos-
itive values for a1p, and these merge at the ZD points.
Setting to zero the discriminant of the a21p quadratic
equation yields a pair of expressions for two values of
ΩZD . These simplify significantly in the limitΓ2 → 0,
to

ΩZD = 4α2ω1 + 9γ 2
1 ω2

4α2 + 27γ 2
1

,
ω2

3
.

Only the first (and smaller) of which yields a nonzero
amplitude (a1p �= 0) and hence is the ZD point of
interest. This result also allows one to compute the fre-
quency gap width as

[[ω]]gap = ω2

3
− 4α2ω1 + 9γ 2

1 ω2

4α2 + 27γ 2
1

= − 4α2Δω2

12α2 + 81γ 2
1

,

which is valid only for Δω2 = 3ω1 − ω2 < 0 and
γ1 > 0. (The other scenario of Δω2 > 0 will lead to
a ZD point only for a softening first mode, γ1 < 0.)
Thus, the gap width [[ω]]gap varies from zero at α =
0 to −Δω2/3 as α → ∞. The Γ2 = 0 steady-state
amplitude at the ZD point of interest is found to be

a1ss ,ZD = 4
√
3

√
−γ1ω1Δω2

4α2 + 27γ 2
1

.

Figure 11 shows backbone curves for sample values of
the coupling strength, showing that the right limit of the
gap is fixed, while the left limit, given by the ZD point
of interest, moves to smaller frequencies and smaller
amplitudes as the coupling strength increases. It is seen
that for small values of the coupling strength the gap is,
of course, smaller, and the system also has a broader,
presumably more robust and effective, range of ampli-
tudes with small dispersion. This may be useful in the
design of systems that use this effect for frequency sta-
bilization.

The second mechanism of frequency stabilization is
the locking of the phase difference, which hybridizes
the phases of the two modes, and therefore enables the
system to clean the “noisy” phase of mode 1, which
includes noise from the circuitry of the feedback loop
in addition to thermal noise in themechanical resonator,
with the relatively “clean” phase of mode 2, which is
largely uncoupled from the feedback loop since it is far
off resonance. The analysis proceeds by first consider-
ing the dynamics of the phase difference ψ , and then
features of the phase sum, from which one can glean

Fig. 11 Backbone curves, showing the relationship between
closed-loop first-mode vibration amplitude and operating fre-
quency, for different coupling strengths: α = 10−4 (black), 0.1
(blue), 0.5 (magenta), and 1 (red). The system parameters are:
Γ1 = 9.5 × 10−6, Γ2 = 2.5 × 10−5, ω1 = 1, ω2 = 3.1, γ1 =
0.5

the behavior of the phase of interest, φ1. To see how
this mechanism works, we make the assumption that
the phase dynamics are relatively slow in comparison
with the amplitude dynamics, which is commonly the
case in self-sustained oscillators [116–120]. Thus, Eq.
(46) reduces to the well-known Adler equation [67],

ψ̇ =ΔΩ + κ cosψ, (49)

where

ΔΩ = 9γ1
4ω1

a21 − 3F cosΔ

2ω1a1
+ Δω2,

κ = 9α

4ω1
a2a1

(
1 − a21

27a22

)
.

The dynamics of the Adler equation can be mapped
onto the motion of an overdamped particle trapped in
a washboard potential, i.e., ψ̇ = −dV(ψ)/dψ , where
V(ψ) = −ΔΩψ − κ sinψ ; see Fig.12. Thus, for a
stable operating point u = (a1ss, a2ss, ψss)

T , where
|ΔΩ| < |κ|, the phase difference ψ will remain at one
of the minima of the potential and will rattle back and
forth due to the presence of noise ηψ(t), with small and
confined variance (Fig.12).

The phase of mode 1, φ1, is a linear combination
of the phase difference, ψ , and the phase sum, ϕ =
φ1 + φ2, as

φ1 = 1

4
(ψ + ϕ). (50)
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Fig. 12 Qualitative view of the phase-difference fluctuations.
The phase-difference fluctuations are associated with the motion
of a randomly forced overdampedparticle trapped in awashboard
potential. Therefore, the variance of ψ is small and confined, in
contrast to the strongly diffusive random walk motion of the
individual mode phases φ1,2

In contrast to the phase difference ψ , which has a sta-
bilizing restoring force −dV(ψ)/dψ , the phase sum ϕ

is unconstrained and runs freely with a variance that
increases linearly in time. However, it is affected by
both φ1 and φ2, where φ2 is far less noisy than φ1 since
it is purely mechanical and unexposed to the noise that
stems from the circuitry of the feedback loop. Hence,
the noise of φ2 can be neglected in the noise of the
phase sum ϕ. Moreover, due to the 3:1 ratio between φ1

and φ2 [Eq. (50)], the effective noise intensity [115] of
the coupled-mode 1 response is approximately (when
neglecting also the phase diffusion of ψ) sixteen times
smaller than the noise of the uncoupled version ofmode
1,

Dcoupled
φ1

=
(
1

4

)2

[Dψ + Dϕ] ≈
(
1

4

)2

Duncoupled
φ1

.

(51)

It is these two effects, the reduction of A − f con-
version due to ZD and the phase constraint, that are
responsible for the dramatic reduction in frequency
fluctuations measured when operating in IR [70]. The
fundamental knowledge presented here will be essen-
tial if one is to design self-sustaining oscillators that
exploit IR for noise reduction. This has yet to occur in
commercial devices, but the idea is quite compelling
given the importance of frequency stability in sensing
and time-keeping applications.

6 Conclusion

The sampling of results presented here is biased toward
the interests and activities of the authors in the area of
IR in MNRs. There are many groups working in this
area, and several papers have recently appeared that
describe interesting dynamics of these systems.Most of
these studies are experimental observations, and some
are backed up by models and simulations, but most
often without any detailed analysis. It is hoped that the
successes of modeling and analysis done in support
of experimental work, such as those described herein,
will motivate others to make use of the tools of non-
linear dynamics, not only to describe what is observed,
but to gain a deeper understanding of the underlying
sources of these rich dynamics. This approach also
allows one to explore new phenomena and applications
using mathematical models, which complements the
essential exploratory work of experimentalists.

The model employed does a remarkable job in cap-
turing the dynamics associated with the 1:3 IR, in spite
of the fact that it neglects the dispersive coupling term
that appears in the formal version of the attendant nor-
mal form. The included coupling term,which promotes
inter-modal energy exchange, appears to be sufficient
for capturing the dynamics of the devices of interest.
This observation raises an interesting issue about the
relevance of normal forms for predicting and describ-
ing the nonlinear response of physical systems, namely
how one decides which terms in a normal form are
really essential. This subject deserves consideration
from a mathematical view, with physics in mind.

In order to utilize IR in devices, it is interesting to
consider how one might design for desired IR features.
This is part of the general topic of designing nonlinear-
ity into MNRs. The design and tuning of single-mode
Duffing-like nonlinearity using mechanics, electrostat-
ics, and material properties have received quite a bit of
attention, cf. [10,88,121]. However, there are very few
studies that describe the design of the coupling nonlin-
earity in structures, as needed to design for IR. Here,
knowledge of the associated normal forms makes such
an approach possible, since it focuses the design on
a relatively small number of parameters [40,122,123].
Refinement of computational tools, in conjunctionwith
a good understanding of nonlinear dynamics, should
allow for the eventual implementation of IR in appli-
cations.
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In terms of future developments, there will, of
course, be new phenomena uncovered in experiments,
as researchers push MNRs into new operating realms.
Many of these groups will be motivated to observe
dynamics at low temperatures, to the point where quan-
tum behavior will emerge. The nature of nonlinear
dynamics in the quantum domain is a topic of current
and envisioned research, cf. [49,55,124,125], and it
seems quite natural that IRs in the quantum domain
will become a research topic of interest. Another topic
of interest is the development of methods for charac-
terizing IR models. Previous work has used ad hoc fit-
ting methods, cf. [31], but there are no doubt other,
less cumbersome, methods, for example, using ring-
down properties. Such methods could utilize a set of
measured transient responses that activate the IR and
from which one could distill normal form coefficients
by comparing the response to model predictions.
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